Diskrete Mathematik für Informatiker

Wintersemester 2018/19

Dr. Tobias Moede t.moede@tu-bs.de Universitätsplatz 2, Raum 515 0531 391-7516

Aufgabenblatt 10

Kurzfragen

- Seien $a, b, m \in \mathbb{Z}$ mit $m \ge 2$. Wann heißt a kongruent zu b modulo m?
- Was ist eine lineare Kongruenz?
- Was besagt der chinesische Restsatz?

Aufgabe 10.1 (ISBN-13)

(1+1=2 Punkte)

- (a) Seien 978315009870 die ersten 12 Ziffern einer ISBN-13 Nummer. Bestimmen Sie die Prüfziffer. (Es ist nicht gefordert aber empfohlen das entsprechende Buch zu lesen.)
- (b) Bestimmen Sie zwei gültige ISBN-13 Nummern, die sich nur an zwei Stellen unterscheiden.

Aufgabe 10.2 (Lineare Kongruenzen)

(2+2+2=6 Punkte)

(a) Bestimmen Sie alle Elemente von \mathbb{Z}_{12} mit

$$3x \equiv 6 \pmod{12}$$
.

(b) Bestimmen Sie ein $a \in \mathbb{Z}$, so dass die lineare Kongruenz

$$ax \equiv 8 \pmod{12}$$

genau 4 Lösungen in \mathbb{Z}_{12} besitzt.

(c) Bestimmen Sie ein $x \in \mathbb{Z}_{1046}$ mit

$$349x \equiv 553 \pmod{1046}$$
.

Aufgabe 10.3 (Chinesischer Restsatz)

(4 Punkte)

Bestimmen Sie für das folgenden System linearer Kongruenzen die eindeutige Lösung in \mathbb{Z}_{560} .

$$x \equiv 3 \pmod{5}$$

$$x \equiv 5 \pmod{7}$$

$$x \equiv 2 \pmod{16}$$

Aufgabe 10.4 (Eulersche φ -Funktion)

(1+1+2=4 Punkte)

Betrachten Sie die Eulersche φ -Funktion, welche für natürliche Zahlen $n \in \mathbb{N}$ definiert ist als Anzahl der zu n teilerfremden natürlichen Zahlen kleiner gleich n, d.h.

$$\varphi(n) = |\{a \in \mathbb{N} : a \le n \text{ und } ggT(a, n) = 1\}|.$$

Für eine Primzahl p gilt also offenbar $\varphi(p) = p - 1$.

- (a) Sei p eine Primzahl und $k \in \mathbb{N}$. Beweisen Sie, dass dann $\varphi(p^k) = p^{k-1}(p-1)$ gilt.
- (b) Bestimmen Sie $\varphi(4913)$.
- (c) Bestimmen Sie alle $n \in \mathbb{N}$, so dass $\varphi(n)$ ungerade ist.

Hinweis: Für teilerfremde $m,n\in\mathbb{N}$ gilt $\varphi(mn)=\varphi(m)\varphi(n).$ Sie dürfen dies hier, falls nötig, ohne Beweis verwenden.