Dr. Tobias Moede t.moede@tu-bs.de Universitätsplatz 2, Raum 515 0531 391-7516

Aufgabenblatt 8

Kurzfragen

- Was ist eine rekursive Folge?
- Was sind die Fibonacci-Zahlen?
- Was ist eine homogene lineare Differenzengleichung der Ordnung r mit konstanten Koeffizienten?

Aufgabe 8.1 (Collatz-Vermutung)

(2+1+2=5 Punkte)

Betrachten Sie für $c \in \mathbb{N}$ die rekursive Folge $(a_n)_{n \in \mathbb{N}}$ definiert durch den Anfangswert $a_1 = c$ und

$$a_{n+1} = \begin{cases} \frac{a_n}{2}, & \text{falls } a_n \text{ gerade}, \\ 3a_n + 1, & \text{falls } a_n \text{ ungerade} \end{cases} \quad (n \geq 1).$$

- (a) Geben Sie für $c\in\{1,3,24,336\}$ jeweils die ersten 12 Folgeglieder der Folge $(a_n)_{n\in\mathbb{N}}$ an.
- (b) Bestimmen Sie eine unendliche Menge $S\subseteq \mathbb{N}$ von Anfangswerten, so dass für jedes $c\in S$ ein $j\in \mathbb{N}$ existiert mit $a_j=1$.
- (c) Bestimmen Sie alle Anfangswerte $c \in \mathbb{N}$, so dass $a_6 = 1$ gilt.

Aufgabe 8.2 (Fibonacci-Zahlen)

(2+2=4 Punkte)

Seien F_n die Fibonacci-Zahlen. Beweisen Sie mit vollständiger Induktion:

- (a) Für alle $n \in \mathbb{N}$ gilt: $\sum_{i=1}^n F_i^2 = F_n F_{n+1}$.
- (b) Für alle $n\in\mathbb{N}, n\geq 2$ gilt: $F_{n+1}F_{n-1}-F_n^2=(-1)^n$.

Aufgabe 8.3 (Lineare Differenzengleichungen)

(2+2=4 Punkte)

Sei die folgende homogene lineare Differenzengleichung gegeben:

(*)
$$f_n = -f_{n-1} + 14f_{n-2} + 24f_{n-3}$$
 $(n > 4)$.

- (a) Zeigen Sie, dass die allgemeine Lösung von (*) gegeben ist durch $f_n=c_1\cdot (-3)^n+c_2\cdot (-2)^n+c_3\cdot 4^n$ mit Konstanten c_1,c_2,c_3 .
- (b) Bestimmen Sie f_n explizit für die Anfangswerte $f_1=2, f_2=56, f_3=44.$

Aufgabe 8.4 (Lineare Differenzengleichungen II)

(3 Punkte)

Beweisen Sie Satz 2.12 aus der Vorlesung, d.h. beweisen Sie folgende Aussage: Sei

$$f_0 = c, \ f_n = af_{n-1} + b \ (n \ge 1)$$

mit Konstanten $a,b,c\in\mathbb{R}$ eine inhomogene, lineare Differenzengleichung erster Ordnung. Dann ist die Lösung dieser Gleichung gegeben durch

$$f_n = \begin{cases} a^n c + \left(\frac{1-a^n}{1-a}\right) b, & \text{falls } a \neq 1 \\ c + nb, & \text{falls } a = 1 \end{cases}.$$

(**Hinweis:** Zeigen Sie zunächst per vollständiger Induktion, dass $f_n = a^n c + (a^0 + \ldots + a^{n-1})b$ gilt und unterscheiden Sie dann die Fälle $a \neq 1$ und a = 1. Im ersten Fall können Sie das Resultat von Aufgabe 5.1 (b) verwenden.)