Mathematische Methoden in der Kommunikationstheorie (Sommersemester 2018)

Dr. Tobias Moede t.moede@tu-bs.de Universitätsplatz 2, Raum 515 0531 391-7516 Alexander Cant, M.Sc. a.cant@tu-bs.de Universitätsplatz 2, Raum 515 0531 391-7516

Übungsblatt 3

(Abgabe: 24.04.2018 in der VL)

Aufgabe 1. (Modulare Inverse)

Berechnen Sie - falls existent - die folgenden modularen Inversen mit Hilfe des erweiterten Euklidischen Algorithmus.

- a) Das Inverse von 7 in \mathbb{Z}_{180} .
- b) Das Inverse von 63 in \mathbb{Z}_{180} .

Aufgabe 2. (RSA-Entschlüsselung)

Sie erhalten die verschlüsselte Nachricht c = 67. Es wurde das RSA-Verfahren mit dem öffentlichen Schlüssel (e, n) = (7, 209) verwendet. Entschlüsseln Sie die Nachricht.

Aufgabe 3. (Fermat-Zahlen)

Für eine natürliche Zahl n ist die n-te Fermat-Zahl definiert als

$$F_n = 2^{2^n} + 1.$$

Berechnen Sie zunächst die ersten sechs Fermat-Zahlen F_0, \ldots, F_5 . Beweisen Sie dann die folgenden Aussagen:

- a) Für alle $x, y \in \mathbb{Z}$ und $m \in \mathbb{N}$ gilt, dass x y die Zahl $x^m y^m$ teilt.
- b) Wenn für $k \in \mathbb{N}$ die Zahl $2^k + 1$ eine Primzahl ist, dann ist $k = 2^r$ für ein $r \in \mathbb{N}$.
- c) Überlegen Sie sich Gründe, warum oft die Zahl F_4 als Exponent e im RSA-Verfahren gewählt wird.
- *d) Beweisen oder widerlegen Sie, dass F_n für alle $n \geq 5$ zusammengesetzt, d.h. keine Primzahl, ist. Aktuell ist für 292 Fermat-Zahlen bekannt, dass es sich um zusammengesetzte Zahlen handelt. Komplett faktorisiert sind bisher nur F_5, \ldots, F_{11} .

Aufgabe 4. (RSA-Fixpunkte)

a) Sei n = pq für zwei verschiedene, ungerade Primzahlen p und q. Weiter sei e invertierbar modulo $\varphi(n)$. Zeigen Sie, dass es in \mathbb{Z}_n genau

$$(1 + ggT(e - 1, p - 1))(1 + ggT(e - 1, q - 1))$$

Fixpunkte des Potenzierens mit e,d.h. Elemente $m\in\mathbb{Z}_n$ mit

$$m^e \equiv m \bmod n$$

gibt.

Hinweis: Für eine Primzahl p hat die Gleichung $x^n = 1$ genau ggT(n, p - 1) Lösungen in \mathbb{Z}_p . Erinnern Sie sich außerdem an das "Zusammensetzen" von Lösungen mit Hilfe des Chinesischen Restsatzes.

b) Überlegen Sie sich, dass jedes RSA-System mindestens 9 Fixpunkte besitzt.