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Abstract: Two square complex matrices A,B are said to be unitarily
congruent if there is a unitary matrix U such that A = UBUT . The Youla
form is a canonical form under unitary congruence. We give a simple
derivation of this form using coninvariant subspaces. For the special class
of conjugate-normal matrices the associated Youla form is discussed.
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1 Introduction

Matrices A,B ∈ Cn×n are said to be consimilar if A = SBS
−1

for a nonsin-
gular matrix S ∈ Cn×n, where, as usual, S is the component-wise conjugate of
S. Consimilarity is an equivalence transformation and expresses the change of
basis formula for a basis representation of an antilinear transformation. Uni-
tary congruence is an important particular case of consimilarity obtained when
S = U is a unitary matrix: A = UBUT . Here UT denotes the usual matrix
transposition C = UT , cij = uji, while U∗ denotes the Hermitian adjoint of U ,
C = U∗, cij = uji. If S = Q is complex orthogonal, then A = QBQ∗; if S = R is
a real nonsingular matrix, then A = RBR−1. Thus, special cases of consimilarity
include T congruence, ∗congruence and ordinary similarity. There exists an exten-
sive literature on consimilarity and unitary congruence, which provides a rather
complete theory for these matrix relations.
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Consimilarity has a very long history, going back to [20] and perhaps ear-
lier. Early work on this subject can be found under keywords like antilinear
transformation [6], semilinear transformations [7, 1], pseudolinear transforma-
tions [16, 17]. Canonical forms under consimilarity have been considered by a
number of authors, see [12] for a summary. The consimilarity analog of the Jor-
dan canonical form, the concanonical form, has been considered, e.g., in [1, 6, 8].
As the concanonical form is essentially unique, it follows that two complex matri-
ces are consimilar if and only if they have the same concanonical form. Moreover,
every complex matrix A is consimilar to a real matrix; its square is similar to
AA (see [1, Satz 20] or [12, Theorem 4.9]). It is further shown in [12] that every
matrix is consimilar to its own conjugate, transpose and adjoint, and to a Her-
mitian matrix. Just as one can derive a symmetric Jordan canonical form from
the Jordan canonical form of a matrix under similarity, a Hermitian canonical
form under consimilarity is derived in [9] from canonical forms in [12] and [4].
The reduction of a matrix to triangular or diagonal form by consimilarity has
been discussed in [11].

The n eigenvalues of a matrix A ∈ Cn×n are its simplest (and most important)
similarity invariants. We want to define analogous invariants with respect to
consimilarity transformations. To this end, we introduce the matrices

Â =

[
0 A
A 0

]
, (1)

AL = ĀA, and AR = AĀ.

Although the products AB and BA need not be similar in general, AL is always
similar to AR (see [14, p. 246, Problem 9 in Section 4.6]). Therefore, in the
subsequent discussion of their spectral properties, it will be sufficient to refer to
one of them, say, AL.

The spectrum of AL has two remarkable properties:
1. It is symmetric with respect to the real axis. Moreover, the eigenvalues λ

and λ̄ are of the same multiplicity.
2. The negative eigenvalues of AL (if any) are necessarily of even algebraic

multiplicity.
For the proofs of these properties, we refer the reader to [14, p. 252–253,].
Let

λ(AL) = {λ1, . . . , λn}
be the spectrum of AL. The coneigenvalues of A are the n scalars µ1, . . . , µn

defined as follows:
If λi ∈ λ(AL) does not lie on the negative real axis, then the corresponding

coneigenvalue µi is defined as a square root of λi with nonnegative real part and
the multiplicity of µi is set to that of λi :

µi = λ
1/2
i , Reµi ≥ 0.
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With a real negative λi ∈ λ(AL), we associate two conjugate purely imaginary
coneigenvalues

µi = ±λ
1/2
i .

It can be easily shown that, if µ1, . . . , µn are the coneigenvalues of A, then

λ(Â) = {µ1, . . . , µn,−µ1, . . . ,−µn}. (2)

Note that the definition of the coneigenvalues given above is similar or iden-
tical to the definitions in [4, 5] and is different from the definition in [14, p. 245].
In particular, the coneigenvalues as defined in [14] can exist only if AL has real
nonnegative eigenvalues. The coneigenvalues as defined above exist for any n×n
complex matrix A.

In this paper, we are mostly concerned with unitary congruence transforma-
tions. Two matrices A,B are unitarily congruent if there exist a unitary U such

that A = UBUT . This is the same as A = UBU
−1

since U−1 = U∗, so unitary
congruence is the same as unitary consimilarity. A theorem characterizing uni-
tary congruence of two square matrices is given in [13]. It says that two matrices
A,B are unitarily congruent if and only if the pairs (AA∗, BB∗), (AA,BB) and
(AT A,BT B) are simultaneously unitarily similar. An important theorem in the
theory of unitary congruence is the Youla theorem (see, e.g., [24]). This is a
unitary congruence analog of the Schur triangularization theorem. In a sense, it
is even closer to the real version of the Schur theorem. The theorem says that,
given a complex square matrix A, there is a unitary matrix U such that UAUT

is a block triangular matrix with diagonal blocks of order 1 × 1 and 2 × 2. The
1× 1 blocks correspond to the nonnegative eigenvalues of AA (if any); the 2× 2
blocks correspond to the negative and/or nonreal eigenvalues of AA.

It is well known that the Schur triangular form becomes a diagonal matrix
for a normal matrix A. A similar fact in the theory of unitary congruence was
observed in [23]. For any conjugate-normal matrix A (that is, AA∗ = A∗A), there
is a unitary matrix U such that UAUT is a block diagonal matrix with diagonal
blocks of order 1×1 and 2×2. The 1×1 blocks correspond to the real nonnegative
eigenvalues of AA; the 2 × 2 blocks correspond either to pairs of equal negative
eigenvalues of AA or to conjugate pairs of nonreal eigenvalues of AA.

The paper is organized as follows. In Section 2, the concept of a coninvariant
subspace is introduced. We show that any matrix A ∈ Cn×n has a coninvariant
subspace of dimension one or two. Using this, we give a simple derivation for the
Youla normal form of a matrix under unitary congruences (see [24]). In Section 3,
the special class of conjugate-normal matrices is examined. The canonical form
for these matrices with respect to unitary congruences is known [23]; however,
the derivation we give for this form allows us to characterize conjugate-normal
matrices as unitarily congruent ones to ordinary real normal matrices.

3



2 The Youla Theorem

Let X be an n×s matrix. The symbol LX will denote the subspace in Cn spanned
by the columns in X.

Definition 1 A subspace LX is said to be a coninvariant subspace of A (or A-
coninvariant subspace) if

AX = XM (3)

for some matrix M [10].

Every matrix A ∈ Cn×n has at least two coninvariant subspaces: the zero
subspace (set X = 0 ∈ Cn in (3)) and the entire space Cn (take any nonsingular

X ∈ Cn×n and set M = X
−1

AX in (3)). Are there any nontrivial A-coninvariant
subspaces? The following theorem is a ”con”-version of the well-known fact that
any complex n× n matrix has an eigenvector.

Theorem 1 Let A ∈ Cn×n. Then A has a one- or two-dimensional coninvariant
subspace.

Proof. The observation preceding the theorem resolves the cases n = 1 and
n = 2. Assume that n ≥ 3. Let x be an eigenvector of AA; i.e., AAx = λx
for some λ ∈ C. Then either (a) {Ax, x} is linearly dependent or (b) {Ax, x} is
linearly independent. In case (a), we have Ax = µx for some scalar µ, and x spans
a one-dimensional coninvariant subspace. In case (b), we have A(Ax) = λx; thus,
x and Ax span a two-dimensional coninvariant subspace of A. ¤

This observation is not new; see, e.g., [6]. In that paper, invariant subspaces of
AA were considered, and a complete canonical form for consimilarity was given,
from which the presence of the low-dimensional subspaces asserted above can be
read off.

As already said in the Introduction, unitary congruence is the most important
particular case of consimilarity. There is an important theorem in the theory of
unitary congruence called the Youla theorem (see, e.g., [24]). We give a proof
of the Youla theorem in order to demonstrate how the concept of a coninvariant
subspace simplifies the argument.

Theorem 2 (Youla Theorem) Any matrix A ∈ Cn×n can be brought by a uni-
tary congruence transformation to a block triangular form with the diagonal blocks
of orders 1 and 2. The 1×1 blocks correspond to real nonnegative coneigenvalues
of A, while each 2× 2 block corresponds to a pair of complex conjugate coneigen-
values. This block triangular matrix is called the Youla normal form of A. It can
be upper or lower block triangular.
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Proof. We outline the proof that essentially mimics the standard proof of the
Schur theorem. For definiteness, we consider the reduction to the upper Youla
form.

The theorem obviously holds for n = 1. Suppose it holds for all matrices of
order n−1 or less. Choose a coneigenvalue µ of A. The actions to be taken depend
on whether we deal with a real nonnegative coneigenvalue µ (case 1) or with a
pair of conjugate coneigenvalues µ, µ (case 2). In any case, an orthonormal basis
of the corresponding coninvariant subspace has to be chosen. This is a single
normalized vector u1 (case 1) or orthonormal vectors u1, u2 (case 2). Next, a
unitary matrix U1 is built up with u1 as its first column (case 1) or u1, u2 as
the first two columns (case 2). Finally, the unitary congruence transformation is
performed

A → A1 = UT
1 AU1. (4)

Since
Au1 = µu1

(case 1) and
A[u1 u2] = [u1 u2]M

(case 2), the matrix A1 in (4) must be block triangular

A1 =

[
A11 A12

0 A22

]
. (5)

Here, A11 = µ is a 1× 1 block in case 1 and A11 = M is a 2× 2 block in case 2.
By induction there is a unitary matrix V of order n−1 (case 1) or n−2 (case

2) such that V T A22V is in the Youla normal form. Define

U2 = 1⊕ V

(case 1) or
U2 = I2 ⊕ V

(case 2). Then
A2 = UT

2 A1U2 = (U1U2)
T A(U1U2) (6)

is in the Youla normal form. ¤
Remark. Different Youla forms can be constructed for the same matrix A.

Moreover, for any given ordering of coneigenvalues (with the only limitation that
complex conjugate coneigenvalues go by pairs), it is possible to construct the
Youla form Y with that ordering of the coneigenvalues on the main diagonal of
Y .

It is well known that the Schur triangular form becomes a diagonal matrix
for a normal A. We have a similar fact in the theory of unitary congruence.
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Definition 2 A matrix A ∈ Cn×n is said to be conjugate-normal if

AA∗ = A∗A. (7)

It seems that conjugate-normal matrices were first introduced in [23]. An easy
implication of (7) is the following property which conjugate-normal matrices share
with ordinary normal matrices.

Proposition 1 Let A ∈ Cn×n be a conjugate-normal matrix. Then the 2-norm
of row i is equal to the 2-norm of column i (1 ≤ i ≤ n).

To verify Proposition 1, it suffices to equate the diagonal entries of the ma-
trices in (7).

Suppose that Y is an upper Youla form of a conjugate-normal matrix A. If
A11 is a 1× 1 block, then an application of Proposition 1 with i = 1 yields

|a11|2 +
n∑

j=2

|a1j|2 = |a11|2

and
a12 = a13 = . . . = a1n = 0.

If A11 is a 2× 2 block, then Proposition 1 yields for i = 1 and i = 2

|a11|2 + |a12|2 + |a21|2 + |a22|2 +
n∑

j=3

|a1j|2 +
n∑

j=3

|a2j|2 = |a11|2 + |a12|2 + |a21|2 + |a22|2

and
a13 = . . . = a1n = a23 = . . . = a2n = 0.

Thus, all the entries in the first block row outside of the diagonal block A11 are
zero. Performing similar considerations for the blocks A22, A33, . . . in succession,
we finally arrive at the following result (see also [23] and [13, Theorem 3.7]).

Theorem 3 Any Youla form of a conjugate-normal matrix A ∈ Cn×n is a block
diagonal matrix with the diagonal blocks of orders 1 and 2.

In Section 3, a different proof of this theorem is given after some facts about
conjugate-normal matrices have been derived.

3 Conjugate-normal matrices

The special classes of matrices with respect to unitary similarities are Hermitian,
skew-Hermitian, unitary, and, most generally, normal matrices. In order to de-
termine which classes of matrices are special with respect to unitary congruences,
consider matrix (1).
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Proposition 2 Let A ∈ Cn×n. The matrix Â in (1) is normal (respectively,
Hermitian, skew-Hermitian, unitary) if and only if A is conjugate-normal (re-
spectively, symmetric, skew-symmetric, unitary).

This assertion is verified by simple calculations using (1) and the formula

Â∗ =

[
0 AT

A∗ 0

]
. (8)

A useful tool in the theory of unitary similarities is the Toeplitz (also called
Cartesian) decomposition of a matrix A:

A = B + C, B = B∗, C = −C∗. (9)

The matrices B and C are called the real and imaginary parts, respectively, of A
and are determined uniquely:

B =
1

2
(A + A∗), C =

1

2
(A− A∗). (10)

The convenience of the Toeplitz decomposition is related to the fact that it is
respected by unitary similarity in the following sense: for a unitary matrix U ,
the matrices U∗BU and U∗CU are the real and imaginary parts, respectively, of
U∗AU and all the three matrices preserve their eigenvalues. This is generally not
true for a nonunitary U .

An analog of the Toeplitz decomposition for unitary congruences can be found
by considering again matrix (1). According to (8), its real and imaginary parts
are

B̂ =

[
0 1

2
(A + AT )

1
2
(A + A∗) 0

]
and Ĉ =

[
0 1

2
(A− AT )

1
2
(A− A∗) 0

]
.

Thus, the equality
Â = B̂ + Ĉ

induces the decomposition
A = S + K, (11)

where the matrices

S =
1

2
(A + AT ) and K =

1

2
(A− AT ) (12)

are symmetric and skew-symmetric, resp.. They are called the symmetric and
skew-symmetric parts, respectively, of A.

Decomposition (11) is respected by unitary congruences in the sense that,
for a unitary U , the matrices UT SU and UT KU are the symmetric and skew-
symmetric parts, respectively, of UT AU . What is especially important to us is
that all the three matrices preserve their coneigenvalues.
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Note that the coneigenvalues of S, being the square roots with nonnegative
real parts of the eigenvalues of SL = SS = S∗S, are just the singular values
σ1(S), . . . , σn(S). The coneigenvalues of K are purely imaginary, because they
are square roots of the eigenvalues of the negative semidefinite matrix KL =
KK = −K∗K. The coneigenvalues of a unitary U , being the square roots of the
eigenvalues of the unitary matrix UU , have the modulus 1.

The fact that a normal matrix A can be brought to diagonal form by a unitary
similarity transformation can be proved in many different ways. In particular,
one can reason as follows: A is normal if and only if the matrices B and C in its
Toeplitz decomposition (9) commute. However, commuting Hermitian matrices
(and C is Hermitian up to the factor i) can always be brought to diagonal form
by the same similarity transformation.

We now want to give a proof along the same lines for Theorem 3. Recall that,
in Section 2, this theorem was derived as a corollary to Theorem 2 on the Youla
normal form of an arbitrary square matrix.

Proposition 3 A matrix A ∈ Cn×n is conjugate-normal if and only if the ma-
trices S and K in its decomposition (11), (12) satisfy the relation

SK = KS. (13)

Proof. Relation (13) is obtained by substituting (11) into definition (7). ¤
Remark. Note that the concommutativity expressed by (13) is preserved by

unitary congruences: if S̃ = UT SU and K̃ = UT KU for a unitary U , then

S̃K̃ = K̃S̃.

In our proof of Theorem 3, we use the following two results. The first result,
known as Takagi’s factorization [22], has been rediscovered repeatedly (see [12,
p. 144]: [18] in 1939, [21] in 1943, [15] in 1944, [19] in 1945, and [3] in 1984.
Historical priority must be given to Autonne [2] for det S 6= 0 as early as 1915.

Proposition 4 (Takagi’s factorization) Let S ∈ Cn×n be a symmetric ma-
trix. Then, there exist a unitary matrix U and a real nonnegative diagonal matrix

Σ = diag(σ1, . . . , σn) (14)

such that
S = UΣUT . (15)

The scalars σ1, . . . , σn are the singular values or (which is the same) the coneigen-
values of S. Moreover, U can be chosen so that the coneigenvalues appear in any
prescribed order along the diagonal of Σ.
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This is easily seen from the Youla form of S which is block upper triangular
and symmetric. Thus, it is block diagonal. There are no 2 × 2 blocks because
SS = SS∗ is positive semidefinite and hence has only nonnegative eigenvalues.
This is essentially the proof given by Siegel in 1943 [21] (see also [14, Problem
22 in Section 4.4 and p. 218]). Other proofs of the Takagi factorization can be
found in [14, Section 4.4] and [13].

Proposition 5 Let K ∈ Cn×n be a skew-symmetric matrix. Then, there exists
a unitary matrix V such that

V T KV = 0⊕ · · · ⊕ 0⊕K1 ⊕ · · · ⊕K`, (16)

where each Kj (1 ≤ j ≤ `) is a matrix of the form

[
0 zj

−zj 0

]
. (17)

The scalars z1, . . . , z` can be chosen to be real positive. If K is a real skew-
symmetric matrix, then V can be chosen to be a real orthogonal matrix.

This skew-symmetric analog of Takagi’s factorization can be proved using the
Youla form of K, which has to be block diagonal. Skew symmetry now ensures
that all the diagonal entries are zero; any 2× 2 block can be rotated to be real if
necessary (see also [14, Problems 22, 25, and 26 in Section 4.4]).

Now, we embark on our second proof of Theorem 3.
Proof of Theorem 3. Let A be a given conjugate-normal matrix. Consider its
decomposition (11), (12). Let σ1 > σ2 > . . . > σk be the distinct coneigenvalues
of S. Choose a unitary matrix U so that

D = UT SU = σ1Im1 ⊕ σ2Im2 ⊕ · · · ⊕ σkImk
, m1 + m2 + · · ·+ mk = n. (18)

Partition the matrix
L = UT KU

conformably with (18):
L = (Lij)

k
i,j=1.

According to Proposition 3, it holds that

DL = LD

or
σiLij = σjLij, i, j = 1, . . . , k.

It follows that
Lij = 0, i 6= j;
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i.e., L is a block diagonal matrix. Also,

Lii = Lii, i = 1, . . . , k − 1;

i.e., all the diagonal blocks in L (with the possible exclusion of the block Lkk) are
real skew-symmetric matrices. The block Lkk is also real if σk > 0; otherwise, it
may be complex.

By Proposition 5, there exists a unitary matrix Vi (1 ≤ i ≤ k) that brings
the skew-symmetric matrix Lii to block diagonal form with the diagonal blocks
of orders 1 and 2. Moreover, Vi can be chosen to be real orthogonal for i =
1, 2, . . . , k − 1 if σk = 0 and for all i if σk > 0. Setting

V = V1 ⊕ V2 ⊕ . . .⊕ Vk,

we conclude that
M = V T LV

is a block diagonal matrix with diagonal blocks of order 1 or 2, while

V T DV = D.

It follows that the conjugate-normal matrix

J = V T UT AUV = (UV )T S(UV ) + (UV )T K(UV ) = D + M (19)

is also block diagonal. Moreover, its 2× 2 blocks have the form

[
σ z
−z σ

]
, (20)

where z is (or can be made) real. Theorem 3 is proved. ¤
The normal form J of a conjugate-normal matrix A is a real normal matrix.

This allows us to make an important conclusion.

Theorem 4 Every conjugate-normal matrix is unitarily congruent to a real nor-
mal matrix.

The reverse statement is obvious; any unitary congruence transformation of a
real normal matrix yields a conjugate-normal matrix.
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