
Time dependent weight functions for the
Trajectory Piecewise-Linear approach?

Juan Pablo Amorocho and Heike Faßbender

Abstract Model order reduction (MOR) has become an ubiquitous technique in
the simulation of large-scale dynamical systems (i.e. 104 and more equations). One
technique for non-linear MOR is the trajectory piecewise-linear approach (TPWL).
TPWL approximates a non-linear differential system by a weighted sum of linear
systems which have a significantly reduced number of equations. One open ques-
tion is which weighting schemes are appropriate. We discusswhether a time depen-
dent weighting scheme which is computationally faster as well as computationally
cheaper than the originally proposed one is appropriate.

1 The Trajectory Piecewise-Linear approach (TPWL)

Model order reduction (MOR) speeds up the simulation of highdimensional dy-
namical systems by reducing its dimension while keeping theoutput error small.
MOR for linear time-invariant systems is well understood and used in industry,
however for non-linear systems there is still much researchto do. The trajectory
piecewise-linear approach [4] is a numerical method for themodel order reduction
of non-linear systems described by first-order, non-linearordinary differential equa-
tions and non-linear differential-algebraic equations. Here we consider the ordinary
differential equation:
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d
dt

x(t) = f (x(t))+ Dv(t), 0≤ t ≤ T, x(0) = x0, (1a)

y(x(t)) = LT x(t), (1b)

wherex(t) ∈ R
N is the state vector,f : R

N −→ R
N is a non-linear function,D ∈

R
N×M is the input matrix,v(t) ∈ R

M is the input,LT ∈ R
P×N is the matrix mapping

the state vector into the output, andy(x(t)) ∈ R
P is the output of the system. The

TPWL reduces the high computational cost of the evaluation of the non-linearity by
approximating equation (1a) through a non-linear convex combination ofs different
linear models around(ti,xi), i = 0, . . . ,s−1 wherexi = x(ti). Let f̂ (x(t)) be the first
order Taylor approximation off (x(t)) aroundxi: f̂ (x(t)) = fi +Fi(x(t)− xi), where
fi = f (xi) andFi ∈R

N×N is the Jacobian matrix off (x(t)) evaluated atxi. With this,
the piecewise approximation of system (1) is given by

d
dt

x̂(t) =
s−1

∑
i=0

ŵi(x̂(t))(Fix̂(t)+ Biu(t)) (2a)

ŷ(x̂(t)) = LT x̂(t) (2b)

with the weighting functions ˆwi : R
N −→ [0,1], and ∑s−1

i=0 ŵi(x(t)) = 1 for all
t ∈ [0,T ], Bi = [D, fi −Fixi] ∈ R

N×(M+1), andu(t) = [v(t),1]T ∈ R
M+1. The tuples

(ti,xi) are found via a simulation of system (1a), see [4] for more details. The result-
ing trajectory is called thetraining trajectory. Next, linear model order reduction
is applied to the system (2) as follows: Build the projectorπq = VqW T

q , such that
q ≪ N andVq,Wq ∈ R

N×q,W T
q Vq = Iq (Iq: identity matrix of dimensionq). Next,

useπq to apply a Petrov-Galerkin projection to system (2). The resulting dynamical
system is called the TPWL model of system (1) given by:

d
dt

xr(t) =
s−1

∑
i=0

wi(xr(t))(F
r
i xr(t)+ Br

i u(t)), (3a)

yr(xr(t)) = (Lr)T xr(t), (3b)

wherexr(t) ∈ R
q, andwi : R

q −→ [0,1], ∑s−1
i=0 wi(xr(t)) = 1 for all t ∈ [0,T ]. Matri-

cesF r
i ,Br

i andLr are given byFr
i = W T

q FiVq,Br
i = W T

q Bi,(Lr)T = LTVq. Note that
xr(t) = W T

q x̂(t). The use of the weightswi(xr(t)) in (3a) instead of ˆwi(x̂(t)) aims to
reduce the cost of the computation of the weight function from O(Ns) to O(qs).

In case the non-linearity of (1a) is not too pronounced, the TPWL model (3a)
can predict the evolution of the solution trajectory even for initial conditions and/or
input signal different from the ones used to set up the TPWL model.

In [4] two algorithms to build the projectorπq are proposed: One that includes all
linear models and another that only uses the linear model at the initial condition. The
latter is faster than the former, but the former yields a better approximation than the
latter. Furthermore, [4] uses Krylov subspace methods to build πq. However this is
not the only option, [7] employs balanced truncation methods, and [1] combines the
proper orthogonal decomposition method (POD) together with the TPWL approach.
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In our implementation we use the algorithm given in [3] usingonly the linear model
at the initial condition and settingWq = Vq which yields an orthogonal projector.

In building the piecewise approximation (2) two questions arise: (i) how to select
the linear models along the training trajectory? (ii) how tochoose suitable weight
functions? In [4] the extraction starts with the linear model found at the initial con-
dition x0 and continues to simulate and select linear models keeping the training
trajectory covered by ballsBα

xi
, i = 0, . . . ,s−1 of constant radiusα each centered

at xi. Starting at the linear model atx0, a new linear model is selected at(ti,xi)
whenx(ti) does not longer belong toBα

xi−1
. This process is continued untilx(T ) is

reached. Here we adopt the procedure from [4].
Concerning the second question, it is fair to say that suitable weight functions

should adequately approximate the system’s non-linearityby the resulting convex
combination of the linearized models. In [4] the weights aregiven by

wi(x̃r(t)) =
e−β di/m

∑s−1
i=0 e−β di/m

, i = 0, . . . ,s−1 (4)

wheredi = ‖x̃r(t)− x̃i‖2, andm = min
i=0,...,s−1

di andβ is a positive parameter usually

set to 25. This ensures that the weights change rapidly asx̃r(t) evolves in the state
space. Here,̃xi are given by[x̃0, x̃1, . . . , x̃s−1] = [W T x0,W T x1, . . . ,W T xs−1], where
eitherW = Wq as in (3a) orW results from the orthonormalization of the columns
of W̃ = {Wq,x0, . . . , xs−1} andx̃r(t) is given byx̃r(t) = W T x̂(t). In the latter case, in
(3a)W is used instead ofWq. However, this increases the dimension of the reduced
space which is undesirable.

An alternative to computedi without having to buildW is to projectxr(t) back
to the full state space, i.e.Vqxr(t) and compute thedi as‖Vqxr(t)− xi‖2 [5]. We use
this approach in our experiments. We refer to the reader to [2, 6] for other weight
functions.

2 Time dependent weight functions

State-dependent weight function are quite expensive to evaluate. Therefore, one
might want to consider weight functions which are cheaper toevaluate, e.g., weight
functions that are only a function of time. The idea behind these weight functions is
simple: At eachti we define a piecewise weight functionwi(t) as

wi(t) =






w(l)
i (t) if t ∈ [ti−1,ti]

w(r)
i (t) if t ∈ [ti,ti+1] for i = 0, . . . ,s−1,

0 otherwise

(5)

wherew(l)
0 (t) = w(r)

s−1(t) = 0. Here, the functionsw(l)
i (t) andw(r)

i (t) are cubic poly-

nomials such thatw(l)
i (ti) = w(r)

i (ti) = 1, w(l)
i (ti−1) = d

dt w(l)
i (ti−1) = d

dt w(l)
i (ti) = 0
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Fig. 1 Top: State-dependent weights (4) from the training input. Middle: Time-dependent weights
(5) from training and test input. Bottom: state-dependent weights (4) from test input.

and w(r)
i (ti+1) = d

dt w(r)
i (ti) = d

dt w(r)
i (ti+1) = 0. If ts−1 < T , then we need an ad-

ditional condition forws−1: ws−1(t) = 1,t ≥ ts−1. With these cubic splines, (3a)
approximates (1a) for eacht ∈ [ti,ti+1] by at most two linear differential equations,

d
dt

xr(t) = w(r)
i (xr(t))(F

r
i xr(t)+ Br

i u(t))+ w(l)
i+1(xr(t))(F

r
i+1xr(t)+ Br

i+1u(t)). (6)

Figure 1 shows an example of time-dependent and state-dependent weights for
the example considered in Section 3. The TPWL model constructed is simulated
once for a training input (which was also used for simulatingthe original problem
when setting up the TPWL model) and once for a test input. The time-dependent
weight function does not change for different input functions, while the state-
dependent one does change. As can be seen, considered as functions of time, in
case of the training input, both weighting functions do havea similar behavior, the
state-dependent weights are almost piecewise constant (either 0 or 1), while the
time-dependent weight functions are smoother and allow (inthe sense of the above
equation) for a better overlap of the two linear models whichlive on the interval
[ti,ti+1]. But for the test input, the state-dependent weights allow for a much stronger
switch between the different linear models than the time-dependent weights do.

The time-dependent weights differ from those in [2, 4, 6] in several ways. First,
the computation of the time-dependent weights isO(s) instead ofO(qs), as the com-
putation of the time dependent weights requires an evaluation of a scalar polynomial
of degree 3 per time step. In contrast, in order to compute theweight functions (4)
sums of vectors of dimensionq have to be determined in every weightwi per time
step. Time-dependent weight functions not only speed up theTPWL, but also reduce
the storage, as there is no need to build the basisW as described at the end of the
previous section. Additionally, the use of these new weights makes the piecewise
system alinear time dependent one as the weights are no longer state depended.
This would enable the use of the theory oflinear time dependent systems to analyze
the TPWL model.

But (6) has a serious problem when the TPWL model is simulatedwith initial
conditions and/or input signal different from the ones usedto set up the TPWL
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N1

Fig. 2 Non-linear transmission line. [4]

model. In that case, there is no guarantee that, for instance, in the first time interval
[0,t1] the linear modelsF0 and F1 are the best linear models to approximate the
dynamics. It might be better to use, say,Fj andFk. State-dependent weight functions
might be able to allow for this choice, a time-dependent weight function can not
achieve this, as it will always be local with respect to time.Therefore, the use of
time-dependent weight functions is very limited, unless the TPWL model is build
from several simulation runs with different parameter setting for the initial condition
and input. In that case one might be able to modify the time-dependent weights
approach above to be comparative to state-dependent weights.

3 Numerical Experiments

We have tested our weight representations on a non-linear transmission line [4]
shown in Fig. 2. Applying the modified nodal analysis to this circuit yields the ordi-
nary differential equation

x′1(t) = −2x1(t)+ x2(t)− id1,0 − id1,2 + v(t)

x′j(t) = x j−1(t)−2x j(t)+ x j+1(t)+ id j−1, j − id j, j+1, j = 2, . . . ,N −1

x′N(t) = xN−1− xN + idN−1,N ,

wherexk is the kth node voltage andidk,l (t) = exp(40(xk(t)− xl(t)))− 1 is the
diode’s current between nodesk andl. l = 0 means the ground node.

We have simulated the above circuit using the TPWL with two different inputs,
one for the training input

v(t) =





−1 if 0 ≤ t < 0.5

1 t ≥ 0.5

0 otherwise

and one for the test inputv(t) = cos(π
2 t), and with two different weight functions:

the state dependent weight function (4) and the time dependent weight function (5).
In the figures and tables below we refer to each case asRewienski andsplines, re-
spectively. The simulations run from 0 to 10 time units, the initial condition is zero,
N = 100, and the outputy(t) is the voltage at node 1. The linear models of the TPWL
model are extracted using the algorithm described in [4], the number of extracted
linear models is 10 and the matrixVq is build using the algorithm of [3] and has
rank 10. The simulation was done using MATLAB R2007b’ implicit ODE solver



6 Juan Pablo Amorocho and Heike Faßbender

0 1 2 3 4 5 6 7 8 9 10
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06 TPWL simulation of non−linear transmission line
using different weights

Time

V
o

lt
a

g
e

 n
o

d
e

 1
 (

V
)

Rewienski−stateExact solution

Splines−time

Fig. 3 Simulation of a non-linear transmission line using TPWL.

ode15s on a Intel Core 2 DUO L7700 @ 1.80Ghz with 2.0Gb of RAM memory
running a Linux kernel 2.6.26-2-686.
Figure 3 shows the output of the simulation, where the exact solution is obtained by
a simulation of the full system. This is aworse case scenario where the shape of
the training input is different from the test input. The bad performance of the time-
dependent weights can be understood by looking at the weightfunctions in Figure
1. The test input requires the TPWL to strongly switch between the linear models,
something model (6) does not do. One might be tempted to reverse the order of the
inputs so that the TPWL is set up with a more oscillating input. However our exper-
iments show that model (6) will still perform poorly, but more interestingly model
(1) using weights (4) initially follows the exact solution,but eventually diverges.
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