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Abstract Model order reduction (MOR) has become an ubiquitous teghein
the simulation of large-scale dynamical systems (i.é.ak@ more equations). One
technique for non-linear MOR is the trajectory piecewisedr approach (TPWL).
TPWL approximates a non-linear differential system by aghtsd sum of linear
systems which have a significantly reduced number of equstiOne open ques-
tion is which weighting schemes are appropriate. We disairether a time depen-
dent weighting scheme which is computationally faster a§ agecomputationally
cheaper than the originally proposed one is appropriate.

1 The Trajectory Piecewise-Linear approach (TPWL)

Model order reduction (MOR) speeds up the simulation of ldghensional dy-
namical systems by reducing its dimension while keepingothput error small.
MOR for linear time-invariant systems is well understood arsed in industry,
however for non-linear systems there is still much rese&rafio. The trajectory
piecewise-linear approach [4] is a numerical method fomtleglel order reduction
of non-linear systems described by first-order, non-limedinary differential equa-
tions and non-linear differential-algebraic equationsrédwe consider the ordinary
differential equation:
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%x(t) =f(x(t))+Dv(t), 0<t<T, x(0)=xo, (1a)
y(x(t)) = LTx(t), (1b)

wherex(t) € RN is the state vectorf : RN — RN is a non-linear functionD &
RN*M s the input matrixy(t) € RM is the inputL" € RP*N is the matrix mapping
the state vector into the output, agk(t)) € RP is the output of the system. The
TPWL reduces the high computational cost of the evaluatidheonon-linearity by
approximating equation (1a) through a non-linear convemtuioation ofs different
linear models aroun;,x;), i =0,...,s— 1 wherex = X(t;). Let f(x(t)) be the first
order Taylor approximation off(x(t )) aroundx;: f(x(t)) = fi + F(x(t) —x), where
fi = f(x) andF € RN*N is the Jacobian matrix df(x(t)) evaluated ax;. With this,
the piecewise approximation of system (1) is given by

s-1
G50 = 5 WEO)FEX + Bult) (22)
Y(X(1)) = LTX(t) (2b)
with the weighting functionsy™ RN — [0,1], and §5, gw.( X(t)) = 1 for all

t €[0,T], Bi = [D, fi — Fixi] € RN*M+D) "andu(t) = [v(t),1]T € RM+L, The tuples
(ti,x) are found via a simulation of system (1a), see [4] for moraitetThe result-
ing trajectory is called théraining trajectory. Next, linear model order reduction
is applied to the system (2) as follows: Build the projectgr= VW, , such that
g < N andVg,Wy € RN*9 W[ Vq = Iq (Ig: identity matrix of dimensiorg). Next,
usery to apply a Petrov-Galerkin projection to system (2). Theiltesy dynamical
system is called the TPWL model of system (1) given by:

—xr Z)w. X () (R (t) + Bu(t)), (3a)

yr (% (1) = (L) T (1), (3b)

wherex; (t) € RY, andw; : R9 — [0,1], 352w (x(t)) = 1 for all t € [0, T]. Matri-

cesF',B andL" are given byR" =W, RVq, B =W, B;,(L")T = LTV;. Note that
X (t) = WqT (t). The use of the weights;(x(t)) in (3a) instead ofvi{X(t)) aims to

reduce the cost of the computation of the weight functiomf@(Ns) to O(qs).

In case the non-linearity of (1a) is not too pronounced, tR&VL model (3a)
can predict the evolution of the solution trajectory evenifiditial conditions and/or
input signal different from the ones used to set up the TPWHdeho

In [4] two algorithms to build the projector, are proposed: One that includes all
linear models and another that only uses the linear modeganitial condition. The
latter is faster than the former, but the former yields adsetpproximation than the
latter. Furthermore, [4] uses Krylov subspace methods iid liy. However this is
not the only option, [7] employs balanced truncation methadd [1] combines the
proper orthogonal decomposition method (POD) togethdr thid TPWL approach.
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In our implementation we use the algorithm given in [3] usimdy the linear model
at the initial condition and settindgjy = Vy which yields an orthogonal projector.

In building the piecewise approximation (2) two questiorisa (i) how to select
the linear models along the training trajectory? (ii) howctmose suitable weight
functions? In [4] the extraction starts with the linear middeind at the initial con-
dition xp and continues to simulate and select linear models keepimgraining
trajectory covered by ball$g?,i = 0,...,s— 1 of constant radiug each centered
at x;. Starting at the linear model ab, a new linear model is selected @t x;)
whenx(tj) does not longer belong t&{ . This process is continued unk{T) is
reached. Here we adopt the procedure from [4].

Concerning the second question, it is fair to say that slatakeight functions
should adequately approximate the system’s non-linehyitthe resulting convex
combination of the linearized models. In [4] the weightsgixen by

_ e*Bdi/m )
Wi(Xr(t)):W, i=0,....,s—1 (4)
=

whered; = ||%(t) — X||2, andm = 0m|n di andp is a positive parameter usually
1=0,...,

set to 25. This ensures that the weights change rapidy(gsevolves in the state
space. Herex; are given by[Xo,%1,...,%s 1] = WTxo,W'xy,...,WTxs 1], where
eitherW =W as in (3a) oW results from the orthonormalization of the columns
of W = {Wg, X, ..., %1} andx:(t) is given byx: (t) = WTX(t). In the latter case, in
(3a)W is used instead ofy;. However, this increases the dimension of the reduced
space which is undesirable.

An alternative to computd; without having to buildV is to projectx (t) back
to the full state space, i.¥gX (t) and compute the; as||Vgx (t) — xi||2 [5]. We use
this approach in our experiments. We refer to the reader,10) [dr other weight
functions.

2 Time dependent weight functions

State-dependent weight function are quite expensive ttuatea Therefore, one
might want to consider weight functions which are cheapevtuate, e.g., weight
functions that are only a function of time. The idea behiresthweight functions is
simple: At each;j we define a piecewise weight functian(t) as

w () if t e [tiog,t]
wi(t) = wi(t) ifte [t tis] fori=0,...,5s—1, (5)
0 otherwise

Wherewg)(t) = Wsil(t) = 0. Here, the functlonwI (t

)&
nomials such than" (t) = w"” (t;) = 1, w( M) = dw

and “()are cubic poly-
()(tl 1) = §wW U(t.):O
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Weight functions for the simulation of the non-linear transmission line

Weights

Fig. 1 Top: State-dependent weights (4) from the training inputd¥e: Time-dependent weights
(5) from training and test input. Bottom: state-dependegigits (4) from test input.

and Wi(r)(ti+1) = %Wi(r) (t) = %Wi(r) (tie1) = 0. If ts_1 < T, then we need an ad-
ditional condition forws_1: ws_1(t) = 1,t > ts_1. With these cubic splines, (3a)

approximates (1a) for eatke [tj,ti1] by at most two linear differential equations,

%xra)=w§’><xr<t>><ﬁfxr<t>+B{u(t))+w§21<xr<t>><ﬁulxr<t>+B{+1u<t>>. (6)

Figure 1 shows an example of time-dependent and state-depeweights for
the example considered in Section 3. The TPWL model cortsiiuis simulated
once for a training input (which was also used for simulatimg original problem
when setting up the TPWL model) and once for a test input. The-tlependent
weight function does not change for different input funotpwhile the state-
dependent one does change. As can be seen, considered @anfuié time, in
case of the training input, both weighting functions do hawemilar behavior, the
state-dependent weights are almost piecewise constaher(@ or 1), while the
time-dependent weight functions are smoother and allowh@rsense of the above
equation) for a better overlap of the two linear models whieh on the interval
[ti,ti+1]. But for the test input, the state-dependent weights altmvaimuch stronger
switch between the different linear models than the timgedeent weights do.

The time-dependent weights differ from those in [2, 4, 6]énezal ways. First,
the computation of the time-dependent weight3(s) instead 0fO(gs), as the com-
putation of the time dependent weights requires an evaluafia scalar polynomial
of degree 3 per time step. In contrast, in order to computevisight functions (4)
sums of vectors of dimensiaphave to be determined in every weightper time
step. Time-dependentweight functions not only speed up®WL, but also reduce
the storage, as there is no need to build the BASEs described at the end of the
previous section. Additionally, the use of these new weighaikes the piecewise
system dinear time dependent one as the weights are no longer state depende
This would enable the use of the theorylioiear time dependent systems to analyze
the TPWL model.

But (6) has a serious problem when the TPWL model is simulatiéd initial
conditions and/or input signal different from the ones usedet up the TPWL
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Fig. 2 Non-linear transmission line. [4]

model. In that case, there is no guarantee that, for instamdee first time interval
[0,t1] the linear model$y andF; are the best linear models to approximate the
dynamics. It might be better to use, seyandF. State-dependent weight functions
might be able to allow for this choice, a time-dependent Wefgnction can not
achieve this, as it will always be local with respect to timberefore, the use of
time-dependent weight functions is very limited, unless WL model is build
from several simulation runs with different parameterisgttor the initial condition
and input. In that case one might be able to modify the timeeddent weights
approach above to be comparative to state-dependent weight

3 Numerical Experiments

We have tested our weight representations on a non-linaasrrission line [4]
shown in Fig. 2. Applying the modified nodal analysis to thisuit yields the ordi-
nary differential equation

Xp(t) = —2xa(t) +Xa(t) —igy o — fdy, + V()
le t) = Xj,j_(t) —2xj(t) +Xj+1(t) + idjfl.j — idj.j+1’ j=2,...,N—1
X;\I (t) = XN-1— XN + idN,LNa
wherex is the kth node voltage and,, (t) = exp(40(x(t) — X (t))) — 1 is the
diode’s current between nodkandl. | = 0 means the ground node.

We have simulated the above circuit using the TPWL with twftedént inputs,
one for the training input

-1 f0<t<05
vit)=<1 t>05
0 otherwise

and one for the test inpw(t) = cog Jt), and with two different weight functions:
the state dependent weight function (4) and the time depemgsght function (5).

In the figures and tables below we refer to each cadeeagenski andsplines, re-
spectively. The simulations run from 0 to 10 time units, thiéal condition is zero,

N =100, and the outpuyit) is the voltage at node 1. The linear models of the TPWL
model are extracted using the algorithm described in [4,thmber of extracted
linear models is 10 and the mati is build using the algorithm of [3] and has
rank 10. The simulation was done using MATLAB R2007b’ imfili©DE solver
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TPWL simulation of non-linear transmission line
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Fig. 3 Simulation of a non-linear transmission line using TPWL.

odel5s on a Intel Core 2 DUO L7700 @ 1.80Ghz with 2.0Gb of RAM memory
running a Linux kernel 2.6.26-2-686.

Figure 3 shows the output of the simulation, where the exaation is obtained by
a simulation of the full system. This isveorse case scenario where the shape of
the training input is different from the test input. The bafprmance of the time-
dependent weights can be understood by looking at the wgightions in Figure
1. The test input requires the TPWL to strongly switch betwie linear models,
something model (6) does not do. One might be tempted tosevbe order of the
inputs so that the TPWL is set up with a more oscillating inplotwever our exper-
iments show that model (6) will still perform poorly, but neanterestingly model
(1) using weights (4) initially follows the exact solutidmjt eventually diverges.

Acknowledgements This work, part of the SyreNe network, is supported by then@er Federal
Ministry of Education and Research (BMBF) grant no. 03FARAE

References

1. Bechtold, T., Striebel, M., Mohaghegh, K., ter Maten,\®.IJNonlinear model order reduction
in nanoelectronics: Combination of POD and TPWL. In: PAMM|.\8, pp. 10,057-10,060.
WILEY-VCH Verlag GmbH & Co. (2008). 79th Annual Meeting ofd¢hnternational Associa-
tion of Applied Mathematics and Mechanics (GAMM)

2. Dong, N., Roychowdhury, J.: Automated nonlinear macmefiag of output buffers for high-
speed digital applications. In: ACM/IEEE Design Automati©onference, pp. 51-56 (2005).

3. Odabasioglu, A., Celik, M., Pileggi, L.T.: PRIMA: passiveduced-order interconnect macro-
modeling algorithm. IEEE Transactions on Computer-Aidezsion of Integrated Circuits and
Systemsl7(8), 645-654 (1998). DOI 10.1109/43.712097

4. Rewiensky, M.: A trajectory piecewise-linear approaesimodel order reduction of nonlinear
dynamical systems. Ph.D. thesis, Massachusetts Instit(technology (2003)

5. Striebel, M., Rommes, J.: Model order reduction of nomdir systems: status, open issues, and
applications. Tech. Rep. CSC/08-07, Technische Unizr€ihemnitz (2008)

6. Tiwary, S., Rutenbar, R.A.: Scalable trajectory methfmison-demand analog macromodel
extraction. In: ACM/IEEE Design Automation Conference, p3—408 (2005).

7. Vasilev, D., Rewiensky, M., White, J.: A TBR-based tréjeg piecewise-linear algorithm for
generating accurate low-order models for analog circuitsraems. DAC pp. 490-495 (2003)



