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ABSTRACT. A discrete-time algebraic Riccati equation (DARE) is a set of non-
linear equations. One of the oldest, best studied, numerical methods for solving
it, is Newton’s method. Finding a stabilizing starting guess which is already
close to the desired solution is crucial. We propose to compute an approximate
solution of the DARE by the (butterfly) SZ algorithm applied to the corre-
sponding symplectic pencil where zero and infinity eigenvalues are removed
using an iterative deflation strategy. This algorithm is a fast, reliable and
structure-preserving algorithm for computing the stable deflating subspace of
the symplectic matrix pencil associated with the DARE. From this, a stabi-
lizing starting guess for Newton’s method is easily obtained. The resulting
method is very efficient and produces highly accurate results. Numerical ex-
amples demonstrate the behavior of the resulting hybrid method.

Keywords. discrete-time algebraic Riccati equation, Newton’s method, SZ algo-
rithm, symplectic matrix pencil.

1. Introduction

The standard (discrete-time) linear-quadratic optimization problem consists in
finding a control trajectory {u(k),k =0,1,2,...}, minimizing the cost functional

J (o, u) = [2(k)"Q(k) + u(k)” Ru(k)]
k=0

in terms of u subject to the dynamical constraint
z(k + 1) = Az(k) + Bu(k), z(0) := zo,

where A € R**" B € R™*" @ € RP*P and R € R™*™ . Furthermore, we assume
@ and R to be symmetric. Under certain conditions there is a unique control law,

u(k) = K(X,)z(k), K(X.):=—(R+BT"X,B)"'BTX,A,
minimizing 7 in terms of u subject to the dynamical constraint. The matrix X, is
the unique symmetric stabilizing solution of the algebraic matrix Riccati equation
(11) 0=DR(X)=Q - X+ ATXA - ATXB(R+ B"XB) 'BTXA.
That is, X, = X7 is the solution of (1.1) and all eigenvalues of A — BK(X,) are

inside the unit circle: o (A — BK(X,)) C D1(0), where D1(0) = {¢ € C,|¢] < 1}.
The equation (1.1) is usually referred to as discrete-time algebraic Riccati equation
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(DARE). It appears not only in the context presented, but also in numerous proce-
dures for analysis, synthesis, and design of control and estimation systems with Ho
or H,, performance criteria, as well as in other branches of applied mathematics
and engineering, see, e.g., [1, 2, 3, 28, 22, 31].

The DARE (1.1) can be considered as a nonlinear set of equations. Therefore,
Newton’s method has been one of the first methods proposed to solve DAREs [19].
Finding a stabilizing starting guess which is already close to the desired solution
is crucial. It is well known that (under certain reasonable assumptions) if X is
a stabilizing starting guess, then all iterates are stabilizing and converge globally
quadratic to the desired solution X, (see, e.g., [19, 22, 25]). Despite the ultimate
rapid convergence, the iteration may initially converge slowly. This can be due to
a large initial error || X, — Xy|| or a disastrously large first Newton step resulting
in a large error || X, — Xi||. In both cases, it is possible that many iterations are
required to find the region of rapid convergence.

Here we propose to compute an approximate solution X of DR(X) by the
(butterfly) SZ algorithm. This solution is then used as a starting guess for Newton’s
method. The resulting hybrid method for solving (1.1) is a very efficient method
and produces highly accurate results.

Assume R to be positive definite and define
A0 } [ I —BR'BT

Y -
Q I 0 A
Using furthermore the standard control-theoretic assumptions that

e (A, B) is stabilizable,

e (Q,A) is detectable,

e () is positive semidefinite,

(1.2) L—AM = {

then L — AM has no eigenvalues on the unit circle and there exists a unique sta-
bilizing solution X, of the DARE (1.1); see, e.g., [22]. It is then easily seen that
L — AM has precisely n eigenvalues in the open unit disk and n outside. More-
over, the Riccati solution X, can be given in terms of the deflating subspace of
L — AM corresponding to the n eigenvalues A, ..., A, inside the unit circle using

the relation
A0 I 1 _[I -BR'BT I 1,
Q I -X | ]o AT -X |

where A € R**"  g(A) = {\1,..., A\ }. Therefore, if we can compute Y7, Yy € R?*"
such that the columns of [}! ] span the desired deflating subspace of L — AM, then

X, = —Y2Yf1 is the desired solution of the Riccati equation (1.1). See, e.g.,
[22, 23, 25], and the references therein.

It is worthwhile to note that L — AM of the form (1.2) is a symplectic matrix
pencil. A symplectic matrix pencil L — AM,L,M € R?"*?" is defined by the

property
LILT = MJMT,

0 I,
e
and I, is the n x n identity matrix. The nonzero eigenvalues of a symplectic matrix
pencil occur in reciprocal pairs: If A is an eigenvalue of L — AM with left eigenvector

where
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x, then A=1 is an eigenvalue of L — AM with right eigenvector (Jx)H. Hence, as we
are dealing with real symplectic pencils, the finite generalized eigenvalues always
occur in pairs if they are real or purely imaginary or in quadruples otherwise.

The numerical computation of a deflating subspace of a (symplectic) matrix
pencil L—AM is usually carried out by an iterative procedure like the ) Z algorithm.
The QZ algorithm is numerically backward stable but it ignores the symplectic
structure. Applying the QZ algorithm to a symplectic matrix pencil results in a
general 2n x 2n matrix pencil in generalized Schur form from which the eigenvalues
and deflating subspaces can be read off. Sorting the eigenvalues in the generalized
Schur form such that the eigenvalues inside the unit circle are contained in the upper
left n x n block, this method results in the popular generalized Schur vector method
for solving DAREs [26]. Due to roundoff errors unavoidable in finite-precision
arithmetic, the computed eigenvalues will in general not come in pairs {\, A1},
although the exact eigenvalues have this property. Even worse, small perturbations
may cause eigenvalues close to the unit circle to cross the unit circle such that the
number of true and computed eigenvalues inside the open unit disk may differ.
Moreover, the application of the @QZ algorithm to L — AM is computationally
quite expensive. The usual initial reduction to Hessenberg-triangular form requires
about 70n® flops plus 24n® for accumulating the Z matrix; each iteration step
requires about 88n? flops for the transformations and 136n2 flops for accumulating
Z; see, e.g., [29]. An estimated 40n° flops are necessary for ordering the generalized
Schur form. This results in a total cost of roughly 415n3 flops for computing a
starting guess for Newton’s method using the @QZ algorithm, employing standard
assumptions about convergence of the ()7 iteration (see, e.g., [17]).

Here we propose to use the butterfly SZ algorithm for computing the deflating
subspace of L — AM. The butterfly SZ algorithm [11, 16] is a fast, reliable and
efficient algorithm especially designed for solving the symplectic eigenproblem. It
makes use of the fact that symplectic matrix pencils can be reduced to matrix
pencils of the form

(1.3) K—ANz{g CFl}—A[g IT”}

where C, F' are diagonal and T is symmetric tridiagonal. This form is determined by
just 4n — 1 parameters. The symplectic matrix pencil K — AN is called a symplectic
butterfly pencil. By exploiting this special reduced form and the symplecticity, the
SZ algorithm is fast and efficient; in each iteration step only O(n) arithmetic
operations are required instead of O(n?) arithmetic operations for a QZ step. We
thus save a significant amount of work. Of course, the accumulation of the Z matrix
requires O(n?) arithmetic operations as in the QZ step. Moreover, by forcing
the symplectic structure the above mentioned problems of the QZ algorithm are
avoided. Using the so obtained solution as a starting guess for Newton’s method,
the resulting method for solving discrete-time algebraic Riccati equations is a very
efficient method and produces highly accurate results.

In Section 2 Newton’s method is reviewed. Section 3 briefly describes the (but-
terfly) SZ algorithm for computing the deflating subspace of L — AM. Combined
with a strategy to deflate zero and infinity eigenvalues from the symplectic pencil in
order to deal with discrete-time algebraic Riccati equations with singular A matrix,
the hybrid method described in Section 4 consisting of the SZ algorithm followed
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by a few Newton iteration steps results in an efficient and accurate method for solv-
ing discrete-time algebraic Riccati equations. Numerical experiments are reported
in Section 5.

2. Newton’s method

The function DR(X) is a rational matrix function and DR(X) = 0 defines
a system of nonlinear equations. Hence it is straightforward to apply Newton’s
method to DAREs. Inspired by Kleinman’s formulation of Newton’s method for
continuous-time algebraic Riccati equations [20], Hewer [19] proposed an analogous
scheme for solving DAREs. A discussion of its convergence properties can be found
n [25, 22].

Given a symmetric matrix Xo, the method can be given in algorithmic form as
follows:

ALGORITHM 2.1.

FORk=0,1,2,...
1. Kj ’C(Xk) = (R+ BTXkB)leTXkA.
2. Ak — A - BK,,.
4. Solve for Nj in the Stein equation

(2.1) ATNy Ay — N = =Ry,
5. Xk+1 <~ Xk + Nk
END FOR
END

We have the following result for Algorithm 2.1 [19, 25, 22].

THEOREM 2.2. If
i) (A, B) is stabilizable,
ii) R=RT >0,
iii) a unique stabilizing solution X, of (1.1) exists such that R+ BT X,B > 0,
iv) Xq is stabilizing,
then for the iterates produced by Algorithm 2.1 we have:
a) All itemtes Xy, are stabilizing, i.e., 0 (A— BK(X}y)) C D1(0) for all k € Ny.
S X <X <L <X

b) X

c) hm Xk X
k—o00

d)

There exists a constant v > 0 such that
1 Xesr = Xull < vIIXe = Xul”, k21,
e., the Xy converge globally quadratic to X,.
The formulation of Algorithm 2.1 is analogous to the standard formulation of
Newton’s method as given, e.g., in [15, Algorithm 5.1.1] for the solution of nonlinear
equations. Because of its robustness in the presence of rounding errors, we prefer

to calculate the Newton step explicitly as in Algorithm 2.1 rather than to use the
mathematically equivalent formulation of the Newton step [19, 25, 22],

(2.2) AT X1 Ay — X1 = —Q — K RK},
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which determines Xy, 1 directly. The coefficient matrices of the two Stein equations
are the same, but the right-hand-sides are different. Define the Stein operator as
the linear map

(2.3) T :Z— (A—BK(X))TZ + Z(A - BK(X})),

which is also the Fréchet derivative of DR(X) at Xj. Let us assume that the
condition number of I'; permits us to solve the Stein equations (2.1) and (2.2)
to £ correct significant digits. Loosely speaking this implies that when Xy is
calculated directly as in (2.2), then its accuracy is limited to £ significant digits.
On the other hand, in Algorithm 2.1, the accuracy of the computed Newton step
Ny, is limited to £ significant digits. Therefore, the sum X} + Ny has up to £ more
correct digits than Xj,. The accuracy of Algorithm 2.1 is ultimately limited only by
the accuracy to which K(Xy), A, DR(X}), and the sum X}, + N are calculated.

The computational cost for Algorithm 2.1 mainly depends upon the cost for the
numerical solution of the Stein equation (2.1). This can be done using the Bartels—
Stewart algorithm [7, 6]. Then the cost for the solution of the Stein equation is
about 32n® flops. The computations for forming A; and R can be arranged such
that for n ~ m, they require ~ 17n?® flops while for m <« n, these matrices can be
formed using only ~ 3n? flops. For an average value of m = n/2, the computational
cost for one step of Algorithm 2.1 is about 42n* flops.

One major difficulty is to find a stabilizing initial guess Xy. There exist stabi-
lization procedures for discrete-time linear systems (see, e.g., [4, 21, 29]). But these
may give large initial errors || X, — Xo|| (see, e.g., [8]). The procedure suggested
in [21] is even infeasible for numerical computations as it is based on explicitly
summing up A*BBT(AT)* for k up to n, thereby often causing overflow already
for small values of n. This problem can be overcome in case A is stable. In that
case, one can start from Xg = 0.

Despite the ultimate rapid convergence indicated by Theorem 2.2 d), the itera-
tion may initially converge slowly. This can be due to a large initial error || X, — Xo||
or a disastrously large first Newton step resulting in a large error | X, — Xi||. In
both cases, it is possible that many iterations are required to find the region of
rapid convergence. An ill-conditioned Stein equation makes it difficult to compute
an accurate Newton step. An inaccurately computed Newton step can cause the
usual convergence theory to break down in practice. Sometimes rounding errors
or a poor choice of Xy cause Newton’s method to converge to a non-stabilizing
solution.

For these reasons, Newton’s method is usually not used by itself to solve
DAREs. However, when it is used as a defect correction method or for itera-
tive refinement of an approximate solution obtained by a more robust method, it
is often able to squeeze out the maximum possible accuracy [25] after only one or
two iterations. Therefore we propose here to find a stabilizing initial guess using
the butterfly SZ algorithm.

An approach to overcome slow initial convergence is suggested in [8, 9]. There,
a line search strategy is suggested that usually accelerates the convergence during
the first iteration steps. The strategy is particularly successful if A is known to be
stable and one can start from Xy = 0. Still, for unstable A matrix, this procedure
relies on some initial stabilization and even for a stable A matrix, X = 0 may
result in a bad first step. Therefore this approach will also benefit from a good
starting guess. Note, however, that most frequently a starting guess obtained from
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the SZ algorithm is so close to the desired solution that line search will usually
not improve Newton’s method significantly. We will therefore not discuss this topic
here any further. Still, in case the solution of the DARE via the deflating subspace
approach is ill-conditioned, line search may improve the convergence behavior.

3. The butterfly SZ algorithm

For simplicity let us assume at the moment that A in (1.2) is nonsingular.

Premultiplying L — AM by [[ ,% ] results in a symplectic matrix pencil

A 0 )_,[I -BR'BT
A"TQ AT 0 I ’
where L', M' are both symplectic, that is,
it =M =,

as a matrix X € R"*™ is symplectic if XJXT = J. In [11, 16] it is shown that for
the symplectic matrix pencil L' — AM’ there exist numerous symplectic matrices 7

and nonsingular matrices S which reduce L' — AM' to a symplectic butterfly pencil
K — AN (1.3)

(3.1) L' = \M' = [

p / ¢ F 0 -I

S(L —/\M)Z_K—/\N_[ 0 C’_l}_/\{l T },
where C' and F' are diagonal matrices, and T is a symmetric tridiagonal matrix.
(More general, not only the symplectic matrix pencil in (3.1), but any symplectic
matrix pencil L' — AM' with symplectic matrices L', M’ can be reduced to a sym-
plectic butterfly pencil). If T is an unreduced tridiagonal matrix, then the butterfly
pencil is called unreduced. If any of the n — 1 subdiagonal elements of T are zero,
the problem can be split into at least two problems of smaller dimension, but with
the same symplectic butterfly structure.

Once the reduction to a symplectic butterfly pencil is achieved, the SZ algo-
rithm is a suitable tool for computing the eigenvalues/deflating subspaces of the
symplectic pencil K — AN [11, 16]. The SZ algorithm preserves the symplectic
butterfly form in its iterations. It is the analogue of the SR algorithm (see [10, 16])
for the generalized eigenproblem, just as the QZ algorithm is the analogue of the
@R algorithm for the generalized eigenproblem. Both are instances of the GZ
algorithm [30].

Each iteration step begins with an unreduced butterfly pencil K — AN. Choose
a spectral transformation function ¢ and compute a symplectic matrix Z; such that

Z7'q(K™'N)e; = aey
for some scalar a. Then transform the pencil to
K — AN = (K — AN)Z,.
This introduces a bulge into the matrices K and N. Now transform the pencil to
K- AN =S"Y(K - AN)Z,
where K — AN is of symplectic butterfly form. S and Z are symplectic, and Zey =
e1. This concludes the iteration. Under certain assumptions, it can be shown that

the butterfly SZ algorithm converges cubically. For a detailed discussion of the
butterfly SZ algorithm see [11, 16].
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Hence, in order to compute an approximate solution of the DARE (1.1) by the
butterfly SZ algorithm, first the symplectic matrix pencil L — AM as in (1.2) has
to be formed, then the symplectic matrix pencil L' — AM' as in (3.1) is computed.
Next symplectic matrices Zy and Sy are computed such that

L—\M :=S;'L'Zy — \S; ' M' Z,
is a symplectic butterfly pencil. Using the butterfly SZ algorithm, symplectic
matrices Z; and Sy are computed such that
ST'LZy — AST M 7,

is a symplectic butterfly pencil and the symmetric tridiagonal matrix T in the
lower right block of Sl_ll/M\Zl is reduced to quasi-diagonal form with 1 x 1 and 2 x 2
blocks on the diagonal. The eigenproblem decouples into a number of simple 2 x 2
or 4 x 4 generalized symplectic eigenproblems. Solving these subproblems, finally
symplectic matrices Z5, Sy are computed such that

2 am1a-17 _ $11 - P12
L =58;'s7'Lz,2, = [ 0 %Q},
M — 52—151—1M\2122 — [wn 1/)12 }’
0 9

where the eigenvalues of the matrix pencil ¢17 — Aip1; are precisely the n stable
generalized eigenvalues. Let Z = ZyZ,Z,. Partitioning Z conformably,

Zi Zia
3.2 7 = ,
(32) [ Zor  Za }
the Riccati solution X, is found by solving a system of linear equations:
(3.3) X, = ~ZanZ

This algorithm requires about 193n? arithmetic operations in order to compute
the desired deflating subspace of L — AM and is therefore cheaper than the QZ
algorithm which requires about 415n2 arithmetic operations (both flop counts do
not take into account the cost for forming L — AM and the cost for solving the linear
system (3.3) at the end, as these steps are the same for both algorithms). The cost
of the different steps of the approach described above are given as follows. The
computation of A~7Q and A~ using an LR decomposition of A requires about
14

?n3 arithmetic operations. A careful flop count reveals that the initial reduction of

L' — AM' to butterfly form L—\M requires about 75n2 arithmetic operations. For
computing Zy, an additional 28n? arithmetic operations are needed. The butterfly
SZ algorithm requires about O(n?) arithmetic operations for the computation of
L — AM and additional 85n3 arithmetic operations for the computation of Z (this
estimate is based on the assumption that % iterations per eigenvalue are necessary
as observed in [11]). Hence, the entire algorithm described, requires about 5;—8713
arithmetic operations.

Instead of generating the symplectic matrix Z as in (3.2), one can work with
n X n matrices X,Y and T such that finally X = —Z21Z1_11 =X, Y = Z1_11Z12,
and T = Zfll. Starting from X =Y = 0,7 = I, this can be implemented without
accumulating the intermediate symplectic transformations used in the butterfly
SZ algorithm, just using the parameters that determine these transformations. As
for every symplectic matrix Z written in the form (3.2), Zy Z;;' is symmetric, this
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approach guarantees that all intermediate (and the final) X are symmetric. Such an
approach, called symmetric updating, was first proposed by Byers and Mehrmann
[14] in the context of solving continuous-time algebraic Riccati equations via the
Hamiltonian SR algorithm and has also been proposed for solving DAREs with
an SR algorithm in [5]. A flop count shows that this approach is not feasible
here. For the initial reduction of L' — AM' to butterfly form about 5n* arithmetic
operations are needed in order to compute X,Y, and Z. The butterfly SZ algorithm
requires about 11n* arithmetic operations for the symmetric updating. Hence, the
symmetric updating requires O(n?) arithmetic operations. Moreover, this increase
in computational cost is not rewarded with a significantly better computation of
X.

So far, we have assumed that A is nonsingular such that the symplectic pencil
L'—AM' (3.1) can be formed. In case A is singular, the symplectic matrix pencil L—
AM (1.2) has zero and infinity eigenvalues. Mehrmann proposes in [25, Algorithm
15.16] the following algorithm to deflate zero and infinite eigenvalues of L — AM:
Assume that rank(A4) = k. First, use the QR decomposition with column pivoting
[17] to determine an orthogonal matrix V' € R™ ", an upper triangular matrix
U € R"*™ and a permutation matrix P € R"*™ such that

PA:UQ:[OUQ][Vl }

Va
where Us € R**?~k and V5 € R***7 have full rank. Then form
_ vT 0 ~ V(I+GQ)! 0
T= [ _QVT VT } , and  T= [ UTPQU+GQ) "t V |’

where for ease of notation G denotes BR™'BT. Now as AVT = PTU = PT[0 U],
we obtain

T(L - AM)T =
3 VI+GQ)"'PTU 0 N ~-V(I+GQ)'GVT
T UTPQ(I+GQ)'PTU T 0 UTP(—QUI+GQ)'G+I)VT
A I 0|Gy c~;~12
0 I|Gn G
0 0[ 0 0
0 0| AT AT

where A1, Gio € REXn=k 4 . G € R—k*n—k  The first k columns of T span the
right deflating subspace of L — AM corresponding to k zero eigenvalues and the

rowsn+ 1,n+2,..., n+k of T span the left deflating subspace corresponding
to k infinity eigenvalues. We may therefore delete rows and columns 1,2,...  k,
n+1,n+2,...,n+ k and proceed with the reduced pencil

Ao| |I G

Q I 0 A |’

There is no guarantee that Ais nonsingular. Hence, the procedure described above
has to be repeated until the resulting symplectic matrix pencil has no more zero
and infinity eigenvalues and Ais nonsingular. Note that neither the rank of A
nor the number of zero eigenvalues of A determine the number of zero and infinity
eigenvalues of the symplectic pencil. For instance, in Example 10 of [12], n = 6,
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rank(A4) = 5, A has three zero eigenvalues and L — AM as in (1.2) has two zero
and infinite eigenvalues each. All the computation in this algorithm can be carried
out in a numerically reliable way. The solution of the linear systems with I + GQ
is well-conditioned, since @ and G are symmetric positive semidefinite.

If after the first iteration, A is nonsingular, then this process requires (11n? +
6rn + 2r?)n flops; the initial QR decomposition in order to check the rank of A
costs %nB flops. Note that this initial decomposition is always computed. But in
case A has full rank, then the symplectic pencil L' — AM' in (3.1) is formed using
the original data in order not to introduce unnecessary rounding errors. In doing
so, the QR decomposition of the A matrix should be used when computing A=7Q
and A~7T instead of computing an LR decomposition of A.

Combined with a strategy to deflate zero and infinity eigenvalues from the
symplectic pencil in order to deal with discrete-time algebraic Riccati equations
with singular A matrix, the butterfly SZ algorithm is an efficient tool to compute
a starting guess for Newton’s method. Usually the same number of iterations is
required as when refining an approximation computed by the generalized Schur
vector method. Even if one or two iterations more are necessary due to the loss of
accuracy caused by using non-orthogonal transformations, this is well compensated
by the cheaper SZ iteration.

4. A hybrid method for DAREs

Combining the strategy to deflate zero and infinity eigenvalues from the sym-
plectic pencil with the SZ algorithm followed by a few Newton iteration steps
results in an efficient and accurate hybrid method.

Altogether, we propose the following algorithm to solve the DARE (1.1).

ALGORITHM 4.1.
Input: The coefficient matrices A € R**?, B ¢ R**™_ Q = QT € R**", and
R € Rm*m,
Output: An approximation X = X7 € R* ™ to the stabilizing solution of the
DARE.
1. Form the symplectic pencil L — AM as in (1.2).
2. Use the procedure described in Section 3 to deflate all zero and infinite
eigenvalues of L — AM. That is, compute a nonsingular transformation
matrix 77 and a symplectic matrix S; such that

T (L —AM)S; =
0 A0 0 I 0 —Gu =G
0 Ao o0 A | O La-k —GT, —Goz
0 01 0 o0 o0 0
0 O 0 I,_y 0 o0 AT AT

with A nonsingular and the first & columns of S; span the deflating subspace
of L — AM corresponding to all zero eigenvalues.

3. Apply the butterfly SZ algorithm described in Section 3 (and in detail in
[11]) to the symplectic pencil

L—\M =

Infk ~0 {I 0 Y Infk _G22
0 AT||0 I,. 0 AT
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such that
. & o111 P12 Y11 Y1
To(L — AM)Sy = - A ,
2( ) 2 |: 0 (2522 0 ,¢}22 5
where the eigenvalues of ¢11 — Aip11 are the stable nonzero eigenvalues of
L-AM.
4. Partition Sp = [ 21! 312 where Sj; € Rr=FXn=k j =1 2. Set
I 0 0 0
7 =5 [8 S Ii e
0 S21 0 Sa2

Then the first n columns of Z span the stable deflating subspace of L — AM
and an approximate solution X of the DARE can be computed as in (3.3).

5. Use Newton’s method (possibly endowed with a line search strategy as pro-
posed in [9]) and starting guess X, = X in order to iteratively refine the
solution of the DARE to the highest achievable accuracy.

Note that all left transformation matrices need not be accumulated. The flop
count for Algorithm 4.1 can be summarized assuming that m = n/2, k = 0, and
that two Newton iterations are required to obtain the attainable accuracy: Then,
Steps 1. and 2. need §n3 flops and %nS flops, respectively, Step 3. requires 53ﬁn3
flops (using the QR decomposition of A computed in Step 2.) while §n3 flops are
needed to solve the linear system in the 4. Step. Two Newton iteration under the
given assumptions take 84n® flops. Altogether this results in approximately 280n®
flops. Note that given these flop counts, 5 Newton iterations are needed to reach the
cost of the generalized Schur vector method. If compared to an iteratively refined
generalized Schur vector method, this comparison becomes even more favorable.
For the same number of Newton iterations, the hybrid method is about twice as
fast as the iteratively refined generalized Schur vector method.

Also note that as long as the SZ algorithm yields a stabilizing starting guess
Xo = )A(, the hybrid algorithm can be considered as numerically backward stable as
it computes the solution to a nearby DARE; see [25, § 10]. This is due to the fact
that the Newton iteration as formulated in Section 2 can be considered as a defect
correction method for DAREs and the ultimate accuracy obtained by Newton’s
method is only limited by condition number of the DARE; see, e.g., [27].

5. Numerical Experiments

We have implemented Algorithm 4.1 as MATLAB! functions. The implemen-
tation of Newton’s method for DAREs used here is described in [8]. As stopping
criterion for Newton’s method we used a criterion based on a normalized residual
of the form

IDR(Xi)|lp < nel| Xi || max {||All g, |Bllp : [|1Bl 7 - [| QI }

where ¢ is the machine precision.

In this section we compare the results obtained by Algorithm 4.1 with those
obtained from the Schur vector method as proposed in [26], i.e., applying the QZ
algorithm to the symplectic pencil L—AM from (1.2) and re-ordering the eigenvalues
appropriately, followed by Newton’s method in the same implementation as used in

our hybrid method. In the tests, results of Newton’s method without line search are

IMATLAB is a trademark of The MathWorks, Inc.



A HYBRID METHOD FOR THE NUMERICAL SOLUTION OF DAREs 11

reported. Only in Example 14, line search reduced the number of required Newton
iterations by one in both methods.

The two algorithms are compared for the examples from the DARE benchmark
collection [12, 13]. We do not give results for Examples 3 and 4 as there, R is
singular and hence the approach via the symplectic pencil is not possible.

All computations were done using MATLAB Version 5.3 [24] under Linux on a
Tangent workstation with a 200 MHz PentiumPro CPU using IEEE double precision
arithmetic. The machine precision was € & 2.2204 x 10716,

Table 1 reports the residual norms ||[DR(X)|| for the solutions computed by
the SZ and Schur vector algorithms before and after applying Newton’s method and
NIT, the number of Newton steps required to attain the final accuracy. Moreover,
the size n of the problem as well as the condition numbers of A and of the DARE are
also provided. The condition Kpagrg of the DARE is estimated using the method
proposed in [18]. If cond (4) = ||4]|, ||A_1||2 = oo, then A is singular. In that
case, the number in parentheses indicates the number of zero eigenvalues of the
symplectic pencil L — AM in (1.2). Recall that these have to be deflated before
applying the SZ algorithm. Table 2 gives information about relative errors for those
examples where the exact solution is known. The information about the example
and the number of iteration steps needed by Newton’s method is not duplicated,
though. In both tables X, denotes the exact stabilizing solution, X5z and Xqgz are
the initial guesses for Newton’s method obtained from the butterfly SZ algorithm
and the Schur vector method, respectively, and Xyrr is the final approximation
to X, after NIT iteration steps of Newton’s method. From both tables it can be
seen that for all examples, the final accuracy is similar for both methods. This is
to be expected as the accuracy obtained by Newton’s method is only limited by
the conditioning of the DARE and not by the initial error || X, — Xo||z. In most
cases, the number of Newton steps needed is equal or differs by one only. The
biggest differences are in Examples 10 and 11. In Example 10, four Newton steps
are needed to refine the Schur vector based approximation to final accuracy while
no Newton steps are needed by Algorithm 4.1. On the other hand, in Example 11,
two Newton steps are needed by the hybrid method while none are required for
the Schur vector solution. But even in this case, given the flop counts from the
previous sections, Algorithm 4.1 still computes the solution faster than the Schur
vector method. That is, the hybrid method is always faster than the Schur vector
method with iterative refinement based on Newton’s method. In Example 10,
Algorithm 4.1 is almost three times faster than the iteratively refined generalized
Schur vector method. Note that for all examples with known exact solution, the
attained accuracy is of order machine precision times condition of the DARE.

6. Concluding remarks

We have discussed the numerical solution of discrete-time Riccati equations. By
initializing Newton’s method with a starting guess computed by the butterfly SZ
algorithm combined with a method for deflating zero and infinite eigenvalues to the
corresponding symplectic matrix pencil, an efficient and accurate hybrid method is
derived. This method is usually about twice as fast as the generalized Schur vector
method with iterative refinement by Newton’s method, while the accuracy obtained
is in both cases only limited by the conditioning of the DARE and not by the SZ
or ()Z method.
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Example Algorithm 4.1 Schur vector method
no. n | cond(4) | Kpare SZ Newton NIT QZ Newton NIT
IDR(Xs2)llp | IPDR(Xur)llp IDR(Xs2)llp | IPR(Xyrr)ll

1 2 [1.2x10? 18.9 1.9 x 10713 3.0x 107 1 48 x 10~ 4.8 x 10716 0
2 2 1.1 4.7 1.4 x 10716 1.4 x 10716 0 4.4 %1017 4.4 %1077 0
5 2 o (1) 1.9 0 0 0 2.2x 10715 2.2x 10715 0
6 4 1.0 30.6 9.9 x 10712 41 %1071 1 9.9 x 10~ 43 %101 1
7 4 19.9 79%x10% || 4.3 x 10712 2.2x 10716 1 1.1x 10715 1.1x 10715 0
8 4 |38x10%|51x10*| 59x10°% 59 x 10713 0 83 x 10~ 8.3 x 10714 0
9 5 23.5 1.0x10* || 22x1077 8.0 x 10715 1 1.9x 10713 5.1x 10715 1
10 6 o (2) 3.9 83x 1071 83x 10715 0 1.02 4.6 x 10716 4
11 9 |1.6x 108 74.2 7.5x 1074 1.1 x 10713 2 8.3 x 10712 8.3 x 10712 0
12 2 x (2) 2.7 0 0 0 8.1 x 10° 0 1
13 3 oo (1) 2.5 3.3 2.7x 1077 1 3.7x10°8 3.7x10°8 0
14 4 0 (3) [1.8x10% | 58x1072 3 4.1 x 1072 1.9%x 1078 2
15 100 | oo (100) | 2.8 x 10? 0 0 1.4 x 10712 1.4 x 102 0
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Example Algorithm 4.1 Schur vector method

no. S7Z Newton QZ Newton
1 Xsz—Xullp [| X1 — X || [Xez=Xullp | [Xur—X.|lp

[X.]r [X.]p [ Xl X g
1 9.4x 1071 | 6.1x 10715 || 4.5x 10716 | 4.5 x 10716
5 0 0 42x 10716 | 4.2 x107'6

12 0 0 8.1x 1076 0

13 41x1077 |32x1071 || 42x 1071 | 4.2 x 10717
14 42x1072 | 1.6x107° || 29x1072 | 1.5x 1078
15 0 0 4.5x 10715 | 45 x 10715

TABLE 2. Relative errors of SZ and Schur vector solution before
and after iterative refinement.
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