
A Hybrid Method for the Numerical Solution ofDiscrete-Time Algebraic Riccati EquationsHeike Fa�bender and Peter BennerAbstract. A discrete-time algebraic Riccati equation (DARE) is a set of non-linear equations. One of the oldest, best studied, numerical methods for solvingit, is Newton's method. Finding a stabilizing starting guess which is alreadyclose to the desired solution is crucial. We propose to compute an approximatesolution of the DARE by the (butter
y) SZ algorithm applied to the corre-sponding symplectic pencil where zero and in�nity eigenvalues are removedusing an iterative de
ation strategy. This algorithm is a fast, reliable andstructure-preserving algorithm for computing the stable de
ating subspace ofthe symplectic matrix pencil associated with the DARE. From this, a stabi-lizing starting guess for Newton's method is easily obtained. The resultingmethod is very e�cient and produces highly accurate results. Numerical ex-amples demonstrate the behavior of the resulting hybrid method.Keywords. discrete-time algebraic Riccati equation, Newton's method, SZ algo-rithm, symplectic matrix pencil.1. IntroductionThe standard (discrete-time) linear-quadratic optimization problem consists in�nding a control trajectory fu(k); k = 0; 1; 2; : : :g, minimizing the cost functionalJ (x0; u) = 1Xk=0[x(k)TQx(k) + u(k)TRu(k)]in terms of u subject to the dynamical constraintx(k + 1) = Ax(k) +Bu(k); x(0) := x0;where A 2 Rn�n , B 2 Rm�n , Q 2 Rp�p , and R 2 Rm�m . Furthermore, we assumeQ and R to be symmetric. Under certain conditions there is a unique control law,u(k) = K(X�)x(k); K(X�) := �(R+BTX�B)�1BTX�A;minimizing J in terms of u subject to the dynamical constraint. The matrix X� isthe unique symmetric stabilizing solution of the algebraic matrix Riccati equation0 = DR(X) = Q�X +ATXA�ATXB(R+BTXB)�1BTXA:(1.1)That is, X� = XT� is the solution of (1.1) and all eigenvalues of A � BK(X�) areinside the unit circle: � (A � BK(X�)) � D1(0), where D1(0) = f� 2 C ; j�j < 1g:The equation (1.1) is usually referred to as discrete-time algebraic Riccati equation1991 Mathematics Subject Classi�cation. Primary 65H10, 49N05; Secondary 15A24, 65F15.1



2 HEIKE FASSBENDER AND PETER BENNER(DARE). It appears not only in the context presented, but also in numerous proce-dures for analysis, synthesis, and design of control and estimation systems with H2or H1 performance criteria, as well as in other branches of applied mathematicsand engineering, see, e.g., [1, 2, 3, 28, 22, 31].The DARE (1.1) can be considered as a nonlinear set of equations. Therefore,Newton's method has been one of the �rst methods proposed to solve DAREs [19].Finding a stabilizing starting guess which is already close to the desired solutionis crucial. It is well known that (under certain reasonable assumptions) if X0 isa stabilizing starting guess, then all iterates are stabilizing and converge globallyquadratic to the desired solution X� (see, e.g., [19, 22, 25]). Despite the ultimaterapid convergence, the iteration may initially converge slowly. This can be due toa large initial error jjX� �X0jj or a disastrously large �rst Newton step resultingin a large error jjX� �X1jj. In both cases, it is possible that many iterations arerequired to �nd the region of rapid convergence.Here we propose to compute an approximate solution bX of DR(X) by the(butter
y) SZ algorithm. This solution is then used as a starting guess for Newton'smethod. The resulting hybrid method for solving (1.1) is a very e�cient methodand produces highly accurate results.Assume R to be positive de�nite and de�neL� �M = � A 0Q I �� � � I �BR�1BT0 AT � :(1.2)Using furthermore the standard control-theoretic assumptions that� (A;B) is stabilizable,� (Q;A) is detectable,� Q is positive semide�nite,then L � �M has no eigenvalues on the unit circle and there exists a unique sta-bilizing solution X� of the DARE (1.1); see, e.g., [22]. It is then easily seen thatL � �M has precisely n eigenvalues in the open unit disk and n outside. More-over, the Riccati solution X� can be given in terms of the de
ating subspace ofL� �M corresponding to the n eigenvalues �1; : : : ; �n inside the unit circle usingthe relation � A 0Q I � � I�X � = � I �BR�1BT0 AT �� I�X ��;where � 2 Rn�n , �(�) = f�1; : : : ; �ng. Therefore, if we can compute Y1; Y2 2 Rn�nsuch that the columns of � Y1Y2 � span the desired de
ating subspace of L��M , thenX� = �Y2Y �11 is the desired solution of the Riccati equation (1.1). See, e.g.,[22, 23, 25], and the references therein.It is worthwhile to note that L� �M of the form (1.2) is a symplectic matrixpencil. A symplectic matrix pencil L � �M;L;M 2 R2n�2n ; is de�ned by theproperty LJLT =MJMT ;where J = � 0 In�In 0 � ;and In is the n�n identity matrix. The nonzero eigenvalues of a symplectic matrixpencil occur in reciprocal pairs: If � is an eigenvalue of L��M with left eigenvector



A HYBRID METHOD FOR THE NUMERICAL SOLUTION OF DAREs 3x, then ��1 is an eigenvalue of L��M with right eigenvector (Jx)H . Hence, as weare dealing with real symplectic pencils, the �nite generalized eigenvalues alwaysoccur in pairs if they are real or purely imaginary or in quadruples otherwise.The numerical computation of a de
ating subspace of a (symplectic) matrixpencil L��M is usually carried out by an iterative procedure like the QZ algorithm.The QZ algorithm is numerically backward stable but it ignores the symplecticstructure. Applying the QZ algorithm to a symplectic matrix pencil results in ageneral 2n�2n matrix pencil in generalized Schur form from which the eigenvaluesand de
ating subspaces can be read o�. Sorting the eigenvalues in the generalizedSchur form such that the eigenvalues inside the unit circle are contained in the upperleft n�n block, this method results in the popular generalized Schur vector methodfor solving DAREs [26]. Due to roundo� errors unavoidable in �nite-precisionarithmetic, the computed eigenvalues will in general not come in pairs f�; ��1g,although the exact eigenvalues have this property. Even worse, small perturbationsmay cause eigenvalues close to the unit circle to cross the unit circle such that thenumber of true and computed eigenvalues inside the open unit disk may di�er.Moreover, the application of the QZ algorithm to L � �M is computationallyquite expensive. The usual initial reduction to Hessenberg-triangular form requiresabout 70n3 
ops plus 24n3 for accumulating the Z matrix; each iteration steprequires about 88n2 
ops for the transformations and 136n2 
ops for accumulatingZ; see, e.g., [29]. An estimated 40n3 
ops are necessary for ordering the generalizedSchur form. This results in a total cost of roughly 415n3 
ops for computing astarting guess for Newton's method using the QZ algorithm, employing standardassumptions about convergence of the QZ iteration (see, e.g., [17]).Here we propose to use the butter
y SZ algorithm for computing the de
atingsubspace of L � �M . The butter
y SZ algorithm [11, 16] is a fast, reliable ande�cient algorithm especially designed for solving the symplectic eigenproblem. Itmakes use of the fact that symplectic matrix pencils can be reduced to matrixpencils of the form K � �N = � C F0 C�1 �� � � 0 InIn T � ;(1.3)where C;F are diagonal and T is symmetric tridiagonal. This form is determined byjust 4n�1 parameters. The symplectic matrix pencil K��N is called a symplecticbutter
y pencil. By exploiting this special reduced form and the symplecticity, theSZ algorithm is fast and e�cient; in each iteration step only O(n) arithmeticoperations are required instead of O(n2) arithmetic operations for a QZ step. Wethus save a signi�cant amount of work. Of course, the accumulation of the Z matrixrequires O(n2) arithmetic operations as in the QZ step. Moreover, by forcingthe symplectic structure the above mentioned problems of the QZ algorithm areavoided. Using the so obtained solution as a starting guess for Newton's method,the resulting method for solving discrete-time algebraic Riccati equations is a verye�cient method and produces highly accurate results.In Section 2 Newton's method is reviewed. Section 3 brie
y describes the (but-ter
y) SZ algorithm for computing the de
ating subspace of L� �M . Combinedwith a strategy to de
ate zero and in�nity eigenvalues from the symplectic pencil inorder to deal with discrete-time algebraic Riccati equations with singular A matrix,the hybrid method described in Section 4 consisting of the SZ algorithm followed



4 HEIKE FASSBENDER AND PETER BENNERby a few Newton iteration steps results in an e�cient and accurate method for solv-ing discrete-time algebraic Riccati equations. Numerical experiments are reportedin Section 5. 2. Newton's methodThe function DR(X) is a rational matrix function and DR(X) = 0 de�nesa system of nonlinear equations. Hence it is straightforward to apply Newton'smethod to DAREs. Inspired by Kleinman's formulation of Newton's method forcontinuous-time algebraic Riccati equations [20], Hewer [19] proposed an analogousscheme for solving DAREs. A discussion of its convergence properties can be foundin [25, 22].Given a symmetric matrix X0, the method can be given in algorithmic form asfollows:Algorithm 2.1.FOR k = 0; 1; 2; : : :1. Kk  K(Xk) = (R +BTXkB)�1BTXkA.2. Ak  A�BKk.3. Rk  DR(Xk).4. Solve for Nk in the Stein equationATkNkAk �Nk = �Rk:(2.1) 5. Xk+1  Xk +Nk:END FORENDWe have the following result for Algorithm 2.1 [19, 25, 22].Theorem 2.2. Ifi) (A;B) is stabilizable,ii) R = RT � 0,iii) a unique stabilizing solution X� of (1.1) exists such that R+BTX�B > 0,iv) X0 is stabilizing,then for the iterates produced by Algorithm 2.1 we have:a) All iterates Xk are stabilizing, i.e., � (A�BK(Xk)) � D1(0) for all k 2 N0 .b) X� � : : : � Xk+1 � Xk � : : : � X1.c) limk!1Xk = X�.d) There exists a constant 
 > 0 such thatkXk+1 �X�k � 
 kXk �X�k2 ; k � 1;i.e., the Xk converge globally quadratic to X�.The formulation of Algorithm 2.1 is analogous to the standard formulation ofNewton's method as given, e.g., in [15, Algorithm 5.1.1] for the solution of nonlinearequations. Because of its robustness in the presence of rounding errors, we preferto calculate the Newton step explicitly as in Algorithm 2.1 rather than to use themathematically equivalent formulation of the Newton step [19, 25, 22],ATkXk+1Ak �Xk+1 = �Q�KTk RKk(2.2)



A HYBRID METHOD FOR THE NUMERICAL SOLUTION OF DAREs 5which determines Xk+1 directly. The coe�cient matrices of the two Stein equationsare the same, but the right-hand-sides are di�erent. De�ne the Stein operator asthe linear map �k : Z �! (A�BK(Xk))TZ + Z(A�BK(Xk));(2.3)which is also the Fr�echet derivative of DR(X) at Xk. Let us assume that thecondition number of �k permits us to solve the Stein equations (2.1) and (2.2)to ` correct signi�cant digits. Loosely speaking this implies that when Xk+1 iscalculated directly as in (2.2), then its accuracy is limited to ` signi�cant digits.On the other hand, in Algorithm 2.1, the accuracy of the computed Newton stepNk is limited to ` signi�cant digits. Therefore, the sum Xk +Nk has up to ` morecorrect digits than Xk. The accuracy of Algorithm 2.1 is ultimately limited only bythe accuracy to which K(Xk), Ak, DR(Xk), and the sum Xk +Nk are calculated.The computational cost for Algorithm 2.1 mainly depends upon the cost for thenumerical solution of the Stein equation (2.1). This can be done using the Bartels{Stewart algorithm [7, 6]. Then the cost for the solution of the Stein equation isabout 32n3 
ops. The computations for forming Ak and Rk can be arranged suchthat for n � m, they require � 17n3 
ops while for m � n, these matrices can beformed using only � 3n3 
ops. For an average value of m = n=2, the computationalcost for one step of Algorithm 2.1 is about 42n3 
ops.One major di�culty is to �nd a stabilizing initial guess X0. There exist stabi-lization procedures for discrete-time linear systems (see, e.g., [4, 21, 29]). But thesemay give large initial errors kX� �X0k (see, e.g., [8]). The procedure suggestedin [21] is even infeasible for numerical computations as it is based on explicitlysumming up AkBBT (AT )k for k up to n, thereby often causing over
ow alreadyfor small values of n. This problem can be overcome in case A is stable. In thatcase, one can start from X0 = 0.Despite the ultimate rapid convergence indicated by Theorem 2.2 d), the itera-tion may initially converge slowly. This can be due to a large initial error kX� �X0kor a disastrously large �rst Newton step resulting in a large error kX� �X1k. Inboth cases, it is possible that many iterations are required to �nd the region ofrapid convergence. An ill-conditioned Stein equation makes it di�cult to computean accurate Newton step. An inaccurately computed Newton step can cause theusual convergence theory to break down in practice. Sometimes rounding errorsor a poor choice of X0 cause Newton's method to converge to a non-stabilizingsolution.For these reasons, Newton's method is usually not used by itself to solveDAREs. However, when it is used as a defect correction method or for itera-tive re�nement of an approximate solution obtained by a more robust method, itis often able to squeeze out the maximum possible accuracy [25] after only one ortwo iterations. Therefore we propose here to �nd a stabilizing initial guess usingthe butter
y SZ algorithm.An approach to overcome slow initial convergence is suggested in [8, 9]. There,a line search strategy is suggested that usually accelerates the convergence duringthe �rst iteration steps. The strategy is particularly successful if A is known to bestable and one can start from X0 = 0. Still, for unstable A matrix, this procedurerelies on some initial stabilization and even for a stable A matrix, X0 = 0 mayresult in a bad �rst step. Therefore this approach will also bene�t from a goodstarting guess. Note, however, that most frequently a starting guess obtained from



6 HEIKE FASSBENDER AND PETER BENNERthe SZ algorithm is so close to the desired solution that line search will usuallynot improve Newton's method signi�cantly. We will therefore not discuss this topichere any further. Still, in case the solution of the DARE via the de
ating subspaceapproach is ill-conditioned, line search may improve the convergence behavior.3. The butter
y SZ algorithmFor simplicity let us assume at the moment that A in (1.2) is nonsingular.Premultiplying L� �M by � I 00 A�T � results in a symplectic matrix pencilL0 � �M 0 = � A 0A�TQ A�T �� � � I �BR�1BT0 I � ;(3.1)where L0;M 0 are both symplectic, that is,L0JL0T =M 0JM 0T = J;as a matrix X 2 Rn�n is symplectic if XJXT = J . In [11, 16] it is shown that forthe symplectic matrix pencil L0��M 0 there exist numerous symplectic matrices Zand nonsingular matrices S which reduce L0��M 0 to a symplectic butter
y pencilK � �N (1.3)S(L0 � �M 0)Z = K � �N = � C F0 C�1 �� � � 0 �II T � ;where C and F are diagonal matrices, and T is a symmetric tridiagonal matrix.(More general, not only the symplectic matrix pencil in (3.1), but any symplecticmatrix pencil L0 � �M 0 with symplectic matrices L0;M 0 can be reduced to a sym-plectic butter
y pencil). If T is an unreduced tridiagonal matrix, then the butter
ypencil is called unreduced. If any of the n� 1 subdiagonal elements of T are zero,the problem can be split into at least two problems of smaller dimension, but withthe same symplectic butter
y structure.Once the reduction to a symplectic butter
y pencil is achieved, the SZ algo-rithm is a suitable tool for computing the eigenvalues/de
ating subspaces of thesymplectic pencil K � �N [11, 16]. The SZ algorithm preserves the symplecticbutter
y form in its iterations. It is the analogue of the SR algorithm (see [10, 16])for the generalized eigenproblem, just as the QZ algorithm is the analogue of theQR algorithm for the generalized eigenproblem. Both are instances of the GZalgorithm [30].Each iteration step begins with an unreduced butter
y pencil K��N . Choosea spectral transformation function q and compute a symplectic matrix Z1 such thatZ�11 q(K�1N)e1 = �e1for some scalar �. Then transform the pencil toeK � � eN = (K � �N)Z1:This introduces a bulge into the matrices eK and eN . Now transform the pencil tobK � � bN = S�1( eK � � eN) eZ;where bK�� bN is of symplectic butter
y form. S and eZ are symplectic, and eZe1 =e1. This concludes the iteration. Under certain assumptions, it can be shown thatthe butter
y SZ algorithm converges cubically. For a detailed discussion of thebutter
y SZ algorithm see [11, 16].



A HYBRID METHOD FOR THE NUMERICAL SOLUTION OF DAREs 7Hence, in order to compute an approximate solution of the DARE (1.1) by thebutter
y SZ algorithm, �rst the symplectic matrix pencil L� �M as in (1.2) hasto be formed, then the symplectic matrix pencil L0 � �M 0 as in (3.1) is computed.Next symplectic matrices Z0 and S0 are computed such thatbL� �cM := S�10 L0Z0 � �S�10 M 0Z0is a symplectic butter
y pencil. Using the butter
y SZ algorithm, symplecticmatrices Z1 and S1 are computed such thatS�11 bLZ1 � �S�11 cMZ1is a symplectic butter
y pencil and the symmetric tridiagonal matrix bT in thelower right block of S�11 cMZ1 is reduced to quasi-diagonal form with 1�1 and 2�2blocks on the diagonal. The eigenproblem decouples into a number of simple 2� 2or 4 � 4 generalized symplectic eigenproblems. Solving these subproblems, �nallysymplectic matrices Z2; S2 are computed such that�L = S�12 S�11 bLZ1Z2 = � �11 �120 �22 � ;�M = S�12 S�11 cMZ1Z2 = �  11  120  22 � ;where the eigenvalues of the matrix pencil �11 � � 11 are precisely the n stablegeneralized eigenvalues. Let Z = Z0Z1Z2. Partitioning Z conformably,Z = � Z11 Z12Z21 Z22 � ;(3.2)the Riccati solution X� is found by solving a system of linear equations:X� = �Z21Z�111 :(3.3)This algorithm requires about 193n3 arithmetic operations in order to computethe desired de
ating subspace of L � �M and is therefore cheaper than the QZalgorithm which requires about 415n3 arithmetic operations (both 
op counts donot take into account the cost for forming L��M and the cost for solving the linearsystem (3.3) at the end, as these steps are the same for both algorithms). The costof the di�erent steps of the approach described above are given as follows. Thecomputation of A�TQ and A�T using an LR decomposition of A requires about143 n3 arithmetic operations. A careful 
op count reveals that the initial reduction ofL0��M 0 to butter
y form bL��cM requires about 75n3 arithmetic operations. Forcomputing Z0, an additional 28n3 arithmetic operations are needed. The butter
ySZ algorithm requires about O(n2) arithmetic operations for the computation of�L� � �M and additional 85n3 arithmetic operations for the computation of Z (thisestimate is based on the assumption that 23 iterations per eigenvalue are necessaryas observed in [11]). Hence, the entire algorithm described, requires about 5783 n3arithmetic operations.Instead of generating the symplectic matrix Z as in (3.2), one can work withn � n matrices X;Y and T such that �nally X = �Z21Z�111 = X�, Y = Z�111 Z12,and T = Z�111 . Starting from X = Y = 0; T = I , this can be implemented withoutaccumulating the intermediate symplectic transformations used in the butter
ySZ algorithm, just using the parameters that determine these transformations. Asfor every symplectic matrix Z written in the form (3.2), Z21Z�111 is symmetric, this



8 HEIKE FASSBENDER AND PETER BENNERapproach guarantees that all intermediate (and the �nal)X are symmetric. Such anapproach, called symmetric updating, was �rst proposed by Byers and Mehrmann[14] in the context of solving continuous-time algebraic Riccati equations via theHamiltonian SR algorithm and has also been proposed for solving DAREs withan SR algorithm in [5]. A 
op count shows that this approach is not feasiblehere. For the initial reduction of L0 � �M 0 to butter
y form about 5n4 arithmeticoperations are needed in order to compute X;Y; and Z. The butter
y SZ algorithmrequires about 11n4 arithmetic operations for the symmetric updating. Hence, thesymmetric updating requires O(n4) arithmetic operations. Moreover, this increasein computational cost is not rewarded with a signi�cantly better computation ofX . So far, we have assumed that A is nonsingular such that the symplectic pencilL0��M 0 (3.1) can be formed. In case A is singular, the symplectic matrix pencil L��M (1.2) has zero and in�nity eigenvalues. Mehrmann proposes in [25, Algorithm15.16] the following algorithm to de
ate zero and in�nite eigenvalues of L � �M :Assume that rank(A) = k. First, use the QR decomposition with column pivoting[17] to determine an orthogonal matrix V 2 Rn�n , an upper triangular matrixU 2 Rn�n and a permutation matrix P 2 Rn�n such thatPA = UQ = [0 U2] � V1V2 � ;where U2 2 Rn�n�k and V2 2 Rn�k�n have full rank. Then formT = � V T 0�QV T V T � ; and eT = � V (I +GQ)�1 0UTPQ(I +GQ)�1 V � ;where for ease of notation G denotes BR�1BT . Now as AV T = P TU = P T [0 U2],we obtaineT (L� �M)T == � V (I +GQ)�1P TU 0UTPQ(I +GQ)�1P TU I �� � � I �V (I +GQ)�1GV T0 UTP (�Q(I +GQ)�1G+ I)V T �= 2664 0 eA1 0 00 eA 0 00 0 I 00 eQ 0 I 3775� �2664 I 0 eG11 eG120 I eG21 eG0 0 0 00 0 eAT1 eAT 3775where eA1; eG12 2 Rk�n�k , eA; eQ; eG 2 Rn�k�n�k . The �rst k columns of T span theright de
ating subspace of L � �M corresponding to k zero eigenvalues and therows n + 1; n + 2; : : : ; n + k of eT span the left de
ating subspace correspondingto k in�nity eigenvalues. We may therefore delete rows and columns 1; 2; : : : ; k;n+ 1; n+ 2; : : : ; n+ k and proceed with the reduced pencil" eA 0eQ I #� �" I eG0 eA # :There is no guarantee that eA is nonsingular. Hence, the procedure described abovehas to be repeated until the resulting symplectic matrix pencil has no more zeroand in�nity eigenvalues and eA is nonsingular. Note that neither the rank of Anor the number of zero eigenvalues of A determine the number of zero and in�nityeigenvalues of the symplectic pencil. For instance, in Example 10 of [12], n = 6,



A HYBRID METHOD FOR THE NUMERICAL SOLUTION OF DAREs 9rank(A) = 5, A has three zero eigenvalues and L � �M as in (1.2) has two zeroand in�nite eigenvalues each. All the computation in this algorithm can be carriedout in a numerically reliable way. The solution of the linear systems with I +GQis well-conditioned, since Q and G are symmetric positive semide�nite.If after the �rst iteration, eA is nonsingular, then this process requires (11n2 +6rn + 2r2)n 
ops; the initial QR decomposition in order to check the rank of Acosts 43n3 
ops. Note that this initial decomposition is always computed. But incase A has full rank, then the symplectic pencil L0 � �M 0 in (3.1) is formed usingthe original data in order not to introduce unnecessary rounding errors. In doingso, the QR decomposition of the A matrix should be used when computing A�TQand A�T instead of computing an LR decomposition of A.Combined with a strategy to de
ate zero and in�nity eigenvalues from thesymplectic pencil in order to deal with discrete-time algebraic Riccati equationswith singular A matrix, the butter
y SZ algorithm is an e�cient tool to computea starting guess for Newton's method. Usually the same number of iterations isrequired as when re�ning an approximation computed by the generalized Schurvector method. Even if one or two iterations more are necessary due to the loss ofaccuracy caused by using non-orthogonal transformations, this is well compensatedby the cheaper SZ iteration.4. A hybrid method for DAREsCombining the strategy to de
ate zero and in�nity eigenvalues from the sym-plectic pencil with the SZ algorithm followed by a few Newton iteration stepsresults in an e�cient and accurate hybrid method.Altogether, we propose the following algorithm to solve the DARE (1.1).Algorithm 4.1.Input: The coe�cient matrices A 2 Rn�n , B 2 Rn�m , Q = QT 2 Rn�n , andR 2 Rm�m .Output: An approximation ~X = ~XT 2 Rn�n to the stabilizing solution of theDARE.1. Form the symplectic pencil L� �M as in (1.2).2. Use the procedure described in Section 3 to de
ate all zero and in�niteeigenvalues of L � �M . That is, compute a nonsingular transformationmatrix T1 and a symplectic matrix S1 such thatT1(L� �M)S1 =24 0 ~A1 0 00 ~A 0 00 0 Ik 00 ~Q 0 In�k 35� �24 Ik 0 � ~G11 � ~G120 In�k � ~GT12 � ~G220 0 0 00 0 ~AT1 ~AT 35with eA nonsingular and the �rst k columns of S1 span the de
ating subspaceof L� �M corresponding to all zero eigenvalues.3. Apply the butter
y SZ algorithm described in Section 3 (and in detail in[11]) to the symplectic pencil~L� � ~M :=�In�k 00 ~A�T� � ~A 0~Q In�k�� � �In�k � ~G220 ~AT �



10 HEIKE FASSBENDER AND PETER BENNERsuch that~T2(~L� � ~M) ~S2 = � �11 �120 �22 �� � �  11  120  22 � ;where the eigenvalues of �11 � � 11 are the stable nonzero eigenvalues ofL� �M .4. Partition ~S2 = � S11 S12S21 S22 � where Sjj 2 Rn�k�n�k , j = 1; 2. SetZ := S1 " Ik 0 0 00 S11 0 S120 0 Ik 00 S21 0 S22 # :Then the �rst n columns of Z span the stable de
ating subspace of L��Mand an approximate solution bX of the DARE can be computed as in (3.3).5. Use Newton's method (possibly endowed with a line search strategy as pro-posed in [9]) and starting guess X0 = bX in order to iteratively re�ne thesolution of the DARE to the highest achievable accuracy.Note that all left transformation matrices need not be accumulated. The 
opcount for Algorithm 4.1 can be summarized assuming that m = n=2, k = 0, andthat two Newton iterations are required to obtain the attainable accuracy: Then,Steps 1. and 2. need 1324n3 
ops and 43n3 
ops, respectively, Step 3. requires 5763 n3
ops (using the QR decomposition of A computed in Step 2.) while 83n3 
ops areneeded to solve the linear system in the 4. Step. Two Newton iteration under thegiven assumptions take 84n3 
ops. Altogether this results in approximately 280n3
ops. Note that given these 
op counts, 5 Newton iterations are needed to reach thecost of the generalized Schur vector method. If compared to an iteratively re�nedgeneralized Schur vector method, this comparison becomes even more favorable.For the same number of Newton iterations, the hybrid method is about twice asfast as the iteratively re�ned generalized Schur vector method.Also note that as long as the SZ algorithm yields a stabilizing starting guessX0 = bX , the hybrid algorithm can be considered as numerically backward stable asit computes the solution to a nearby DARE; see [25, x 10]. This is due to the factthat the Newton iteration as formulated in Section 2 can be considered as a defectcorrection method for DAREs and the ultimate accuracy obtained by Newton'smethod is only limited by condition number of the DARE; see, e.g., [27].5. Numerical ExperimentsWe have implemented Algorithm 4.1 as Matlab1 functions. The implemen-tation of Newton's method for DAREs used here is described in [8]. As stoppingcriterion for Newton's method we used a criterion based on a normalized residualof the form kDR(Xk)kF � n"kXkkmax fkAkF ; kBkF ; kRkF ; kQkF g ;where " is the machine precision.In this section we compare the results obtained by Algorithm 4.1 with thoseobtained from the Schur vector method as proposed in [26], i.e., applying the QZalgorithm to the symplectic pencil L��M from (1.2) and re-ordering the eigenvaluesappropriately, followed by Newton's method in the same implementation as used inour hybrid method. In the tests, results of Newton's method without line search are1Matlab is a trademark of The MathWorks, Inc.



A HYBRID METHOD FOR THE NUMERICAL SOLUTION OF DAREs 11reported. Only in Example 14, line search reduced the number of required Newtoniterations by one in both methods.The two algorithms are compared for the examples from the DARE benchmarkcollection [12, 13]. We do not give results for Examples 3 and 4 as there, R issingular and hence the approach via the symplectic pencil is not possible.All computations were done using Matlab Version 5.3 [24] under Linux on aTangent workstation with a 200MHz PentiumPro CPU using IEEE double precisionarithmetic. The machine precision was " � 2:2204� 10�16.Table 1 reports the residual norms kDR(X)kF for the solutions computed bythe SZ and Schur vector algorithms before and after applying Newton's method andNIT, the number of Newton steps required to attain the �nal accuracy. Moreover,the size n of the problem as well as the condition numbers of A and of the DARE arealso provided. The condition KDARE of the DARE is estimated using the methodproposed in [18]. If cond (A) = kAk2 

A�1

2 = 1, then A is singular. In thatcase, the number in parentheses indicates the number of zero eigenvalues of thesymplectic pencil L � �M in (1.2). Recall that these have to be de
ated beforeapplying the SZ algorithm. Table 2 gives information about relative errors for thoseexamples where the exact solution is known. The information about the exampleand the number of iteration steps needed by Newton's method is not duplicated,though. In both tables X� denotes the exact stabilizing solution, XSZ and XQZ arethe initial guesses for Newton's method obtained from the butter
y SZ algorithmand the Schur vector method, respectively, and XNIT is the �nal approximationto X� after NIT iteration steps of Newton's method. From both tables it can beseen that for all examples, the �nal accuracy is similar for both methods. This isto be expected as the accuracy obtained by Newton's method is only limited bythe conditioning of the DARE and not by the initial error kX� �X0kF . In mostcases, the number of Newton steps needed is equal or di�ers by one only. Thebiggest di�erences are in Examples 10 and 11. In Example 10, four Newton stepsare needed to re�ne the Schur vector based approximation to �nal accuracy whileno Newton steps are needed by Algorithm 4.1. On the other hand, in Example 11,two Newton steps are needed by the hybrid method while none are required forthe Schur vector solution. But even in this case, given the 
op counts from theprevious sections, Algorithm 4.1 still computes the solution faster than the Schurvector method. That is, the hybrid method is always faster than the Schur vectormethod with iterative re�nement based on Newton's method. In Example 10,Algorithm 4.1 is almost three times faster than the iteratively re�ned generalizedSchur vector method. Note that for all examples with known exact solution, theattained accuracy is of order machine precision times condition of the DARE.6. Concluding remarksWe have discussed the numerical solution of discrete-time Riccati equations. Byinitializing Newton's method with a starting guess computed by the butter
y SZalgorithm combined with a method for de
ating zero and in�nite eigenvalues to thecorresponding symplectic matrix pencil, an e�cient and accurate hybrid method isderived. This method is usually about twice as fast as the generalized Schur vectormethod with iterative re�nement by Newton's method, while the accuracy obtainedis in both cases only limited by the conditioning of the DARE and not by the SZor QZ method.
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Example Algorithm 4.1 Schur vector methodno. n cond (A) KDARE SZ Newton NIT QZ Newton NITkDR(XSZ)kF kDR(XNIT)kF kDR(XSZ)kF kDR(XNIT)kF1 2 1:2� 102 18.9 1:9� 10�13 3:0� 10�14 1 4:8� 10�14 4:8� 10�16 02 2 1.1 4.7 1:4� 10�16 1:4� 10�16 0 4:4� 10�17 4:4� 10�17 05 2 1 (1) 1.9 0 0 0 2:2� 10�15 2:2� 10�15 06 4 1.0 30.6 9:9� 10�12 4:1� 10�15 1 9:9� 10�14 4:3� 10�15 17 4 19.9 7:9� 102 4:3� 10�12 2:2� 10�16 1 1:1� 10�15 1:1� 10�15 08 4 3:8� 102 5:1� 104 5:9� 10�13 5:9� 10�13 0 8:3� 10�14 8:3� 10�14 09 5 23.5 1:0� 102 2:2� 10�9 8:0� 10�15 1 1:9� 10�13 5:1� 10�15 110 6 1 (2) 3.9 8:3� 10�15 8:3� 10�15 0 1.02 4:6� 10�16 411 9 1:6� 106 74.2 7:5� 10�4 1:1� 10�13 2 8:3� 10�12 8:3� 10�12 012 2 1 (2) 2.7 0 0 0 8:1� 106 0 113 3 1 (1) 2.5 3:3 2:7� 10�7 1 3:7� 10�8 3:7� 10�8 014 4 1 (3) 1:8� 108 5:8� 10�2 0 3 4:1� 10�2 1:9� 10�8 215 100 1 (100) 2:8� 102 0 0 0 1:4� 10�12 1:4� 10�12 0

Table1.ResidualnormsofSZandSchurvectorsolutionsbefore
andafteriterativere�nement.



A HYBRID METHOD FOR THE NUMERICAL SOLUTION OF DAREs 13Example Algorithm 4.1 Schur vector methodno. SZ Newton QZ NewtonkXSZ�X�kFkX�kF kXNIT�X�kFkX�kF kXQZ�X�kFkX�kF kXNIT�X�kFkX�kF1 9:4� 10�15 6:1� 10�15 4:5� 10�16 4:5� 10�165 0 0 4:2� 10�16 4:2� 10�1612 0 0 8:1� 10�6 013 4:1� 10�7 3:2� 10�14 4:2� 10�15 4:2� 10�1514 4:2� 10�2 1:6� 10�9 2:9� 10�2 1:5� 10�815 0 0 4:5� 10�15 4:5� 10�15Table 2. Relative errors of SZ and Schur vector solution beforeand after iterative re�nement.References[1] C.D. Ahlbrandt and A.C. Peterson. Discrete Hamiltonian Systems: Di�erence Equations,Continued Fractions, and Riccati Equations. Kluwer Academic Publishers, Dordrecht, NL,1998.[2] B.D.O. Anderson and J.B. Moore. Optimal Filtering. Prentice-Hall, Englewood Cli�s, NJ,1979.[3] B.D.O. Anderson and B. Vongpanitlerd. Network Analysis and Synthesis. A Modern SystemsApproach. Prentice-Hall, Englewood Cli�s, NJ, 1972.[4] E.S. Armstrong and G. T. Rublein. A stabilization algorithm for linear discrete constantsystems. IEEE Trans. Automat. Control, AC{21:629{631, 1976.[5] G. Banse. Symplektische Eigenwertverfahren zur L�osung zeitdiskreter optimalerSteuerungsprobleme. Dissertation, Fachbereich 3 { Mathematik und Informatik, Uni-versit�at Bremen, Bremen, FRG, June 1995. In German.[6] A. Y. Barraud. A numerical algorithm to solve ATXA � X = Q. IEEE Trans. Automat.Control, AC-22:883{885, 1977.[7] R.H. Bartels and G.W. Stewart. Solution of the matrix equation AX +XB = C: Algorithm432. Comm. ACM, 15:820{826, 1972.[8] P. Benner. Contributions to the Numerical Solution of Algebraic Riccati Equations andRelated Eigenvalue Problems. Logos{Verlag, Berlin, Germany, 1997. Also: Dissertation,Fakult�at f�ur Mathematik, TU Chemnitz{Zwickau, 1997.[9] P. Benner. Accelerating Newton's method for discrete-time algebraic Riccati equations. InA. Beghi, L. Finesso, and G. Picci, editors, Mathematical Theory of Networks and Systems,pages 569{572, Il Poligrafo, Padova, Italy, 1998.[10] P. Benner and H. Fa�bender. The symplectic eigenvalue problem, the butter
y form, the SRalgorithm, and the Lanczos method. Linear Algebra Appl., 275/276:19{47, 1998.[11] P. Benner, H. Fa�bender, and D.S. Watkins. SR and SZ algorithms for the symplectic (but-ter
y) eigenproblem. Linear Algebra Appl., 287:41{76, 1999.[12] P. Benner, A.J. Laub, and V. Mehrmann. A collection of benchmark examples for the nu-merical solution of algebraic Riccati equations II: Discrete-time case. Technical Report SPC95 23, Fakult�at f�ur Mathematik, TU Chemnitz{Zwickau, 09107 Chemnitz, FRG, 1995. Avail-able from http://www.tu-chemnitz.de/sfb393/spc95pr.html.[13] P. Benner, A.J. Laub, and V. Mehrmann. Benchmarks for the numerical solution of algebraicRiccati equations. IEEE Control Systems Magazine, 7(5):18{28, 1997.[14] R. Byers and V. Mehrmann. Symmetric updating of the solution of the algebraic Riccatiequation. Methods of Operations Research, 54:117{125, 1985.[15] J. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained Optimization and Non-linear Equations. Prentice Hall, Englewood Cli�s, New Jersey, 1983.



14 HEIKE FASSBENDER AND PETER BENNER[16] H. Fa�bender. Symplectic Methods for Symplectic Eigenproblems. Habilitationsschrift, Fach-bereich 3 { Mathematik und Informatik, Universit�at Bremen, 28334 Bremen, (Germany),1998.[17] G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins University Press,Baltimore, third edition, 1996.[18] T. Gudmundsson, C. Kenney, and A.J. Laub. Scaling of the discrete-time algebraic Riccatiequation to enhance stability of the Schur solution method. IEEE Trans. Automat. Control,37:513{518, 1992.[19] G.A. Hewer. An iterative technique for the computation of steady state gains for the discreteoptimal regulator. IEEE Trans. Automat. Control, AC-16:382{384, 1971.[20] D.L. Kleinman. On an iterative technique for Riccati equation computations. IEEE Trans.Automat. Control, AC-13:114{115, 1968.[21] D.L. Kleinman. Stabilizing a discrete, constant, linear system with application to iterativemethods for solving the Riccati equation. IEEE Trans. Automat. Control, AC-19:252{254,1974.[22] P. Lancaster and L. Rodman. The Algebraic Riccati Equation. Oxford University Press, Ox-ford, 1995.[23] A.J. Laub. Algebraic aspects of generalized eigenvalue problems for solving Riccati equations.In C.I. Byrnes and A. Lindquist, editors, Computational and Combinatorial Methods inSystems Theory, pages 213{227. Elsevier (North-Holland), 1986.[24] The Mathworks, Inc., 24 Prime Park Way, Natick, MA 01760-1500 (USA). Using MatlabVersion 5, June 1997.[25] V. Mehrmann. The Autonomous Linear Quadratic Control Problem, Theory and NumericalSolution. Number 163 in Lecture Notes in Control and Information Sciences. Springer-Verlag,Heidelberg, July 1991.[26] T. Pappas, A.J. Laub, and N.R. Sandell. On the numerical solution of the discrete-timealgebraic Riccati equation. IEEE Trans. Automat. Control, AC-25:631{641, 1980.[27] P.H. Petkov, N.D. Christov, and M.M. Konstantinov. Computational Methods for LinearControl Systems. Prentice-Hall, Hertfordshire, UK, 1991.[28] A. Saberi, P. Sannuti, and B.M. Chen. H2 Optimal Control. Prentice-Hall, Hertfordshire,UK, 1995.[29] V. Sima. Algorithms for Linear-Quadratic Optimization, volume 200 of Pure and AppliedMathematics. Marcel Dekker, Inc., New York, NY, 1996.[30] D.S. Watkins and L. Elsner. Theory of decomposition and bulge chasing algorithms for thegeneralized eigenvalue problem. SIAM J. Matrix Anal. Appl., 15:943{967, 1994.[31] K. Zhou, J.C. Doyle, and K. Glover. Robust and Optimal Control. Prentice-Hall, UpperSaddle River, NJ, 1995.Zentrum f�ur Technomathematik, Fachbereich 3 - Mathematik und Informatik, Uni-versit�at Bremen, D-28334 Bremen, GermanyE-mail address: heike@math.uni-bremen.deZentrum f�ur Technomathematik, Fachbereich 3 - Mathematik und Informatik, Uni-versit�at Bremen, D-28334 Bremen, GermanyE-mail address: benner@math.uni-bremen.de


