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Abstract. Nonlinear model order reduction techniques for systems of-
ten make use of Proper Orthogonal Decomposition (POD). In this work
a method based on POD, called Missing Point Estimation (MPE), is in-
vestigated. It is capable of efficiently simulating steady-state flows with
the angle of attack as a system parameter. The basic idea of MPE is to
project the governing equations onto the POD subspace in such a way
that the resulting reduced order model does not have to evaluate the right
hand side at each and every grid point, but a few selected points. While
the projection onto the POD subspace yields a reduced order model, the
limitation to only few points actually achieves independence from the
full order of the governing equations. To demonstrate the effectiveness of
this method, numerical results for the simulation of inviscid, steady-state
flows past a three-dimensional, complex airplane configuration are given.
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1 Introduction

The European aviation industry is facing great challenges: Their products have
to be more fuel-efficient, safer, and the European industry has to to remain
competitive with traditional competitors from the US and upcoming ones, e.g.
from China [1].

In order to tackle these challenges, numerical simulations play an essential
role. In fact, due to the steadily increasing computational power, numerical simu-
lations become more and more effective. Today’s vision is that digital flight-tests
[2–4] are possible in the future, that is, supporting current testing methods such
as wind tunnel experiments and flight testing by numerical simulations.

For this vision to become true, however, numerical methods need to be less
time-consuming. To achieve this, either new high performance computing meth-
ods have to be developed in order to be able to simulate the constantly ame-
liorated mathematical models or (new) model reduction techniques have to be
employed in order to attain adaquate simplified models which allow fast simu-
lation. This work is concerned with the latter.

The goal of model order reduction is to significantly reduce the number of
equations to be solved and thereby decreasing the time spend on solving the



system. Note that the number of equations of a system is also referred to as the
order. Often the solution trajectories of high-fidelity models of order N lie in low
dimensional subspaces of order k ¡¡ N. Making use of this fact, one can construct
a projection with which the full-order system is reduced to one of smaller order.

In context of Computational Fluid Dynamics such a low-dimensional sub-
space, in which the solution trajectory resides, can be created with the help of
Proper Orthogonal Decomposition (POD). POD uses so-called snapshots, which
are solutions of the system, and stores these in a matrix, called the snapshot
matrix. Subsequently, the Singular Value Decomposition of this matrix is com-
puted. This yields the left singular vectors, which are an orthogonal basis for
a subspace, in which the snapshots lie. It is assumed that if the snapshots are
characteristic for the solutions, which are to be computed by the reduced order
model, then the latter also lie in this subspace.

While for linear systems the projection of the equations suffices to dramati-
cally speed up the simulation, this is usually not the case for nonlinear systems.
Note that for nonlinear systems the projected nonlinear right hand side is of
lower order, but in order to evaluate it, one usually needs to evalute the orig-
inal full-order right-hand side. As a result, there is still a dependence on the
full order and, thus, a significant speed-up cannot be expected. In recent years,
model order reduction techniques have been developed, which address this issue
by constructing projections that do not need to evaluate the full order right
hand side as a whole. Rather, only some components of the right hand side have
to be computed. Among these methods are the Discrete Empirical Interpolation
Method (DEIM) [5] and the Missing Point Estimation (MPE) [6].

The latter approach is pursued in this work. It has been introduced in [7]
and has since been applied to various fields of application, among which are heat
transfer processes [6], electrical circuit modeling [8], and oil reservoir simulation
[9]. The authors are unaware of any applications of MPE to aerodynamic flow
problems, other than their own [10, 11].

There are, of course, other projection-based model order reduction reduction
techniques in aerodynamics: One very similar to MPE, in the way that the
reduced order modeling is carried out on the discrete equations, is the subspace
projection method [12]. Unlike the MPE, it evaluates the full order residual.
Despite the dependence on the full order, a speed-up is achieved due to the fact
that a larger time step can be chosen in the reduced order model compared to
the full order model.

Secondly, the so-called Galerkin Projection method has been used in many
publications on reduced order models in aerodynamics. This method carries out
the reduced order modeling on the continuous equations [13, 14].

Finally, there is an approach, called the Least-squares ROM method, which
is not based on projection [15–19]. It has been introduced in context of steady
aerodynamics [15], for which the right hand side – or residual – becomes zero.
It minimizes the residual in a least-squares sense in the POD subspace.

The work is organized as follows. After this introduction, the full order gov-
erning equations and its notations are presented in the next section. Then in



Section 3 the Proper Orthogonal Decomposition is described, which is the foun-
dation for the Missing Point Estimation considered in this work. The Missing
Point Estimation is outlined in Section 4. After presenting numerical results for
a three-dimensional flow past an airplane configuration in Section 5, conclusions
to this work are given in the last section.

2 The full order governing equations

The flow problem, which is considered in this work, is modeled by the Euler
equations. The Euler equations are given by∫

Ω

∂W

∂t
dΩ +

∮
S

F · dS = 0 , (1)

where

W T =
(
ρ, ρ vx, ρ vy, ρ vz, ρE

)
(2)

is the vector of the conservative variables, which are the density ρ, the Cartesian
velocity components vx, vy, vz, and the total energy E. The flux vector F con-
tains the convective flux through the boundaries S = ∂Ω of the control volumes
Ω [20, chapter 2].

When the control volume Ω in (1) is spatially discretized with a finite-volume
approach [20] for a computational grid of N grid cells, a set of ordinary differ-
ential equations of the form

dw(t;α)

dt
= −Ṽ −1R(w(t;α)) (3)

is obtained, where α is the angle of attack and a parameter to the system. In
the above equation

wT =
(
ρT , ρvx

T , ρvy
T , ρvz

T , ρET
)
∈ IR5N , (4)

is the the discrete vector of conservative variables. Each of the entries ρ, ρvx,
ρvy, ρvz, and ρE is a discretization of the corresponding conservative variable

and is stored in a vector of size N . The residual vector R ∈ IR5N is ordered
accordingly and is the discretization of the flux integral in (1). Furthermore,
Ṽ = diag(V, . . . , V ) ∈ IR5N×5N is a block diagonal matrix, where each block is
given by the diagonal matrix V ∈ IRN×N , whose entries are the volumes of the
respective grid cell.

Note that in case steady flows are considered the time derivative drops and
(3) simplifies to

0 = −Ṽ −1R(w(t;α)) . (5)



3 Proper Orthogonal Decomposition

In this section a short review of Proper Orthogonal Decomposition is given. A
more comprehensive introduction can be found in [21].

Let w1, . . . ,wm be steady CFD flow solutions of (3), called snapshots, for
different flow conditions, e.g. wi = w(αi), where αi the angle of attack for
the particular flow. With these snapshots the corresponding centered snapshot
matrix is given by

Y = (w̄1, . . . , w̄m) , (6)

where w̄i = wi − w̄ are the centered snapshots around the mean flow w̄ =
1
m

∑m
i=1wi.

Consider the L2 scalar product (wi,wj)L2
= wT

i Ṽwj . The goal of POD
is to find an orthonormal basis U which spans the space of the snapshots, i.e.
spanU = spanY . This basis can be obtained by first solving the symmetric
eigenvalue problem

Y T Ṽ Yψj = λjψj , (7)

where the eigenvectors ψj are normalized, that is, ψTj ψj = 1, and, subsequently,
computing

uj =
1√
λj
Yψj . (8)

Note that the basis is in fact orthonormal in sense of the L2 scalar product, since

(uTi ,uj)L2
=

1√
λiλj

ψTi Y
T Ṽ Yψj =

λj√
λiλj

ψTi ψj = δij (9)

and ψTi ψj = δij due to the fact that the eigenvalue problem (7) is symmetric.
Take note of the fact that the columns of the centered snapshot matrix are

linearly dependent. In fact, the sum of all columns is zero. Hence, the smallest
eigenvalue is exactly zero.

Assume that the eigenvectors ψi are ordered according to the magnitude
of their corresponding eigenvalues, i.e. λ1 ≥ λ2 ≥ . . . ≥ λm. Then the basis
U = (u1, . . . ,um) can be truncated to contain only the most relevant modes. In
this work the relative information content [22] is used, which is defined as

RIC(d) =

∑d
i=1 λi∑m
j=1 λj

. (10)

The dimension d is then chosen such that the relative information content is
larger than a prescribed percentage δ, i.e. RIC(d) ≥ δ. Note that the space
spanned by the first d ≤ m basis modes is the best representation of dimension
d of the space spanned by the snapshots.

Flow solutions in this space can then be represented by

w = Uda+ w̄ , (11)



where Ud = (u1, . . . ,ud) is the (truncated) POD basis and a = (a1, . . . , ad)
the vector of the corresponding coefficients. All reduced order models employing
POD boil down to determining this vector a of POD coefficients in different
ways.

4 Missing Point Estimation

In this work a projection-based method called Missing Point Estimation (MPE)
is used to obtain the reduced order model (ROM). It has been introduced in [7].
While the most prominent projection-based method, called Galerkin projection,
projects all equations onto the POD subspace, the Missing Point Estimation does
so only for some selected equations. This has the advantage that the reduced
order model is much more efficient.

Before the MPE is reviewed in detail, we want to give a motivation why
considering only some equations is beneficial: The Galerkin projection of the
governing equations (3) is given by

da(t;α)

dt
= −UTd R(Uda(t;α) + w̄) , (12)

Note that system is of the order of the POD subspace, i.e. d, since the system
only depends on the coefficient vector a(t;α) ∈ IRd. However, in order to solve
the system, in each time step the residual vector R ∈ IR5N has to be computed,
which is of the order 5N of the original system. As a result, no significant speed-
up for a single time step can be expected.

In the following MPE is reviewed in the context of the Euler equations. For a
detailed account of the method the reader is referred to [6]. Consider the spatially
discretized governing equations

dw(t;α)

dt
= −Ṽ −1R(w(t;α)) , (13)

where α is the angle of attack and the only varying parameter in the model. If
the POD representation of the flow is inserted into this set of equations, i.e.

dUda(t;α)

dt
= −Ṽ −1R(Uda(t;α) + w̄) + ε0 , (14)

an error ε0 is introduced. Note that dw̄
dt = 0, since the mean flow is independent

of time.

In oder to construct a more efficient reduced order model, the MPE neglects
some function evaluations in the right-hand side vector R. It is assumed that
the information missed in this way is well captured by the information used due
to the spatial correlation in the POD basis. Since each equation of the spatially
discretized system corresponds to a grid point, the missing – or not considered
– points are estimated. This gives the Missing Point Estimation its name.



In order to formulate the negligence of equations mathematically, a filtering
or selection matrix is defined. Let us assume that the selected equations corre-
spond to the indices of the grid points, which are given by X = {j1, . . . , jn} ⊂
{1, . . . , N}, where N is the total number of grid points and n is the number of
the selected points. Then the filtering matrix is defined as

P =
(
ej1 · · · ejn

)
∈ IRN×n (15)

with the help of the unit vectors ej ∈ IRN . Note that this filtering matrix is
only applicable to one flow variable. In order to construct one for all variables, P
appears for each variable as a diagonal block, i.e. P̃ = diag(P, . . . , P ) ∈ IR5N×5n.
Note that the matrix ΠP̃ = P̃ P̃T ∈ IR5N×5N is a diagonal matrix, which is a
projection onto the equations corresponding to the selected points. Applying ΠP̃

to (14) yields

P̃ P̃TUd
da(t;α)

dt
= −P̃ P̃T Ṽ −1R(Uda(t;α) + w̄) + P̃ P̃T ε0 . (16)

Next, orthogonality conditions are imposed upon the system. They require
the error at the selected points to be orthogonal to the POD subspace, i.e.(
uj , P̃ P̃

T ε0

)
L2

= 0 for j = 1, . . . , d. It follows that

UTd Ṽ P̃ P̃
TUd

da(t;α)

dt
= −UTd Ṽ P̃ P̃T Ṽ −1R(Uda(t;α) + w̄) . (17)

Elimination of the matrix UTd Ṽ P̃ P̃
TUd by premultiplying with its inverse,

finally yields the MPE reduced order system

da(t;α)

dt
= −

(
UTd Ṽ P̃ P̃

TUd

)−1
UTd P̃ P̃

TR(Uda(t;α) + w̄) . (18)

It is of reduced complexity, since its order is d � 5N . In addition, due to fact
that the residual vector R is premultiplied with the filtering matrix P̃T , it does
not have to be evaluated at each and every point, but only at the few selected
points.

For steady flows, as considered in this work, the time derivative drops, that
is

0 = −
(
UTd Ṽ P̃ P̃

TUd

)−1
UTd P̃ P̃

TR(Uda(α) + w̄) . (19)

As a result the above system can be solved with a Newton-type of method. In
fact, Powell’s Dog Leg method [23] is used. As an initial start vector for the
POD coefficients the mean flow is chosen, that is, a = 0.

5 Results

The investigated method of this work, the Missing Point Estimation, is tested
on a complex three-dimensional aircraft configuration called DLR-F12. It is a



wing-body configuration with a vertical and horizontal stabilizer (see Fig. 1). The
computational grid consists of about 670 thousand grid points (N = 669, 062).
It is shown in Fig. 1. All compuations are carried out with the CFD solver Tau
[24]

Fig. 1. The computational grid of the DLR F12 configuration.

The inviscid flow – modeled by the Euler equations – at a subsonic Mach
number of M∞ = 0.2 is computed. Euler equations are used in order to keep
the number of grid points low enough such that the solutions are computable
on a desktop computer. Note that Navier-Stokes simulations typically require
much more grid points than the Euler equations. In order to set up the MPE
reduced order model, snapshots are needed for the computation of the POD.
Here, snapshots at different angles of attack at the Mach number M∞ = 0.2 are
taken. To be more precise, α ∈ {0◦, 2◦, 4◦, 6◦, 8◦}. The reduced order model (19)
is then used to compute flows at intermediate angles. At first, consider α = 5◦.

In the snapshot computations, the residual is lowered by fourteen orders of
magnitude by conducting ten thousand iterations. As initial solutions, freestream
values are utilized.

In the following, different characteristics of the MPE reduced order model
are looked at. These include the influence that the number of used modes as well
as the selected points have on the accuracy of the approximate solution. Fur-



thermore, the computational time and the results for other intermediate angles
of attack are investigated.

Influence of the number of used modes: At first, we take a look at the role that
the number of modes, which are used in the MPE reduced order system, play
on the quality of the approximation. In order to get an idea of the importance
of each of the modes, we consider the relative energy content. It is given by

E(j) =
λj∑m
i=1 λi

, (20)

where the λj are the eigenvalues of the symmetric eigenproblem (7).
Note that m is equal to number of snapshots, i.e m = 5. Table 1 reveals

how much relative energy content each of the modes carries. Note that the fifth
mode does not carry any energy. This is due to the fact that the columns of the
centered snapshot matrix are linear dependent and as consequence the smallest
eigenvalue is zero.

Table 1. Relative energy content of the modes corresponding to the snapshots at
α ∈ {0◦, 2◦, 4◦, 6◦, 8◦} of the DLR F12 configuration at M∞ = 0.2.

j 1 2 3 4 5

E(j) 9.99560 · 10−1 4.40291 · 10−4 1.81356 · 10−7 1.04662 · 10−8 0

Note further that the first basis vector contains more than 99.9% and the
first two together hold more than 99.9999% of the energy. This suggests that
the first two modes (along with the mean flow w̄) suffice to reconstruct the
snapshots and, presumably, also to obtain accurate solutions at intermediate
angles of attack.

In order to substantiate this presumption, we investigate the quality of the
approximation by the MPE system for the different choices of the number of
modes. As an indicator for the approximation quality, we look at the lift and
drag coefficients, i.e. cl and cd, respectively. Table 2 shows the results.

In order to eradicate any influence of the selection of points on the MPE
reduced order model, we evaluate the residual at the same points in each com-
putation. As a matter of fact, only the farfield points are considered, which is a
good point selection, as we will later see.

Note that one mode does suffice to obtain an acceptable approximation. In
fact, in this case the relative error in the drag coefficient is more than 25 %.
When using two basis vectors, the drag coefficient is slightly overestimated by
the MPE, while it is underestimated when employing three or four.

Influence of the selected points: In the following we want to investigate the
influence that the selection of points has on the prediction of the aerodynamic



Table 2. Lift and drag coefficients of the DLR F12 configuration at M∞ = 0.2 com-
puted with MPE, where the residual evaluations are restricted to the farfield points.
The aerodynamic coefficients are predicted at α = 5◦ for different numbers of modes
m and compared to the CFD reference solution at the same angle.

# of modes residual evaluations cl (error in %) cd (error in %)

d = 1 8 5.803 · 10−1 (0.41%) 1.449 · 10−2 (26.82%)
d = 2 10 5.827 · 10−1 (0.0%) 1.983 · 10−2 (0.15%)
d = 3 14 5.827 · 10−1 (0.0%) 1.975 · 10−2 (0.25%)
d = 4 17 5.827 · 10−1 (0.0%) 1.975 · 10−2 (0.25%)

CFD 2000 5.827 · 10−1 1.980 · 10−2

coefficients for the proposed method. Since two modes yield better results when
using the point selection of farfield points in MPE, both two and four modes are
considered.

Besides the already considered point selection (only farfield boundary), we
consider three other ones. All of them will include the farfield boundary due
to the fact that there, the system’s parameter, the angle of attack, is set. First
of all, we select points, which are on and close to the surface. This is done by
specifying a minimal and maximal distance from the surface. The specifics can
be found in Table 3. With this selection a large part of the computational grid
is chosen. In order to reduce the number of selected points, only those which are
a bit further from the surface are chosen. Again, specifics can be found in Table
3. Last, but not least, all points are used, at which the equations are solved.

Table 3. The definition of the point selections for the DLR F12 configuration at
M∞ = 0.2, where min/max distance stands for the minimal and maximal distance
from the surface of the configuration in spatial units (length of the airfoil = 1.0 units).
Note that FF shall be an abbreviation for the farfield.

point selection # of points min distance max distance

I (entire farfield) 336 - -
II (FF + points close to surface) 633281 0.0 0.05
III (FF + points further from surface) 16279 0.05 0.1
IV (all points) 669062 0.0 100.0

For all these point selections the aerodynamic coefficients are predicted with
the help of MPE using two as well as four modes. Table 4 shows the results.
Note that if two modes are employed, all point selections yield the same lift and
drag coefficient, except in case all points are considered. In this latter case the
drag coefficient is slightly worse. Note further that when using four modes the
MPE method is not as robust as when using two modes with respect to the



point selections. In fact, with selections II and IV there is no convergence at
all. In these computations the first iteration of the Dog Leg method yields an
unphysical flow. As a result the residual can not be computed.

Table 4. Lift and drag coefficients computed with MPE for different point selections
for the DLR-F12 configuration at M∞ = 0.2 and α = 5◦.

point selection # modes residual eval’s cl (error in %) cd (error in %)

I, II, III d=2 10 5.827 · 10−1 (0.0%) 1.983 · 10−2 (0.15%)
IV d=2 10 5.827 · 10−1 (0.0%) 1.984 · 10−2 (0.20%)
I d=4 17 5.827 · 10−1 (0.0%) 1.975 · 10−2 (0.25%)

II, IV d=4 - - -
III d=4 17 5.827 · 10−1 (0.0%) 1.976 · 10−2 (0.20%)

CFD - 2000 5.827 · 10−1 1.980 · 10−2

All in all, using two modes and only the farfield points (selection I) is the
most effective point selection. Not only does it yield the best result for the drag
coefficient with respect to all considered tests, but it also contains the least
number of points. This means that only few equations need to be solved. In
addition, the farfield points can easily be identified. Figure 2 shows the pressure
distribution on the surface of the DLR-F12 configuration both for the CFD
reference solution as well as the MPE solution using only the farfield points.
Both solutions are hardly distinguishable, which of course means, that the MPE
approximates the CFD reference well.

Computational time: After having looked at important characteristics, which
influence the quality of the approximation, we now examine the computational
time. Table 5 reveals both the time needed for computing the MPE as well as
the CFD solution. Both computations are carried out for ten consecutive runs
and then the average is given. Note that the CFD computation is started from
freestream values and the residual is decreased by seven orders of magnitude
after conducting two thousand iterations.

Note that the computation of the reduced order solution is obtained more
than one hundred times faster than the CFD solution. This is mainly due to the
fact that only ten, rather than two thousand residual evaluations are needed.
Note that the MPE has not been implemented efficiently yet. In fact the resid-
ual is evaluated at each and every point and is then filtered according to the
point selection. An implementation, which evaluates the residual only at the
relevant points, would of course be more efficient. It is, however, technically
challenging and needs an intrusion into the CFD solver Tau. Note that only
17.102 seconds of the overall computational time for MPE are spend on reading
the snapshots and computing the POD. Consequently, it is expected that an
efficient implementation has a lot of room for improvement.



Fig. 2. The pressure distribution on the surface of the DLR F12 configuration M∞ =
0.2 and α = 5◦ for the CFD reference solution (top) and the MPE (bottom) computed
using only the farfield points and d = 2 modes.



Table 5. Computational time for the DLR F12 configuration at M∞ = 0.2 computed
with the MPE using only the farfield points and d = 2 modes as well as with CFD.
The time for MPE includes the computation of POD, but not the generation of the
snapshots. Since MPE is not efficiently implemented yet, the time is expected to be
less. Hence the < sign.

model residual evaluations time (in CPU s)

MPE (farfield points) 10 < 117.743
CFD 2000 15103.1

As a matter of fact, assuming that the evaluation of the residual requires
the same amount of time at each point and that most of the time for solving
the system (T = 117.743 − 17.102 = 100.641 CPU s) is spent on evaluating
the residual, a very rough estimate of the time for an efficient implementation
would be T ∗n/N . This leads to 0.051 CPU s when using only the farfield points
for MPE. But even if the time is much higher than this rough estimate, it is
obviously the time spend on reading the snapshots and computing POD that
dominates.

Solutions at other angles of attack: Finally, it shall be demonstrated that the
proposed method does not only work for α = 5◦, but also for other intermediate
angles of attack, namely α ∈ {1◦, 3◦, 7◦}. Table 6 exhibits the lift and drag
coefficient computed with CFD and MPE as well as the corresponding relative
errors. Note that for all angles of attack the relative error in the lift coefficient
is neglectable. The error in the drag coefficient is higher, but with less than one
third of a percent more than acceptable.

Table 6. Lift and drag coefficients of the solutions for different angles of attack of the
DLR F12 configuration at M∞ = 0.2 computed with MPE using all farfield points and
d = 2 modes as well as with CFD.

AoA cl of MPE (error) cl of CFD cd of MPE (error) cd of CFD

1◦ 1.893 · 10−1 (0.0%) 1.893 · 10−1 8.217 · 10−3 (0.31%) 8.192 · 10−3

3◦ 3.869 · 10−1 (0.03%) 3.868 · 10−1 1.201 · 10−2 (0.25%) 1.204 · 10−2

5◦ 5.827 · 10−1 (0.0%) 5.827 · 10−1 1.983 · 10−2 (0.15%) 1.980 · 10−2

7◦ 7.752 · 10−1 (0.01%) 7.752 · 10−1 3.153 · 10−2 (0.29%) 3.144 · 10−2

9◦ 9.631 · 10−1 (0.05%) 9.626 · 10−1 4.667 · 10−2 (1.02%) 4.715 · 10−2

In addition, a non-intermediate angle of attack, which is outside of the range
of the snapshots, is considered. This will be called an extrapolated solution.
Although the error is higher, it is with about one percent very good.



Figure 3 visualizes the lift and the drag coefficient which are plotted over the
angle of attack. Here, the lines represent the coefficients of the CFD solution,
while the asterisks represent those of the MPE solution. All are matched very
closely.

Comparison with Thin Plate Spline (TPS) interpolation Next, the results are
compared with interpolation [25]. The interpolation is done as follows: The POD
coefficients of the snapshots w1, . . . ,wm are computed via ai(αj) = (ui,wj)L2

for i = 1, . . . , d and j = 1, . . . ,m. These coefficients are then interpolated with
the help of Thin Plate Spline (TPS) interpolation [26] to obtain suitable POD
coefficients ai(α

∗) for the desired angle of attack α∗.
In Table 7 the aerodynamic coefficients as well as their relative errors for

two and four modes are given for TPS interpolation. Note that good results are
obtained for α = 3◦ and α = 5◦, while for the angles close to the boundary of the
interpolation range, i.e. α = 1◦ and α = 7◦, the error is much higher compared
to the MPE error. In fact, MPE approximates solutions better in a global sense.
That is, the maximal error of MPE at the considered angles is smaller than the
TPS interpolation maximal error.

AoA cl of TPS (error) cd of TPS (error)

1◦ 1.891 · 10−1 (0.11%) 7.577 · 10−3 (7.51%)
3◦ 3.869 · 10−1 (0.03%) 1.203 · 10−2 (0.08%)
5◦ 5.826 · 10−1 (0.02%) 1.985 · 10−2 (0.25%)
7◦ 7.748 · 10−1 (0.06%) 3.088 · 10−2 (1.78%)

9◦ 9.654 · 10−1 (0.29%) 5.061 · 10−2 (7.34%)

Table 7. Lift and drag coefficients of the solutions for different angles of attack of the
DLR F12 configuration at M∞ = 0.2 computed with TPS interpolation using d = 2
modes.

Also note that the extrapolated solution is much better approximated with
MPE compared to interpolation. For TPS interpolation the drag error is with
about seven percent unacceptably high.

6 Conclusions

In this work the use of the Missing Point Estimation for reduced order modeling
of subsonic steady flows has been considered, where the angle of attack is a
system parameter to the reduced order model. The Missing Point Estimation
does not solve the equations at each and every point, but at only a selection of
points. In this way, independence from the full order is effectively achieved.

The Missing Point Estimation has been tested on the simulation of an invis-
cid flow past a complex three-dimensional airplane configuration. For this test



Fig. 3. The aerodynamic coefficients plotted over the angle of attack for the DLR F12
configuration at M∞ = 0.2. The line represents the coefficients of CFD solution and the
asterisks represent those of the solution of MPE. Note that the region of extrapolation
is indicated by a dashed line. Top: lift coefficient cl; bottom: drag coefficient cd.



case it has been shown that, when considering only the farfield points, a good
approximation of the aerodynamic coefficient as well as the pressure distribu-
tion is obtained. Other point selections do not yield better results and, as a
matter of fact, consider more points. Furthermore, the farfield points can easily
be identified.

We have seen that for the example considered two basis modes suffice to get
an accurate approximation of the flow. Considering more modes actually leads
to slightly worse results and the Missing Point Estimation is more unstable with
respect to different point selections.

With the proposed method, the solution has been obtained more than a
hundred times faster compared to the CFD reference solution. This speed-up
is mainly contributed to the fewer residual evaluations needed for the reduced
order model.
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