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Abstract

Conjugate-normal matrices play the same important role in the theory of unitary
congruence as the conventional normal matrices do with respect to unitary similari-
ties. However, unlike the latter, the properties of conjugate-normal matrices are not
widely known. Motivated by this fact, we give a survey of the properties of these
matrices. In particular, a list of more than forty conditions is given, each of which
is equivalent to A being conjugate-normal.
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1 Introduction

As justly noted in (HJ1, Section 2.5), the class of normal matrices is important
throughout matrix analysis. It is especially important in matters related to
similarity transformations and, even more specifically, to unitary similarity
transformations. Such significant matrix classes as Hermitian, skew-Hermitian,
and unitary matrices are subclasses of normal matrices.

The importance of normal matrices explains the appearance of the survey
(GJSW) in 1987. It contains 70 conditions, each equivalent to the original
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definition of normality, i.e., to the relation

AA∗ = A∗A. (1)

One decade later, about twenty additional criteria for normality were presented
in (EI). For brevity, we refer to these two papers as the GJSW list and EI list,
respectively.

If we are dealing with unitary congruences rather than unitary similarities,
then normality is no longer a useful property, because it is not preserved by
unitary congruence transformations. Is there a matrix class that can replace
normal matrices in this new context?

The answer is yes, and the required matrix class are the so-called conjugate-
normal matrices.

Definition 1 A matrix A ∈ Mn(C) is said to be conjugate-normal if

AA∗ = A∗A. (2)

In particular, complex symmetric, skew-symmetric, and unitary matrices are
special subclasses of conjugate-normal matrices.

It seems that the term ’conjugate-normal matrices’ was first introduced in
(VHV), that is, 35 years ago. However, despite this respectable age, the prop-
erties of these matrices are not known as broadly as they, in our opinion,
deserve to be.

Our intention in this paper is to give a survey of properties of conjugate-normal
matrices. Moreover, we give a list of conditions equivalent to definition (2),
which thus may be taken as condition 0 in this list. Citing (GJSW), ’since we
know of no similar list, our hope is that this will be generally useful to the
matrix community.’

The paper is organized as follows. The necessary preliminary material is pre-
sented in Section 2. It includes a discussion of distinctions between the theories
of two matrix relations: similarity and consimilarity. Section 3 deals with el-
ementary properties of conjugate-normal matrices and their canonical forms
with respect to unitary congruences. The next two sections follow the pattern
given in (GJSW): first, about forty condition each equivalent to (2) are given,
then brief proofs of or comments to these conditions are given in Section 5.
Section 6 contains our concluding remarks.

We use the following notation. If A ∈ Mn(C), then AT , A, A∗ and A+ are the
transpose, the entrywise conjugate, the Hermitian adjoint, and the Moore-
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Penrose inverse of A, respectively. The singular values of A are denoted by
s1 ≥ s2 ≥ . . . ≥ sn, its spectral radius by ρ(A), and its spectrum by λ(A).
The symbol Ck(A) stands for the kth compound matrix of A, (MM, p. 16).
By Nn and CN n, we denote the classes of n×n normal and conjugate-normal
matrices, respectively. The subscript is omitted if the order of A is clear from
the context or not relevant. Depending on the context, the symbol || · ||2 is
used for the 2-norm of a vector or the spectral norm of a matrix; || · ||F denotes
the Frobenius matrix norm.

2 Preliminaries

The most important quantities related to similarity transformations of a ma-
trix are its eigenvalues, eigenvectors, and, more generally, its invariant sub-
spaces. Now, that we deal with consimilarity transformations (and unitary
congruences are a particular subclass of them), we should instead speak of
’con’-analogues of these quantities.

Recall that matrices A, B ∈ Mn(C) are said to be consimilar if B = SAS
−1

for a nonsingular matrix S (see (HJ1, Section 4.6)). The coneigenvalues of A
are the n scalars attributed to A that are preserved by any transformation of
this kind. To give an exact definition, we introduce the matrices

AL = AA and AR = AA = AL. (3)

Although the products AB and BA need not be similar in general, AL is
always similar to AR (see (HJ1, p. 246, Problem 9 in Section 4.6)). Therefore,
in the subsequent discussion of their spectral properties, it will be sufficient
to refer to one of them, say, AL.

The spectrum of AL has two remarkable properties:

1. It is symmetric with respect to the real axis. Moreover, the eigenvalues λ
and λ̄ are of the same multiplicity.

2. The negative eigenvalues of AL (if any) are necessarily of even algebraic
multiplicity.

For the proofs of these properties, we refer the reader to (HJ1, p. 252–253).

Let

λ(AL) = {λ1, . . . , λn}
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be the spectrum of AL. The coneigenvalues of A are the n scalars µ1, . . . , µn

defined as follows: If λi ∈ λ(AL) does not lie on the negative real axis, then
the corresponding coneigenvalue µi is defined as a square root of λi with
nonnegative real part and the multiplicity of µi is set to that of λi :

µi = λ
1/2
i , Reµi ≥ 0.

The set {µ1, . . . , µn} is called the conspectrum of A and will be denoted by
cλ(A).

Coneigenvectors are not as important in the theory of consimilarity as eigen-
vectors are with respect to similarity transformations. The reason is that not
every matrix in Mn(C) has coneigenvectors; in fact, most matrices have no
coneigenvectors. Let us expand on this point.

For a subspace L ∈ Cn define

L = {x | x ∈ L},

where x is the component-wise conjugate of the column vector x.

Definition 2 L is a coninvariant subspace of A if

AL ⊂ L. (4)

In particular, if dimL = 1, then every nonzero vector x ∈ L is called a
coneigenvector of A.

The fundamental fact on coninvariant subspaces is the following theorem.

Theorem 1 Every matrix A ∈ Mn(C)(n ≥ 3) has a one- or two-dimensional
coninvariant subspace.

To better explain how two-dimensional subspaces come about in Theorem 1,
we reproduce its proof as given in (FI1).

Proof: Let x be an eigenvector of AL; that is,

ALx = AAx = λx (5)

for some λ ∈ C. Define

y = Ax. (6)
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Suppose that y and x are linearly dependent, i.e.,

Ax = µx (7)

for some µ ∈ C; then, x is a coneigenvector of A and L = span{x} is a one-
dimensional coninvariant subspace. However, getting (7) is not a very likely
event. Indeed, (7) would imply that

ALx = AAx = |µ|2x.

A comparison with (5) shows that the original eigenvalue λ must be nonnega-
tive, whereas, for a randomly chosen A, the matrix AL would hardly have real
eigenvalues.

Thus, assume that y and x are linearly independent. Then, (6), rewritten as

Ax = y,

and (5), rewritten as

Ay = λx, (8)

imply that L = span{x, y} is a two-dimensional coninvariant subspace of A.
We can put it differently as the matrix relation

A[x y] = [x y]

 0 λ

1 0

 . (9)

2

The argument above begins with an eigenvector of AL. It turns out that the
vector y defined by (6) is also an eigenvector of AL. Indeed, applying A to
both sides of (8), we obtain

ALy = AAy = λAx = λy. (10)

Observe that, while x is associated with the eigenvalue λ, the vector y corre-
sponds to λ. We conclude that the two-dimensional subspace L in Theorem 1 is
an invariant subspace of AL spanned by two of its eigenvectors corresponding
to a pair of complex conjugate eigenvalues.
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If λ 6= 0, we can make relation (9) to look more symmetrically. To this end,
set µ =

√
λ (taking any of the two values of the square root) and, instead of

(6), define y by the relation

y =
1

µ
Ax. (11)

Then, the same calculations as in Theorem 1 yield

Ax = µy, Ay = µx,

and

A[x y] = [x y]

 0 µ

µ 0

 . (12)

An important relation often encountered in the theory of similarity is commu-
tation. For instance, definition (1) of a normal matrix is just a requirement
that A commute with its Hermitian adjoint A∗. Commutation relations are
respected by simultaneous similarities in the sense that, if

AB = BA

and

Ã = QAQ−1, B̃ = QBQ−1,

then

ÃB̃ = B̃Ã.

In the theory of consimilarity, commutation is often replaced by concommu-
tation, i.e., by the relation

AB = BA. (13)

This can even be considered as a general principle of consimilarity transfor-
mations.

Principle 1 Suppose that a problem P concerning similarity involves a com-
mutation relation. Then, in the corresponding problem P concerning consim-
ilarity, look for a concommutation relation.

6



As an illustration of this principle, consider the definition of a conjugate-
normal matrix. Rewriting (2) as

AA
T

= AT A, (14)

we see that this definition is nothing else than the requirement that A and AT

concommute. This example also reveals another general principle of consimi-
larity transformations.

Principle 2 In most of the relations concerning consimilarity, the Hermitian
adjoint A∗ is replaced by the transpose AT .

We will see a number of manifestations of both principles in the subsequent
sections. Note that concommutation is respected by consimilarity transforma-
tions: if (13) is fulfilled and

Ã = QAQ
−1

, B̃ = QBQ
−1

,

then

ÃB̃ = B̃Ã.

Now, from general consimilarity transformations, we turn to unitary congru-
ences as the most interesting special case. There is an important theorem that
plays the same role in the theory of unitary congruence as the Schur triangu-
larization theorem does with respect to unitary similarities. This is the Youla
theorem (Y).

Theorem 2 Any matrix A ∈ Mn(C) can be brought by a unitary congruence
transformation to a block triangular form with the diagonal blocks of orders 1
and 2. The 1 × 1 blocks correspond to real nonnegative coneigenvalues of A,
while each 2× 2 block corresponds to a pair of complex conjugate coneigenval-
ues. This block triangular matrix is called the Youla normal form of A. It can
be upper or lower block triangular.

In the next section, we will see that, for a conjugate normal matrix A, the
Youla normal form becomes a block diagonal matrix.

Two useful matrix decompositions used in connection with unitary similarities
are the Toeplitz decomposition and the polar decomposition. The former is
the representation of A ∈ Mn(C) in the form

A = H + K, H = H∗, K = −K∗,
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and is uniquely determined by A:

H =
1

2
(A + A∗), K =

1

2
(A− A∗).

The polar decomposition

A = PU, P = P ∗ ≥ 0, UU∗ = I,

is determined uniquely for a nonsingular A. If A is singular, then the Hermitian
positive semidefinite factor is still determined uniquely, but the unitary factor
A is not.

For unitary congruences, the Toeplitz decomposition is replaced by the repre-
sentation

A = S + K, (15)

where S is symmetric and K is skew-symmetric. This SSS decomposition is
uniquely determined by A:

S =
1

2
(A + AT ), K =

1

2
(A− AT ). (16)

Instead of the polar decomposition, one uses the representation

A = SU, S = ST , UU∗ = I, (17)

called an SUPD (symmetric-unitary polar decomposition). Representation
(17) exists for every matrix A ∈ Mn(C) but is never unique. More details
on the SUPD can be found in (FI2).

3 Conjugate-normal matrices

There is a close kinship between the properties of normality and conjugate
normality, which comes of no surprise considering how definitions (1) and (2)
resemble each other. Some of the most straightforward relations between these
properties are indicated in the following two propositions.

Theorem 3 If A ∈ CN n then AL ∈ Nn and AR ∈ Nn.
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Proof: Using (14) and the conjugate equality

AAT = A∗A,

we have

ARA∗
R = (AA)(AT A∗) = A(AAT )A∗ = A(A∗A)A∗ = (AA∗)2

and

A∗
RAR = (AT A∗)(AA) = AT (A∗A)A = AT (AAT )A = (AT A)2 = (AA∗)2.

Thus, AR is normal. Hence, AL = AR is normal as well. 2

Remark 1 The reverse implication

AL, AR ∈ Nn ⇒ A ∈ CN n

is false. For instance, the matrices

A(1) =

 0 1

0 0

 and A(2) =

 0 1

2 0



are not conjugate-normal, although

A
(1)
L = 0 and A

(2)
R = 2I2

are normal matrices. Indeed,

{A(1)A(1)∗}11 = 1 6= 0 = {A(1)∗A(1)}11

and

{A(2)A(2)∗}11 = 1 6= 4 = {A(2)∗A(2)}11.

To state the next proposition, we associate with each matrix A ∈ Mn(C) the
matrix

Â =

 0 A

A 0

 . (18)
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Since

Â∗ =

 0 AT

A∗ 0

 , (19)

ÂÂ∗ = AA∗ ⊕ AAT , (20)

and

Â∗Â = AT A⊕ A∗A, (21)

we arrive at the following result:

Theorem 4 A matrix A ∈ Mn(C) is conjugate-normal if and only if Â is
normal.

Note that, if

cλ(A) = {µ1, . . . , µn} (22)

is the conspectrum of an arbitrary matrix A ∈ Mn(C), then

λ(AL) = {µ1, . . . , µn,−µ1, . . . ,−µn}. (23)

Now, we look more closely at definition (2). It is well known that, for any
matrix B, it holds that

im(BB∗) = im(B), and ker(BB∗) = ker(B∗),

where im(·) and ker(·) denote the range and the null space of the corresponding
matrix. Applying this to (2) (or to (14)), we have

im(A) = im(AA∗) = im(AT A) = im(AT (AT )∗) = im(AT )

and

ker(A∗) = ker(AA∗) = ker(AT A) = ker(A),

which is the same as kerA = kerAT . We summarize this as

Theorem 5 If A ∈ CN , then

im(A) = im(AT ), ker(A) = ker(AT ). (24)
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Below, we say more about the common properties of A and AT . For the mo-
ment, we return to (2). Equating the entries on the left and the right, we find
that

{AA∗}ij =
n∑

k=1

aikajk =
n∑

k=1

akiakj = {A∗A}ij. (25)

The result obtained can be stated as follows.

Theorem 6 A matrix A ∈ Mn(C) is conjugate-normal if and only if relation
(25) is fulfilled for each pair (i, j), 1 ≤ i, j ≤ n.

In other words, A ∈ CN n if and only if, for each pair (i, j), the scalar product
of rows i and j is equal to the scalar product of columns i and j.

Corollary 1 If A ∈ CN n, then, for each i (1 ≤ i ≤ n), the 2-norm of row i
is equal to the 2-norm of column i.

Corollary 2 Let Ai1,...,ik be the submatrix formed of rows i1, . . . , ik (i1 ≤ i2 ≤
. . . ≤ ik) of a matrix A ∈ Mn(C). If A ∈ CN n, then

||Ai1,...,ik ||F = ||AT
i1,...,ik

||F . (26)

Recall that a normal matrix A shares its invariant subspaces with the Hermi-
tian adjoint A∗. We can prove an analogous fact for conjugate-normal matrices.

Theorem 7 Every coninvariant subspace of A ∈ CN n is also a coninvariant
subspace of AT .

Proof: Let Lk be a k-dimensional coninvariant subspace of A (1 ≤ k ≤
n). Choose an orthonormal basis q1, . . . , qk in Lk, complement it to a basis
q1, . . . , qk, qk+1, . . . , qn of the entire space Cn, and define

Q = [Q1︸︷︷︸
k

Q2︸︷︷︸
n−k

] = [q1 . . . qn],

B = QT AQ. (27)

Partition B in conformity with Q:

B =

 B11 B12

B21 B22

 .
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Thus, B11 is a k × k block. Rewrite (27) as

AQ = QB. (28)

Then, the definition of a coninvariant subspace implies that

B21 = 0.

Since B ∈ CN , relation (26) yields

B12 = 0.

From (27), we derive

BT = QT AT Q

and

AT Q1 = Q1B11. (29)

Equality (29) means that Lk is a coninvariant subspace of AT . 2

Remark 2 The proof presented above gives more than just the assertion of
Theorem 7. Indeed, since B12 = 0, relation (28) yields

AQ2 = Q2B22.

Thus, L⊥ = span{qk+1, . . . , qn} is a coninvariant subspace of A.

We state this result as

Theorem 8 If L is a coninvariant subspace of a conjugate-normal matrix A,
then L⊥ is also a coninvariant subspace of A.

Remark 3 Theorems 7 and 8 correspond to items 8 and 9 in the GJSW list.
However, unlike the latter, they are not criteria, because the conditions in
these theorems do not imply that A is conjugate-normal.

Now, we examine the Youla form B of a conjugate-normal matrix A. Reasoning
as in the proof of Theorem 7, we conclude that all the off-diagonal blocks in
B are zero. Thus, the Youla form of A ∈ CN is a block diagonal matrix with
1× 1 and 2× 2 diagonal blocks.
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Several canonical forms for conjugate-normal matrices were derived by various
authors independently of the Youla theorem. Since 1× 1 blocks can always be
made real nonnegative scalars (which are the real coneigenvalues of A), the
canonical matrices differ from each other only in the form of 2×2 blocks. Recall
that each 2×2 block corresponds to a pair of complex conjugate coneigenvalues
µ = a+ib = %eiϕ and µ. For the canonical form derived in (VHV), 2×2 blocks
are chosen as

 0 %

%ei2ϕ 0

 .

In the Wigner canonical form (see (W)), 2× 2 blocks are Hermitian matrices
of the type

 0 µ

µ 0

 . (30)

Finally, in (FI1), 2× 2 blocks are real normal matrices of the form

 a −b

b a

 . (31)

In the latter case, the entire canonical matrix B is real and normal. It follows
that a conjugate-normal matrix A is unitarily congruent to some real normal
matrix. Since unitary congruences preserve conjugate normality, the reverse
statement is also true; namely, any unitary congruence transformation of a real
normal matrix yields a conjugate-normal matrix. We thus have the following
proposition:

Theorem 9 A matrix A ∈ Mn(C) is conjugate-normal if and only if A is
unitarily congruent to a real normal matrix.

Theorems 4, 6, and 9 can be looked at as criteria for conjugate normality. As
such, they are considered to be items 1 - 3 in the list of conditions equivalent
to conjugate normality. This list will be considerably extended in the next
section.
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4 Conditions

In this section, we present a list of about forty conditions on a matrix A ∈
Mn(C), each of which is equivalent to A being conjugate-normal. The first
condition in this list is numbered 4 for the reasons explained at the end of the
previous section.

Some conditions involve an additional requirement of nonsingularity. In each
case, such a restriction is indicated explicitly.

Most of the conditions in our list are counterparts of the appropriate conditions
in the GJSW or EI lists, and we indicate the locations of the latter in those
lists.

4. AT is conjugate-normal.
5. A is conjugate-normal.
6. A∗ is conjugate-normal.
7. A−1 is conjugate-normal (for invertible A).

(Cf. condition 2 in the GJSW list.)
8. A−1AT is unitary (for invertible A).

(Cf. condition 3 in the GJSW list.)
9. A = A−T AA∗ (for invertible A). Thus, a matrix A ∈ CN is consimilar to

A, the transformation being specified by A∗.
(Cf. condition 4 in the GJSW list.)

10. AA∗A = AT AA (or AAAT = AA∗A).
(Cf. condition 74 in the EI list.)

11. AC = CA, where C = AA∗ − AT A.
(Cf. condition 73 in the EI list. The matrix C is an analogue of the
self-commutator [A, A∗] = AA∗ − A∗A.)

12. AB = BA implies that AT B = BA∗. In words, if A concommutes with
some matrix B, then AT concommutes with B as well.
(Cf. condition 6 in the GJSW list.)

13. UT AU is conjugate-normal for any (or for some) unitary U .
(Cf. condition 7 in the GJSW list.)

14. p(AA)A = Ap(AA) is conjugate-normal for any polynomial p with real
coefficients.
(Cf. condition 1 in the GJSW list.)

15. There exists a polynomial p(z) with real coefficients such that

AT = p(AA)A = Ap(AA).

(Cf. condition 17 in the GJSW list.)
16. The matrix A∗A− AA∗ is semidefinite.

(Cf. condition 20 in the GJSW list.)
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The following eight conditions refer to the SSS decomposition of A (see (16).

17. SK = KS.
(Cf. condition 21 in the GJSW list.)

18. AS = SA.
(Cf. condition 22 in the GJSW list.)

19. AS + SA∗ = 2SS (or SA + A∗S = 2SS).
(Cf. condition 23 in the GJSW list.)

20. AK = KA.
(Cf. condition 24 in the GJSW list.)

21. AK −KA∗ = 2KK (or KA− A∗K = 2KK).
(Cf. condition 25 in the GJSW list.)

22. S−1A+A∗S
−1

= 2I (or AS−1 +S
−1

A∗ = 2I), as long as S is nonsingular.
(Cf. condition 26 in the GJSW list.)

23. K−1A− A∗K
−1

= 2I (or AK−1 −K
−1

A∗ = 2I), as long as K is nonsin-
gular.
(Cf. condition 27 in the GJSW list.)

24. SS −KK = AA∗.
(Cf. condition 75 in the EI list.)

In the following conditions, cλ(A) = {µ, . . . , µn}, cλ(S) = {ζ1, . . . , ζn}, and
cλ(K) = {iη1, . . . , iηn} (ηj ∈ R, 1 ≤ j ≤ n) are the conspectra of A, S, and K,
respectively.

25. |µ1|2 + . . . + |µn|2 = ||A||2F .
(Cf. condition 53 in the GJSW list.)

26. (Reµ1)
2 + . . . + (Reµn)2 = ζ2

1 + . . . + ζ2
n.

(Cf. condition 54 in the GJSW list.)
27. (Imµ1)

2 + . . . + (Imµn)2 = η2
1 + . . . + η2

n.
(Cf. condition 55 in the GJSW list.)

28. There exists a permutation δ ∈ Sn such that

cλ(A) = {ζj + iηδ(j)|j = 1, . . . , n}.

(Cf. condition 34 in the GJSW list.)
29. Recλ(A) = {ζ1, . . . , ζn}.

(Cf. condition 35 in the GJSW list.)
30. Imcλ(A) = {η1, . . . , ηn}.

(Cf. condition 36 in the GJSW list.)

The following conditions refer to symmetric-unitary polar decompositions (SUPDs)
introduced in Section 2 (see (17)).

31. A and AT admit SUPDs A = SU and AT = SV with the same symmetric
factor S.
(Cf. condition 71 in the EI list.)
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32. There exists an SUPD of A such that AS = SA.
(Cf. condition 39 in the GJSW list.)

33. There exists an SUPD of A such that USS = SSU.
(Cf. condition 37 in the GJSW list.)

34. There exists an SUPD of A such that UA∗A = A∗AU.
(Cf. condition 38 in the GJSW list.)

35. λ(AA∗) = {|µ1|2, . . . , |µn|2}.
(Cf. condition 57 in the GJSW list.)

36. The singular values of A are |µ1|, . . . , |µn|.
(Cf. condition 58 in the GJSW list.)

37. The coneigenvalues of the symmetric matrix S in any SUPD of A are
|µ1|, . . . , |µn|.
(Cf. condition 47 in the GJSW list.)

38. Suppose that the coneigenvalues µ1, . . . , µn of A are numbered so that
|µ1| ≥ |µ2| ≥ . . . ≥ |µn|. Then,

s1 · · · sk = |µ1 · · ·µk|, 1 ≤ k ≤ n.

(Cf. condition 59 in the GJSW list.)
39. A+ is conjugate normal.

(Cf. condition 60 in the GJSW list.)
40. A+AT is a partial isometry.

(Cf. condition 61 in the GJSW list.)
41. (Ax, Ay) = (AT x, AT y) for all x, y ∈ Cn.

(Cf. condition 62 in the GJSW list.)
42. (Ax, Ax) = (AT x, AT x) for all x ∈ Cn.

(Cf. condition 63 in the GJSW list.)
43. ||Ax||2 = ||AT x||2 for all x ∈ Cn.

(Cf. condition 64 in the GJSW list.)
44. AT = UA for some unitary U .

(Cf. condition 65 in the GJSW list.)

For a matrix A with the conspectrum cλ(A) = {µ1, . . . , µn}, define the con-
spectral radius as

cρ(A) = max
1≤i≤n

|µi|.

45. ||Ck(A)||2 = cρ(Ck(A)), k = 1, 2, . . . , n− 1.
(Cf. condition 88 in the EI list.)

5 Proofs and comments

Some of the conditions presented in Section 4 are obvious or can be verified
by straightforward calculations. Several conditions are just restatements of the
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others in the same list.

The main technical tool in proving most of the nontrivial conditions is The-
orem 4. The following approach is used: for a given condition on A, find the
appropriate condition on Â in the GJSW or EI list. Since the latter condition
is equivalent to normality of Â, the former is equivalent to A being conjugate-
normal.

Let us illustrate this approach by several examples.

Proof of condition 12: Sufficiency is shown by setting B = A. Since AB =
BA is trivially true for B = A, we must have AT A = AA∗, i.e., A is conjugate-
normal. Now, let A ∈ CN , and let B concommute with A:

AB = BA. (32)

For

Â =

 0 A

A 0

 and B̂ =

 0 B

B 0

 ,

we have

ÂB̂ = AB ⊕ AB, B̂Â = BA⊕BA.

In view of (32), Â and B̂ commute. Since Â is normal, condition 6 in the
GJSW list yields

Â∗B̂ = B̂Â∗,

which is equivalent to

AT B = BA∗.

2

In this proof, the approach outlined above was used only in one direction. Let
us consider a couple of examples where this approach is exploited in full.

Proof of condition 11: Formulas (18) - (21) show that the self-commutator
of Â has the form

[Â, Â∗] = C ⊕ C,
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where C = AA∗ −AT A. According to condition 73 in the EI list, Â is normal
if and only if Â commutes with its self-commutator. Since

Â

 C 0

0 C

 =

 0 AC

AC 0

 and

 C 0

0 C

 Â =

 0 CA

CA 0

 ,

the commutation condition amounts to the relation

AC = CA.

This relation is equivalent to A being conjugate-normal. 2

Proof of condition 40: It is easily verified that the Moore-Penrose inverse
of Â is given by

Â+ =

 0 A+

A+ 0

 .

One possible way is to check four Moore-Penrose conditions defining the pseu-
doinverse.

Condition 61 in the GJSW list says that Â is normal if and only if Â+Â∗ is a
partial isometry. Recall that a matrix B is called a partial isometry if B∗B is
an orthoprojector. Since

Â+Â∗ =

 A+AT 0

0 A+AT

 ,

we conclude that Â+Â∗ is a partial isometry if and only if Â+ÂT is. Thus, this
condition is equivalent to the conjugate normality of A. 2

Now that the approach involving Â is clear, we discuss a few conditions for
which this approach is inefficient.

Proof of condition 14: Sufficiency is easy: just set p(z) ≡ 1; then, p(AA)A =
A is conjugate-normal. To prove necessity, consider a canonical form of the
conjugate-normal matrix A. For definiteness, let B be the Wigner canonical
form of A. We should verify that p(BB)B is a matrix of the same block
diagonal form as B. Each 1 × 1 block, i.e., a nonnegative scalar µ produces
a scalar p(µ2)µ. The new scalars can be negative, but this is easily mended
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by an additional congruence with a unitary diagonal transformation matrix.
Each 2× 2 block in B (see (30)) transforms into

 0 p(µ2)µ

p(µ2)µ 0

 . (33)

Thus, p(BB)B is a canonical Wigner matrix, and p(BB)B (hence, p(AA)A)
is conjugate-normal.

The assumption that p has real coefficients is important because, otherwise,
the scalars p(µ2)µ and p(µ2)µ may not be conjugate. What is more important,
they may have different moduli, which contradicts Corollary 1. 2

We are now going to prove condition 15, which corresponds to condition 17 in
the GJSW list. The latter reads ’there exists a polynomial p such that A∗ =
p(A).’ It is not required that p have real coefficients. However, as shown by
Laffey (L), one can always find a real polynomial p for the relation A∗ = p(A)
with a normal A.

Proof of condition 15: Necessity. It is convenient to seek the desired poly-
nomial p using the Wigner canonical form B of A. Thus, we want to have

BT = p(BB)B.

This yields

p(µ2)µ = µ (34)

for each real µ, which is automatically fulfilled if µ = 0 and is a nontrivial
condition for each positive coneigenvalue µ.

For 2× 2 blocks, we require that

 0 p(µ2)µ

p(µ2)µ 0

 =

 0 µ

µ 0



(see (30)), which reduces to two scalar relations

p(µ2)µ = µ (35)
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and

p(µ2)µ = µ. (36)

Now, relations (34) written for all distinct positive µ and relations (35)-(36)
written for all distinct complex conjugate pairs (µ, µ) constitute a Vander-
monde-like system of linear equations with respect to the coefficients of the
polynomial p. Thus, the system is solvable. Its solution is unique if we restrict
the degree of p by m− 1, where m is the number of equations.

The special feature of our system is that, along with an equation with com-
plex coefficients, it contains the one with the conjugate coefficients. Since the
solution is unique, it must be real.

Sufficiency. From AT = p(AA)A, we derive

AA∗ = AAT = Ap(AA)A = Ap(AA)A

(note that the last equality uses the fact that p has real coefficients) and

A∗A = AT A = p(AA)AA = Ap(AA)A.

Thus, A ⊂ CN . 2

Proof of condition 31: Sufficiency. Let A = SU and AT = SV , where U
and V are unitary. Then,

AA∗ = (SU)(U∗S) = SS

and

A∗A = AT A = (SV )(V ∗S) = SS.

Hence, A is conjugate-normal.

Necessity. Perform a unitary congruence that transforms the conjugate-normal
matrix A into a real normal matrix B. Observe that, in the polar decomposi-
tion of B, the symmetric factor P and the orthogonal factor W commute:

B = PW = WP.

It follows that

BT = PW T .
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Performing the reverse congruence transformation, we obtain SUPDs for A
and AT having the same symmetric factor S. 2

Note that conditions 32 – 34 can be proved following the same pattern. The
details can be found in (FI2).

Proof of condition 44: Sufficiency. If AT = UA for a unitary U , then

(AT x, AT y) = (UAx, UAy) = (Ax, Ay) ∀x, y ∈ Cn.

By condition 41, A ∈ CN .

Necessity. First, bring A and AT by a unitary congruence transformation to
their Wigner canonical forms B and BT :

B = QAQT , BT = QAT QT . (37)

Then for each 2× 2 block 0 %e−iϕ

%eiϕ 0



in B (see (30)) form the diagonal matrix

 ei2ϕ 0

0 e−i2ϕ

 . (38)

The direct sum of matrices of type (38) complemented by an identity matrix
(which corresponds to the 1× 1 blocks in B) yields a diagonal unitary matrix
D such that

BT = DB.

Finally, we reverse transformation (37):

AT = Q∗BT Q = Q∗DBQ = (Q∗DQ)(Q∗BQ) = UA.

Thus, U = Q∗DQ is the desired unitary matrix. 2
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Proof of condition 45: The coneigenvalues of Ck(A) squared are the ordi-
nary eigenvalues of

Ck(A)Ck(A) = Ck(A)Ck(A) = Ck(AA). (39)

If µ1, . . . , µn (|µ1| ≥ |µ2| ≥ . . . ≥ |µn|) are the coneigenvalues of A, then the
eigenvalues of matrix (39) are all the possible k-products

µ2
i1
µ2

i2
· · ·µ2

ik

with 1 ≤ i1 < i2 < . . . < ik ≤ n (see (MM, p. 24)). It follows that

cρ(Ck(A)) = |µ1| · · · |µk|.

On the other hand,

||Ck(A)||2 = s1 · · · sk.

Thus, condition 45 is just a disguised form of condition 38. 2

6 Concluding remarks

The discussion presented above is not exhausting. Several interesting prop-
erties of conjugate-normal matrices were left outside the scope of this paper.
Here, we briefly mention one of these properties.

It is well known that normal matrices are perfectly conditioned with respect to
the problem of calculating their eigenvalues. A similar fact can be established
for the coneigenvalues of a conjugate-normal matrix. More on this can be
found in (GI).

It was shown in Remark 1 that the normality of AL and AR does not imply
that A is conjugate-normal. Matrices defined by the requirement that AL (or
AR) be normal were introduced in (HLV) and were called congruence-normal
matrices there. This is an interesting matrix class standing farther from normal
matrices than conjugate-normal matrices. We intend to discuss this class in a
separate paper.
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