A note on the product of two skew-Hamiltonian matrices

H. Faßbender* and Kh. D. Ikramov†

October 13, 2007

Abstract: We show that the product \(C \) of two skew-Hamiltonian matrices obeys the Stenzel conditions. If at least one of the factors is nonsingular, then the Stenzel conditions amount to the requirement that each elementary divisor for a nonzero eigenvalue of \(C \) occur an even number of times. The same properties are valid for the product of two skew-pseudosymmetric matrices.

Keywords: Hamiltonian matrices, skew-Hamiltonian matrices, elementary divisors, Jordan blocks

MSC Classification: 15A23, 15A21

1 Introduction

Let \(n = 2m \) be an even positive integer. We regard \(\mathbb{R}^n(\mathbb{C}^n) \) as a real (respectively, complex) linear space equipped with the scalar product

\[
<x, y> = (Jx, y),
\]

where

\[
(x, y) = x_1y_1 + \ldots + x_ny_n
\]

is the conventional Euclidean scalar product and

\[
J = \begin{bmatrix}
0 & I_m \\
-I_m & 0
\end{bmatrix}.
\]

*Institut Computational Mathematics, TU Braunschweig, Pockelsstr. 14, D-38023 Braunschweig, Germany
†corresponding author, Faculty of Computational Mathematics and Cybernetics, Moscow State University, 119992 Moscow, Russia. The work of the second author has been supported by the Deutsche Forschungsgemeinschaft.
In other words, \(\mathbb{R}^n(\mathbb{C}^n) \) is considered as a real (respectively, complex) symplectic space. Matrices in \(M_n(\mathbb{R}) \) or \(M_n(\mathbb{C}) \) are treated as linear operators acting on \(\mathbb{R}^n \) and \(\mathbb{C}^n \), respectively.

Two important classes of matrices in symplectic spaces are Hamiltonian and skew-Hamiltonian matrices defined by the relations

\[
< Ax, y > = - < x, Ay > \quad \forall x, y, \tag{3}
\]

and

\[
< Bx, y > = < x, By > \quad \forall x, y, \tag{4}
\]

respectively. These relations show that skew-Hamiltonians are symmetric operators of the symplectic space, while Hamiltonians are skew-symmetric operators. It makes one think that 'skew' is erroneously used in the term for the matrix \(B \) in (4).

The spectrum \(\rho(A) \) of a Hamiltonian matrix \(A \) is not entirely arbitrary: if \(\lambda \in \rho(A) \), then \(-\lambda \in \rho(A) \) as well. However, the spectrum of a skew-Hamiltonian matrix \(B \) has an even more remarkable property, which, for brevity, we call a double spectrum. This means that, in the Jordan form of \(B \), each Jordan block occurs an even number of times. In particular, each eigenvalue of \(B \) has an even multiplicity. (For examples of the partial double spectrum property, meaning the evenness of the number of Jordan blocks for a particular eigenvalue, see, for instance, Theorems 6 and 7 in [HM99].)

The facts cited above are well known. For instance, the double spectrum property underlies the orthogonal method proposed by Van Loan for calculating the eigenvalues of a real Hamiltonian matrix \(A \) (see [Van84]). Van Loan observes that \(B = A^2 \) is a skew-Hamiltonian matrix whose eigenvalues are the squares of the eigenvalues of \(A \). Then, he cleverly modifies the Householder reduction of \(B \) to its Hessenberg form so that the resulting Hessenberg matrix \(H \) is block triangular

\[
H = \begin{bmatrix}
H_m & G_m \\
0 & H_m^T
\end{bmatrix}
\]

This effectively reduces the order of the eigenvalue problem by half.

Although the double spectrum property by itself is well known, the actual reason behind this property is known much less. Note that definition (4) is equivalent to the matrix relation

\[
JB = B^T J. \tag{5}
\]

Since \(J^T = -J \), relation (5) means that

\[
K = JB
\]

is a skew-symmetric matrix. Thus, \(B \) is a skew-Hamiltonian matrix if and only if \(B \) is a product of the form

\[
B = JL, \tag{6}
\]
where both factors J and $L(= -K)$ are skew-symmetric matrices.

The fact that the product of two skew-symmetric matrices has remarkable spectral properties was repeatedly rediscovered during the last half-century (e.g., see [Dra52, And74, GL84, Djo91]). However, the story of this fact goes back much further. The authors were able to find its formulation in a paper of 1922 by H. Stenzel [Ste22]. This formulation is more thorough than in many of the later papers.

Theorem 1 (Stenzel) An $n \times n$ matrix B can be represented as the product of two skew-symmetric matrices if and only if the following two properties hold:

1. Each elementary divisor of a nonzero eigenvalue of B occurs an even number of times.
2. Let $\lambda^{m_1}, \lambda^{m_2}, \ldots, \lambda^{m_s}$ be the elementary divisors for B for the zero eigenvalue ordered so that
 \[m_1 \geq m_2 \geq \ldots \geq m_s. \]
 Then
 \[m_{2i-1} - m_{2i} \leq 1, \quad i = 1, 2, \ldots. \]
 (If s is odd, then we set $m_{s+1} = 0$ in (8).)

Observe that, in Theorem 1, n can be an arbitrary positive integer and both factors in the skew-symmetric representation of B can be singular. For the skew-Hamiltonian case, which we discuss here, n is even and at least the matrix J in representation (6) is nonsingular. This simplifies the above conditions a) and b), reducing them to the double spectrum property.

The purpose of this short paper is to state an even less known fact contained in the theorem below. The authors think that this is a new fact, but one can never be sure.

Theorem 2 Let B_1 and B_2 be skew-Hamiltonian matrices of order n. Then, the matrix

\[C = B_1 B_2 \]
has both Stenzel properties, that is

1. Each elementary divisor of a nonzero eigenvalue of C occurs an even number of times.
2. Let $\lambda^{m_1}, \lambda^{m_2}, \ldots, \lambda^{m_s}$ be the elementary divisors for C for the zero eigenvalue arranged as in (7). Then, relations (8) hold.

If at least one of the matrices B_1 and B_2 is nonsingular, then C has the double spectrum property.
Proof: According to (6), B_1 and B_2 can be written as
\[B_1 = JL_1 \quad \text{and} \quad B_2 = JL_2, \]
where L_1 and L_2 are skew-symmetric. It follows that
\[C = B_1B_2 = (JL_1)(JL_2) = (JL_1J)L_2 \]
is the product of the skew-symmetric matrices JL_1J and L_2. It remains to apply the Stenzel theorem.

If both B_1 and B_2 are nonsingular, then C is nonsingular as well and the double spectrum property reduces to property a) in the Stenzel list. Assume that, say, B_1 is nonsingular, while B_2 is singular. One can easily show that, for each positive integer k, the rank of C^k is an even number. This implies that each elementary divisor for a zero eigenvalue occurs an even number of times, which, combined with a), yields the double spectrum property. \square

Corollary Consider the generalized eigenvalue problem
\[B_1x = \lambda B_2x, \] (10)
where both B_1 and B_2 are skew-Hamiltonian matrices. If at least one of the matrices B_1 and B_2 is nonsingular, then problem (10) has the double spectrum property.

Indeed, if, say B_2 is nonsingular, then (10) is equivalent to the ordinary eigenvalue problem
\[Cx = B_2^{-1}B_1x = \lambda x \]
with C being the product of the skew-Hamiltonian matrices B_2^{-1} and B_1.

The same result can be obtained from the normal form of a pencil of two skew-symmetric pencils as given in [Tho91] (just multiply both B_1 and B_2 by J to obtain skew-symmetric matrices). From the normal form one can conclude what happens in the case that both matrices are singular.

In closing, we note that the argument used in Theorem 2 essentially remains the same in the more general situation, where, instead of (1), the scalar product in \mathbb{R}^n or \mathbb{C}^n is defined by
\[\langle x, y \rangle_p = (Px, y) \] (11)
with an orthogonal symmetric or skew-symmetric matrix P and B_1 and B_2 are skew-symmetric or, respectively, symmetric operators with respect to scalar product (11). For instance, suppose that
\[P = I_p \oplus (-I_q), \] (12)
where $p > 0, q > 0, p + q = n$. In this case, skew-symmetric operators are the so-called skew-pseudosymmetric matrices. Thus, the product of skew-pseudosymmetric matrices B_1 and B_2 has the same spectral properties as matrix (9) in Theorem 2.
References

