
Algebraic Preconditioning Approaches and Their
Applications

Matthias Bollhöfer
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Abstract

We will review approaches to numerically treat large-scale systems of equations
including preconditioning, in particular those methods which are suitable for solving
linear systems in parallel. We will also demonstrate how completion techniques can
serve as a useful tool to prevent ill-conditioned systems. Beside parallel aspects
for preconditioning, multilevel factorization methods will be investigated and finally
we will demonstrate how these methods can be combined for approximate matrix
inversion methods.

1 Introduction

Solving linear systems of the form Ax = b, where A ∈ Rn×n is nonsingular, x, b ∈ Rn

efficiently is an ubiquitous problem in many scientific applications such as solving partial
differential equations, inverting matrices or parts of matrices or computing eigenstates in
computational physics and many other application areas. For specific application problems,
methods that are tailored to the underlying problem often serve best as problem-dependent
solver, e.g. multigrid methods [34, 67, 71] are among the best methods for solving large
classes of partial differential equations efficiently. However, when the underlying applica-
tion problems do not posses enough problem-dependent structure information to allow for
specific solution methods, more general methods are needed. Often enough, sparse direct
solution methods (e.g. [22, 23, 62]) are very efficient and even if their efficiency with re-
spect to computation time and memory is not quite satisfactory, their robustness is a strong
argument to prefer these kind of methods, in particular, because only a small number of pa-
rameters needs to be adapted, if any. In contrast to that, preconditioned Krylov subspace

1



solvers [32, 59, 31] are a frequently used alternative whenever an efficient preconditioner is
available to solve the system in a reasonable amount of time. Nowadays as multicore and
manycore architectures become standard even for desktop computers, parallel approaches
to raise efficiency have gained attraction and are not anymore restricted to supercomputers.
Many parallelization strategies are based on divide & conquer principles which decompose
the whole problem into a sequence of smaller problems to be treated independently plus
an additional coupling system to reveal the original problem [11, 15, 49, 33, 3, 62]. Among
many parallelization approaches to solve linear systems, general black-box approaches are
based on splitting the system or, partitioning the system appropriately into one part that
is easily treated in parallel and a remaining part. Due to the rapidly increasing number of
cores available for parallel solution techniques, direct solvers are often replaced by hybrid
solvers in order to solve some part of the system directly while the additional coupling
system is solved iteratively (see e.g. [47, 30]). With respect to their core part, these meth-
ods are based on a similar parallelization principle. To describe the breadth of parallel
preconditioning approaches for efficiently solving linear systems would be too much to be
covered by this article. Here we will focus on selected aspects which can also be used for
efficient multilevel incomplete factorization techniques and for inverting parts of a matrix.

We will start in Section 2 reviewing splitting and partitioning methods for solving block-
tridiagonal systems in parallel, in particular parallel direct and hybrid methods are often
based on this kind of approach. After that we will display in Section 3, how similar
methods can be set up even when the system is not block-tridiagonal. Section 4 will state
how splitting-type methods can be improved to avoid ill-conditioned systems. Next we will
demonstrate in Section 5 how algebraic multilevel preconditioners can be easily analyzed
and improved and finally Section 6 demonstrates how multilevel methods on the one hand
and parallel partitioning methods on the other hand can be employed for approximate
matrix inversion.

2 Hybrid solution methods

With ever increasing size, large-scale systems are getting harder to be solved by direct
methods and often enough, out-of-core techniques are required in order to solve systems,
even in a parallel environment, since the memory consumption may exceed the available
main memory. As a compromise between direct methods and preconditioned Krylov sub-
space methods, hybrid solvers that mix both ideas can be used. We briefly describe the two
most common approaches that allow for efficient parallel treatment as well as for hybrid
solution methods. Suppose that

A = C − EF T , (1)

where C ∈ Rn×n is nonsingular and E,F T ∈ Rn×q are of lower rank q � n. The Sherman-
Morrison-Woodbury formula

A−1 = C−1 + C−1E(I − F TC−1E)−1F TC−1 (2)
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yields that solving Ax = b is equivalent to

solve Cy = b, set r := F Ty, solve Rz = r, set c = b+ Ez, solve Cx = c.

Here one has to solve two systems Cy = b, Cx = c with C directly and a further small
system Rz = r with

R = I − F TC−1E ∈ Rq×q. (3)

One can easily verify thatR is nonsingular as well. The bottleneck of this splitting approach
consists of computing the small system R explicitly which is most time-consuming. Usually
having a small rank q, solving CU = E can be performed efficiently using direct methods.
The matrix U is sometimes [11] also called “spike matrix”, since it refers to the non-trivial
block columns of C−1A. If it pays off, one could avoid solving the system Cx = c by
using the relation x = Uz + y instead. However, when the rank is increasing, significantly
more time is consumed. Thus, alternatively to solving Rz = r directly, iterative solution
methods that only require matrix-vector products are a favorable alternative and this
finally yields a hybrid solution method [11, 49, 47]. A natural way of obtaining a splitting
(1) for large-scale sparse matrices consists of partitioning the matrix A into two diagonal
blocks plus a few nonzero off-diagonal entries outside the block-diagonal pattern which are
then obviously of lower rank, i.e.,

A =

(
C1 0
0 C2

)
−
(

0 E1F
T
2

E2F
T
1 0

)
=

(
C1 0
0 C2

)
−
(
E1 0
0 E2

)(
0 F1

F2 0

)T
≡ C−EF T .

(4)
This procedure can be recursively applied to C1 and C2 to obtain a nested sequence of
splittings and solving the systems via the Sherman–Morrison–Woodbury formula (2) can be
performed recursively as well [65]. Although being elegant, splitting (4) has the drawback
that the recursive application of splittings may also lead to higher complexity [48, 49]. More
efficiently, an immediate parallelization approach with p processors prefers to substitute
(4) by

A =


C1 0

C2

. . .

0 Cp

− EF T (5)

for suitably chosen EF T . For block-tridiagonal systems having m > p or significantly more
diagonal blocks, EF T is easily constructed. Suppose for simplicity that m = l · p for some
l ∈ {1, 2, 3, . . . , }. Then we have

A =


A11 A12 0
A21 A22 A23

. . . . . . . . .

Am−1,m−2 Am−1,m−1 Am−1,m

0 Am,m−1 Amm

 , Ci = (Ars)r,s=(i−1)l+1,...,il (6)
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and

EF T =


0 E12F

T
12 0

E21F
T
21 0 E23F

T
23

. . . . . . . . .

Ep−1,p−2F
T
p−1,p−2 0 Ep−1,pF

T
p−1,p

0 Ep,p−1F
T
p,p−1 0

 ,

where

Ei,i+1F
T
i,i+1 =

(
0 0

−Ail,il+1 0

)
, Ei+1,iF

T
i+1,i =

(
0 −Ail+1,il

0 0

)
and one could even employ a low rank factorization of Ail,il+1 and Ail+1,il to decrease the
rank further. We can take advantage of instantaneously splitting the initial system into p
parts since we only obtain a single coupling system R, which is usually small but hard to
solve in parallel. Besides, computing R now only requires solving CiUi = (Ei,i−1, Ei,i+1),
i = 1, . . . , p − 1 simultaneously without further recursion. Here E0,1 and Ep,p+1 are void.
Because of its ease, this variant may be preferred to the recursive approach.

Another approach for solving systems Ax = b in parallel consists of partitioning the initial
system A into subsystems rather than splitting the matrix A. This approach is favorable in
particular in cases where the diagonal blocks of A can be assumed to be safely nonsingular
(i.e., the case of positive definite matrices or diagonal dominant matrices). In this case we
partition A as

A =


C1 0 E1,p+1

. . .
...

0 Cp Ep,p+1

F T
1,p+1 · · · F T

p,p+1 Cp+1

 ≡
(

C E
F T Cp+1

)
(7)

and solving Ax = b is easily obtained from the block LU decomposition of the system. I.e.,
partition

xT =
(
xT1 · · · xTp xTp+1

)
≡
(
x̂T xTp+1

)
,

bT =
(
bT1 · · · bTp bTp+1

)
≡
(
b̂T bTp+1

)
.

Then x is obtained as follows.

solve Cy = b̂, set r := bp+1 − F Ty, solve Sxp+1 = r, set c = b− Exp+1, solve Cx̂ = c.

Here we set S := Cp+1−F TC−1E as the Schur complement. Similar to the case of splitting
A as in (5) the major amount of work here is spent in computing S, i.e., computing
CiUi = Ei,p+1, i = 1, . . . , p. A natural alternative would also be in this case to solve
Sxp+1 = r using iterative solution methods which again leads to a hybrid solution method
[49, 30, 1]. We like to point out that within the context of solving partial differential
equations, these kind of methods are usually called domain decomposition methods, see
e.g. [63, 74], which will definitely be beyond the scope of this paper. Instead we will focus
on several algebraic aspects.
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Example 1 We demonstrate the difference of the splitting approach (5) and the partition-
ing approach (7) as direct and hybrid solvers when the block diagonal system is factored
using LU decomposition. The alternatives are either generating and solving the coupling
systems R and S directly or to avoid explicit computation and use an iterative solver
instead. For simplicity we choose the problem −∆u = f in Ω = [0, 1]2, with Dirich-
let boundary conditions and 5-point-star discretization. We display a simplified parallel
model, where we measure only the maximum amount of computation time over all blocks
p whenever a system with Ci is treated. In Figure 1 we compare the direct method versus
the hybrid method for (5) and (7) based on the initial block-tridiagonal structure of the
underlying system with natural ordering. We use MATLAB for these experiments. As
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Figure 1: direct methods (left), hybrid methods (right), splitting approaches (top), parti-
tioning approaches (bottom)

we can see from Figure 1, the direct approach is only feasible for small p, since other-
wise R and S become too big as confirmed by theoretical estimates in [49]. Moreover, the
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computation of the “spike-matrix” U requires solving 2N systems with each diagonal block
Ci. We can also see that there is no great difference between the splitting approach and
the partitioning approach, although in the splitting approach the system is roughly twice as
big and nonsymmetric which is the reason for using Bi-CGSTAB [69] as iterative solver.
For the partitioning approach CG [36] can be used. Both iterative solvers use a relative
residual of 10−8 for termination.We also remark at this point that the number of iteration
steps significantly increases as the number of blocks p increases (as expected by the domain
decomposition theory).

Both approaches based on splittings as in (5) or based on partitionings (7) are relatively
similar with respect to parallelization and computational amount of work. The splitting-
based approach allows to modify the blocks if necessary, the partitioning-based approach
is simpler since it does not rely on especially constructed splittings which is advantageous
when the diagonal blocks are safely nonsingular. In Section 3 we will compare both ap-
proaches and further generalize them in particular for systems that are not necessarily
block-tridiagonal.

3 Reordering and partitioning the system

We will now generalize how to split A as in (1) or to partition A as in (7). First of all
we discuss the situation when the (block-)diagonal part of A is far away from having large
entries, e.g. in the sense of some diagonal dominance measure [60] such as

ri =
|aii|∑n
j=1 |aij|

∈ [0, 1], i = 1, . . . , n. (8)

Note that a value of ri larger than 1
2

refers to a diagonal dominant row. The use of maximum
weight matchings [24, 8, 25] is often very helpful to improve the diagonal dominance and to
hopefully obtain diagonal blocks that are better conditioned. Maximum weight matchings
replace A by

A(1) = DlADrΣ (9)

where Dl, Dr ∈ Rn×n are nonsingular, nonnegative diagonal matrices and Σ ∈ Rn×n is a
permutation matrix such that

|a(1)
ij | 6 1, |a(1)

ii | = 1, for all i, j = 1, . . . , n.

Algorithms for computing maximum weight matchings for sparse matrices [24, 25] are
experimentally often very fast of complexity O(n + nz), where nz refers to the number
of nonzero elements of A. Note that theoretical bounds are much worse and also that
maximum weight matchings are known to be strongly sequential. We illustrate the effect
of maximum weight matchings in the following example. For details we refer to [24].
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Example 2 We consider the sample matrix “west0479” (available from the University of
Florida collection) of size n = 479 and number of nonzeros nz = 1887. In Figure 2 we
illustrate the effect of maximum weight matching for this particular matrix. The diagonal
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Figure 2: Sample matrix before reordering and rescaling (left) and afterwards (right)

dominance measure ri from (8) changes on the average from 1
n

∑
i r

(old)
i ≈ 5.7·10−3 initially

to 1
n

∑
i r

(new)
i ≈ 0.49 after maximum weight matching is applied.

Even if the system is well-suited with respect to its diagonal blocks, partitioning the matrix
into p blocks remains to be done prior to solving the system in a hybrid fashion or to invert
parts of the system. To do so, multilevel nested dissection [38, 39] can be used. Formally
A(1) is replaced by

A(2) = ΠTA(1)Π

for some permutation matrix Π ∈ Rn×n. When targeting a splitting of A such as in (5),
nested dissection by edges is the natural partitioning of the system whereas reordering the
system matrix A as in (7) requires nested dissection by nodes. We illustrate the difference
between both permutation strategies using the following simple undirected graph of a
matrix in Example 3. Note that G(A) is called (undirected) graph of A, if it consists of
nodes V = {1, . . . , n} and edges E = {{i, j} : aij 6= 0 or aji 6= 0,∀i 6= j}.

Example 3 We consider an example that frequently applies in solving partial differential
equations for a model problem. The graph we use is simply a grid (see Figure 3).

To reorder the system with respect to the nested dissection approach there exist fast
reordering tools, e.g., the MeTis software package [37].

Up to now rescaling and reordering the system matrix can be considered as relatively cheap
compared to solving Ax = b or inverting parts of A [24, 8, 25].
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Figure 3: Nested dissection by edges (left) and nested dissection by nodes (right)

3.1 Reordering the system for a splitting-type approach

Now we describe how the preprocessing step can in particular advance splitting or parti-
tioning the system compared with only using a block-tridiagonal structure as in (6). Here
we may assume that the underlying matrix is not just block-tridiagonal but sparse. We
will start with partitioning the graph with respect to the edges.

Definition 1 Suppose that A ∈ Rn×n, V = {1, . . . , n}. Let C1∪̇ · · · ∪̇Cp = V be a disjoint
union of V, partitioning V into p disjoint subsets. We define GM(A) := (VM , EM), where
VM = {1, . . . , p},

EM = {{r, s} ⊂ VM × VM : r 6= s, there exist i ∈ Cr, j ∈ Cs, such that aij 6= 0}.

We call GM(A) block or modified graph of A with respect to C1, . . . , Cp.

GM(A) can be regarded as block graph of A after reordering A such that the entries of
C1, . . . , Cp are taken in order of appearance and using the associated block matrix shape,
i.e., given a suitable permutation matrix Π ∈ Rn×n we obtain

ΠTAΠ =

 A11 · · · A1p
...

...
Ap1 · · · App


and many blocks Aij are expected to be zero or of low rank.

Let e1, . . . , en be the standard unit vector basis of Rn. We denote by Ir the matrix of
column unit vectors from Cr, i.e.,

Ir = (ej)j∈Cr , r = 1, . . . , p.
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Then after reordering A with respect to C1, . . . , Cp we obtain

P TAP = C − EF T

where

C =

 A11 0
. . .

0 App

 , EF T =
∑

{r,s}∈EM

(Ir, Is)

(
0 −Ars
−Asr 0

)
(Ir, Is)

T .

If we compute some low rank factorization −Ars = ErsF
T
rs, −Asr = EsrF

T
sr, then we

obtain E and F in a similar way compared with the block tridiagonal case. Suppose that
m = #EM and the edges {r, s} of EM are taken in a suitable order {r1, s1}, . . . , {rm, sm}.
Then we define E,F via

E = (E1, . . . , Em) , F = (F1, . . . , Fm) , (10)

where

Ei = (Iri , Isi) ·
(
Eri,si 0

0 Esi,ri

)
, Fi = (Iri , Isi) ·

(
0 Fri,si

Fsi,ri 0

)
. (11)

We note that if Ari,si and Asi,ri have rank qri,si , qsi,ri , then the total rank of E,F is

q =
∑

{r,s}∈EM

(qrs + qsr) . (12)

For general sparse matrices this might lead to a significantly smaller q compared with the
case where A is reordered into a block-tridiagonal shape as in Section 2. We will illustrate
this effect in the following example.

Example 4 Consider a matrix A such that its graph is a grid with M ×M grid points,
i.e., n = M2. Suppose further that the number of processors p can be written p = P 2 and
that M is a multiple of P .

For p = 4 we illustrate in Figure 4 two different canonical ways of partitioning the un-
derlying graph. A graph like in Figure 4 may serve as a toy problem for some class of
partial differential equations. In the simplest case for the elliptic boundary value problem
−∆u = f in [0, 1]2 with Dirichlet boundary conditions and 5-point-star difference stencil a
graph similar to Figure 4 is obtained. The edges would refer to numerical values −1, the
cross points would refer to diagonal entries with value 4. In this case the left partitioning
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Figure 4: Partitioning the grid into 4 sub-grids horizontally (left) and in checker board
fashion (right)

of the domain in Figure 4 would lead to

E =



0
I 0
0 I

0 0
I 0
0 I

0 0
I 0
0 I

0


, F =



0
0 −I
−I 0

0 0
0 −I
−I 0

0 0
0 −I
−I 0

0


.

Each of the identity matrices has size M . The generalization to p sub-blocks is straightfor-
ward and would lead to E,F of size n× (2(p− 1)M).

In contrast to this, the checker board partitioning in Figure 4 would lead to E and F which
look almost as follows

E =



0 I
0 0
I 0
0 I

0 0
I 0
0 I

0 0
I 0
0 I

0 0
I 0



, F =



−I 0
0 0
0 −I
−I 0

0 0
0 −I
−I 0

0 0
0 −I
−I 0

0 0
0 −I



.

Here, the identity matrices are only of size M/2. Strictly speaking, the identity matrices
overlap at the center of the grid. We skip this detail for ease of description. For the checker
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board partitioning the generalization to p = P 2 blocks would lead to a rank proportional to√
pM which is significantly less compared with the first case as it grows slower with respect

to p.

3.2 Reordering the system for a partitioning-type approach

In contrast to splitting the initial system we now partition it, which means that rather than
using nested dissection by edges, we now require nested dissection by nodes as illustrated
in Example 3. In this case partitioning the system with respect to the underlying graph
can also be advantageous compared to the strategy where A is simply permuted to block-
tridiagonal form. We will illustrate this in Example 5.

Example 5 We consider again a graph of a matrix A that can be represented as a grid in
two spatial dimensions. Suppose that the number of processors p can be written p = P 2.
We assume that the number n of grid points can be written as n = (M+P−1)2 and that M
is a multiple of P . For p = 4 we illustrate in Figure 5 two obvious ways of partitioning the
graph. If we again consider the 5-point-star difference stencil for discretizing the problem
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Figure 5: Partitioning the grid into 4 sub-grids horizontally (left) and in checker board
fashion (right)

−∆u = f in [0, 1]2 we still end up with a matrix partitioning

A =

(
C E
F T Cp+1

)
.

For the horizontal partitioning approach in general the identity matrices have size M+p−1.
The size of the Schur-complement S = Cp+1−F TC−1E is identical to the number of nodes
we removed, i.e., its size is (p− 1)(M + p− 1).

In the checker board partitioning case the Schur-complement will have size 2(P − 1)(M +
P −1)− (P −1)2 which is roughly of order 2

√
pM for p�M . Therefore the checker board

partitioning leads to a significantly smaller Schur-complement with respect to p compared
with the horizontal approach.
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3.3 Splitting-type approach versus partitioning-type approach

After we have illustrated how to preprocess a system A → A(2) such that the system is
either suitable for a splitting-type approach (5) or a partitioning-type approach (7), we will
now highlight the common properties, the major differences and which approach should
be preferred depending on the situation.

First of all, with respect to parallelization, one has to distinguish whether reordering the
system is a suitable option. This is important since depending on the application, the
original system matrix A may not be available in total, but it could be distributed over
different machines. This is in particular the case for distributed memory machines, where
the problem is already generated in parallel. In this case partitioning the system by
permutation refers to re-distributing the system in order to obtain a better load balance.
This in turn can become quite expensive. When using finite element application for partial
differential equations, domain decomposition methods partition the physical domain and
the nodes on the interfaces between the domains share the neighbouring subdomains.
Algebraically this refers to the partitioning-type approach (7). Otherwise, if there is no
natural background why a specific node should share two or more different parts of the
system, a more natural distribution in practical applications would be the splitting-type
approach (5). For shared memory systems like modern multicore or upcoming manycore
architectures we would usually have the whole system matrix A available and we are free
to decide which approach should be our method of choice.

A major difference between the splitting-type method (5) and the partitioning-type ap-
proach is the size of the systems R and S in similar circumstances like Examples 4 and
5, where the size of R is approximately twice as big as that of S for the block tridiagonal
case and for the checker board case the difference is even larger. This is because in the
partitioning–type approach the size of S is exactly the number of nodes to be taken out by
nested dissection (by nodes), while in the splitting case the size of R is bounded by twice
the number of edges (or the number of off-diagonal entries) taken out from graph using
nested dissection by edges. The number of edges is usually bigger than the number of
nodes and one even obtains a factor 2. On the other hand the rank qrs+qsr of the matrices
Ars and Asr that are taken out is the local contribution to the size of R and certainly
the rank could be also less than the number of edges. However, there is one improvement
that can be obtained for free in the splitting case, which is referred to as minimum rank
decoupling [49, 66]. Suppose for simplicity that qrs = qsr. If these numbers differ, we could
enlarge the factorization ErsF

T
rs or EsrF

T
sr of smaller size by zeros. Alternatively to (5) we

could use the splitting

A =


C1(X) 0

C2(X)
. . .

0 Cp(X)

− E(X)X−1F (X)T , (13)
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where we replace locally for any r < s(
0 ErsF

T
rs

EsrF
T
sr 0

)
by (

ErsXrsF
T
sr ErsF

T
rs

EsrF
T
sr EsrX

−1
rs F

T
rs

)
for some nonsingular Xrs ∈ Rqrs×qrs and modify the diagonal blocks C1, . . . , Cp appropri-
ately to compensate the changes in the block diagonal position. The advantage of this
modification consists of reducing the local rank by a factor 2 since(

ErsXrsF
T
sr ErsF

T
rs

EsrF
T
sr EsrX

−1
rs F

T
rs

)
=

(
ErsXrs

Esr

)
X−1
rs

(
XrsF

T
sr F T

rs

)
. (14)

In the simplest case we could choose Xrs = I. The associated diagonal matrices Cr are
changed to

Cr(X) := Cr +
∑
s:s>r

{r,s}∈EM

ErsXrsF
T
rs +

∑
s:s<r

{r,s}∈EM

ErsX
−1
rs F

T
rs

adding only low-rank contributions to Cr. For sparse matrices these modifications only
change entries of Cr that are connected to neighbouring blocks. Thus, if p � n, only a
lower-rank part of small size is changed in Cr. For partial differential equations one could
read this modification as imposing some kind of inner boundary condition and a natural
question will be how to suitably choose

X = diag (Xrs){r,s}∈EM . (15)

This will be subject of the next section.

To end this section we will demonstrate the benefits of minimum rank decoupling (X = I)
and using graph partitioning rather than working with a block-tridiagonal shape.

Example 6 We continue with the problem −∆u = f on the unit square in two spatial
dimensions and N grid points in each spatial dimension. Here we obtain that F = E and
we also have that R is symmetric positive definite. This allows to fully exploit symmetry
not only for each Ci, but also R using the Cholesky decomposition, resp. the conjugate
gradient method. We use the same settings as in Example 1, except that we perform the
numerical experiments for the splitting-type approach (5) only.

In contrast to Example 1, the size of the “spike-matrix” U now only requires solving 4 ·N/p
systems in parallel rather than 2N systems. With increasing size of processors this reduces
the overhead for computing the “spike-matrix” significantly. Moreover, as illustrated in
Example 5, the size of R also grows much slower than in the block-tridiagonal case and the
number of CG steps also increases more slowly. In total this makes the direct approach
much more competitive for larger p and explains the remarkable improvement in Figure 6
compared to Figure 1 with respect to the computation time and the scalability.
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Figure 6: splitting-based direct method (left), splitting-based hybrid method (right)

4 Minimum rank decoupling and completion

We will now discuss the problem of choosing X in (15) in the minimum rank decoupling
case. This problem is connected to the problem of matrix completion [26, 27]. For the
problem of completion one is interested in determining a suitable X such that W (X) =(
W11 W12

W21 X

)
has certain desired properties, e.g. a small norm, an inverse with small

norm or a small condition number. For details we refer to [26, 27]. Here the completion
problem comes along with the choice of X from (15). We will follow the arguments in
[26, 27]. Suppose that EM = {{r1, s1}, . . . , {rm, sm}} with the convention that we use
ri < si. Given the splitting (13) depending on X we set

E(1) =
(
E

(1)
1 , . . . , E(1)

m

)
, F (1) =

(
F

(1)
1 , . . . , F (1)

m

)
,

E(2) =
(
E

(2)
1 , . . . , E(2)

m

)
, F (2) =

(
F

(2)
1 , . . . , F (2)

m

)
,

where for any {ri, si} ∈ EM such that ri < si we define

E
(1)
i = IriEri,si , E

(2)
i = IsiEsi,ri , F

(1)
i = IriFsi,ri , F

(2)
i = IsiFri,si .

Then the minimum rank decoupling (14) can be written as

E(X)X−1F (X)T = (E(1)X + E(2))︸ ︷︷ ︸
E(X)

X−1 (F (1)XT + F (2))T︸ ︷︷ ︸
F (X)T

and the block diagonal part C(X) is analogously characterized by

C(X) = C + E(1)X(F (1))T + E(2)X−1(F (2))T .

Here, as before, C refers to the unmodified block diagonal part andA = C(X)−E(X)X−1F (X)T .
If our matrix A is block-tridiagonal, then E(1), F (1) refer to modifications in the lower right
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block of a diagonal block Ci, whereas E(2), F (2) refer to the upper left corners. Using the
Sherman-Morrison-Woodbury formula we find that

A−1 = C(X)−1 + C(X)−1E(X)
(
X − F (X)TC(X)−1E(X)

)−1︸ ︷︷ ︸
≡R(X)−1

F (X)TC(X)−1

and a natural objective is to improve the properties of C(X) or of the coupling system

R(X) = X − F (X)TC(X)−1E(X).

Rewriting R(X)−1 (again using (2)) we can see that

R(X)−1 = X−1 −X−1(F (1)XT + F (2))TA−1(E(1)X + E(2))X−1.

Taking into account that usually we only have two factors EF T instead of three fac-
tors E(X)X−1F (X)T , we would factorize X = XLXU and replace E(X)X−1F (X)T by
(E(1)XL + E(2)X−1

U ) · (F (1)XT
U + F (2)X−TL )T . This in turn means that R(X) should ap-

proximate X rather than I and similarly, R(X)−1 has to approximate X−1. If we wish
approximate a multiple αX−1 of X−1 we conclude that using Y = X−1 we obtain in the
optimal case

0 = αY −R(X)−1 = (α− 1)Y − (F (1) + F (2)Y T )TA−1(E(1) + E(2)Y ). (16)

Note that (16) is called algebraic Riccati equation with respect to Y . For the application
of numerical methods for solving Riccati equations we refer to [20, 19, 51, 41, 4, 42]. Here
we mention a simple criterion when this quadratic equation simplifies. Since we will not
follow this direction in detail we leave the proof to the reader.

Proposition 1 Suppose that (F (1))TC−1E(2) = 0 and (F (2))TC−1E(1) = 0. Then (16) is
equivalent to

0 = αY − (D + Y )− (D + Y )B(D + Y ), (17)

where B = (F (2))TA−1E(2) and D = (F (1))TC−1E(1).

Example 7 We continue Examples 3, 4 for the case of a block-tridiagonal partitioning.
Note that in the case of minimum rank decoupling we will obviously have E = F and

E =



0
I
I
0 0

I
I
0 0

I
I
0


,
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since the trivial choice X = I modifies the original off-diagonal blocks of type(
0 I
I 0

)
in the minimum rank case to blocks of type(

I I
I I

)
=

(
I
I

)(
I I

)
.

In this case we will have

E = F = E(1) + E(2) = F (1) + F (2) ≡



0
I
0

0
I
0

0
I
0


+



0
I
0

0
I
0

0
I
0


.

For modifying C(X) we aim to reduce ‖C(X)‖ or ‖C(X)−1‖. Moreover, with respect to
the sparsity of C, we cannot afford much more than a diagonal matrix X. As long as
‖X‖, ‖X−1‖ 6 κ for some constant κ > 0, the norm of C(X) is suitably bounded. In
contrast to that, ‖C(X)−1‖ might still be large. Completion can be directly used to bound
the norm of the inverse of

W (X) =

 C E(1) E(2)

(F (1))T −X−1 0
(F (2))T 0 −X


since the associated Schur complement in the top left corner satisfies

C(X) = C −
(
E(1) E(2)

)( −X−1 0
0 −X

)−1 (
F (1) F (2)

)T
.

Since C(X)−1 is the leading top left block of W (X)−1, a bound for the norm of W (X) also
leads to a bound for ‖C(X)−1‖. Following [27] we define α0 via

α0 = min
{
σmin

[
C,E(1), E(2)

]
, σmin

[
CT , F (1), F (2)

]}
, (18)

where σmin denotes the associated smallest singular value.
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Lemma 1 We define for any r = 1, . . . , p,

CE,r := CrC
T
r +

∑
s:s 6=r

ErsE
T
rs, CF,r := CT

r Cr +
∑
s:s 6=r

F T
rsFrs.

Then we have that
α2

0 = min
r
{λmin(CE,r), λmin(CF,r)}.

Proof.
It is clear that α2

0 can be obtained from the smallest eigenvalue of CCT + E(1)(E(1))T +
E(2)(E(2))T and CTC + (F (1))TF (1) + (F (2))TF (2).

By definition we have

CCT + E(1)(E(1))T + E(2)(E(2))T = CCT +
m∑
i=1

E
(1)
i (E

(1)
i )T +

m∑
i=1

E
(2)
i (E

(2)
i )T ,

which is block-diagonal by construction and precisely reduces to the block-diagonal ma-
trix diag(CE,1, . . . , CE,p). Note that since we always assume that ri < si, the local sum

over all s : s 6= r covers both sums with E
(1)
i and E

(2)
i . Similar arguments apply to

CTC + (F (1))TF (1) + (F (2))TF (2). �

As consequence of Lemma 1 we can compute α0 for each diagonal block separately in
parallel. This simplifies the overall complexity.

We note that given α < α0, the general unconstrained solutionX rather than

(
−X−1 0

0 −X

)
of ‖W (X)−1‖2 6 1

α
is is stated explicitly in [27]. In addition we would like to point out

that the singular values σ1, . . . , σn [31] of any matrix C can be determined by

σl ≡ σl(C) = max
dimU=l
dimV =l

min
u∈U\{0}
v∈V \{0}

vTCu

‖v‖2 ‖u‖2

.

Furthermore since C and C(X) are block-diagonal, we can compute the singular values of
each Cr(X) independently. Having

Cr(X) = Cr +
∑
s:s>r

ErsXrsF
T
sr +

∑
s:s<r

ErsX
−1
rs F

T
sr,

for some neighbouring diagonal blocks s ∈ {s1, . . . , st} of Cr, we can locally choose U∗r ⊥
(Fs1,r, . . . , Fst,r) and V ∗r ⊥ (Er,s1 , . . . , Er,st). We define qr =

∑
s:s 6=r qrs, where qrs refers to

the number of columns (i.e., the rank) of Ers and Frs and define

σ∗nr−qr := min
u∈U∗r \{0}
v∈V ∗r \{0}

vTCru

‖v‖2 ‖u‖2

. (19)
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Then we immediately obtain

σl(Cr) > σ∗nr−qr > σnr(Cr), σl(Cr(X)) > σ∗nr−qr > σnr(Cr(X)) and σ∗nr−qr > α0

for any l 6 nr − qr, r = 1, . . . , p. This also shows that σ∗nr−qr gives an upper bound for α0

which cannot be improved. This is also reasonable since the remaining rows and columns
of Cr(X) coincide with those of A up to some zeros. Due to the sparsity of the off-diagonal
blocks Ars, Asr, our matrices U∗r and V ∗r would cover many unit vectors associated with
unknowns that are not connected with neighbouring blocks in the sense of the underlying
graph GM(A).

Example 8 We will discuss again the equation −∆u = f on the unit square Ω = [0, 1]2 in
two spatial dimensions. We give a simplified model of different boundary conditions, namely
Dirichlet boundary conditions u = g on ΓD and some kind of Neumann-type boundary
conditions ∂u/∂ν = 0 on ΓN .

Ω

ΓN

ΓD

ΓD ΓD

ΓD ΓD

rr
rr
rr
rr
r

rr
rr
rr
rr
r

rr
rr
rr
rr
r

rr
rr
rr
rr
r

rr
rr
rr
rr
r

rr
rr
rr
rr
r

rr
rr
rr
rr
r

rr
rr
rr
rr
r

rr
rr
rr
rr
r

NNN

To simplify the discussion we use the 5-point-star difference stencil which leads to a matrix
with 4 on the main diagonal and −1 in the off-diagonal positions as described in Example
4. At the positions associated with ΓN we reduce the diagonal entry from 4 to 3 which refers
to first order Neumann boundary conditions. We divide the domain into a checker board
of 9 subdomains which corresponds to a block-diagonal splitting with 9 diagonal blocks. For
each of the diagonal block we sketch the associated relevant singular values. We will choose
a grid size of total size 150×150. This means if we have p = 9 = 3×3 diagonal blocks, then
each diagonal block is of size nr = 2500. The rank qr is between 100 and 200 depending on
the diagonal block. We will compare each local σ∗nr−qr with

1. σnr−qr(Cr) and σnr(Cr) of the original block-diagonal matrix and with

2. σnr−qr(Cr(I)) and σnr(Cr(I)) for minimum-rank decoupling using X = I.
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σ∗nr−qr

2.5 · 10−3 8.1 · 10−3 2.5 · 10−3

5.1 · 10−3 8.2 · 10−3 5.1 · 10−3

2.5 · 10−3 5.1 · 10−3 2.5 · 10−3

σnr−qr(Cr) σnr−qr(Cr(I))
σnr(Cr) σnr(Cr(I))

4.9 · 10−1 7.4 · 10−1 4.9 · 10−1

2.4 · 10−3 7.6 · 10−3 2.4 · 10−3

7.2 · 10−1 9.6 · 10−1 7.2 · 10−1

4.8 · 10−3 7.6 · 10−3 4.8 · 10−3

4.9 · 10−1 7.2 · 10−1 4.9 · 10−1

2.4 · 10−3 4.8 · 10−3 2.4 · 10−3

5.0 · 10−1 7.6 · 10−1 5.0 · 10−1

2.5 · 10−3 7.8 · 10−3 2.5 · 10−3

7.4 · 10−1 1.0 · 100 7.4 · 10−1

4.9 · 10−3 7.9 · 10−3 4.9 · 10−3

5.0 · 10−1 7.4 · 10−1 5.0 · 10−1

2.5 · 10−3 4.9 · 10−3 2.5 · 10−3

We can see in this specific example that σ∗nr−qr serves as a fairly well upper bound for
σnr(C) and σnr(C(I)). This is easily explained by the nature of the partial differential
equation, since σ∗nr−qr refers to the smallest singular value of the subsystem which leaves
out the nodes at the interfaces. This system is in general only slightly smaller but with
similar properties as each Cr and Cr(I), except that one can read omitting the nodes near
the interfaces as choosing Dirichlet boundary conditions everywhere.

We can now easily apply the analytic solution of the completion problem from [27] but we
like to note that the constraint with X and X−1 is in general not satisfied. We will focus
on each local problem involving the blocks (r, r), (r, s), (s, r), (s, s). This simplifies the
completion problem dramatically and also allows to treat it for each pair of neighbouring
diagonal blocks separately.

Lemma 2 Let {r, s} ∈ EM such that r < s. Let

α0 = min

{
σmin

(
Cr 0 Ers 0
0 Cs 0 Esr

)
, σmin

(
CT
r 0 Frs 0

0 CT
s 0 Fsr

)}
.

Given α < α0 such that α is not a singular value of Cr or Cs, then the general solution X
of ∥∥∥∥∥∥∥∥


Cr 0 Ers 0
0 Cs 0 Esr
F T
sr 0 Xrr Xrs

0 F T
rs Xsr Xss


−1∥∥∥∥∥∥∥∥

2

6
1

α

satisfies Xrs = 0 = XT
sr and

Xrr = F T
srC

T
r

(
CrC

T
r − α2I

)−1
Ers + αYrr,

Xss = F T
rsC

T
s

(
CsC

T
s − α2I

)−1
Esr + αYss,

(20)
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where Yrr, Yss may be any matrices such that

Yrr
(
I − ET

rs(CrC
T
r + ErsE

T
rs − α2I)−1Ers

)
Y T
rr > I + F T

sr(C
T
r Cr − α2I)−1Fsr

Yss
(
I − ET

sr(CsC
T
s + EsrE

T
sr − α2I)−1Esr

)
Y T
ss > I + F T

rs(C
T
s Cs − α2I)−1Frs

in the sense of quadratic forms.

Proof.
We set

Ĉ = diag(Cr, Cs), Ê = diag(Ers, Esr), F̂ = diag(Fsr, Frs).

Except for the block-diagonal structure of X this lemma exactly reveals Theorem 3.1 from
[27], which states that there exists X such that

X = F̂ T ĈT
(
ĈĈT − α2I

)−1

Ê + αY, where

Y
(
I − ÊT (ĈĈH + ÊÊT − α2I)−1Ê

)
Y T > I + F̂ T (ĈT Ĉ − α2I)−1F̂ .

The underlying block structure of Ĉ, Ê and F̂ obviously induce the block structure of X. �

We like to mention that often enough (say in applications arising from partial differential
equations), the diagonal part of a matrix is well-conditioned enough to be used, i.e., rather
than using the complete inverses in Lemma 2, we could work with the diagonal parts before
inverting the matrices. In this case, simplified versions of Xrr, Xss from Lemma 2 could be
used to define −X−1

rs ,−Xrs.

We like to mention that the Hermitian case can be treated more easily as stated in Theorem
2.1 in [27]. Even if A and C are symmetric and positive definite, E = F and if X is chosen
positive definite as well, the constraint minimization problem∥∥∥∥∥∥∥

 C E(1) E(2)

(E(1))T −X−1 0
(E(2))T 0 −X

−1
∥∥∥∥∥∥∥

2

6
1

α

refers to a Hermitian but indefinite problem. In this case we always have

λl(Cr(X)) ≡ σl(Cr(X)) > λl(Cr)

since in the sense of quadratic forms we have

Cr(X) = Cr +
∑
s:s>r

ErsXrsE
T
rs +

∑
s:s<r

ErsX
−1
rs E

T
rs > Cr.

This can be observed in Example 8. Thus ‖Cr(X)−1‖ can only become better than ‖C−1
r ‖

and the same applies to the condition number as long as ‖Cr(X)‖ ≈ ‖Cr‖.
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Example 9 We will continue Example 8, except that the elliptic operator −uxx − uyy is
now replaced by −εuxx − εuyy with varying coefficient ε as illustrated below.

24 4 24
4 1955 4
24 4 24

For simplicity we assume that the larger value is taken on the interfaces. We like to
stress that each local interface between two neighbouring diagonal blocks is essentially of
the following type for a suitable α > β (e.g. α = 3 · 1955, β = 4)

(
Arr Ars
Asr Ass

)
=



α+ β −β

−β . . .
. . .

. . .
. . .

−βI

−βI

4β −β

−β . . .
. . .

. . .
. . .


Since minimum rank decoupling adds positive semidefinite matrices to the diagonal blocks,
we propose to move the interface nodes (which reflect the jumps of ε), to the diagonal blocks
with larger ε. In this case the diagonal entries of the blocks with larger ε have relatively
small diagonal entries at the nodes connected to the neighbouring blocks, e.g., for the (2, 2)
block, the diagonal entries are 4ε = 7820 for the inner nodes,whereas the diagonal entries
of the (2, 2) system in the extremal four corners are only half as big. Since we work with
splittings rather than with removing nodes to a remaining Schur complement system, this
effect cannot be avoided. We illustrate this effect by stating the largest and smallest singular
value σmax(Cr), σmin(Cr) for each diagonal block Cr of the unmodified block diagonal matrix
C (we will use N = 40).

σ1(Cr)
σnr(Cr)

1.9 · 102 3.2 · 101 1.9 · 102

5.7 · 10−2 4.7 · 10−2 5.7 · 10−2

3.2 · 101 1.6 · 104 3.2 · 101

2.9 · 10−2 3.9 · 10−1 2.9 · 10−2

1.9 · 102 3.2 · 101 1.9 · 102

5.7 · 10−2 2.9 · 10−2 5.7 · 10−2

Knowing that for large ε the diagonal entries close to the interfaces are less than in the
interior of the diagonal block, one can use this information to increase the diagonal entries,
e.g., the (2, 2) block. Choosing X = 40 · I for all Xrs in the (2, 2) block and X−1

rs outside
improves the condition number dramatically. Similarly, for the four blocks in the corner of
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the domain we could increase the diagonal entries further using X = 4 · I. This improves
the condition number of several diagonal blocks significantly while other diagonal blocks are
hardly affected.

σ1(Cr(X))
σnr(Cr(X))

1.9 · 102 3.2 · 101 1.9 · 102

7.4 · 10−2 4.7 · 10−2 7.4 · 10−2

3.2 · 101 1.6 · 104 3.2 · 101

3.0 · 10−2 2.4 · 101 3.0 · 10−2

1.9 · 102 3.2 · 101 1.9 · 102

7.4 · 10−2 3.0 · 10−2 7.4 · 10−2

Finally, with respect to ε, the best condition is obtained in the order 1955/04/24. This
example demonstrates that completion is able to improve the condition number up to two
orders of magnitude in this example and leading to a lower rank between A and C(X) at
the same time. We also reiterate that part of this success is moving the interface nodes to
the diagonal blocks with larger ε.

5 Algebraic Multilevel Preconditioning

So far we have discussed how to improve the diagonal blocks in block-diagonal splitting
and for both approaches, the splitting-type approach and the partitioning-type approach
we have assumed that the systems are solved directly. Often enough, in practice we pre-
fer to solve these systems iteratively using preconditioned Krylov subspace solvers. Since
many application problems arise from the discretization of partial differential equations,
preconditioning methods based on (algebraic) multilevel methods are preferred. Therefore
this section will discuss algebraic multilevel methods and we will also give some ideas how
splitting or partitioning the original system as in Section 3 may be used to parallelize the
approach. Multilevel methods [34, 67] in general are popular for solving systems arising
from partial differential equations. However, when information about some kind of grid
hierarchy is not available, one often has to use algebraic approaches to construct multilevel
methods which mimic the behaviour of multigrid methods using analogous terminology
such as smoothing and coarse grid correction. As long as the system arises from partial
differential equations, say using finite element discretization, one has additional informa-
tion about the underlying physical problem and in this case one may use agglomeration
techniques in order to glue together clusters of element matrices to successively build an
algebraic coarsening hierarchy (cf. e.g. [70, 17, 35, 21]). Somehow in the opposite di-
rection of this development, recent approaches to finite element aggregation are based on
a relatively simple aggregation approach but instead they are supplemented with flexible
Krylov subspace solvers at every level (also referred to as K-cycle), see e.g. [52, 55, 54]. In
a similar direction, algebraic multilevel Krylov methods use K-cycles as well but shift the
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coarse grid operator additionally [28, 29]. Further approaches such as [58, 64, 5, 6] strongly
focus on the underlying matrix and construct the multilevel hierarchy algebraically. This
eventually justifies to employ multilevel incomplete factorization as basis of the coarsening
process, either when there is a strong link to an underlying partial differential equation
[5, 6, 56, 72, 73] or using purely algebraic methodology such as diagonal dominance, inde-
pendent sets or related ideas, see e.g., [68, 16, 61, 14]. We will link earlier work on algebraic
multilevel methods [12, 13] to illustrate the theoretical and practical performance of the
multilevel incomplete factorization method, therefore we will restrict the description to
these class of methods. Following [14], we rescale and reorder the initial system A ∈ Rn,n

to obtain
Â = P TDADP,

where D ∈ Rn,n is a nonsingular diagonal matrix and P ∈ Rn,n is a permutation matrix.
Here D is chosen such that DAD has all diagonal entries equal to 1. Fill-reducing algo-
rithms such as (approximate) minimum degree [2] or multilevel nested dissection [38, 39]
can be used afterwards to prevent (incomplete) factorization methods from producing too
much fill. Then we perform a partial approximate LDLT factorization of type

ΠT ÂΠ =

(
B ET

E C

)
=

(
LB 0
LE I

)(
DB 0
0 SC

)(
LTB ET

F

0 I

)
+ E (21)

where we allow further symmetric permutations Π ∈ Rn,n for stability of the factorization.
Here DB refers to a nonsingular diagonal matrix, LB is lower triangular with unit diagonal
part and E refers to some appropriate perturbation. Furthermore we have B ≈ LBDBL

T
B,

LEDBL
T
B ≈ E. Eventually we obtain a remaining approximate Schur complement SC ≈

C − EB−1F that consists of all delayed pivots which were not suitable to serve as pivots
during the approximate factorization. Applying the whole procedure to SC then leads to
a multilevel incomplete factorization, where level-by-level, the size of the remaining Schur
complement is reduced until it reaches a size such that it can be easily factorized, say,
by a dense Cholesky factorization method. Multilevel incomplete factorization methods
as described here are well-established, see e.g. [5, 68, 16, 61, 60]. For ease of notation
we collect the permutation matrices Π and P in a single permutation matrix and call
it again P . Often enough, LB is not stored explicitly, but implicitly defined via LE :=
EL−TB D−1

B saving some memory at the cost of solving an additional system. We like to
point out that in this case E from (21) has an empty (1, 2) block and (2, 1) block. The
same applies if SC := C − LEDBL

T
E is chosen. Having only one block EB different from

zero does not necessarily mean that the approximate factorization is more accurate, since
this EB propagates through the factorization and using the approximate factorization for
preconditioning requires to apply the inverses in equation (21) which may lift the influence
of E .

Example 10 We illustrate for the model problem −∆u = f in two spatial dimensions and
N = 100 grid points in each direction the skeleton of a multilevel factorization.
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We like to emphasize that at least a single level factorization yields an approximate inverse
of type

Â−1 ≈
(
I
0

)
(LBDBL

T
B)−1

(
I
0

)T
+QS−1

C QT where Q =

(
−L−TB LTE

I

)
. (22)

Approximate inverse preconditioners of this type are well-studied in literature and we like
to study how a preconditioner of type

M (1) = LLT +QS−1
C QT (23)

will approximate Â for some nonsingular L ∈ Rn,n. In the limit, when

LLT →
(
I
0

)
(LBDBL

T
B)−1

(
I
0

)T
we will also obtain some information about the (multilevel) incomplete factorization as
preconditioner. Here we can imagine that for some positive σ, τ , we could have, e.g.,

L =

(
σL−TB D

−1/2
B 0

0 τI

)
.

We denote by m the remaining block size of C ∈ Rm,m. It was shown in [12], that the
optimal preconditioner for Â of type LLT + QZ−1QT , Q ∈ Rn,m, Z ∈ Rm,m, with respect
to the condition number of the preconditioned system is given by choosing Q as the matrix
of eigenvectors Qopt = [q1, . . . , qm] of LT ÂL with respect to its m smallest eigenvalues
λ1, . . . , λm and Z = QTAQ is almost optimal. It is obvious that for any nonsingular
X, Qopt → QoptX, Z → (X−TZX−1) is optimal as well, i.e., Q has to approximate the

invariant subspace of LT ÂL associated with its smallest eigenvalues. Taking into account
the optimality of Qopt the natural question arises for the preconditioner M (1) from (23)

how close the specific choice Q matches the optimal Qopt. We like to mention that LT ÂL
must have eigenvalues less than or equal to 1 which is satisfied for sufficiently small σ
and τ . Note also that since we have scaled the original system A initially and since
D
−1/2
B L−1

B BL−TB D
−1/2
B ≈ I, σ and τ need not be chosen too small. Indeed we may expect
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that σ, τ = O(1) is already sufficient. One can also verify easily that in the limit case as
τ → 0, we have

(LT ÂL)−1 = O(1) + L−1

(
−B−1ET

I

)
(C − EB−1ET )−1

(
−B−1ET

I

)T
L−T .

This illustrates that asymptotically as τ → 0 the largest m eigenvalues of (LT ÂL)−1 and
their associated invariant subspace is fairly well approximated by

L−1

(
−B−1ET

I

)
which is therefore close to the optimal rank m choice. This in turn justifies choosing

Q =

(
−L−TB LTE

I

)
for the preconditioner M (1) and SC ≈ QTAQ as almost optimal choice. We will next
illustrate how Theorem 4 from [12] describes the quality of the preconditioner M (1) and we
will further use this Theorem in order to improve the multilevel incomplete factorization
preconditioner (21).

There are two key properties that need to be fulfilled. First of all, we need W such that

W T ÂQ = 0 and ∆W T ÂW −W TL−TL−1W positive semidefinite (24)

for some ∆ > 0. Second, the approximate Schur complement SC has to satisfy

γQT ÂQ 6 SC 6 ΓQT ÂQ

in the sense of quadratic forms for some 0 < γ 6 Γ. Then

cond(
(
M (1)

)−1/2
Â
(
M (1)

)−1/2
) 6

γ

(γ + 1) max{Γ,∆}
.

While γ and Γ are quite natural bounds, the delicate question is the size of ∆. One can
easily verify that using E = LEDBL

T
B and Z = C − LEDBL

T
E we have

ÂQ =

(
−EBB̃−1ET

Z

)
, where B̃ = LBDBL

T
B. (25)

This allows to define
W T :=

(
I −EBB̃−1ETZ−1

)
and to bound ∆. We will not follow this approach in detail and use a different way to
examine the multilevel ILU as preconditioner, but even here we can immediately see that
EBB̃−1ETS−1

C plays a central role. Usually the multilevel factorization on each level is set
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up such that B can be easily approximated by B̃ using some criterion such as diagonal
dominance or diagonal blocks of small size whereas SC is usually more critical. This in
turn means that even a small error EB may be amplified by S−1

C significantly. This is in line
with algebraic multigrid theory (see e.g. [53]), that for approximate inverses (here B̃−1) in
multigrid methods it is not enough to approximate the original matrix B−1 sufficiently.

We will now give a simple theorem to state the approximation quality of (21) directly.

Theorem 1 Consider the approximate factorization from (21) and assume that E =
LEDBL

T
B. Furthermore, suppose that B̃ = LBDBL

T
B satisfies

λB 6 B̃ 6 ΛB

for some 0 < λ 6 Λ and that there exist 0 < γ 6 Γ such that

γ Z 6 SC 6 ΓZ, where Z = C − EB̃−1ET

and we assume that Z is positive definite. Define the preconditioned system T by

T =

(
DB 0
0 SC

)−1/2(
LB 0
LE I

)−1

Â

(
LB 0
LE I

)−T (
DB 0
0 SC

)−1/2

.

Then

cond(T ) 6
max{Λ,Γ}(Λ

λ
+
√

Λ‖H‖2)

min{Λ, γ}(1−
√

Λ‖H‖2)
,

where
H = D

−1/2
B L−1

B EBB̃
−1ETZ−1/2,

provided that
√

Λ‖H‖2 < 1.

Proof.
We have that

C − LEDBL
T
E = C − (EL−TB D−1

B )DB(EL−TB D−1
B )T = C − EB̃−1ET = Z.

From (25) we immediately obtain

Â

(
−L−TB LTE

I

)
= ÂQ =

(
−EBB̃−1ET

Z

)
.

We define TΛ via

TΛ :=

(
1
Λ
DB 0
0 Z

)−1/2(
LB 0
LE I

)−1

Â

(
LB 0
LE I

)−T ( 1
Λ
DB 0
0 Z

)−1/2

.
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Since we know that Q is the second block column of

(
I 0

LEL
−1
B I

)−T
it follows that

TΛ =

( √
ΛD

−1/2
B L−1

B 0
0 Z−1/2

)(
B −EBB̃−1ET

−EBB̃−1ET Z

)( √
ΛL−TB D

−1/2
B 0

0 Z−1/2

)
=

(
ΛD

−1/2
B L−1

B BL−TB D
−1/2
B −

√
ΛD

−1/2
B L−1

B EBB̃−1ETZ−1/2

−
√

ΛZ−1/2EBB̃−1ETL−TB D
−1/2
B I

)
.

We can see that the (1, 2) block exactly refers to −
√

ΛH. Since B̃ 6 ΛB in quadratic

forms it follows that ΛD
−1/2
B L−1

B BL−TB D
−1/2
B > I. This in turn implies that

TΛ −
(

I −
√

ΛH

−
√

ΛHT I

)
=

(
ΛD

−1/2
B L−1

B BL−TB D
−1/2
B − I 0

0 0

)
is positive semidefinite. Thus on one hand we have

λmin(TΛ) > 1−
√

Λ‖H‖2,

provided that Λ‖H‖2 < 1. On the other hand we have

λmax(TΛ) = ‖TΛ‖2 6 ‖ΛD−1/2
B L−1

B BL−TB D
−1/2
B ‖2 +

√
Λ‖H‖2 6

Λ

λ
+
√

Λ‖H‖2.

To conclude the proof, we point out that the preconditioned system refers to T ≡ T1 and
we obviously have that

min{ 1

Λ
,

1

Γ
}
(

ΛB̃−1 0
0 Z−1

)
6

(
B̃−1 0

0 S−1
C

)
6 max{ 1

Λ
,

1

γ
}
(

ΛB̃−1 0
0 Z−1

)
which directly implies

λmin(T ) > min{ 1

Λ
,

1

Γ
}(1−

√
Λ‖H‖2), λmax(T ) 6 max{ 1

Λ
,

1

γ
}(Λ

λ
+
√

Λ‖H‖2).

�

We give an interpretation of the bound obtained by Theorem 1. In practice, λ and Λ are
expected to be close to 1, so this effect can be ignored, i.e. we essentially have

cond(T ) /
Γ(1 + ‖H‖2)

γ(1− ‖H‖2)
.

Furthermore we note that

1. Â is diagonally scaled, thus ‖E‖ is moderately bounded,
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2. ‖EB‖ is considerably small when B is well-suited (say diagonally dominant or close
to it).

Thus the main effects are how well SC approximates Z and how Z−1/2 amplifies the re-
maining small terms in ‖H‖2 which is not known in advance.

There are some techniques to keep the influence of Z−1/2 smaller and to improve approxi-
mating Z by SC , which we will discuss in the sequel. First of all, we like to point out that
similar influence of Z−1 or S−1

C is also illustrated by (24). We can improve ∆ (cf. [13]) by
considering

∆W T Â2W −W T ÂW

instead. Besides, considering the preconditioner M (2) from [12]

M (2) = 2LLT − LLT ÂLLT + (I − LLTA)

(
−B̃−1ET

I

)
S−1
C

(
−B̃−1ET

I

)T
(I − ALLT )

will yield improved bounds since in this case, essentially only

∆W T (2Â2 − Â3)W,W T ÂW

are taken into account for the estimates (cf. Theorem 4 in [12]). We will not go into the
details of deriving bounds for this case. but mention that this preconditioner one can read
as replacing B̃ by more accurate approximations and thus reducing the error EB. Indeed,
M (2) is obtained from the simple 2-level multilevel scheme

I −M (2)Â

≡ (I −
(
B̃−1 0

0 0

)
Â)(I −

(
−B̃−1ET

I

)
S−1
C

(
−B̃−1ET

I

)T
Â)(I −

(
B̃−1 0

0 0

)
Â)

(26)
which demonstrates how a multilevel incomplete factorization can be easily upgraded to
serve as algebraic multigrid method, see e.g. [57]. In the sense of multigrid methods, the
first and the third factor are usually considered as smoothing while the factor in the middle
reveals the coarse grid correction. We will demonstrate the difference between the simple
multilevel incomplete factorization and its induced algebraic multigrid.

Example 11 Again we will consider the well-known problem −∆u = f on a unit square
in two spatial dimensions with Dirichlet boundary conditions and N grid points in every
direction. We compare

1. the multilevel incomplete factorization from [14] with its default options (in particular
a drop tolerance of 10−2 and preconditioned conjugate gradient method that stops
when the relative error in the energy norm drops below 10−6). This gives a multilevel
incomplete Cholesky factorization (MLIC),
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2. the associated algebraic multigrid method associated with M (2).

Both operators will serve as preconditioners for the conjugate gradient method. Beside the

computation time and the number of CG steps we will state the relative fill nz(LDLT )
nz(A)

for
the number of nonzero entries.

N MLIC computation MLIC-CG M (2)-CG
[sec] fill [sec] steps [sec] steps

100 6.6 · 10−2 2.7 5.1 · 10−2 26 9.1 · 10−2 23
200 2.5 · 10−1 2.8 3.4 · 10−1 43 6.7 · 10−1 38
400 1.3 · 100 2.8 3.3 · 100 77 6.7 · 100 66
800 5.8 · 100 2.8 3.0 · 101 135 6.6 · 101 119

1600 2.6 · 101 2.9 2.4 · 102 237 5.7 · 102 221

As we can see, although the number of iteration steps is slightly reduced the total computa-
tional amount of work even increases. Besides, none of the methods scales linearly.

We can see from Example 11, simply improving the quality of B̃ is not enough which
is well-known (see e.g. [53]). Here the source is two-fold. On the one hand one has to
ensure that the perturbation is sensitive with respect to H. On the other hand SC needs to
approximate Z sufficiently. Here we attempt to approach these requirement by computing
a modified multilevel incomplete factorization that is exact for the vector e with all ones.
Besides, when upgrading the multilevel ILU to an algebraic multigrid method, more natural
improvements can be achieved borrowing the smoothing and coarse grid methodology from
AMG. In the sense of AMG, in (26) we replace(

B̃−1 0
0 0

)
−→

{
G−1

G−T

by more general approximations such as the inverse of the lower triangular part of Â
(Gauss-Seidel) or a damped inverse of the diagonal part (Jacobi). To preserve symmetry,
one uses G−T in the first factor of (26) and G−1 in the third factor. Additionally, since
the middle factor in (26) solves the coarse grid only approximately in the multilevel case,
one recursive call refers to the traditional V -cycle while two recursive calls are refered to
as W-cycle. We note that since the factorization in (21) is exact for e, we have EBe = 0,
Be = B̃e and SCe = Ze and e can be regarded as sample vector for the low frequencies.
Several algebraic multigrid methods and incomplete factorization methods make use of this
improvement, see e.g. [64, 72, 73].

Example 12 We will continue Example 11 and consider the following preconditioners in
two spatial dimensions, except that now the multilevel incomplete factorization (21) is exact
for e. We will compare the following preconditioners.
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1. Modified multilevel incomplete Cholesky (MLIC)

2. V-cycle AMG with one Gauss-Seidel forward and one Gauss-Seidel backward smooth-
ing step (AMGV),

3. W-cycle AMG with one Gauss-Seidel forward and one Gauss-Seidel backward smooth-
ing step (AMGW).

N MLIC comput. MLIC-CG AMGV-CG AMGW-CG
[sec] fill [sec] steps [sec] steps [sec] steps

100 6.5 · 10−2 2.9 3.2 · 10−2 15 6.9 · 10−2 14 8.7 · 10−2 8
200 3.1 · 10−1 3.0 1.5 · 10−1 18 3.9 · 10−1 16 4.4 · 10−1 8
400 1.6 · 100 3.1 9.5 · 10−1 20 2.6 · 100 19 2.6 · 100 8
800 7.4 · 100 3.1 5.4 · 100 23 1.6 · 101 21 1.5 · 101 8

1600 3.4 · 101 3.2 2.6 · 101 25 8.1 · 101 24 8.3 · 101 9

Although the number of CG steps, in particular for W-cycle, is better, the overall complexity
is best for the multilevel ILU, because the approach is simpler and the intermediate coarse
grid systems are not required. The latter are known to fill-up during the coarsening process.

Example 13 We will conclude this section with another example AF SHELL3 from sheet
metal forming, available at the University of Florida sparse matrix collection, to demon-
strate the flexibility of algebraic multilevel ILU preconditioning. The symmetric positive
definite system has a size of n = 504′855 with approximately 35 nonzero entries per row.
We will compare the methods without test vector e and with e.

without test vector e
MLIC comput. MLIC-CG AMGV-CG AMGW-CG

[sec] fill [sec] steps [sec] steps [sec] steps

5.1 · 101 3.9 9.7 · 101 79 2.5 · 102 82 3.2 · 102 42

with test vector e
MLIC comput. MLIC-CG AMGV-CG AMGW-CG

[sec] fill [sec] steps [sec] steps [sec] steps

6.0 · 101 4.2 5.0 · 101 40 1.2 · 102 38 1.9 · 102 20

Similar to Example 12, the ILU performs best, although not in terms of iteration steps.
Again, using e to improve the method is beneficial.

We finally like to mention that the partitioning approach as indicated in Section 3 for nested
dissection by nodes may also serve as parallelization approach prior to the incomplete
factorization.
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Example 14 We consider again the model problem −∆u = f and sketch in Figure 7 the
parallel multilevel incomplete factorization in the cases p = 2, 4 and N = 100 grid points
in each direction.

Figure 7: Parallel multilevel incomplete factorization, p = 2(left), p = 4(right)

6 Approximate Inversion Using Multilevel Approxi-

mation

In this final section we will illustrate how most of the aspects discussed in the previous
sections can be usefully united for the approximate inversion of matrices. Functions of
entries of inverses of matrices like all diagonal entries of a sparse matrix inverse or its trace
arise in several important computational applications such as density functional theory [40],
covariance matrix analysis in uncertainty quantification [7], simulation of quantum field
theories [43], vehicle acoustics optimization [50], or when evaluating Green’s functions in
computational nanolelectronics [46]. Often enough, modern computational methods for
matrix inversion are based on reordering or splitting the system into independent parts
[11, 49], since in this case the (approximate) inverse triangular factors tend to be relatively
sparse which simplifies their computation [44, 45, 65, 66]. Here we will use the following
ingredients.

1. We will use the partitioning approach (7) from Section 2 for partitioning the systems.
If some of the diagonal blocks were ill-conditioned, one could alternatively fall back
to the splitting approach (5) and use a completion approach,
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2. the multilevel incomplete factorization from Section 5 will be used as approximate
factorization.

For the multilevel incomplete factorization we scale and reorder at each level the system
using nested dissection. In principle, an approximate factor

L =


L11 0

. . . 0
0 Lp−1,p−1

Lp1 · · · Lp,p−1 Lpp


is easily inverted. This structure keeps the inverse factor sparse and can be applied recur-
sively and is used in approximate inverse methods [18] and is part of several methods for
exact inversion [45, 44, 65].

Example 15 Consider the problem −∆u = f on the unit square in two spatial dimensions
with 5-point-star-stencil. The system will be reordered with nested dissection [38]. Figure
8 illustrates the incomplete Cholesky factor and its (approximate) inverse. Although its
approximate inverse uses about ten times more memory it still approximately sparse.

Figure 8: triangular factor and its (approximate) inverse after nested dissection reordering

Next we like to mention that multilevel incomplete factorizations can be rewritten as a
single-level factorization. Consider the incomplete factorization (21) and suppose that
P T

2 D2SCD2P2 = LCDCL
T
C + EC . One can easily verify that substitution into (21) leads

to a factorization of the form P̂ T D̂ÂD̂P̂ = L̂L̂T + Ê with modified permutation matrix
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P̂ , new diagonal matrix D̂, lower triangular matrix L̂ and some perturbation Ê . The
triangular factors from Example 15 already refer to a multilevel factorization that was
formally rewritten as a single-level factorization.

When inverting the triangular factorization (21) we already know that

A−1 ≈ DP

[(
I
0

)
B̃−1

(
0 I

)
+

(
−L−TB LTE

I

)
S−1
C

(
−LEL−1

B I
)]
P TD,

where equality holds if E = 0 and in particular selected entries such as the diagonal entries
of A−1 are dominated by S−1

C when ‖B̃−1‖ is well-bounded. Here again, as before, we have
set B̃ = LBDBL

T
B. One can compute the diagonal entries of the inverses separately from

the sum [65]. Computing the diagonal entries D(B̃−1) of B̃−1 is easily achieved because
of the nested dissection partition and the multilevel approach. It is harder to compute
the remaining Schur complement S−1

C in general. But again in a multilevel setting, SC is
substituted until eventually only a system of small size is left over. If we construct the
multilevel factorization such that LEL

−1
B is bounded [14], then the influence of the diagonal

entries D(L−TB LTES
−1
C LEL

−1
B ) in the inversion of Â remains on the same order as ‖S−1

C ‖.
To construct B̃ that is easy to invert and to keep ‖LEL−1

B ‖ bounded justifies to use a
multilevel approach instead of a single level incomplete factorization.

Example 16 We consider the linear operator A that is obtained from −∆u = f on the
unit square in two spatial dimensions using as before 5-point-difference stencil, Dirichlet
boundary conditions and N grid points in each spatial direction. Here D(A−1) is explic-
itly known which simplifies numerical comparisons. We will use a multilevel incomplete
factorization from [14] using different drop tolerances τ . Pivoting is introduced such that
successively ‖L−1

B ‖, ‖LEL
−1
B ‖ are approximately kept below a given threshold κ; here we

will choose κ = 100. For details of this strategy we refer to [14].

N τ ‖Â−L̂DL̂T ‖
‖Â‖

‖D(A−1−P̂ D̂ L−TD−1L−1D̂P̂T )‖
‖D(A−1)‖

‖ trace(A−1−P̂ D̂ L−TD−1L−1D̂P̂T )‖
‖ trace(A−1)‖

50 10−4 4.2 · 10−5 1.1 · 10−4 5.2 · 10−6

100 10−4 1.8 · 10−5 1.9 · 10−5 2.6 · 10−6

200 10−4 1.4 · 10−5 3.8 · 10−5 2.3 · 10−6

50 10−5 2.6 · 10−6 5.5 · 10−6 1.2 · 10−7

100 10−5 2.2 · 10−6 1.2 · 10−6 6.2 · 10−8

200 10−5 3.2 · 10−4 1.6 · 10−3 1.8 · 10−4

50 10−6 8.5 · 10−16 8.1 · 10−15 5.4 · 10−16

100 10−6 2.1 · 10−8 1.8 · 10−8 3.1 · 10−10

200 10−6 1.1 · 10−5 6.1 · 10−5 1.0 · 10−5

The displayed norm here is always ‖ • ‖∞. We point out that the multilevel incomplete
factorization is not yet fit for approximate inversion. For this reason we do not display the
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computation time. We can see that the error with respect to the inverse is of the same order
as the drop tolerance or at most one order greater which demonstrates the effectiveness of
this approach.

Finally we mention that to turn the multilevel approach into an efficient method for ap-
proximate inversion, the approach would have to be modified to(

WB 0
WE I

)
Â

(
W T
B W T

E

0 I

)
=

(
DB 0
0 SC

)
+ E

which refers to a multilevel approximate inverse-type approach generalizing the AINV
method [9, 10]. This will be subject of future research and algorithms.

Conclusions

In this paper we have demonstrated that several Numerical Linear Algebra methods can be
efficiently used in many recent preconditioning techniques and matrix inversion methods.
They give deep information about the underlying approximation and help to improve these
methods.
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