
Low-Rank Cholesky Factor Krylov Subspace Methods for
Generalized Projected Lyapunov Equations

Matthias Bollhöfer∗ André K. Eppler†

Abstract

Large-scale descriptor systems arising from circuit simulation often require model reduction tech-
niques. Among many methods, Balanced Truncation is a popular method for constructing a reduced
order model. In the heart of Balanced Truncation methods, a sequence of projected generalized Lya-
punov equations has to be solved. In this article we present a general framework for the numerical
solution of projected generalized Lyapunov equations using preconditioned Krylov subspace methods
based on iterates with a low-rank Cholesky factor representation. This approach can be viewed as alter-
native to the LRCF-ADI method, a well established method for solving Lyapunov equations. We will
show that many well-known Krylov subspace methods such as (F)GMRES, QMR, BICGSTAB and CG
can be easily modified to reveal the underlying low-rank structures.

1 Introduction

The numerical simulation of large-scale integrated circuits nowadays approaches system sizes of several
hundred million equations. This ever-increasing size has several sources; one of which is the accelerating
scale of miniaturization, another reason is the increasing density of the integrated devices. The simulation of
the complete system requires many simulation runs with different input signals. These simulation runs would
be impossible to compute in acceptable time using the original system. Instead it is necessary to replace the
original system by a significantly smaller reduced model which inherits the essential structures and properties
of the original system as, e.g., passivity and stability. To deal with this problem model order reduction
techniques (MOR) have turned out to be a key technology in order to generate reduced models. Among
the most popular methods for MOR are those based on Krylov subspace method or Balanced Truncation
(BT) [3, 13, 30]. For problems arising from circuit simulation in particular passivity-preserving balanced
trucation methods [33, 34, 45] are of particular interest, since beside reducing the circuit to a reduced order
model, major important properties like stability and passivity have to be preserved to obtain a physically
correct model. Another frequently used method mainly applied to partial differential-algebraic equations
(PDAE) is the Proper Orthogonal Decomposition (POD) method, cf. [16, 26].

This article is organized as follows. In Section 2 we will give a brief introduction to balanced truncation
which is the motivation for our methods and requires to solve several sequences of generalized projected
Lyapunov equations. This includes existing numerical methods for solving Lyapunov equations. In Section 3
we will present our novel approach for generalized projected Lyapunov equations based on Krylov subspace
methods. Finally we will use use several examples from circuit simulation, as well as other examples, to
demonstrate our approach in Section 4.

∗Institute for Computational Mathematics, TU Braunschweig, D-38106 Braunschweig, Germany (m.bollhoefer@tu-bs.de).
†Institute for Computational Mathematics, TU Braunschweig, D-38106 Braunschweig, Germany (a.eppler@tu-bs.de).

1

2 Balanced Truncation

The basis for the numerical methods for generalized projected Lyapunov equations presented in this paper
are those using Balanced Truncation (BT). In particular passivity-preserving Balanced Truncation methods
will be of special interest for model order reduction techniques applied to circuit simulation problems.

2.1 Introduction to Balanced Truncation

To start with the idea of Balanced Truncation we consider a linear time invariant descriptor system

Eẋ = Ax+Bu
y = Cx+Du

where A,E ∈ Rn,n,B ∈ Rn,m,C ∈ Rp,n,D ∈ Rp,m

such that m, p� n. Numerical methods for MOR replace E, A, B, C by smaller matrices Ẽ, Ã, B̃, C̃ such that
for all matrices the initial dimension n is replaced by a suitable l� n, i.e., Ã, Ẽ ∈ Rl,l , B̃ ∈ Rl,m, C̃ ∈ Rp,l .

When using Balanced Truncation the reduction of the model is done by multiplying with matrices W ∈
Rl,n, T ∈ Rn,l in order to obtain the reduced descriptor system

(E,A,B,C,D)→ (Ẽ, Ã, B̃,C̃,D) = (WET,WAT,WB,CT,D).

The transformation matrices W and T are constructed using the solutions of generalized Lyapunov equations,
the so-called proper controllability gramian Gpc and the proper observability gramian Gpo. When E is
singular one also has to take into account the improper controllability gramian and the improper observability
gramian, for details we refer to [34]. For the computation of a reduced model we have to compute X = Gpc

and Y = Gpo by solving the projected generalized Lyapunov equations

EXAT +AXET +PlBBT PT
l = 0, where X = PrXPT

r ,
ETYA+ATY E +PT

r CTCPr = 0, where Y = PT
l Y Pl.

(1)

Here Pl , Pr are obtained from the Weierstrass canonical form for (E,A). To do so we assume that det(A−
λE) 6≡ 0. In this case there exist nonsingular V and Z such that

V−1EZ =

(
I 0
0 N

)
, V−1AZ =

(
J 0
0 I

)
. (2)

Here J,N denote matrices in Jordan canonical form where N nilpotent. The left and right projection of (E,A)
to

(PlEPr,PlAPr) =

(
V
(

I 0
0 0

)
Z−1, V

(
J 0
0 0

)
Z−1

)
(3)

yields the projectors Pl and Pr of the matrix pencil λE−A with respect to the subspace of finite eigenvalues.
By solving (1) we obtain symmetric, positive semidefinite solutions X = RRT and Y = LLT , provided that
the eigenvalues of J from (2) are located in the open left half plane. In many application problems for MOR
in circuit simulation the matrices X , Y are numerically of approximate low rank. Using the singular value
decomposition of LT ER and LT AR the balanced system is built. This way some general properties such as
passivity are not necessarily preserved. To even preserve passivity it is necessary to solve the projected Lur’e
equations [33]. In some special cases these in turn can be traced back to algebraic Riccati equations of the
form

EXAT +AXET +(EXCT −PlB)T R−1(EXCT −PlB) = 0, where X = PrXPT
r (4)

2

and
ATY E +ETYA+(BTY E−CPr)

T R−1(BTY E−CPr) = 0, where Y = PT
l Y Pl. (5)

For details we refer to [33, 34]. Solving Riccati equations using Newton’s method or the Newton-
Kleinman method [4, 44] requires solving a sequence of projected, generalized Lyapunov equations of the
form

EXkAT
k +AkXkET +PlBkBT

k PT
l = 0, where Xk = PrXkPT

r ,
ETYkAk +AT

k YkE +PT
r CT

k CkPr = 0, where Yk = PT
l YkPl.

(6)

Compared with the original pencil (E,A), the matrix Ak in (E,Ak) is obtained from a low-rank correction of
A. For large-scale sparse systems arising from circuit simulation this allows for the computation of sparse
approximations (resp. sparse factorizations) of (E,A) and then to transfer these approximations to the pencil
(E,Ak) using the Sherman–Morrison–Woodbury formula [14] with respect to Ak.

2.2 Numerical Methods for Projected, Generalized Lyapunov Equations

We will now describe in detail how projected, generalized Lyapunov equations of type

EXAT +AXET +PlBBT PT
l = 0, where X = PrXPT

r (7)

are solved numerically. For simplicity we restrict ourselves to solving a single equation of this type which
is at the heart of Balanced Truncation methods and in practice such equations have to be solved frequently.

One of the most commonly used methods for solving (projected) generalized Lyapunov equations is the
ADI method [28, 31, 44, 47]. The ADI method for solving (7) consists of a sequence j = 1,2,3, . . . of steps,
which is decomposed into two half-steps

(E + τ jA)X j− 1
2
AT = −PlBBT PT

l −AX j−1(E− τ jA)T ,

AX j(E + τ jA)T = −PlBBT PT
l − (E− τ jA)X j− 1

2
AT .

From these two coupled equations we successively compute (X j) j. Here τ1,τ2,τ3, . . . refer to shift
parameters that have to be chosen appropriately to achieve convergence, see [32, 47]. Starting with X0 = 0
and using that the right hand side PlBBT PT

l is symmetric and positive semidefinite one can easily verify that
all iterates X j = R jRT

j are also symmetric and positive semidefinite. This can be used explicitly in the ADI
method to represent the iterates by low rank Cholesky factors

R j =

[√
−2Re(τ j){(E + τ jA)−1PlB}, {(E + τ jA)−1(E− τ̄ jA)R j−1}

]
.

For the generalized case, the projectors Pl and Pr from (3) ensure that if R j−1 = PrR j−1, then we also obtain
R j = PrR j and thus X j = PrX jPT

r holds.
The matrices of type (E± τ jA), (E± τ jA)−1 commute with each other independent on the choice of τ j.

This observation has been used in [28] to reduce the numerical complexity of the computation of R j by one
order of magnitude. This has lead to the Low-Rank Cholesky Factor-ADI Method (LRCF-ADI) and can be
described for the case of general and projected Lyapunov equations by Algorithm 2.1.

3

Algorithm 2.1 LRCF-ADI for generalized, projected Lyapunov equations 7
1: Compute shift parameters τ1, . . . ,τt

2: z1 =
√
−2Re(τ1)(E + τ1A)−1PlB

3: R = [z1]
4: for i = 2 . . . t . . . do
5: zi = Pi−1 =

√
−2τi√
−2τi−1

[
zi−1− (τi + τ̄i−1)(E + τiA)−1Azi−1

]
6: Ri = [Ri−i zi]
7: end for

For the convergence of the ADI method the choice of the shift parameters τ1,τ2, . . . is essential. For the
case where E = I and −A is symmetric and positive definite optimal shift parameters are known [47]. In
general one often has to work with heuristic parameters as, e.g., in [31, 32] although asymptotically optimal
shifts can be determined by Fejér-Walsh points [43] or Leja-Bagby points [27, 42]. Also, recent global
optimization strategies to approximate optimal shifts have lead to promising results [38].

3 Low-rank Cholesky Factor Krylov Subspace Methods

The objective of this article is to describe novel numerical solution methods for projected generalized Lya-
punov equations based on low-rank Krylov subspace methods. These are frequently used as core part of
the model order reduction approach. In principle ADI methods belong to the class of iterative methods for
solving the linear system (7). This can be equivalently rewritten as

L X = B,

where L =E⊗A+A⊗E corresponds to the Lyapunov operator in (1), X = vec(X) and, B= vec(−PlBBT PT
l).

Our goal is to preserve the matrix structure as well as the low-rank structure of the Lyapunov equation (7),
while at the same time the benefits of structure-preserving preconditioned Krylov subspace methods applied
to L X = B will be exploited.

3.1 Low-Rank Krylov Subspace Methods

Krylov subspace methods without preconditioning consist of series of matrix-vector multiplications, scalar
products and linear combinations of vectors. The residuals Rk = B − L Xk are located in
span{R0,L R0, . . . ,L k−1R0} and the approximate solutions Xk+1, respectively, can be represented by
elements of the space X0 + span{R0,L R0, . . . ,L k−1R0}. For two-sided Krylov subspace methods such
as BiCG or QMR, multiplications with the transposed matrix also have be taken into account. Here as part
of the solution process, both Riccati equations (4), (5) could be treated simultaneously solving both associ-
ated linear equations (6) in common. This follows from the property of two-sided Lanczos methods which
require a right initial guess such as PlBkBT

k PT
l and an appropriate left initial guess which could be chosen

as PT
r CT

k CkPr. Yet the two-sided methods have to be slightly modified to explicitly compute the additional
approximate solution. While the iterates are located in a Krylov subspace on one hand, on the other hand
we have that the right hand side −PlBBT PT

l of the Lyapunov equation, as well as the approximate solution
X = RRT , can be represented as symmetric low-rank matrices. The obvious approach to migrate both struc-
tures for adapted Krylov subspace methods consists of keeping all iterates of the Krylov subspace method
in symmetric low-rank format. This in turn yields elementary operations for iterates of type Zi = QiMiQT

i ,
where Mi = MT

i , i = 1,2 are also symmetric but of much smaller size than Zi. We set Zi = vec(Zi) and note
that elementary operations are translated as follows:

4

• L Z1 is equivalently written as

EZ1AT +AZ1ET = [EQ1,AQ1]︸ ︷︷ ︸
=:Q2

[
0 M1

M1 0

]
︸ ︷︷ ︸

=:M2

[EQ1,AQ1]
T︸ ︷︷ ︸

=:QT
2

• analogously, L T Z1 is represented by

ET Z1A+AT Z1E =
[
ET Q1,AT Q1

]︸ ︷︷ ︸
=:Q2

[
0 M1

M1 0

]
︸ ︷︷ ︸

=:M2

[
ET Q1,AT Q1

]T︸ ︷︷ ︸
=:QT

2

• linear combinations αZ1 +βZ2 can be traced back to

αZ1 +βZ2 = [Q1,Q2]︸ ︷︷ ︸
=:Q3

[
αM1 0

0 βM2

]
︸ ︷︷ ︸

=:M3

[Q1,Q2]
T︸ ︷︷ ︸

=:QT
3

• finally, scalar products are easily computed using the trace of matrices by

Z T
1 Z2 = trace(ZT

1 Z2) = trace(Z1Z2).

This shows that in principle Krylov subspace methods can be set up such that all iterates are represented
by symmetric low-rank matrices.

3.2 Low-Rank Cholesky Factor Preconditioning

If we wish to supplement a Krylov subspace solver with an additional preconditioner, then in the worst case
the low-rank structure of the single iterates is lost. This holds even for the simple example of diagonal
preconditioning. Instead the preconditioner has to be adapted such that the low-rank structure is inherited.
The natural choice for a preconditioner in this case is obtained from the LRCF-ADI method. Given Z1 =
Q1M1QT

1 , we can apply t steps of the LRCF-ADI method from Section 2.2 starting with a right hand side
Cholesky factor B := Q1. This way we obtain the LRCF-ADI factors (R j) j=1,...,t which in turn yield a
symmetric low-rank matrix

Q1M1QT
1 −→ B := Q1

LRCF-ADI
−→

for B = Q1

Rt −→ Rt (It ⊗M1) RT
t .

Using ADI we obtain in a canonical way that the composed system

Rt (It ⊗M1) RT
t ≡ Q2M2QT

2 (8)

is again a symmetric low-rank matrix. By construction, Q2M2QT
2 could be equivalently computed by apply-

ing t steps of the usual ADI method starting with initial guess X0 = 0 and right hand side −Q1M1QT
1 .

There are several structure-preserving Krylov subspace methods for (generalized) Lyapunov equations
which are essentially based on the (block-) Krylov subspace

span{B,AB,A2B, . . . ,Ak−1B},

5

see, e.g. [19–21, 23, 29, 41]. Krylov-subspace methods in conjunction with ADI preconditioning are fre-
quently used [7, 17, 22], whereas the preservation of the low-rank structure of the iterates is not employed.
Structure preservation of the GMRES and FGMRES methods ([36]) with LRCF-ADI preconditioning is
further discussed in [9]. In [25] one can find a generalization of low-rank Krylov subspace methods for up
to d–dimensional tensors.

3.3 Low-Rank Pseudo Arithmetic

The elementary matrix and vector operations preserve the symmetric low-rank format but numerically con-
catenation of symmetric low-rank matrices such as the linear combination may significantly increase the
numerical rank of the iterates. To bypass this problem we need to introduce a pseudo arithmetic similar to
the approach that is used for hierarchical matrices [15]. Let Z =WMW T with an additional inner small sym-
metric matrix M ∈Rl,l be given. Z may have been obtained from one of the elementary operations described
in Section 3.1 . Then Z is compressed as follows:

1. We compute W = QRΠT , where Q ∈ Rn,r, R ∈ Rr,l and Π ∈ Rl,l using the QR decomposition with
column pivoting [14]. To determine the rank using this QR decomposition has to be handled with care
and should include the recent modifications suggested in [8], which is the case for LAPACK release
3.2 or higher. After truncation we obtain W ≈ Q1R1ΠT .

2. Next we determine the eigenvalue decomposition T =UΣUT of T = R1ΠT MΠRT
1 and reduce U , Σ to

matrices U1, Σ1 of lower rank whenever the diagonal entries of Σ are sufficiently small in modulus.

3. This finally yields the truncated W ≈ (Q1U1)Σ1(Q1U1)
T , which is computed after each elementary

operation, resp. after a sequence of elementary operations.

With respect to Krylov subspace methods we usually apply the iterative solver for solving L X = B
until the norm of the residual ‖B−L X j‖2 6 ε . Here ε may be an absolute or relative tolerance and may
include contributions from B. For generalized Lyapunov equations this condition reads as

‖EX jAT +AX jET +PlBBT PT
l ‖F 6 ε

and certainly any low-rank decomposition of R j need not be significantly more accurate than ε . Whenever
EX jAT +AX jET +PlBBT PT

l ≡WjM jW T
j is compressed to lower rank, it is enough to compute a truncated

QRΠ decomposition. To do so assume that

Wj = Q jR jΠ
T
j

such that

R j =

(
R11 R12
0 R22

)
=

r11 · · · r1p r1,p+1 · · · r1,l
. . .

...
...

...
0 rpp rp,p+1 · · · rp,l

rp+1,p+1 · · · rp+1,l

0
...

...
rn,p+1 · · · rnl

.

The QR decomposition with column pivoting ensures that

|r11|> · · ·> |rpp|> ‖

 rp+1,i
...

rn,i

‖2,

6

for all i = p+1, . . . , l. To make sure that the residual is accurate enough we may use a threshold tolr, which
should be chosen one order of magnitude less than ε and terminate the QRΠ decomposition as soon as

max
i=p+1,...,l

‖

 rp+1,i
...

rn,i

‖2 6 tolr . (9)

This requires only a minor change to the QRΠ decomposition which is truncated as soon as the threshold is
reached. Q1,R1 are then obtained by taking the first p columns of Q j and the leading p× l block (R11,R12)
of R j multiplied by ΠT

j . In a similar way all other iterates of the low-rank Krylov subspace solver will be
truncated to lower rank. To summarize our truncation strategy we give a small error analysis.

Lemma 3.1 Let Z =WMW T ∈Rn,n such that W ∈Rn,l , M ∈Rl,l for some l > 0. Suppose that the truncated
QRΠ decomposition of W = QRΠT truncates the matrix R in (9) for some tolr = ε|r11|. Discarding R22, the
approximate factorization

Z̃ = Q
(

R11 R12
0 0

)
Π

T MΠ

(
R11 R12
0 0

)T

QT

satisfies
‖Z− Z̃‖2 6 2

√
l− p ε‖M‖2‖W‖2

2 +O(ε2).

Moreover, suppose that
T :=

(
R11 R12

)
Π

T MΠ
(

R11 R12
)T

is decomposed as

T =UΣUT = (U1,U2)

(
Σ1 0
0 Σ2

)
(U1,U2)

T

such that U ∈ Rp,p is orthogonal, Σ1 = diag(σ1, . . . ,σr), Σ2 = diag(σr+1, . . . ,σp), |σ1| > · · · > |σp| and
|σi|6 ε|σ1| for all i > r, then the approximate low rank factorization

Ẑ = (Q
(

Ip

0

)
U1) Σ1 (Q

(
Ip

0

)
U1)

T

satisfies
‖Z− Ẑ‖2 6 (2

√
l− p+1)ε‖M‖2‖W‖2

2 +O(ε2).

We first note that
|r11|= max

j=1,...,l
‖Re j|6 max

‖x‖2=1
‖Rx‖2 = ‖R‖2 = ‖W‖2.

Conversely, using (9) we obtain

‖R22‖2 = max
‖y‖2=1

‖R22y‖2 = max
‖y‖2=1

‖∑
i>p

R22eiyi‖2

6 max
‖y‖2=1

l−p

∑
i=1
‖R22ei‖2 |yi|

6 max
‖y‖2=1

(
l−p

∑
i=1
‖R22ei‖2

2

)1/2 (l−p

∑
i=1
|yi|2

)1/2

6
(
(l− p)ε2|r11|2

)1/2
6
√

l− p ε‖W‖2.

7

It follows that

Z− Z̃ = Q
(

0 0
0 R22

)
Π

T MW T +WMΠ

(
0 0
0 R22

)T

QT +Q
(

0 0
0 R22

)
Π

T MΠ

(
0 0
0 R22

)T

QT .

Thus bounding the norm of Z− Z̃ yields

‖Z− Z̃‖2 6 2‖R22‖2‖M‖2 ‖W‖2 +‖R22‖2
2‖M‖2 6 2

√
l− p ε‖M‖2‖W‖2

2 +O(ε2).

Next observe that ‖T‖2 = |σ1| and we can bound ‖T‖2 by

‖T‖2 6 ‖M‖2 ‖
(

R11 R12
)
‖2

2 6 ‖M‖2 ‖W‖2
2.

If we now further truncate T , then

‖Z− Ẑ‖2 6 ‖Z− Z̃‖2 +‖Z̃− Ẑ‖2

6 2
√

l− p ε‖M‖2‖W‖2
2 +O(ε2)+‖(Q

(
Ip

0

)
U2) Σ2 (Q

(
Ip

0

)
U2)

T‖2

6 2
√

l− p ε‖M‖2‖W‖2
2 +‖Σ2‖2 +O(ε2)

6 2
√

l− p ε‖M‖2‖W‖2
2 + ε|σ1|+O(ε2)

6 (2
√

l− p+1)ε‖M‖2‖W‖2
2 +O(ε2),

which completes the proof.
Although we may have ‖Z‖2 < ‖M‖2‖W‖2

2 we consider this situation as rare in practice. Furthermore,
the factor

√
l− p is more of technical nature. Therefore using some ε̃ of one order of magnitude less than

ε , we expect the truncation strategy to be in practice satisfactory in order to obtain ‖Z− Ẑ‖2 ≤ ε‖Z‖2. In
Section 4 we will demonstrate the effectiveness of our approach.

To accommodate the preservation of symmetric low-rank matrices during elementary operations with
the truncation to lower rank, a library LR-BLAS (Low Rank-Basic Linear Algebra Subroutines) is designed
which is summarized in Table 1.

Operation Function Reference

Y ← Y +αX lraxpy
Y ← αL X +
βY

lrgemv

Y ← αY lrscal
α ←‖Y ‖ lrnorm
α ← (Y ,X) lrdot

Table 1: Overview LR-BLAS library

The introduction of low-rank BLAS allows for the easy truncation to lower rank after an elementary
operation is performed. We indicate and control whether only a concatenation of matrices is built or if
rank compression is required. Even when the rank is to be reduced we can internally distinguish between
only using the truncated QRΠ decomposition or reducing the rank further with the help of an eigenvalue
decomposition. Also, we can handle the case when one of the symmetric low-rank input matrices (X or

8

Y) already consists of orthonormal factors X = QMQT such that QT Q = I. In this case one can simplify
the amount of work when applying the QR decomposition. Internally, it is more convenient to represent a
low-rank matrix X = QRMRT QT rather than X = QMQT . For the sequel of this article we will skip this
detail.

The introduction of a low-rank pseudo arithmetic has immediate consequences when being used for
generalized projected Lyapunov equations. While concatenation of symmetric low-rank matrices does not
require any additional safe guard strategy, the situation changes as soon as the rank is compressed. After
each rank compression with thresholds larger than the machine precision, the projectors Pl and Pr have to be
applied again. In particular iterates such as the approximate solution Xk ≈ RkMkRT

k require a projection step
Xk→ PrRkMkRT

k PT
r = X̂k while iterates like the residual have to be treated differently. Recall that we have

EX̂kAT +AX̂kET +PlBBT PT
l = Pl(EX̂kAT +AX̂kET +BBT)PT

l

≈ SkNkST
k ,

thus here we obviously need to project with Pl to ensure that the iterates are mapped back to the correct
invariant subspace associated with the finite eigenvalues of (E,A).

3.4 Approximate LRCF-ADI Preconditioning

Independent of the use of a low-rank pseudo arithmetic in Section 3.3, the explicit projection of the precondi-
tioned iterate Rt from (8) gives the opportunity to replace the explicit inverses (E+τ jA)−1 by an approximate
inverse, e.g., using incomplete LU factorizations. Recall that when t steps of LRCF-ADI preconditioning
are applied to a right hand side B = PlB, then each iterate R j, j = 1,2, . . . , t satisfies R j = PrR j. This is cer-
tainly not longer fulfilled when (E +τ jA)−1 is replaced by an approximation. If in doubt, in any LRCF-ADI
preconditioning step substitutes

(E + τ jA)−1→ Pr(Ẽ + τ jA)−1

and explicitly projects the approximate solution back. In Section 4 we will demonstrate the effect of replac-
ing the exact LU factorization of E + τ jA by an ILU. At this point we like to stress that (low-rank) Krylov
subspace methods are much less sensitive to the use of an ILU for E + τ jA while the usual ADI method is
much more affected.

3.5 Selected Low-Rank Krylov Subspace Methods

We now give some examples of preconditioned Krylov subspace methods adapted for generalized, projected
Lyapunov equations using CFADI preconditioning. The most popular method, at least when E and A are
symmetric and positive definite, is the conjugate gradient method. We will demonstrate the changes for this
method first.

Suppose we wish to solve a system L X = B with a symmetric positive definite matrix L and a
symmetric positive definite preconditioner L̃ ≈L . Then the preconditioned CG method reads as given in
Algorithm 3.1.

Now for symmetric and positive definite E and A we have Pl =Pr and the generalized projected Lyapunov
equation

EXA+AXE +PlBBPT
l = 0 where X = PT

r XPr

induces the following preconditioned low-rank version Algorithm 3.2 with CFADI preconditioning and given
shifts τ1, . . . ,τt .

We will formally assume that each iterate Y is represented as Y = QY MY QT
Y for suitable matrices QY and

symmetric MY .

9

Algorithm 3.1 Preconditioned CG Method
Let X0 ∈ Rn be initial guess
R0 =−B−L X0
P = ˜L −1R0
for k = 1,2,3 . . . do

ρold = ρ

Z = L P
α = (RT R)/(PT Z)
X = X +αP
R = R−αZ
Z = ˜L −1R
ρ = RT Z
β = ρ/ρold
P = Z +βP

end for

While the LR-BLAS internally apply rank compression and projection with Pl , for the preconditioning
step one has to mention this explicitly to be consistent. A compression and projection step of P looks as
follows.

P = Rt(It ⊗MR)RT
t ≡ QPMPQT

P

by simple concatenation. Next the rank compression as described in Section 3.3 is performed and we obtain

(QP,MP)→ (Q(new)
P ,M(new)

P).

Eventually Pl is applied, which yields
QP→ PlQP ≡ Q(new)

P .

One may or may not add another rank compression step to QP as a result of the projection. But this would
have to be done accurately with respect to the machine precision.

The conjugate gradient method is designed for symmetric positive definite problems. This in turn only
requires Pl . In general one has to distinguish which projection has to be applied. We demonstrate that in
Algorithm 3.3 for the preconditioned GMRES method [37].

We point out that the use of LR-BLAS allows to only concatenate matrices or to compress the rank.
Similarly, the projection need not always be applied. We have formulated the algorithms in this more general
form to indicate which projection Pl or Pr is used. The basic operation V (1) = R/ρ usually does neither
require rank compression nor projection. But if B would not have been projected before, a projection would
be required at this point. Similarly, rank compression would usually not be used as long as B does not have
a rank much less than the number of columns. For the preconditioning step using t steps of LRCF-ADI,
formally there is no need to project W at the end, except if the rank were compressed. Numerically however,
applying the projection may reduce the influence of rounding errors from previous preconditioning steps j,
j = 1, . . . , t.

The GMRES method can be slightly modified to obtain the flexible GMRES method (FGMRES, [35]).
In this case, W would be replaced by W (l) and be kept. Then X is directly computed from W (1), . . . ,W (m) via

X = X +W (1)y1 + · · ·+W (m)ym using lraxpy(Pr).

FGMRES allows for variable preconditioning. This implies that the rank in W (1), . . . ,W (m) can be truncated
with a larger tolerance tolp than for the other iterates.

10

Algorithm 3.2 LR-CG for Lyapunov Equations with CFADI Preconditioning
X0 = 0, R0 =−(PlB)(PlB)T

Compute P = Rt(It ⊗MR0)R
T
t using t steps of LRCF-ADI applied to B = QR0

Compress and project P
ρ = trace(RP) using lrdot
for k = 1,2,3 . . . do

ρold = ρ

Z = EPA+APE using lrgemv
α = ‖R‖F/ trace(PZ) using lrnorm and lrdot
X = X +αP using lraxpy
R = R−αZ using lraxpy
Compute Z = Rt(It ⊗MR)RT

t using t steps of LRCF-ADI applied to B = QR

Compress and project Z
ρ = trace(RZ) using lrdot
β = ρ/ρold
P = Z +βP using lrscal and lraxpy

end for

3.6 Reduced Lyapunov Equation

Several Arnoldi- and GMRES-like methods for Lyapunov equations essentially rely on the (block-) Krylov
subspace span{B,AB,A2B, . . . ,Ak−1B} (see, e.g., [19–23]). These methods compute subspaces which re-
place the generalized Lyapunov equation (7) by a reduced equation

(WET) X̃ (WAT)T +(WAT) X̃ (WET)T +WPlBBT PT
l W T = 0.

The resulting approximate solution could be obtained from Xk = PrT X̃T T PT
r . A similar approach would

be possible as by product of the FGMRES method in order to obtain an alternative approximate solution.
Suppose that the Arnoldi method applied to the Lyapunov operator L leads to the following equation

LWm = Vm+1H m,

where Vm ∈Rn2,m has orthonormal columns, H m ∈Rm+1,m is upper Hessenberg and the approximate FGM-
RES solution is given by Xm = X0 +Wms for Wm ∈ Rn2,m. For the flexible GMRES method the columns
of Wm are usually preconditioned counter parts of Vm, except that the preconditioner may vary from step to
step. Minimizing the norm of the residual B−L Xm for the standard GMRES method is equivalent to the
minimization of

‖H my−‖R0‖2 · e1‖2 = min! (10)

Here one uses the property that the first column of Vm is chosen as a scalar multiple of the initial residual
R0 = B−L X0. The Arnoldi vectors Vmek are rewritten in terms of symmetric low-rank matrices V (k) =

Q(k)
V M(k)

V (Q(k)
V)T , k = 1, . . . ,m. Similarly, during the FGMRES method approximations to column k of Wk are

represented by W (k) = Q(k)
W M(k)

W (Q(k)
W)T from the CFADI preconditioning step. Then the numerical solution

in low-rank format is a linear combination

Xk = X0 +
m

∑
k=1

yk Q(k)
W M(k)

W (Q(k)
W)T ,

11

Algorithm 3.3 LR-GMRES for Lyapunov Equations with CFADI Preconditioning
X0 = 0, R0 = (PlB)(PlB)T

ρ = ‖R‖F using lrnorm
V (1) = R/ρ using lrscal(Pl)
for k = 1,2,3 . . . ,m do

Compute W = Rt(It ⊗M(k)
V)RT

t using t steps of LRCF-ADI applied to B = Q(k)
V

Compress and project W by Pr

Z = EWAT +AWET using lrgemv(Pl)
for l = 1,2,3 . . . ,k do

hlk = trace(V (l)Z) using lrdot
Z = Z +hlkV (l) using lraxpy(Pl)

end for
hk+1,k = ‖Z‖F using lrnorm
V (k+1) = Z/hk+1,k using lrscal(Pl)

end for
Solve ‖ρe1−Hmy‖2 = min!, where Hm = (hi j) i=1,...,m+1

j=1,...,m

Z =V (1)y1 + · · ·+V (m)ym using lraxpy(Pl)
Compute W = Rt(It ⊗MZ)RT

t using t steps of LRCF-ADI applied to B = QZ

Compress and project W by Pr

X = X +W using lraxpy(Pr)

where the parameters y = (y1, . . . ,ym)
T are taken from the minimization of the least squares problem (10).

Alternatively the computed matrices
(

Q(k)
W

)
k

and
(

Q(k)
V

)
k

could be used to compute an alternative approxi-

mate solution X̂k.
Suppose that we compute a QR decomposition with column pivoting [14] to obtain

[Q(1)
V , . . . ,Q(m)

V] = QV RV Π
T
V , [Q

(1)
W , . . . ,Q(m)

W] = QW RW Π
T
W ,

where rankRV = rV , rankRW = rW . Similar to the compression to lower rank at other parts of the Krylov
subspace method here one could work with lower accuracy as well. Let r = max{rV ,rW}, then the numerical
solution Xk can be rewritten as

Xk = X0 +QW SQT
W , where S = RW Π

T
W

s1M(1)
W 0

. . .

0 smM(m)
W

ΠW RT
W .

QV and QW can be alternatively used to construct a reduced r-dimensional Lyapunov equation. Let

EQ = QT
V EQW ,AQ = QT

V AQW

and compute S as numerical solution of the reduced equation

EQ S AT
Q +AQ S ET

Q +QT
KR0QK = 0,

where R0 = EX0AT +AX0ET +BBT . For small r this could be computed with standard methods [2]. We
obtain

X̂m = X0 +QW SQT
W

12

as approximate solution of a reduced Lyapunov equation. In Section 4 we will demonstrate the effectiveness
of this approach.

In summary the low-rank Krylov subspace methods introduced in Section 3 allow for structured iterative
methods. If (PlEPr,PlAPr) is already symmetric and PlEPr positive semidefinite, one could use a low-rank
version of the simplified QMR (SQMR) method [11] for symmetric indefinite problems. If even PlAPr is
positive definite, then the low-rank CG method can be applied. Low-rank CG and low-rank SQMR can make
use of the CFADI preconditioning approach while at the same time low-rank structures and symmetry of the
Lyapunov operator is preserved. In the general case we could easily introduce low-rank Krylov subspace
methods such as low-rank BiCGStab, low-rank QMR and other methods (cf. [36]).

4 Numerical Results

In this section we will demonstrate the effectiveness of our approach. We will start with the sensitivity
of low-rank Krylov subspace methods with respect to the shifts used for the CFADI preconditioning step
and compare them with the usual LRCF-ADI method. Next we will demonstrate different low-rank Krylov
subspace methods such as (F)GMRES, QMR and BICGSTAB for projected, generalized Lyapunov equa-
tions to evaluate their strengths and their weaknesses. We will further investigate replacing the direct solver
for the single iterates (E + τ jA)−1 by an approximate factorization to compare the sensitivity of ADI and
Krylov subspace methods with respect to incomplete factorizations. Here we use as approximate factor-
ization the multilevel ILU factorization from the software package 1ILUPACK which is described in detail
in [5]. Further numerical results will discuss the use of the reduced equation from Section 3.6 for the numer-
ical solution. We will finally demonstrate how parallel direct solvers can accelerate the process of solving
large-scale projected Lyapunov equations.

Some of our experiments use the software package PABTEC, see [33], which has been designed for the
model order reduction of descriptor systems arising from circuit simulation. Here we replaced the default
LRCF-ADI method by preconditioned low-rank Krylov subspace methods such as (F)GMRES, QMR and
BICGSTAB and adapted the interfaces to allow for complete simulation runs based on Krylov subspace
techniques.

4.1 Model Problems

In the following part we like to introduce three model problems which we will use for demonstration. The
first two are examples arise from descriptor systems modeling circuit-equations while the third one is a more
academic parabolic partial differential equation. All these examples illustrate the applicability of low-rank
Krylov subspace methods.

As our first two examples we discuss linear RLC networks of the following type, modeled using the
modified nodal analysis (MNA). Let e be the vector of node potentials, vV , vI be the voltages of the voltage
sources, respectively of the current sources. Denote by iL, iV , iI the currents through the inductors, voltage
sources and current sources. We define the state vector x, the vector of inputs u and the output vector y via

x =

 e
iL
iV

 , u =

(
iI
vV

)
, y =

(
vI

iV

)
.

1Matthias Bollhöfer and Yousef Saad. ILUPACK - preconditioning software package. Available online at http://ilupack.tu-
bs.de/. Release V2.4, June 2011

13

Then the circuit equations can be written as

Eẋ = Ax+Bu

y = −BT x,

where E,A and B are given by

E =

 ACCAT
C 0 0

0 L 0
0 0 0

 , A =

 −ARGAT
R −AL −AV

AT
L 0 0

AT
V 0 0

 , B =

 −AI 0
0 0
0 −I

 .

Here AC,AR,AL,AV ,AI refer to the incidence matrices with respect to the capacitors, resistors, inductors,
as well as with respect to the voltage sources and current sources. C, L, G denote the capacitance matrix, the
inductance matrix and the conductivity matrix. The differential-algebraic equations which we discuss here
are of differentiation index 1 (cf. [6]).

Example 4.1 As a first example we consider a RC high pass circuit provided by NEC Laboratories Europe.
It consists of 2002 conductors, 2003 resistors and 3 voltage sources. Using the MNA this leads to a system
of dimension 2007 with 3 inputs and 3 outputs.

Example 4.2 We consider further test 2examples of several RC circuits. For some details we refer to [18].
Here we restrict ourselves to examples of following sizes, reported in Table 2.

Acronym Capacitors Resistors Voltage Sources System Size

RC1 2353 1393 109 974
RC2 3065 5892 21 3272
RC3 9999 9999 3 10002
RC4 12025 53285 78 29961

Table 2: Large-Scale RC circuits

The circuits in Table 2 are of differentiation index 2. Since we like to demonstrate the applicability of low-
rank Krylov subspace methods for index-1 systems we remove several voltage sources which are responsible
for the higher index. After removing these voltage sources we have for circuit RC1, 6 voltage sources and for
each circuit RC2, RC3 and RC4, 1 voltage source. Furthermore, we artificially add resistors with average
conductivity to ARGAT

R to make this matrix positive definite. We are aware of changing the original shape of
these circuits. However, our main goal is the demonstration of low-rank Krylov subspace methods using the
PABTEC software as framework.

For both problem classes of RC circuits in Example 4.1 and Example 4.2 we use the technology as
provided by the software package PABTEC (see [33]) to demonstrate solving an associated projected alge-
braic Riccati equation with the help of Newton’s method. Here in every Newton iteration step a projected,
generalized Lyapunov equation has to be solved.

Example 4.3 The final example we will use in our numerical experiments is the parabolic partial differential
equation

vt = ∆v+Bu≡ vxx + vyy + vzz +Bu,

2http://sites.google.com/site/rionutiu2/research/software

14

where v = v(x,y,z, t), (x,y,z) ∈Ω = [0,1]3 and t ≥ 0. We assume that we have some initial value v(x,y,z,0)
and homogeneous Dirichlet boundary conditions. To keep the discussion simple, we consider an academic
control B such that after discretization in space using a 7-point discretization stencil, the control reduces to
the vector with all ones. Suppose that we have an equidistant mesh with mesh size h = 1

N+1 . This leads to a
total system size of n = N3 unknowns. The semi-discretized ordinary differential equation is of type

ẇ =−Aw+Bu,

where A is the discretized Laplacian operator in three spatial dimensions. We apply model order reduction
to these semi-discretized equations using balanced truncation. For symmetry reasons we simply compute the
associated Gramian as the solution of the Lyapunov equation

XA+AX = BBT ,

meaning N6 unknowns for the referring Lyapunov operator. Since A is symmetric and positive definite, the
Lyapunov equation X(−A)+(−A)X +BBT = 0 is stable and therefore balanced truncation can be applied.
We know that the spectrum of A lies inside the interval (3π2, 12

h2). This allows for a simple computation of
the optimal ADI shift-parameters introduced by Wachspress [47].

We use this example in order to illustrate a low-rank version of the conjugate gradient method. Further-
more, a parallel sparse direct solver for solving the shifted systems (A+ τiI)x = b is used to examine the
scalability. Finally, this example demonstrates the advantages of using multilevel incomplete factorizations
rather than direct solvers within the CFADI method.

In the sequel all computations were conducted on a 64GB Linux workstation with four Intel Xeon E7440
Quadcore processors using Matlab Release R2008b.

4.2 Different Krylov Subspace Methods and their Efficiency with Respect to the Selection
of Shifts

In the following experiments we will compare how flexible GMRES [35], GMRES [37], QMR [12] and
BICGSTAB [46] can be used to solve projected generalized Lyapunov equations. We will describe how
different choices of shifts affect the LRCF-ADI method and low-rank Krylov subspace methods. For this
purpose we consider examples 4.1 and 4.2. Here it is necessary to use the heuristic approach (referred to
as “Algorithm 1” in [32]) for calculating the shift parameters. As part of the passivity-preserving balanced
truncation we will solve the projected Riccati equations from (4), (5) up to a tolerance of 10−4. The same
accuracy is used for truncating the Hankel singular values for Balanced Truncation. As a heuristic approach
we decided to solve each Lyapunov equation up a relative residual norm of 10−6. One benefit of our class
of Krylov subspace methods is that we can use the norm provided by our Krylov-subspace method and do
not need to explicitly evaluate the residual-norm within the LRCF-ADI algorithm. We vary the number t
of calculated shift parameters from 4, 5, 10, 20 finally to 30. For the low-rank Krylov methods we use a
tolerance of 10−8 for truncating the ranks which is two orders of magnitude smaller than the desired residual.
The number of ADI steps we display in Figures 1, 2, 3, 4 and 5 refer to the accumulated sum of all shifted
systems that were solved using Newton’s method.

As can be seen from Figures 1 - 5, there is neither a method that is always fastest nor is there a method
always requiring the smallest number of ADI solving steps. Comparing flexible GMRES with standard
GMRES, the difference in the number of ADI iterations can be explained by the different nature of these
approaches. While the number of Krylov subspace iteration steps is the same, standard GMRES requires
one additional solving step at the end of each restart. In contrast to this, flexible GMRES stores the precon-
ditioned residuals explicitly and does not require an additional preconditioning step. The slightly improved

15

4 5 10 20 30
0

50

100

150

200

250

300

350

400

n=2007

shifts

#
 A

D
I

s
te

p
s

LRCF−ADI
LR−GMRES

LR−FGRMES

LR−QMR
LR−BICGSTAB

4 5 10 20 30
0

5

10

15

20

25

30

35

40

NEC

shifts

ti
m

e
 i
n

 [
s
]

LRCF−ADI

LR−GMRES

LR−FGRMES

LR−QMR

LR−BICGSTAB

Figure 1: Number of ADI steps and runtime for Example 4.1

5 10 20 30
0

20

40

60

80

100

120

140

160

180

200

RC1, n=974

shifts

#
 A

D
I

s
te

p
s

LRCF−ADI

LR−FGRMES

LR−QMR

LR−BICGSTAB

5 10 20 30
0

2

4

6

8

10

12

14

16

18

20

RC1, n=974

shifts

ti
m

e
 i
n

 [
s
]

LRCF−ADI

LR−FGRMES

LR−QMR

LR−BICGSTAB

Figure 2: Number of ADI steps and runtime for circuit RC1 from Example 4.2

16

5 10 20 30
0

100

200

300

400

500

600

700

RC2, n=3272

shifts

#
 A

D
I

s
te

p
s

LRCF−ADI

LR−FGRMES

LR−QMR

LR−BICGSTAB

5 10 20 30
0

10

20

30

40

50

60

RC2, n=3272

shifts

ti
m

e
 i
n

 [
s
]

LRCF−ADI

LR−FGRMES

LR−QMR

LR−BICGSTAB

Figure 3: Number of ADI steps and runtime for circuit RC2 from Example 4.2

5 10 20 30
0

20

40

60

80

100

120

140

160

180

200

RC3, n=10002

shifts

#
 A

D
I

s
te

p
s

LRCF−ADI

LR−FGRMES

LR−QMR

LR−BICGSTAB

5 10 20 30
0

5

10

15

20

25

RC3, n=10002

shifts

ti
m

e
 i
n

 [
s
]

LRCF−ADI

LR−FGRMES

LR−QMR

LR−BICGSTAB

Figure 4: Number of ADI steps and runtime for circuit RC3 from Example 4.2

17

5 10 20 30
0

100

200

300

400

500

600

700

800

900

1000

RC4, n=29961

shifts

#
 A

D
I

s
te

p
s

LRCF−ADI

LR−FGRMES

LR−QMR

LR−BICGSTAB

5 10 20 30
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

RC4, n=29961

shifts

ti
m

e
 i
n

 [
s
]

LRCF−ADI

LR−FGRMES

LR−QMR

LR−BICGSTAB

Figure 5: Number of ADI steps and runtime for circuit RC4 from Example 4.2

computation time of flexible GMRES with respect to GMRES is obtained by using twice as many vectors
in low-rank format. When working with restarts this is an acceptable tradeoff so we prefer to use flexible
GMRES over standard GMRES in low-rank arithmetic.

BICGSTAB and QMR require in each iteration step that either the matrix is applied twice (BICGSTAB)
or the transposed matrix is used in addition (QMR). The same holds for the application of the preconditioner.
Often BICGSTAB is comparable to GMRES with respect to time while QMR is typically the slowest method.

We emphasize that the number of inner iteration steps for the projected Lyapunov equations is small,
when a larger number of shifts is used. When using t = 20 or t = 30 shifts, the number of inner iteration
steps is typically less than 10 steps. We illustrate the relation between inner ADI solving steps and outer
Newton steps in Figure 6 for the case of the LRCF-ADI method and LR-FGMRES and different numbers of
shifts for Example 4.1.

The two graphics at the top of Figure 6 refer to the use of 4 shifts while the two graphics at the bottom
of Figure 6 refer to the use of 10 shifts. On the left of Figure 6 we find the LRCF-ADI method, on the right
LR-FGMRES is displayed. The meaning of the three-coded numbers of type a-b-c in Figure 6 is explained
in the legend just below the graphics.

The solid red line in Figure 6 reveals the norm of the nonlinear residual in Newton’s method. The other
lines display the convergence history of the residuals during the inner solves. In particular we observe that
both methods, LRCF-ADI and LR-FGMRES reach the threshold 10−4 of the nonlinear residual after four
outer steps. It can also be observed that LRCF-ADI using 4 shifts exceeds the limit 100 of inner iteration
steps for solving the projected Lyapunov equation without converging. In spite of misconvergence, the outer
Newton method in this case still converged to the desired accuracy.

4.3 Truncated QRΠ Decomposition

In this section we will demonstrate the difference in using the regular QR decomposition with column pivot-
ing as implemented in LAPACK (also used inside MATLAB) with a truncated version that stops the decom-
position as soon as the desired accuracy for the truncation is reached (for details cf. Section 3.3).

In Example 4.1 the main time for performing the Balanced Truncation algorithm is consumed when
solving the Riccati equation. In Table 3 the computation time of the LR-FGMRES method using PABTEC
for different numbers of shifts using the full QRΠ decomposition versus the truncated QRΠ is stated.

18

0 20 40 60 80 100
10

−6

10
−4

10
−2

N
o

rm
a

liz
e

d
 r

e
s
id

u
a

l
n

o
rm

Iteration steps

LRCF−ADI iteration / Newton iteration

-1-96-R

2-100-I

3-100-I

4-100-I

1
2
3
4

0 20 40 60

10
−5

10
0

N
o

rm
a

liz
e

d
 r

e
s
id

u
a

l
n

o
rm

Iteration steps

LR−FGMRES iteration / Newton iteration

��	
1-60-15

��	
2-52-13

��	
3-44-11

��	
4-28-7

1234

0 10 20 30 40

10
−6

10
−4

10
−2

N
o

rm
a

liz
e

d
 r

e
s
id

u
a

l
n

o
rm

Iteration steps

LRCF−ADI iteration / Newton iteration

1-24-R

2-26-R

3-26-R

4-27-R

1 23
4

0 10 20 30 40

10
−5

10
0

 N
o

rm
a

liz
e

d
 r

e
s
id

u
a

l
n

o
rm

Iteration steps

LR−FGMRES iteration / Newton iteration

1-30-3
2-30-3

3-20-2

4-20-2

1
2

3
4

legend for the symbols of type a-b-c

a number of outer Newton steps

b number of inner ADI solving steps

c if c is a number, then c denotes the number of FGMRES steps
if c = I, then the inner solver terminated after the number of iteration
steps is exceeded
if c = R, then ADI converged with a sufficiently small residual

Figure 6: Comparison of LRCF-ADI and LR-FGMRES using 4 (top line) and 10 (bottom line) shifts

shifts standard QRΠ [sec] truncated QRΠ [sec]

4 19.25 18.43
5 7.33 6.90

10 4.03 3.90
20 3.95 3.79
30 4.24 4.20

Table 3: Comparison of standard QRΠ and truncated QRΠ within LR-FGMRES, Example 4.1

19

As solver for the Lyapunov equation we use LR-FGMRES. As in Section 4.2 both relative rank tolerances
were set to 10−8 whereas we are solving the Lyapunov equations with accuracy 10−6. The gain observed
for using the truncated QRΠ was approximately in the range of about 5− 8% in overall runtime of the
LR-FGMRES method.

The improvement using the truncated QRΠ decomposition can not only be used in low-rank Krylov
subspace methods, but it can also have a beneficial impact of the LRCF-ADI method. When solving the
projected Riccati equations using LRCF-ADI, at each Newton step we have to concatenate the current ap-
proximate low-rank solution Z = QZQT

Z of the Riccati equation and the recent low-rank update P = QPQT
P

from solving the projected Lyapunov equation to obtain

Z +P =
[

QZ QP
][

QZ QP
]T rank

−→
compression

Q(new)
Z (Q(new)

Z)T .

Usually we would apply a slim QR decomposition[
QZ QP

] !
= QR

such that Q has as many columns as
[

QZ QP
]
. After that we would apply a singular value decomposition

R !
=UrΣrV T

r

to truncate the rank of R to some r and obtain

Q(new)
Z = QUrΣr.

When we use the truncated QRΠ decomposition instead, we can already compute approximately[
QZ QP

] !
= QsRsΠ

T +E

such that ‖E‖ is small and Qs and RT
s may already have significantly less columns s than

[
QZ QP

]
. Next

a singular value decomposition only needs to be applied to the already reduced system

Rs
!
=UrΣrV T

r .

Thus, the truncated QRΠ decomposition may not only save time during the QRΠ decomposition of
[

QZ QP
]
,

but the singular value decomposition is also applied to system of smaller size and may lead to additional im-
provements. To illustrate this effect we compare the LRCF-ADI method for Examples 4.1 and 4.2. Although
the total computation time is not drastically improved, at least the time of the rank compression is moder-
ately improved. In Figures 7 and 8 we illustrate the computation times of both rank compression techniques,
accumulated over all Newton steps.

We can observe a moderate to significant gain in particular when using a smaller number of shifts. When
only using a smaller number of shifts, the total number of ADI steps significantly increases since the LRCF-
ADI method needs more steps to converge. This in turn results in a higher pseudo rank caused by simple
concatenation. Here the gain is most significant.

20

5 10 20 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

n=2007

shifts

ti
m

e
 i
n

 [
s
]

regular QR

truncated QRP

Figure 7: Computation time QR plus SVD version truncated QRΠ plus SVD. for Example 4.1

5 10 20 30
0

0.5

1

1.5

2

2.5

3

3.5

RC1, n=974

shifts

ti
m

e
 i
n

 [
s
]

regular QR

truncated QRP

5 10 20 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

RC2, n=3272

shifts

ti
m

e
 i
n
 [
s
]

regular QR

truncated QRP

5 10 20 30
0

0.1

0.2

0.3

0.4

0.5

RC3, n=10002

shifts

ti
m

e
 i
n

 [
s
]

regular QR

truncated QRP

5 10 20 30
0

1

2

3

4

5

6

7

RC4, n=29961

shifts

ti
m

e
 i
n
 [
s
]

regular QR

truncated QRP

Figure 8: Computation time regular QR plus SVD implementation versus truncated QRΠ plus SVD for
Example 4.2.

21

4.4 Evolution of the Rank Representations in the Low-Rank CG method

We will now report for the preconditioned LR-CG method from Algorithm 3.2 how ranks of the symmetric
low-rank matrices X , R and P behave during the iterative process. To illustrate their behaviour we select
Example 4.3 since we believe that the LR-CG method is the easiest low-rank Krylov subspace method
and this example allows for the use of the preconditioned LR-CG method. We select as discretization
parameter N = 60 which lead to a sparse symmetric positive definite matrix A of size n = N3 = 216′000.
The associated Lyapunov equation X(−A)+ (−A)X +BBT = 0 is numerically solved to obtain a low-rank
symmetric positive semidefinite solution X ∈ Rn,n. In the experiment we use a residual norm of 10−6 as
termination criterion for the preconditioned LR-CG method. Since A is symmetric and positive definite we
are able to use the optimal Wachspress shifts [47] for CFADI preconditioning. We demonstrate the behaviour
of the ranks of X , R and P when using t = 4,6,8 and t = 10 shifts. For any of these shift values the LR-CG
method only requires a few steps to converge (see Table 4).

number of shifts 4 6 8 10

number of LR-CG steps 7 5 4 3

Table 4: Number of shifts and number of preconditioned LR-CG steps for Example 4.3 and N = 60

In Figure 9 we illustrate the behaviour of the ranks of X , R and P in the LR-CG method, when we use a
truncation tolerance of 10−8.

The solid lines in Figure 9 refer to the situation where X , R and P are updated and truncated to lower
rank in the LR-CG method, i.e., whenever the operations

X = X +αP using lraxpy
R = R−αZ using lraxpy
. . .
P = Z +βP using lrscal and lraxpy

are completed within Algorithm 3.2. For X the dashed lines indicate the intermediate rank before the
lraxpy routine compresses the rank. Similarly, for R the dashed line indicates the pseudo rank before
and after the rank truncation of Z in the lrgemv routine that computes Z = XA+AX and the situation
before and after lraxpy compresses the rank for R = R−αZ. Finally, the dashed line that is used for P
includes the pseudo rank from the CFADI preconditioning step followed by its rank compression, as well
as the additional rank compression, when P = Z +βP is computed. We can observe for X ,R and P that the
intermediate ranks can be significantly higher than the rank that is obtained when lraxpy is completed. As
we would expect, at the end of each rank compression step, the rank of X and P tends towards a constant
rank, while the R the rank of the residual becomes small or even 0 when the LR-CG method converges. The
general behaviour of the ranks, in particular that ranks first increase and then decrease again has also been
observed in other low-rank Krylov subspace methods and applications [24]. The intermediate increase of
the rank can be interpreted as another justification for using the truncated QRΠ decomposition to improve
the performance of low-rank Krylov subspace methods as already illustrated in Section 4.3.

4.5 Numerical Solution based on Reduced Lyapunov Equations

The LR-FGMRES method computes orthonormal Arnoldi vectors that can be used to define a reduced
projected Lyapunov equation (see Section 3.6). However, although having this reduced Lyapunov equation

22

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

Iteration number

R
a

n
k

X

X 4 shifts

X 6 shifts

X 8 shifts

X 10 shifts

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

Iteration number

R
a

n
k

R

R 4 shifts

R 6 shifts

R 8 shifts

R 10 shifts

0 1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

Iteration number

R
a

n
k

P

P 4 shifts

P 6 shifts

P 8 shifts

P 10 shifts

Figure 9: Evolution of ranks for different selected vectors in LR-CG for N = 60

23

available, the additional information we can extract from solving this reduced equation does not necessarily
improve the low-rank solution computed via LR-GMRES. To illustrate this effect we will consider Example
4.1 using different number of shift parameters. Here we simply examine solving a simple Lyapunov equation
using a tolerance of 10−10 for the residual and a truncation threshold for the rank of 10−12.

The results are shown in Figure 10, where the norm of the residual at the end of m steps LR-FGMRES
is compared with the version that uses the information of the reduced system instead.

0 5 10 15 20 25

10
−10

10
−5

10
0

n=2007

re
s
id

u
a

l
n

o
rm

iteration

 5 shifts red.

 5 shifts

10 shifts red.

10 shifts

15 shifts red.

15 shifts

Figure 10: Norm of the residuals for LR-FGMRES using different number of shift parameters. Comparison
of usual LR-FGMRES versus approximation via the reduced system.

As we can see from Figure 10 using the approximate solution from the reduced system does not neces-
sarily improve the residual. Moreover, the computational overhead should not be overlooked. Solving the
reduced system requires to solve a small projected generalized Lyapunov equation using a method such as
the Bartels-Stewart algorithm. This increases the computational amount of work. For further details we refer
to [9].

4.6 Incomplete LU versus LU

We now examine numerically how replacing the direct solver for (E + τ jA)−1 by the multilevel ILU from
ILUPACK influences the LRCF-ADI method and the LR-FGMRES method with LRCF-ADI precondition-
ing. First we use Example 4.1 to compare both methods inside the model order reduction software package
PABTEC. Both iterative methods replace the direct solver by the ILU with a default threshold of 10−2 for
discarding small entries. In addition, in our experiments the iterative solver inside ILUPACK (which is by
default GMRES(30)) uses as termination criterion a relative residual of 10−4, 10−8 and 10−12 to illustrate
different accuracy of the multilevel ILU solver.

The results in Figure 11 demonstrate that in principle low-rank Krylov subspace methods can use approx-
imate factorizations rather than direct factorization methods while the usual LRCF-ADI method encounters
convergence problems which are caused by solving (E + τiA)x = b with lower relative accuracy.

The convergence for the results in Figure 11 is slightly delayed for LR-FGMRES while LRCF-ADI
does not converge anymore. A drawback of the use of approximate factorizations that we observed in the
numerical experiments is that the rank of the single iterates significantly increases [10]. This reduces the

24

0 10 20 30 40 50 60

10
−10

10
−5

10
0

n=2007

ADI steps

re
s
id

u
a

l
n

o
rm

tol. 1e−4

tol 1e−8

tol. 1e−12

LRCF−ADI

LR−FGMRES

Figure 11: Norm of the residuals for LRCF-ADI and LR-FGMRES, both using incomplete CFADI precon-
ditioning with 15 shifts.

advantages of incomplete factorizations at least for these kind of examples where direct solvers are a natural
alternative. The source of this increase will be subject to future research.

As second example we consider Example 4.3 where direct solvers quickly reach their limit because of
the complexity and the spatial dimension. Besides, the Lyapunov equations in this case can be numerically
solved using the preconditioned LR-CG method. Firstly we will compare the memory consumption. For the
comparison we will use MATLAB’s chol function that computes a Cholesky decomposition in combina-
tion with symamd which initially reorders the system using the symmetric approximate minimum degree
algorithm [1] in order to save fill-in. In the sequel we will refer to this version as “MATLAB”. Next we
use for comparison the software package3 PARDISO [39, 40] and its Cholesky decomposition. For the in-
complete factorization we will again use ILUPACK and its inverse-based multilevel incomplete Cholesky
factorization with the additional option to preserve the vector with all entries equal to 1 exactly. The latter is
recommended since the underlying matrix refers to a discretized elliptic partial differential equation. Since
the matrix is symmetric positive definite we again use the Wachspress shifts, similar to Section 4.4. Depend-
ing on the discretization parameter N these shifts are computed with respect to a given tolerance tolw for the
desired accuracy of CFADI approximation (for details we refer to the parameter ε1 in [28]). In Table 5 we
give the explicit relation between the number of shifts depending on N and tolw .

N 20 40 60 80 100
tolw 10−1 10−2 10−4 10−1 10−2 10−4 10−1 10−2 10−4 10−1 10−2 10−1

shifts 3 4 8 3 5 9 4 6 10 4 6 4

Table 5: Number of ADI shifts depending on N and tolw

In Figure 12 we display how the relative fill-in nnz(L+LT)
nnz(A) of the nonzero entries of the Cholesky factor

L relative to the nonzero entries of A behaves with respect to the discretization size N for tolw = 10−1 and

3http://www.pardiso-project.org

25

tolw = 10−2.

20 40 60 80 100 120 140
0

200

400

600

800

tol
w

=10
−1

N

re
la

ti
v
e
 f
ill

 n
n
z
(L

+
L

T
)/

n
n
z
(A

)

MATLAB

PARDISO

ILUPACK

20 40 60 80 100 120 140
0

200

400

600

800

tol
w

=10
−2

N
re

la
ti
v
e
 f
ill

 n
n
z
(L

+
L

T
)/

n
n
z
(A

)

MATLAB

PARDISO

ILUPACK

Figure 12: Memory requirement illustrated by the relative fill-in of the Cholesky factor with respect to the
given matrix.

As is well-known for problems in three spatial dimensions, the relative fill-in of direct solvers drastically
increases when the size of the problem increases with PARDISO being significantly better than MATLAB.
In contrast to that ILUPACK yields an almost constant relative fill-in for each tolw and also only mildly
increases when tolw is decreased (i.e., when the number of shifts is increased). The increase in the amount of
fill-in is significantly sublinear! We illustrate this effect for N = 60. Since we need to factorize Fi = A+ τiI,
for i = 1,2, . . . , t for each shift τi, the system Fi is almost equivalent to A, as long as a relatively small shift τi

is chosen. Increasing the shift τi in magnitude, as it is happening in the computation of the optimal ADI shift
parameters, makes Fi more and more diagonal dominant. When Fi is almost equivalent to A, the multilevel
ILU requires more fill-in and more levels, since in this case a multigrid-like approximation is required.
With increasing diagonal dominance of Fi, the multilevel ILU gets sparser and requires less fill-in, adapting
automatically to the underlying system. This explains why even increasing the number of shifts does not
necessarily result in a linear increase of memory or computation time. In Table 6 we state the computation
time for computing the multilevel ILU for a system of size N3 = 216′000 depending on the value of the shift.

shift value t f actor [sec] levels fill-in tsolve [sec] steps

-26999.996 2.0 1 2.2 0.8 8
-3406.818 2.5 2 3.6 1.5 10
-387.730 5.2 3 3.9 1.6 13

-48.923 6.2 5 4.7 2.1 18

Table 6: Performance of ILUPACK’s multilevel ILU when four optimal shifts are prescribed, N = 60, tolw =
10−1.

We have chosen tolw = 10−1, which gives 4 shifts τ1, . . . ,τ4. For a large absolute value of τ1 =−26999.996
the system is strictly diagonal dominant. Thus only 1 level is required, the computation time is small and the
relative fill-in is approximately twice as much as that of the original system. With such a large shift, solving
a single system with the multilevel ILU is not only fast because of the sparse approximation, but it also re-

26

quires the fewest number of iteration steps (in this case 8 steps of preconditioned CG for a single right hand
side). When the shift decreases in magnitude, the diagonal dominance becomes less, the number of levels
increases and ILUPACK’s multilevel ILU behaves more and more like an algebraic multilevel method. This
can be verified by the increasing number of levels, the increasing fill-in and the slightly increasing number
of CG steps.

The sublinear behaviour of the multilevel ILU is also a significant advantage with respect to the compu-
tation time when solving the Lyapunov equations using LR-CG with CFADI preconditioning. We state the
computation time in Table 7.

dimension N # shifts MATLAB PARDISO(1) ILUPACK

3 8.5 3.5 3.5
20 4 9.3 3.8 3.1

8 12.8 4.7 2.8

3 596.6 144.9 75.8
40 5 575.1 137.0 59.3

9 673.8 156.6 48.4

4 9’236.6 1’564.4 375.8
60 6 10’847.2 1’717.4 284.3

10 11’273.8 1’879.9 271.2

80 4 78’870.4 10’562.7 1’312.7
6 — 10’475.9 1’137.9

100 4 — 43’255.3 3’653.7
100 6 — — 2’647.5

120 4 — — 7’551.8
120 7 — — 6’232.5

140 4 — — 15’311.4
140 7 — — 10’201.0

Table 7: Computation time LR-CG in [s] using CFADI preconditioning with different inner solvers (MAT-
LAB / PARDISO 1 cpu / ILUPACK).

As we can see from Table 7, the computation time behaves differently for different solvers when increas-
ing the number shifts. Using more shifts result frequently in working with higher ranks als already seen in
Figure 9. This is because increasing the number of shifts only mildly increases the fill-in while at the same
time the convergence speed is improved. Here ILUPACK is by far the fastest numerical solver for computing
systems with Fi = A+τiI. Looking at Table 7 we can also see that the computation time of the direct solvers
scales significantly better than their memory requirement which is cause by sparse elimination technologies,
such as the elimination tree, super nodes, Level-3-BLAS and cache optimization. These are techniques that
are hardly applicable to incomplete factorization techniques.

4.7 Parallel Approach

We finally illustrate how the computation can be reduced for large-scale examples when the direct solver
is replaced by a multi-threaded direct solver which can make use of several cores during the factorization

27

and the solution phase. Here we use the direct solver PARDISO [39, 40] and demonstrate the different
computation times when using several threads. For this purpose we again chose Example 4.3 since here we
are able to adjust/increase the dimension of the equation. As solver we use the LR-CG method since we
know in this case the equivalent linear system would be symmetric and positive definite. We increase the
size of the matrix A from 203 = 8′000 to 1003 = 1′000′000. Remember that the corresponding Lyapunov
equation would even have squared size. We will solve the Lyapunov equation up to a residual norm of
10−6. For this example optimal shift parameters can be computed [47]. The number of shifts are computed
according to a tolerance tolw which refers to the convergence speed of the ADI method. Here we choose
tolw = 10−1, tolw = 10−2 and tolw = 10−4 as tolerances. The number of shifts can be seen in the second
column of Table 8.

dimension N # shifts cpu=1 cpu=2 cpu=4 cpu=8

3 3.5 3.2 3.2 8.9
20 4 3.8 3.4 3.4 10.2

8 4.7 4.1 4.1 11.8

3 144.9 87.5 77.2 124.0
40 5 137.0 79.4 66.3 118.6

9 156.6 88.0 73.5 131.4

4 1’564.4 704.2 464.4 983.5
60 6 1’717.4 735.4 504.2 1’064.3

10 1’879.9 794.8 622.8 1’160.1

80 4 10’562.7 4’121.1 2’585.0 6’448.1
6 10’475.9 4’032.2 2’702.0 6’432.6

100 4 43’255.3 15’363.7 9’767.2 24’577.4

Table 8: Computation time LR-CG in [s] using CFADI preconditioning with a multithreaded version of
PARDISO.

The values are always ordered from tolw = 10−1 down to tolw = 10−4 (cf. also Table 5). For N >
80 we skipped tolw = 10−4 and for N > 100 we skipped tolw = 10−2 additionally for reasons of memory
consumption.

Beside the computation time in Table 8 we point out that the number of LR-CG steps only depends on
the size of tolw. Numerically it is advantageous to have a larger value of tolw and to use more LR-CG steps
since this significantly saves memory and occasionally is even the fastest version as can be seen from Table
8.

Using the multithreaded parallel solver PARDISO we observe a significant speedup which is close to
linear for larger N. It can also be seen that using 4 threads or 8 threads leads to an optimal performance on
our machine. We observed that for maximum possible number of 16 threads the amount of computational
time increased drastically. We blame this issue to problems of the dense linear algebra kernels with the
multicore architecture. In a multicore processor the processes have to share the cache if more than one
thread is assigned to a socket. We believe that this might be an explanation for the numerical observations.
Although the multithreaded parallel direct solver PARDISO improves the numerical solution of the LR-CG
method with CFADI preconditioning, for larger sizes N the multilevel ILU is still superior although not yet
being parallelized. This can be concluded from the comparison in Figure 13 for tolw = 10−1 and tolw = 10−2.

28

20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4
tol

w
=10

−1

N

ti
m

e
 i
n

 [
s
]

MATLAB

PARD. 1CPU

PARD. 2CPU

PARD. 4CPU

PARD. 8CPU

ILUPACK

20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4
tol

w
=10

−2

N

ti
m

e
 i
n

 [
s
]

MATLAB

PARD. 1CPU

PARD. 2CPU

PARD. 4CPU

PARD. 8CPU

ILUPACK

Figure 13: Computation time LR-CG in [s] versus problem size N for various inner solvers of shifted linear
systems within CFADI preconditioning.

5 Conclusions

In this article we have demonstrated the benefits of low-rank Krylov subspace methods. When computing the
approximate solution of generalized, projected Lyapunov equations, these novel low-rank Krylov subspace
comprise the benefits of Krylov subspace methods and the low-rank Cholesky factor representation similar
to LRCF-ADI methods. While the superiority of low-rank Krylov subspace methods is not always confirmed
in the numerical experiments, their high potential has been illustrated. We have also shown that techniques
of early compressing the rank to the desired accuracy is beneficial for low-rank Krylov subspace methods.
The results have demonstrated the applicability in model order reduction techniques, in particular for those
problems arising from circuit simulation. We have further outlined the wide range of their usage for other
problems such as parabolic partial differential equations. We believe that this numerical case study helps
understanding when and how low-rank Krylov subspace methods can be used as a technique for model order
reduction.

The work reported in this paper was supported by the German Federal Ministry of Education and Re-
search (BMBF), grant no. 03BOPAE4. Responsibility for the contents of this publication rests with the
authors.

References

[1] P. Amestoy, T. A. Davis, and I. S. Duff. An approximate minimum degree ordering algorithm. SIAM
J. Matrix Anal. Appl., 17(4):886–905, 1996.

[2] R. Bartels and G. Stewart. Solution of the matrix equation AX +XB=C. Comm. ACM, 15(9):820–826,
1972.

[3] P. Benner. Advances in balancing-related model reduction for circuit simulation. In J. R. und
L.R.J. Costa, editor, Scientific Computing in Electrical Engineering SCEE 2008, volume 14 of Mathe-
matics in Industry, pages 469–482, Berlin/Heidelberg, 2010. Springer.

29

[4] P. Benner, J.-R. Li, and T. Penzl. Numerical solution of large-scale Lyapunov equations, Riccati equa-
tions, and linear-quadratic optimal control problems. Numerical Linear Algebra with Applications,
15(9):755–777, 2008.

[5] M. Bollhöfer and Y. Saad. Multilevel preconditioners constructed from inverse–based ILUs. SIAM J.
Sci. Comput., 27(5):1627–1650, 2006.

[6] K. E. Brenan, S. L. Campbell, and L. R. Petzold. The Numerical Solution of Initial-Value Problems in
Differential-Algebraic Equations, volume 14 of Classics in Applied Mathematics. SIAM Publications,
1996.

[7] T. Damm. Direct methods and ADI preconditioned Krylov subspace methods for generalized Lyapunov
equations. Numer. Linear Algebra Appl., 15(9):853–871, 2008.

[8] Z. Drmač and Z. Bujanović. On the failure of rank-revealing QR factorization software – a case study.
ACM Trans. Math. Softw., 35(2):12:1–12:28, 2008.

[9] A. K. Eppler and M. Bollhöfer. An alternative way of solving large Lyapunov equations. Proc. Appl.
Math. Mech., 10(1):547–548, 2010.

[10] A. K. Eppler and M. Bollhöfer. Structure-preserving GMRES methods for solving large Lyapunov
equations. In M. Günther, A. Bartel, M. Brunk, S. Schoeps, and M. Striebel, editors, Progress in In-
dustrial Mathematics at ECMI 2010, volume 17 of Mathematics in Industry, pages 131–136. Springer,
2012.

[11] R. Freund and F. Jarre. A QMR–based interior–point algorithm for solving linear programs. Mathe-
matical Programming, Series B, 76(1):183–210, 1997.

[12] R. Freund and N. Nachtigal. QMR: A quasi-minimal residual method for non-hermitian linear systems.
Numer. Math., 60:315–339, 1991.

[13] R. W. Freund. SPRIM: Structure-preserving reduced-order interconnect macromodeling. In Proc. Int.
Conf. on Computer Aided Design (ICCAD), pages 80–87. IEEE Computer Society Press, 2004.

[14] G. H. Golub and C. F. Van Loan. Matrix Computations (Johns Hopkins Studies in Mathematical
Sciences)(3rd Edition). The Johns Hopkins University Press, 3rd edition, October 1996.

[15] W. Hackbusch. Hierarchische Matrizen. Springer Berlin/Heidelberg, 2009.

[16] M. Hinze and S. Volkwein. Proper orthogonal decomposition surrogate models for nonlinear dynamical
systems: Error estimates and suboptimal control. In Dimension Reduction of Large-Scale Systems,
volume 45 of Lecture Notes in Computational Sience and Engineering, pages Chapter 10 (pages 261–
306). Springer-Verlag, Berlin/Heidelberg, Germany, 2005.

[17] M. Hochbruck and G. Starke. Preconditioned krylov subspace methods for lyapunov matrix equations.
SIAM J. Matrix Anal. Appl., 16(1):156–171, 1995.

[18] R. Ionuţiu, J. Rommes, and W. H. A. Schilders. SparseRC: Sparsity preserving model reduction for
RC circuits with many terminals. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 30(12):1828–1841, 2011.

[19] I. Jaimoukha and E. Kasenally. Krylov subspace methods for solving large Lyapunov equations. SIAM
J. Numer. Anal., 31(1):227–251, 1994.

30

[20] K. Jbilou. Block Krylov subspace methods for large continuous-time algebraic Riccati equations.
Numer. Algorithms, 34:339–353, 2003.

[21] K. Jbilou. An Arnoldi based algorithm for large algebraic Riccati equations. Appl. Math. Lett.,
19(5):437–444, 2006.

[22] K. Jbilou. ADI preconditioned Krylov methods for large Lyapunov matrix equations. Linear Algebra
Appl., 432(10):2473–2485, 2010.

[23] K. Jbilou and A. Riquet. Projection methods for large Lyapunov matrix equations. Linear Algebra
Appl., 415(2–3):344–358, 2006.

[24] D. Kressner, M. Plešinger, and C. Tobler. A preconditioned low-rank CG method for parameter-
dependent Lyapunov matrix equations. Technical report, EPFL, April 2012.

[25] D. Kressner and C. Tobler. Krylov subspace methods for linear systems with tensor product structure.
SIAM J. Matrix Anal. Appl., 31(4):1688–1714, 2010.

[26] K. Kunisch and S. Volkwein. Galerkin proper orthogonal decomposition methods for parabolic sys-
tems. Numer. Math., 90:117–148, 2001.

[27] N. Levenberg and L. Reichel. A generalized ADI iterative method. Numer. Math., 66:215–233, 1993.

[28] J.-R. Li and J. White. Low rank solution of lyapunov equations. SIAM J. Matrix Anal. Appl., 24(1):260–
280, 2002.

[29] C. C. K. Mikkelsen. Numerical methods for large Lyapunov equations. PhD thesis, Purdue University,
2009.

[30] A. Odabasioglu, M. Celik, and L. T. Pileggi. PRIMA: passive reduced-order interconnect macromod-
eling algorithm. IEEE Trans. Circuits Syst., 17(8):645–654, 1998.

[31] T. Penzl. Lyapack — a MATLAB toolbox for large Lyapunov and Riccati equations, model reduc-
tion problems, and linear-quadratic optimal control problems. release 1.8 available at http://www.tu-
chemnitz.de/mathematik/industrie_technik/downloads/lyapack-1.8.tar.gz.

[32] T. Penzl. A cyclic low-rank smith method for large sparse Lyapunov equations. SIAM J. Sci. Comput.,
21(4):1401–1418, 2000.

[33] T. Reis and T. Stykel. PABTEC: Passivity-preserving balanced truncation for electrical circuits. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 29(9):1354–1367, 2010.

[34] T. Reis and T. Stykel. Positive real and bounded real balancing for model reduction of descriptor
systems. Internat. J. Control, 83(1):74–88, 2010.

[35] Y. Saad. A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Comput., 14(2):461–
469, 1993.

[36] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM Publications, second edition, 2003.

[37] Y. Saad and M. Schultz. GMRES: A generalized minimal residual algorithm for solving nonsymmetric
linear systems. SIAM J. Sci. Statist. Comput., 7(3):856–869, 1986.

31

[38] J. Sabino. Solution of Large-Scale Lyapunov Equations via the Block Modified Smith Method. PhD
thesis, Rice University, Houston, Texas, 2006.

[39] O. Schenk and K. Gärtner. Solving unsymmetric sparse systems of linear equations with PARDISO.
Journal of Future Generation Computer Systems, 20(3):475–487, 2004.

[40] O. Schenk and K. Gärtner. On fast factorization pivoting methods for symmetric indefinite systems.
Electr. Trans. Num. Anal., 23(1):158–179, 2006.

[41] V. Simoncini. A new iterative method for solving large-scale lyapunov matrix equations. SIAM J. Sci.
Comput., 29(3):1268–1288, 2007.

[42] G. Starke. Optimal alternating direction implicit parameters for nonsymmetric systems of linear equa-
tions. SIAM J. Numer. Anal., 28(5):1432–1445, 1991.

[43] G. Starke. Fejér-Walsh points for rational functions and their use in the ADI iterative method. J.
Comput. Appl. Math., 46:129–141, 1993.

[44] T. Stykel. Low-rank iterative methods for projected generalized Lyapunov equations. Electron. Trans.
Numer. Anal., 30:187–202, 2008.

[45] T. Stykel and T. Reis. Passivity-preserving balanced truncation model reduction of circuit equations. In
J. Roos and L. Costa, editors, Scientific Computing in Electrical Engineering SCEE 2008, volume 14
of Mathematics in Industry, pages 483–490. Springer-Verlag, Berlin/Heidelberg, 2010.

[46] H. A. Van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution
of nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 13(2):631–644, 1992.

[47] E. Wachspress. Iterative solution of the Lyapunov matrix equation. Appl. Math. Letters, 107:87–90,
1988.

32

