
Large–Scale Sparse Inverse Covariance Matrix Estimation

Matthias Bollhöfer∗ Olaf Schenk†

July 12, 2016

Abstract

The estimation of large sparse inverse covariance matrices is an ubitiquous statistical
problem in many application areas such as mathematical finance, geology, health, or many
others. Numerical approaches typically rely on the maximum likelihood estimation or its
negative log-likelihood function. When the Gaussian mean random field is expected to be
sparse, regularization techniques which add a sparsity prior such as the l1-regularization have
become popular to address this issue. This leads to a convex but nondifferentiable target
function. Recently a quadratic approximate inverse covariance method (QUIC) was proposed.
The hallmark of this method is its superlinear to quadratic convergence which makes it among
the most competitive methods. In this paper we will present a sparse version of this method
and we will demonstrate that using advanced sparse matrix technology, the sparse version of
QUIC is easily able to deal with problems of size one million within a few minutes on modern
multicore computers.

Keywords. covariance matrix, inverse covariance matrix estimation, sparse matrices, approxi-
mate inverse matrices

AMS. 65N55, 65F10, 65N22

1 Introduction

In mathematical statistics one is often faced with the problem that big data sets y1, . . . , yn, each
of them of length p � n, are given but the underlying distribution is unknown. Even if one
assumes that the distribution is Gaussian, i.e., y1, . . . , yn ∈ N (µ,Σ), the expected value µ ∈ Rp
and in particular the covariance matrix Σ ∈ Rp×p are unknown. Therefore one has to estimate
the quantities. This is the typical objective of the maximum likelihood method which attempts
to maximize the likelihood function L(Θ), where Θ = Σ−1. For better optimization one usually
uses the (negative) logarithm l(Θ) of the likelihood function L(Θ).

When the Gaussian Markov random field is sparse, one may modify l(Θ) such that a sparse Θ
is preferred. A common way (cf., e.g., [3, 14, 35]) to enforce sparsity is to regularize l(Θ) by an l1
penalty term which then yields some target function fλ(Θ). Since this regularized function fλ is
convex, there are many approaches from convex optimization to minimize the function. Among
these there are blockwise descent methods [3,10,14,28], (inexect) interior point methods [4,21,35],
alternating linearization [29], iterative thresholding [27], projected subgradients [11], greedy-type
descent methods [30], and, more recently, second-order methods [2, 9, 17, 18, 25]. In particular
second order methods have become attractive because of their fast convergence.

In this paper we are especially interested in the QUIC method from [17] which has been shown
to be among the most competitive methods for minimizing fλ. This method is based on a second-
order Taylor expansion of the differentiable part of fλ and it has been proved in [17] that this
method is superlinear convergent, and experimentally, even quadratic convergence can be observed.

∗Institute of Computational Mathematics, TU Braunschweig, D-38106 Braunschweig, Germany
(m.bollhoefer@tu-bs.de).
†Institute of Computational Science, Faculty of Informatics, Universitá della Svizzera italiana, Switzerland

(olaf.schenk@usi.ch).

1

Large-Scale Inverse Covariance Matrix Estimation 2

This makes this method particularly attractive, though it is designed for the use of dense matrices
Σ and Θ which limits the range of application problem currently to problems in the range of
104, which is still very impressive. In [18] a version called BigQUIC has been proposed to deal
with large-scale problems. The idea here is to avoid dense matrix computations and to provide a
memory–efficient version of QUIC that computes part of the matrices on demand, when needed.
Another approach using hierarchical matrices was recently proposed in [2]. In this paper we
are going to present a sparse version of the QUIC algorithm where the matrices use compressed
sparse column storage and sparse matrix technologies to deal with large-scale problems. This
approach is feasible, when beside Θ Σ is also approximately sparse. Our approach is based on
sparse (incomplete) Cholesky decompositions for Θ and factorized approximate inverse techniques
to compute W ≈ Θ−1. Besides, as we will demonstrate, an approximate sparse representation
of the empirical covariance matrix associated with the given samples y1, . . . , yn plays a major
computational role in designing an efficient sparse QUIC method.

The paper is organized as follows. In Section 2 we give a short summary about the mathemat-
ical problem of sparse inverse covariance estimation and its formulation as a convex optimization
problem. In Section 3 we briefly review the QUIC method; after that we give in Section 4, the
three major challenges with respect to the numerical kernel of this method as well as existing
approaches to deal with these. It will present for each of these problems two separate approaches
using state-of-the-art sparse matrix techniques. These will be demonstrated in Section 5 using
some large-scale sparse inverse covariance estimation examples. We will demonstrate that on a
modern computer with a single node and 60 cores we are easily able to solve these problems within
a few minutes.

2 Sparse inverse covariance estimation

In many application problems one is often faced with the following problem: given n data samples
y1, . . . , yn ∈ N (µ,Σ) from a p-variate Gaussian distribution with covariance matrix Σ and mean
value µ, the only information that we have are the random samples but we would like to know Σ or
even Θ = Σ−1 which are not known to us. We will assume throughout the paper that p� n. This
situation arises quite frequently in big data problems and just to increase the number of samples
to construct Σ is not feasible. The usual approach in mathematical statistics is the maximum
likelihood method. We define by

Y :=
[
y1 · · · yn

]
the matrix of matrix samples and by

µ̂ =
1

n

n∑
j=1

yi, S =
1

n

n∑
i=1

[Y − µ] [Y − µ]
T

the sample arithmetic mean µ̂ and the associated sample covariance matrix S (here we use 1
n

rather than 1
n−1 in the covariance matrix for simplicity). The difference Y − µ ≡ Y − µ (1 · · · 1)

is considered to be taken from each column of Y . The likelihood function is given by

L(Θ) =

[
det Θ

2π

]n
2

· exp

(
−1

2
tr([Y − µ̂]TΘ[Y − µ̂])

)
.

As usual in maximum likelihood estimation one takes the logarithm and, to turn this into a
minimization problem, the sign is flipped and additive and multiplicative constants are omitted.
This leads to the minimization of the (negative) log-likelihood function

(1) g(Θ) = − log(det Θ) + tr(SΘ).

To enforce sparsity of Θ one usually adds a sparsity prior to g. Requiring that Θ has to be sparse
can be read as the associated Gaussian Markov random field is sparse. This sparsity constraint

Large-Scale Inverse Covariance Matrix Estimation 3

yields an l1-regularized function

(2) fλ(Θ) = g(Θ) + λ|Θ|1,

where λ > 0 is an a priori chosen parameter and |Θ|1 =
∑p
i,j=1 |θij | refers to the elementwise

1-norm. The constrained minimization of g (resp., fλ) is also referred to as Lasso-type problem
and since g is strictly convex and fλ is still convex, there exist several optimization methods to
minimize fλ such as block-wise coordinate descent methods (graphical lasso) [3,10,14,28], (inexact)
interior point methods [21,35], alternating linearization [29], iterative thresholding [27], projected
subgradients [11], and greedy-type descent methods [30]. These approaches have in common that
they are first-order methods. More recently, second order have been proposed such as the Newton-
like method in [25] or quadratic approximation methods [17]; the latter has led to the so–called
QUIC method which we will briefly describe in the next section.

3 The QUIC algorithm

The basis of the QUIC method [17] consists of locally constructing a second-order approxima-
tion for the differentiable part g of fλ using Taylor expansion. For fixed Θ, the local quadratic
approximation g̃(∆) of g(Θ + ∆) reads as

g(Θ + ∆) ≈ g̃(∆) = tr((S −W)∆) +
1

2
tr(W∆W∆)− log(det Θ) + tr(SΘ),

where W = Θ−1. Up to a constant, this yields a local approximation

h(∆) ≡ tr((S −W)∆) +
1

2
tr(W∆W∆) + λ|Θ + ∆|1

of fλ(Θ + ∆). Rather than minimizing h for all ∆, the authors have proposed to apply a sequence
of one-dimensional minimization steps of type

h(∆ + µ(eie
T
j + eje

T
i)),

where ∆ refers to the already completed updates, ei, ej refer to suitably chosen unit vectors and
µ is the parameter to be computed. Interestingly, it has been shown in the same article that
it suffices to select the sequence of indices (i1, j1), . . . , (ik, jk) only from those entries (i, j) such
that |sij − wij | > λ or θij 6= 0. A quite realistic expectation is that this set of indices is usually
significantly less than p2. Each one-dimensional step (i, j) requires, in particular, the values of sij
and wii, wjj and wij as well as the ith and jth columns of W . Moreover, ∆ and θij are required.
At this point we skip presenting the detailed formula for computing µ and kindly refer to [17] for
further details. Once the complete sequence is computed, the collection ∆ of all one-dimensional
steps is used to update Θ by Θ′ = Θ + α∆. Here α is chosen as 2−m and α is reduced until Θ′ is
positive definite and the associated fλ satisfies an additional Armijo-type criterion.

Without going into further details of the QUIC code, it is obvious that the following tasks are
part of the algorithm:

1. The empirical covariance matrix S is referenced for every (i, j) from the sequence, this
includes in particular (i, j) such that |sij | > λ, e.g., when W is diagonal.

2. In order to verify whether Θ′ is positive definite or not, an algorithm is required to test the
positive definiteness of Θ′.

3. The computation of fλ(Θ) requires a method for computing log(det Θ).

4. Finally, for setting up the active set (i1, j1), . . . , (ik, jk) the entries of W = Θ−1 are required,
in particular, for detecting |sij − wij | > λ, but also for computing each one-dimensional
update. The latter requires each column wi, wj for computing µ for every (i, j) from the
active set sequence.

We will next describe how these numerical challenges are treated by existing algorithms.

Large-Scale Inverse Covariance Matrix Estimation 4

4 Large-scale challenges

The original QUIC algorithm is designed to work with dense matrices, therefore the sample covari-
ance matrix S is directly passed as a dense matrix to the algorithm, the positive definiteness as
well as log(det Θ) are computed via the dense Cholesky decomposition. Using the dense Cholesky-
decomposition, W = Θ−1 is easily inverted. This numerical core part is performed using LAPACK
and BLAS.

More recently, in [18] a large-scale version BIGQUIC of the QUIC algorithm has been presented
with the major objective to save memory and to deal with a million variables. The hallmark of the
BIGQUIC algorithm is to avoid memory consumption and therefore the log(det Θ) is computed
via a recursion formula [18] which allows to compute the determinant by reducing it to solving
linear systems and to check positive-definiteness. Similarly, W is not computed in total but on
demand using the conjugate gradient method. In addition, the entries of S are only computed
when needed. To improve efficiency, a further blocking strategy is applied to the sequence of
one-dimensional updates in order to recycle the computed quantities more often.

In [2] a version of the QUIC algorithm using hierarchical matrices is presented. Here the
major idea is to represent all matrices in H format, to compute the Cholesky decomposition and
the inverse matrix using H matrix arithmetic.

We will now present our approach to deal with the QUIC method for large-scale systems. We
will present numerical methods that allow for the use of state-of-the-art sparse matrix technology.
These are employed to efficiently deal with the following tasks:

1. (Approximate) sparse representations of the large entries of the empirical covariance matrix
S.

2. Detect the positive definiteness of Θ and log(det Θ) using a sparse (approximate) Cholesky
decomposition.

3. Compute a sparse approximate inverse matrix W .

To be efficient, these tasks certainly require that the underlying statistical problem possesses
certain sparsity properties, e.g., the Gaussian Markov random field (i.e. Σ−1) is assumed to be
sparse, but in addition we certainly need W ≈ Σ to be at least approximately sparse and that the
entries |sij | > λ can be represented by a sparse matrix. Whenever this is fulfilled, sparse matrix
technologies can be efficiently applied as we will demonstrate in the following.

4.1 Sparse Representation of the Sample Covariance Matrix

Given the initial statistical data Y = [y1, . . . , yn] and its mean value µ̂ = 1
n

∑n
i=1 yi, let us recall

that S is formally given by

S =
1

n
ZZT , where Z = Y − µ̂

and the difference Y − µ̂ is understood to be taken by columns. Obviously, in our case S is large-
scale and low-rank (since p� n), S is a symmetric positive semidefinite matrix and, theoretically,
when n → ∞ we would have S → Σ. Certainly we will by far not have n large enough to see
this convergence. Therefore, even if Σ were approximately sparse it does not mean that S has to
be approximately sparse as well, but S could have a significant number of entries that have to be
considered as noise. However, taking into account only the entries suv such that u = v or |suv| > λ
(e.g., λ = 0.5) gives hope that at least these entries can be represented by a sparse matrix. We
also like to emphasize that usually it is not known a priori at which positions the large entries
are located. This certainly makes it harder to develop an efficient algorithm for an approximate
sparse representation. Taking all this into account we will now present two algorithms to compute
an initial sparse representation S̃ of all suv such that u = v or |suv| > λ. To simply compute these
entries does not interfere with computing some more entries of S on request, e.g., the computation
of the active set requires to compare |suv − wuv| for all nonzero entries of W and certainly, given

Large-Scale Inverse Covariance Matrix Estimation 5

the pattern of W we could easily compute S at the nonzero pattern of W , if not yet present. In
this case, the pattern of where to compute entries of S is predetermined by W and we do not have
to further guess entries of S outside the pattern of W , except those cases where |suv| > λ, which
remains the major difficulty.

The first algorithm to compute S̃ is straightforward. The product 1
nZZ

T can be easily com-
puted using level-3-BLAS. Since the amount of memory for computing this is considerably high, we
compute this product in chunks of size k, i.e., we set ZT = [C1, . . . , Cm], where C1, . . . , Cm ∈ Rn,k.
Possibly Cm has fewer columns p− (m− 1)k 6 k if p is not a multiple of k.

Algorithm 1 Deterministic Computation of S > λ

Require: Y ∈ Rp,n, λ > 0, k ∈ N.
Ensure: sparse restriction S̃ ∈ Rp,p of S s.t. |suv| > λ or u = v

1: µ̂ := 1
n

∑p
j=1 yj , Z := Y − µ̂, partition ZT = [C1, . . . , Cm] s.t. Cj ∈ Rp,k

2: for j = 1 : m do
3: denote by Z̃ = (zuv)u>(j−1)k,v the block lower triangular part of Z

4: compute Dj = 1
n Z̃Cj .

5: for i = 1 : k do
6: sparsify ith column of Dj s.t. only suu and |suv| > λ are saved to S̃
7: end for
8: end for

In practice, we will use k = 256 for simplicity to compute a sufficiently large chunk of S.
Certainly, different values of k were possible and we did not investigate which size k would lead
to an optimal computation time. We sketch the computation of S̃ via Algorithm 1 in Figure 1.

S ∼

chunks

co
m

p
u

te

→

sp
ar

si
fy

co
m

p
u

te

→

sp
ar

si
fy

co
m

p
u

te

→

sp
ar

si
fy

Figure 1: Sketch of Algorithm 1.

We like to note that Algorithm 1 can be easily parallelized with a large number of cores c. But
even on a high-performance system the total amount of computation time remains on the order

of O(p
2n
c), maybe with a small constant if all architecture-dependent properties are used and we

do not see that in general a deterministic algorithm can significantly reduce the complexity. We
therefore present a second random-based algorithm which may in practice consume less time, in
particular when the size p is getting large.

To break the complexity O(p2n), as a first step we will make use of a column compression
technique. This approach is motivated by probing techniques [6–8, 34] to efficiently compute
sparse matrices by matrix-vector products using significantly fewer vectors than the size p of the
matrix. Here the idea is relatively easy when the pattern of the underlying matrix is known as
indicated in the following trivial pattern example of Figure 2. Now there are the two following
difficulties with the probing approach in our case:

1. We do not know the pattern of S in advance.

Large-Scale Inverse Covariance Matrix Estimation 6



∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗





1

1

1


=



∗
∗

∗
∗
∗

∗
∗



Figure 2: Column compression Sg = d via probing.

2. The matrix S is usually not sparse. This is not a contradiction to our assumption that the
covariance matrix Σ itself is approximately sparse. Indeed, the number n of samples used
to form S is usually much less than its size p.

We now describe the main idea of a heuristic algorithm for computing S using probing vectors.
Some technical details we will describe after that. In order to deal with the first difficulty we
randomly choose l numbers from {1, . . . , p} and denote this set by J . Then we set

(3) g =
∑
v∈J

ev,

where ev denotes the v–th unit vector and compute d = Sg. Choosing the entries of J randomly,
there is a good chance that for v ∈ J the associated columns Sev of S do not overlap, it least if
S were sparse. Next we will deal with the second difficulty. Even if on the average, the t largest
entries in each column v ∈ J of S do not overlap, noisy entries will surely accumulate as we
increase the size l of J . In particular since n � p, S is far away from Σ, therefore the noise is
likely to add up to contributions greater than λ when l gets larger. For this reason we simply sort
the entries of d = Sg in modulus in decreasing order and only keep the F · t · l largest entries,
where F > 1 refers to some failure factor, allowing more entries than we expect to be greater than
λ. These remaining F · t · l entries of d are associated with some index set I and the only thing
we have to do now is to recompute suv, for all u ∈ I and v ∈ J to cross–check which of these
entries really satisfy |suv| > λ. These entries are then kept and build the approximate empirical
covariance matrix S̃.

After having given a sketch of the major idea, we will now comment on some details of this
probing method. Although we certainly do not know t in advance, we can start with a relatively
pessimistic large initial guess for t. While computing columns of S step by step, we uncover more
and more entries suv such that |suv| > λ. This allows to adapt t throughout the computation.
Similarly, starting with an initial guess F we can easily compare the number of entries suv that
were successfully computed with the number of entries that were left over after sorting. This also
allows to adaptively modify F . It is also clear that analogous to Algorithm 1 we can compute
multiple columns G = [g1, . . . , gk] simultaneously to exploit dense linear algebra kernels. Since
each gi in (3) is a sum of l unit vectors, the formal product C = ZTG =

(
ZT gi

)
i=1,...,k

is easily

achieved for each i summing up only those columns v of ZT such that v ∈ Jm. Algorithm 2 states
the major frame of the randomized computation of the sparsified sample covariance matrix. The
adjustment of the parameter l has not yet been discussed. This will be done now based on a
simplified cost model.

For the computational cost of Algorithm 2 we initially note that the formal product C = ZTG
costs O(nl · k) during a single loop since we exploit the special pattern of G. Thus this product
is significantly cheaper than computing D = 1

nZC which costs O(pn · k) locally. From this one
can immediately conclude that the computation of D using dense linear algebra kernels (level-3-
BLAS) is dominating the computation time up to step 12. Assuming that l is a constant, the total
matrix–matrix product D accumulated over the outer while–loop costs O(εpn · pl) which roughly

Large-Scale Inverse Covariance Matrix Estimation 7

Algorithm 2 Randomized Computation of S > λ Using Column Compression

Require: Y ∈ Rp,n, λ > 0, k ∈ N.
Ensure: sparse restriction S̃ ∈ Rp,p of S s.t. |suv| > λ or u = v

1: µ̂ := 1
n

∑p
j=1 yj , Z := Y − µ̂, C = {1, . . . , p}

2: compute suu, u = 1, . . . , p.
3: while C 6= ∅ do
4: G = [g1, . . . , gk] = 0 ∈ Rp,k
5: {for each column i pick l unused indices randomly:}
6: for i = 1 : k do
7: Ji = ∅
8: for j = 1 : l do
9: pick r ∈ C, C = C \ {r}, Ji = Ji ∪ {r}

10: gi = gi + er
11: end for
12: end for
13: {compute k compressed columns of S:}
14: set C = ZTG and compute D = 1

nZC and let D = [d1, . . . , dk]
15: {for each compressed column k detect the neighbouring structure:}
16: for i = 1 : k do
17: {filter d s.t. only the largest entries remain:}
18: exclude the elements of Ji from di
19: sort the remaining entries of |di| in decreasing order
20: keep the largest F · t · l in modulus and denote the associated indices by Ii
21: {for each large off-diagonal index u search for one associated column v:}
22: Ĵi := Ji
23: for u ∈ Ii do
24: for v ∈ Ĵi do
25: recompute the exact value suv
26: if |suv| > λ, store suv, remove v from Ĵi and stop as soon as t entries are detected in

column v of S.
27: end for
28: end for
29: end for
30: adjust t, F, l
31: end while

reads as compressing l columns simultaneously and ε is some small constant (e.g., 10−2) that takes
into account the high performance of the dense linear algebra kernel. The recomputation of suv
in steps 16-29 locally costs O(Ftl2n · k) which results in an overall cost of O(Ftl2n · pl).

After we have motivated a simple cost model for the matrix–matrix computation and the recom-
putation of suv, we use these simplified models to define an equilibrated value of l. Assuming that
F, t, ε are constant, the optimal performance is achieved whenever the two most time-consuming
parts coincide, i.e., whenever we have

εpn · p
l

= Ftl2n · p
l
,

which is satisfied for choosing l =
√

εp
Ft . We will use this formula for l in Algorithm 2. In this ideal

scenario the total amount of computation time would cost O(p3/2n
√
Ftε) which is much cheaper

than O(p2n) and there is hope that for large–scale problem sizes p, the randomized Algorithm 2
with column compression can outperform the deterministic Algorithm 1.

We finally like to point out that the computation of chunks of columns of S with or without
column compression is easily performed using multithreaded level-3-BLAS. Similarly, the sparsifi-
cation of each computed column will be done in parallel using OpenMP.

Large-Scale Inverse Covariance Matrix Estimation 8

After we have discussed how the first (and major) obstacle of deriving a sparse and approximate
representation of S is performed, we will next discuss the second part which consists of computing
an (approximate) factorization of Θ as computed iteratively in the minimization process of fλ(Θ).

4.2 Sparse matrix factorization

In this subsection we will discuss, given an update Θ′ = Θ + α∆, how to detect that Θ′ is still
positive definite. Provided that Θ′ is symmetric and positive definite and satisfies Armijo-type
criterion with respect to the decrease of fλ(Θ′), we discuss how to compute log(det Θ′). Here
we will concentrate on two variants based on sparse matrices. The first algorithm is simply
computing the Cholesky decomposition for Θ′ and returning an error message if it fails. Among
many numerical software packages that allow for fast sparse Cholesky decompositions (cf. e.g.
[5, 16, 19, 26, 31]), we decide to use the CHOLMOD [5] factorization which is obtained by default
when using the chol MATLAB’s function. We note that this algorithm is sequential, however it
uses level-3-BLAS and therefore includes some multithreading on that level which mildly improves
its parallel performance.

As an alternative to a sparse Cholesky decomposition we use an incomplete LDLT factorization
following the ideas from [15]. The main motivation for using an incomplete factorization here is
to save memory rather than to decrease computation time. Indeed, modern sparse direct methods
use a deep machinery of technologies which makes it hard to beat these kind of methods, except if
the incomplete factorization produces factors with drastically less fill–in. But the latter may save
memory which could become a significant issue in sparse inverse covariance matrix estimation. For
the incomplete LDLT approach, symmetric maximum weight matchings [12,13] are performed in a
preprocessing step in order to improve the diagonal dominance followed by a fill-reducing ordering
on the compressed graph such as [1, 20]. Finally a left–looking approximate LDLT factorization
with 1×1 and 2×2 pivots is performed similarly to [22]. Certainly, for symmetric positive definite
matrices, this amount of work were not necessary, but since Θ′ = Θ + α∆ is not guaranteed to
be positive definite, we prefer to use an indefinite approach. It is clear that in the simplest cases,
checking whether the diagonal entries of Θ′ are at least positive, one can easily skip (incomplete)
factorizations once this property is violated. Otherwise, positive definiteness can be read off from
D. We are aware that using a drop tolerance, the information could be unsafe due to dropping,
however, similar to [32] we did not observe this in our experiments. This may be caused by the
choice of our drop tolerance τ . To be precise, define

(4) ρ := |fλ(Θ′)− fλ(Θ)|/|fλ(Θ′)|

as the relative error between subsequent QUIC iteration steps. Then we use τ = 0.1ρ, i.e., for
safety reasons τ is chosen one order of magnitude less than the relative accuracy ρ. To choose τ
one order of magnitude less is also intended to prevent the target function fλ from being perturbed
too much. In order to avoid extreme values of |fλ(Θ′)− fλ(Θ)|/|fλ(Θ′)|, we also make sure that
ρ is always chosen such that ρ 6 10−1 is the maximum tolerance and, at the other bound, we use
ρ > tol, where tol is the user–defined accuracy as passed to the QUIC method (in our experiments
we will use the default value τ = 10−6).

In total we like to point out that both approaches could be uniformly represented by

(5) ΠTQAQΠ ≈ LDLT ,

where Π is a suitable permutation matrix, Q is a diagonal scaling matrix, L is unit triangular,
and D is (block) diagonal with diagonal entries of size 1× 1 or 2× 2. Once, D is discovered to be
positive definite we could reduce it to a (scalar) diagonal matrix and in this case we easily obtain
log(det Θ′) =

∑p
i=1 (log dii − 2 log qii) as by-product of the Cholesky decomposition.

4.3 Sparse approximate inverse representation

As a last step to introduce sparse matrix computation into the QUIC algorithm we will discuss
two approaches to approximately compute W ≈ Θ−1 during the iterative minimization of fλ(Θ).

Large-Scale Inverse Covariance Matrix Estimation 9

The first approach which we will discuss simply utilizes the given factorization (5). Having an
(approximate) Cholesky decomposition available we certainly reuse the given factorization in order
to compute an (approximate) inverse W ≈ Θ−1, which we will discuss next. Given some tolerance
ε we can approximately compute

A−1 ≈ QΠL−TD−1L−1ΠTQ

by setting L = I−E and writing the inverse of L as a Neumann series L−1 = I+E+E2+· · ·+Ep−1.
Using Horner’s scheme and the tolerance ε we successively compute

iL1 = I + E, iLk+1 = iLk E + I, k = 1, 2, 3,

We define ε := 0.1ρ with ρ from (4). In each step k we can sparsify the columns of iLk by using
a finer tolerance 0.1ε and we stop the expansion as soon as the element-wise error between the
elements of two neigboring polynomials iLk+1 − iLk drops below the tolerance ε. Finally we use

A−1 ≈ iA = QΠ iL
T
D−1 iL ΠTQ,

say with some relative dropping |iauv| 6 ε iauu
iavv to build the final approximation iA. The

beneficial property of the Neumann-based approach is its ease and its simplicity that allow for
straightforward parallelization. This is because the successive computation using Horner’s scheme
can easily be performed in parallel using OpenMP on all columns given k. The intermediate
sparsification with smaller tolerance 0.1ε is intended to prevent the Neumann series from producing
too much fill-in. On the downside all entries are eventually computed up to some tolerance ε and
the algorithm to compute the sequence of one-dimensional updates h(µ) = h(∆ +µ(eie

T
j + eje

T
i))

may theoretically lead to inaccurate updates.
As an alternative approach to compute an approximate inverse, we now present a second

approach. Here the idea is first to compute an accurate inverse at those positions where necessary,
and then later on to fill-up the remaining positions by a less accurate inverse such that the inverse
is accurate enough to meet the conditions of the sequence of one-dimensional minimization steps.
Looking at the strategy to select the active set (i1, jj), . . . , (ik, jk) the sequence of indices is chosen
by θij 6= 0 or |sij − wij | > λ. This certainly forces initially to choose (i, j) such that |sij | > λ
whenever wij = 0. Assuming that wij 6= 0 if θij 6= 0, it is therefore necessary to have the entries
of W precisely at those positions where θij 6= 0. As consequence of the optimization process, after
one iteration we will already have that θij 6= 0 if |sij | > λ. Therefore we expect that the pattern
of |S| subject to λ is included in the pattern of Θ (at least after the first iteration step) and to find
a new active set, it is likely that it is sufficient to have W available for the pattern of Θ or, say, at
the pattern of its Cholesky factor. This observation leads directly to the idea of using a selective
inverse [23,24,33] rather than an approximate inverse. In the symmetric case, the selective inverse
is easily explained as follows. Let

A = LDLT , where L =

(
I 0
LE I

)
, D =

(
DB 0
0 DC

)
.

From this it follows that

(6) (LDLT)−1 =

(
D−1B + LTE(D−1C LE) −LTED

−1
C

−D−1C LE D−1C

)
≈
(
D−1B + LTEGE −GTE
−GE GC

)
,

where GC = D−1C and GE coincides with D−1C LE only in those rows that are required to compute
LTE (D−1C LE) accurately. This forces the equality in (6) everywhere in the (1, 1) and (2, 2) block
and selectively in those rows of the (2, 1) block (resp. (1, 2) block), where GE is computed.
Applying this approach successively from the lower right corner to the upper left corner yields the
exact inverse at selected positions, at least in the case of a direct solver (this can be verified using
the notion of the elimination tree). We like to point out that computing the selective inverse is
on a comparable order to the computational cost computing the Cholesky decomposition having

Large-Scale Inverse Covariance Matrix Estimation 10

the same fill–in. Once the selective inverse is computed, we decide how to select the active set
(i1, j1), . . . , (ik, jk) based on the computed selective inverse W ≈ Θ−1. After the set is defined,
we sparsify W back to the diagonal entries and active set (i1, j1), . . . , (ik, jk). Since now we can
compute the subgradient, we compute a refined approximate inverse W using again the Neumann
series, but only using a different threshold ε̂ = 0.1ρ̂ which we will briefly explain in the following.
Following [18], we define the subgradient via

(7) ∇Sijfλ(Θ) :=

{
sij − wij + sign(θij)λ if θij 6= 0;

sign(sij − wij) max(|sij − wij | − λ, 0) if θij = 0.

Theorem 2 in [18] states that the approximate Hessian has to approximate the exact Hessian up
to O(|∇Sijfλ(Θ)|1) in order to obtain superlinear to quadratic convergence. Note that the entries

of the Hessian refer to the entries wTi ∆wj , where wi, wj correspond to the ith and jth columns of
W . Assuming that |∆|1 = O(|Θ|1), a natural bound ρ̂ for the entries of W would be

(8) ρ̂ := |∇Sijfλ(Θ)|1/|Θ|1

in order to ensure that the entries of the approximate Hessian wTi ∆wj are sufficiently accurate.
We conclude this subsection mentioning that for both approaches the Neumann series is par-

allelized using OpenMP.

5 Numerical experiments

A Matlab implementation of the sparse QUIC algorithm was developed to illustrate the robustness
of the approach and examine its practical nature. We begin by discussing a few implementational
issues in chronological order of the steps of the algorithm and then describe its performance on a
varied set of test problems. We will demonstrate that using modern sparse matrix technologies we
are able to extend the QUIC method easily to sparse large-scale problems computing the solution
within a reasonable amount of time. In our numerical experiments we will compare the QUIC
method [17], the BigQUIC method [18] as well as our sparse implementation of QUIC for which
we will use the abbreviation SQUIC.

The numerical experiments are carried out on a single node with 1 TB main memory and 4
Intel Xeon E7-4880 v2 @ 2.5 GHz processors each of them having 12 cores on a socket leading
to 60 cores in total. Each approach uses all 60 cores, in particular the multithreaded BLAS as
used in MATLAB will make use of them. Likewise, implementation in OpenMP of parts of the
algorithms as outlined for BigQUIC in [18] and described in the previous sections for SQUIC will
make use of 60 cores.

We will conduct three experiments. In these experiments we will prescribe the exact solution
Σ−1 for testing and use fixed sample size n = 500 whereas the size p of the covariance matrix will
vary over several orders of magnitude, p = 10k, k = 2, 3, 4, 5, 6. As default tolerance all algorithms
will use ε+ 10−6 which is the default value for QUIC. We allow BigQUIC to use up to 80 GB of
memory (default was 8 GB). This did not have a major influence on BigQUIC in our experiments.

Example 1 We will use the tridiagonal matrix Σ−1 = trid[−0.5, 1.25,−0.5] and we will vary λ
by λ = 1.0, 0.6, 0.5, 0.4, 0.3. We like to point out that by default the QUIC method uses λ = 0.5
and that the precise choice of an optimal λ would be worth discussing in a separate paper. For this
example, following [2, 17], λ = 0.5 results in the best recovery rate.

Example 2 We will use the pentadiagonal matrix

Σ−1 = band[−0.25,−0.25, 1.25,−0.25,−0.25]

and we will vary λ by λ = 1.0, 0.6, 0.5, 0.4, 0.3, 0.2. Beside the default value λ = 0.5 of the QUIC
method we like to note that λ = 0.3 yields the best success rate.

Large-Scale Inverse Covariance Matrix Estimation 11

Example 3 As a final example we use a random example1 from [2]. Here Σ−1 is generated
randomly having approximately 4 nonzeros per row such that 99% of the entries are clustered in
blocks of size 20. Similary to [2], we use a relatively small value for λ, i.e., we set λ = 0.03.

Following [2, 4] we use the success rate F as a measure of how well the inverse covariance
matrix Σ−1 is recovered by Θ from the variants of the QUIC method. To be precise, we denote
by TP the number true positive entries in Θ, FP refers to the number of false positive entries in
Θ. Similarly, TN denotes true negative entries and FN the false negative entries. Based on this
notation we define

precision P =
TP

TP + FP
, recall R =

TP

TP + FN
,

and finally

success F =
2PR

P +R
∈ [0, 1].

We will only plot F and obviously the larger the F the more successful is the recovery of Σ−1 by
Θ as computed by the variants of the QUIC method.

For our sparse implementation of the QUIC method we have in total three major templates
to be implemented in sparse arithmetic, as described previously. For each of these objectives we
have presented two alternatives. Let us summarize them as follows:

1. Generation of the empirical covariance matrix S:

(a) deterministic approach;

(b) Randomized approach using column compression.

2. Positive definiteness of Θ and log(det Θ):

(a) Sparse Cholesky decomposition;

(b) incomplete LDLT decomposition using the tolerance τ = 0.1ρ, where ρ is defined via
(4).

3. Approximate inverse W ≈ Θ−1 using the given factorization:

(a) truncated Neumann series using relative error ε = 0.1ρ.;

(b) selective inversion, sparsification to active set and refined inverse using Neumann series
and the threshold ε̂ = 0.1ρ̂. with ρ̂ from (8)

In order to distinguish between these 8 variants of SQUIC, we will denote them as SQUIC(aaa),
etc., to indicate which method is chosen.

5.1 Tridiagonal example

As a first example we consider the case when Σ−1 is tridiagonal in Example 1. Note that since
Σ−1 is strongly diagonal dominant, the elements σij of Σ tend to be small the larger |i − j|.
This problem allows for a sparse QUIC approach and we will demonstrate the effectiveness of
sparse matrix technologies. Figure 3 compares the computation time when using λ = 0.5 (which
is considered to be almost optimal for this problem). Only the SQUIC variants can be applied to
p = 105, p = 106. Notice the double-logarithmic scalings in Figure 3! Already for p = 104 the
sparse QUIC versions are faster by two orders of magnitude than QUIC or BigQUIC. The SQUIC
implementations are easily able to handle the problem for p = 106. To see the difference between
the SQUIC versions more precisely we only display a window between p = 105 and p = 106 in
Figure 4. Here one can easily see that the SQUIC(b**)2 implementations are up to twice as fast
as the SQUIC(a**) implementations.

1We like to thank Jonas Ballani for providing the code for generating Σ−1.
2Here * is used for either a and b.

Large-Scale Inverse Covariance Matrix Estimation 12

10
3

10
4

10
5

10
6

size p

10
-1

10
0

10
1

10
2

10
3

10
4

ti
m

e
 [
s
e
c
]

QUIC

BigQUIC

SQUIC(aaa)

SQUIC(baa)

SQUIC(aab)

SQUIC(bab)

SQUIC(aba)

SQUIC(bba)

SQUIC(abb)

SQUIC(bbb)

Figure 3: Computation time QUIC-type algorithms, Tridiagonal example 1.

10
5

10
6

size p

10
2

10
3

ti
m

e
 [
s
e
c
]

QUIC

BigQUIC

SQUIC(aaa)

SQUIC(baa)

SQUIC(aab)

SQUIC(bab)

SQUIC(aba)

SQUIC(bba)

SQUIC(abb)

SQUIC(bbb)

Figure 4: Detailed computation time SQUIC algorithms, Tridiagonal example 1.

Next we state the success rate for all competing algorithms for p = 104, when QUIC and
BigQUIC are still part of the competition. Here Figure 5 shows that QUIC and all variants of
SQUIC are more or less identical, except BigQUIC whose recovery rate is initially slightly behind
but catches up as λ becomes less. Note also that we have reversed the horizontal scaling, since
numerically it seems to be much more natural to start with a large λ and then decrease it. We
note that our previous experiments in Figure 3, 4 refer to the specific value λ = 0.5 and we would
like to point out that the choice of an optimal λ is worth writing a separate article. This can
certainly not be covered in this article.

For large-scale problems such as p = 106 we are only able to compare the SQUIC variants.
Here we like to draw the attention of the reader to the fact that reducing λ too much drastically
increases the fill–in. This also affects the SQUIC algorithms, in particular, for λ = 0.3 the
SQUIC(a**) implementations quickly lead to relatively dense matrices. Therefore we only display
the algorithms that were able to treat p = 106 and λ > 0.3. Figure 6 states that the two remaining
SQUIC(a**) algorithms lead to highest success ratio as long as λ is large enough and the memory
consumption is small enough, but suddenly they fall back behind the SQUIC(b**) methods for λ =
0.3 which reveals the problem between fill–in of the iterates and obtaining a sufficient success rate.
Although it sounds surprising that the two remaining SQUIC(a**) are eventually less accurate,
though working with the exact empirical covariance matrix S s.t. |sij | > 0.3, this strange effect
is explained by the larger amount of numerical errors working with denser matrices W that need
to be approximated numerically. In contrast to that, the SQUIC(b**) work with a compressed
version of S only, but this leads to a sparser representation and therefore to a higher success rate

Large-Scale Inverse Covariance Matrix Estimation 13

0.30.40.50.60.70.80.91

λ

0

0.2

0.4

0.6

0.8

1
ra

te

QUIC

BigQUIC

SQUIC(aaa)

SQUIC(baa)

SQUIC(aab)

SQUIC(bab)

SQUIC(aba)

SQUIC(bba)

SQUIC(abb)

SQUIC(bbb)

Figure 5: Success rate of QUIC-type algorithms for p = 104, Tridiagonal example 1.

0.30.40.50.60.70.80.91

λ

0

0.2

0.4

0.6

0.8

1

ra
te

SQUIC(baa)

SQUIC(bab)

SQUIC(aba)

SQUIC(bba)

SQUIC(abb)

SQUIC(bbb)

Figure 6: Success rate of some SQUIC algorithms for p = 106, Tridiagonal example 1.

0.30.40.50.60.70.80.91

λ

10
0

10
1

10
2

re
la

ti
v
e

 f
ill

 n
n

z
(W

)/
p

SQUIC(baa)

SQUIC(bab)

SQUIC(aba)

SQUIC(bba)

SQUIC(abb)

SQUIC(bbb)

Figure 7: Relative fill SQUIC some algorithms, p = 106, Tridiagonal example 1.

for small λ.
Certainly, a natural question that arises is about the consumed memory. Figure 7 illustrates

Large-Scale Inverse Covariance Matrix Estimation 14

0.30.40.50.60.70.80.91

λ

0

500

1000

1500

2000

2500
ti
m

e
[s

e
c
]

SQUIC(aba)

SQUIC(bba)

Figure 8: Computational amount for the initial S, p = 106, Tridiagonal example 1.

10
3

10
4

10
5

10
6

size p

10
0

10
2

10
4

ti
m

e
 [

s
e

c
]

QUIC

BigQUIC

SQUIC(aaa)

SQUIC(baa)

SQUIC(aab)

SQUIC(bab)

SQUIC(aba)

SQUIC(bba)

SQUIC(abb)

SQUIC(bbb)

Figure 9: Computation time QUIC-type algorithms, Pentadiagonal example 2.

that, in particular, the SQUIC(b**) variants are still competitive while at the same time their
success rate remains close to the best rate.

Finally for this first example, we like to mention that in several cases the computation of the
sparse approximate representation of the empirical covariance matrix S consumes a significant
amount of computation time. We show for two variants SQUIC(*ba) based on the exact deter-
ministic algorithm SQUIC(aba) and on the randomized method SQUIC(bba) how much time is
consumed for computing S. As shown in Figure 8, the convex optimization process often enough
consumes only minor computation time compared with the generation of a sparse representation
of S. Certainly, if the application-dependent, part of the relevant pattern of S is known, the
algorithm could be accelerated even further.

5.2 Pentadiagonal example

For the pentadiagonal example 2 we get for λ = 0.3 a similar computation time profile as for the
first example and λ = 5. We demonstrate this in Figure 9. Similarly to the first example, we also
compare the success of each algorithm for p = 104 in Figure 10, where all methods are still able to
compete and the results demonstrate a similar behavior from λ = 1.0 down to λ = 0.3 (again with
BigQUIC being an exception). For λ = 0.2 the fill-in already significantly increases which explains
the slightly greater differences there. The significant differences are also revealed when taking a

Large-Scale Inverse Covariance Matrix Estimation 15

0.20.30.40.50.60.70.80.91

λ

0

0.2

0.4

0.6

0.8

1
ra

te
QUIC

BigQUIC

SQUIC(aaa)

SQUIC(baa)

SQUIC(aab)

SQUIC(bab)

SQUIC(aba)

SQUIC(bba)

SQUIC(abb)

SQUIC(bbb)

Figure 10: Success rate of QUIC-type algorithms for p = 104, Pentadiagonal example 2.

0.20.30.40.50.60.70.80.91

λ

10
0

10
1

10
2

10
3

re
la

ti
v
e

 f
ill

 n
n

z
(W

)/
p

SQUIC(aaa)

SQUIC(baa)

SQUIC(aab)

SQUIC(bab)

SQUIC(aba)

SQUIC(bba)

SQUIC(abb)

SQUIC(bbb)

Figure 11: Relative fill SQUIC algorithms, p = 104, Pentadiagonal example 2.

closer look at the amount of memory as shown in Figure 11. The versions based on incomplete
factorization and selective inversion seem to lead to a better memory usage. But certainly one has
to keep in mind that selective inversion also limits the active set that can be used and possibly
reduces the overall success. This has been observed for larger p = 105. Therefore the use of either
approximate or selective inversion is twofold.

5.3 Random example

We now discuss the random example 3. Again QUIC, BigQUIC, and the different versions of
SQUIC will be compared, yet we have to mention that in this example BigQUIC performed very
poorly. We do not know the precise cause for this failure and maybe blame this to the random
structure of this problem. Figure 12 displays the computational amount of work for all methods
though not all algorithms were carried out for larger numbers of p if they were obviously out of
competition. We also like to emphasize that the plot is logarithmic in both directions, in particular
the two fastest algorithms SQUIC(bba) and SQUIC(bbb) are by more than one order of magnitude
faster than the other ones for p = 106.

Before we start explaining these significant difference we also like to show the maximum relative
fill nnz(W)/p of W and nnz(L)/p of the Cholesky factor L as computed during SQUIC. Again
SQUIC(bba) and SQUIC(bbb) are by far better than all other methods as shown in Figure 13.

Large-Scale Inverse Covariance Matrix Estimation 16

10
3

10
4

10
5

10
6

size p

10
0

10
2

10
4

ti
m

e
 [

s
e

c
]

QUIC

BigQUIC

SQUIC(aaa)

SQUIC(baa)

SQUIC(aab)

SQUIC(bab)

SQUIC(aba)

SQUIC(bba)

SQUIC(abb)

SQUIC(bbb)

Figure 12: Computation time QUIC-type algorithms, Random example 3.

10
3

10
4

10
5

10
6

size p

10
0

10
1

10
2

10
3

10
4

m
a

x
(n

n
z
(L

+
L

T
),

n
n

z
(W

))
/p

SQUIC(aaa)

SQUIC(baa)

SQUIC(aab)

SQUIC(bab)

SQUIC(aba)

SQUIC(bba)

SQUIC(abb)

SQUIC(bbb)

Figure 13: Maximum relative fill W and L during SQUIC, Random example 3.

After having seen the computation time and the relative fill we will now explain the effect.
First of all, in contrast to the deterministic approach to compute all sij such that |sij | > λ, the
randomized approach for computing the empirical covariance matrix certainly does not detect all
entries of S such that |sij | > λ. This in particular affects the 1% entries which are not located
within the diagonal blocks of size 20. This might be seen as a disadvantage, but since this problem
has a random structure anyway, compressing the initial S is reasonable. This in turn has effects
on the Cholesky decomposition and the incomplete LDLT decomposition which perform by far
more poorly when the 1% off-diagonal block entries have to be considered. Clearly, the Cholesky
decomposition is more seriously slowed down than the incomplete factorization since there is no
opportunity to drop some entries. When computing an approximate inverse for W , the amount of
fill of the (incomplete) Cholesky factor exceeds by far the fill of the approximate inverse for larger
p = 105, 106. This was in particular the case for all four SQUIC(*a*) variants that use the exact
Cholesky decomposition. Among the other four methods based on incomplete factorizations, the
versions using the deterministic computation of S were more affected (i.e., SQUIC(ab*)). This
explains why only the SQUIC(bb*) methods were left over. In this case the selective/approximate
inverse were sparse enough. One might argue that omitting parts of S may cause the algorithms
to yield a poorer success rate. This was not observed, on the contrary, for large p > 105, the three
SQUIC(b**) methods were even superior (approx. 0.45) than the three SQUIC(a**) versions
(approximately 0.40). We explain this effect that having a lot of fill in the (incomplete) Cholesky

Large-Scale Inverse Covariance Matrix Estimation 17

10
3

10
4

10
5

10
6

size p

0

0.2

0.4

0.6

0.8

1
ra

te
QUIC

BigQUIC

SQUIC(aaa)

SQUIC(baa)

SQUIC(aab)

SQUIC(bab)

SQUIC(aba)

SQUIC(bba)

SQUIC(abb)

SQUIC(bbb)

Figure 14: Success rate of QUIC-type algorithms, Random example 3.

factor will also cause a larger amount of numerical rounding errors and approximation errors in
W . This is displayed in Figure 14.

5.4 Parallel Performance

As part of our approach, computing in particular the sample covariance matrix S = 1
n [Y − µ̂] [Y − µ̂]

T

is done in parallel. To do so, on one hand we use multi–threaded level BLAS3 for the associated
matrix–matrix multiplication for each chunk of columns. On the other hand, sparsifying a chunk
of columns can be done in parallel. To reveal the parallel performance of SQUIC we will con-
sider Example 3 for the parameter λ = 0.5 and larger scales of p. In particular we demonstrate
the parallel performance for p = 104, 4 · 104, 2 · 105, 4 · 105, 106 using 1, 4, 15 and 60 cores. The
results are displayed in Figure 15. For the experiments in Figure 15 we tested the deterministic
approach for generating S as well as its randomized counter part. The other two components of
the algorithm are constantly chosen as the incomplete LDLT decomposition of Θ and truncated
Neumann series for generating W ≈ Θ−1. We can see on one hand that the parallel performance
scales almost linearly for the smaller number of cores while the parallel improvement is slightly
worse when using larger number of cores. Besides, we observe again that the randomized version
scales better with respect to the spatial dimension p. Please note that the generation of the initial
S consumed almost all of the computation time. This in turn emphasizes why parallelizing this
part is of particular importance.

6 Concluding remarks

In this paper, we were concerned with the computational cost in solving log-determinant opti-
mization problems arising from the l1-regularized Gaussian maximum likelihood estimator of a
sparse inverse covariance matrix problem in high-dimensional settings. The novel aspects of the
approach include our definition of the covariance matrices in the optimization method. Here, we
used various advanced sparse linear algebra techniques to tackle three sub-problems as follows:
we first generate the empirical covariance matrix S using a deterministic or randomized approach;
secondly, we present novel techniques in QUIC to check for the positive definiteness of Θ and
log(det Θ); and thirdly, we derive and evaluate two approximate inversion techniques based on a
truncated Neumann series and a novel selected inversion method. These proposed algorithms can
advance sparse inverse covariance estimation by orders of magnitude leading to scalability rates
which are observed to be less than quadratic with respect to the p-variate dimension of the statis-
tical problem. We have demonstrated that problems of size p = 106 can be easily computed within
minutes on a single compute node. We showed that our method is highly comparable with respect

Large-Scale Inverse Covariance Matrix Estimation 18

10
0

10
1

number of cores

10
0

10
1

10
2

10
3

10
4

to
ta

l
c
o

m
p

u
ta

ti
o

n
 t

im
e

p= 1.0e+04

p= 4.0e+04

p= 2.0e+05

p= 4.0e+05

p= 1.0e+06

10
0

10
1

number of cores

10
0

10
1

10
2

10
3

10
4

to
ta

l
c
o

m
p

u
ta

ti
o

n
 t

im
e

p= 1.0e+04

p= 4.0e+04

p= 2.0e+05

p= 4.0e+05

p= 1.0e+06

Figure 15: Parallel performance of SQUIC(aba) (top) and SQUIC(bba) (bottom), Tridiagonal
example 1.

to solution quality with a state-of-the-art optimization algorithm, and it significantly outperforms
the conventional approach in terms of storage and CPU time for the larger problem instances in
our tests.

Interestingly, the computation of the empirical covariance matrix is often observed to be a
major computational obstacle. Luckily, on large-scale parallel architectures having thousands of
cores, this bottleneck can be easily bypassed or at least downscaled. In addition, a randomized
algorithm with observed better numerical scalability remains as alternative. It is clear that this
approach is extremely successful for and restricted to those application areas where the covariance
matrix and its inverse are at least approximately sparse.

Acknowledgement

The authors of this paper like to gratefully thank the authors of [17] for their wonderful QUIC
method which was the basis for the sparse matrix approach.

Large-Scale Inverse Covariance Matrix Estimation 19

References

[1] P. Amestoy, T. A. Davis, and I. S. Duff, An approximate minimum degree ordering
algorithm, SIAM J. Matrix Analysis and Applications, 17 (1996), pp. 886–905.

[2] J. Ballani and D. Kressner, Sparse inverse covariance estimation with hierarchical ma-
trices, tech. rep., EPFL Technical Report, 2014.

[3] O. Banerjee, L. E. Ghaoui, and A. d’Aspremont, Model selection through sparse max-
imum likelihood estimation for multivariate gaussian or binary data, The Journal of Machine
Learning Research, 9 (2008), pp. 485–516.

[4] T. Cai, W. Liu, and X. Luo, A constrained l1 minimization approach to sparse precision
matrix estimation, Journal of the American Statistical Association, 106 (2011), pp. 594–607.

[5] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam, Algorithm 887:
CHOLMOD, supernodal sparse Cholesky factorization and update/downdate, ACM Trans-
actions on Mathematical Software, 35 (2008), pp. 22:1–22:14.

[6] T. Coleman, B. Garbow, and J. Moré, FORTRAN subroutines for estimating sparse
Jacobian matrices, ACM Trans. Math. Software, 10 (1984), pp. 346–347.

[7] T. Coleman and J. Moré, Estimation of sparse Jacobian matrices and graph coloring
problems, SIAM J. Numer. Anal., 20 (1983), pp. 187–209.

[8] A. Curtis, M. Powel, and J. Reid, On the estimation of sparse Jacobian matrices, J.
Inst. Math. Appl., 13 (1974), pp. 117–119.

[9] J. Dahl, L. Vandenberghe, and V. Roychowdhury, Covariance selection for non–
chordal graphs via chordal embedding, Optimization Methods and Software, 23 (2008),
pp. 501–520.

[10] A. d’Aspremont, O. Banerjee, and L. E. Ghaoui, First-order methods for sparse co-
variance selection, SIAM J. Matrix Analysis and Applications, 30 (2008), pp. 56–66.

[11] J. Duchi, S. Gould, and D. Koller, Projected subgradient methods for learning sparse
Gaussians, in Proceedings of the Twenty-Fourth Conference Annual Conference on Uncer-
tainty in Artificial Intelligence (UAI-08), 2008, pp. 153–160.

[12] I. S. Duff and J. Koster, The design and use of algorithms for permuting large entries
to the diagonal of sparse matrices, SIAM J. Matrix Analysis and Applications, 20 (1999),
pp. 889–901.

[13] I. S. Duff and S. Pralet, Strategies for scaling and pivoting for sparse symmetric indefinite
problems, SIAM J. Matrix Analysis and Applications, 27 (2005), pp. 313–340.

[14] J. Friedman, T. Hastie, and R. Tibshirani, Sparse inverse covariance estimation with
the graphical lasso, Biostatistics, 9 (2008), pp. 432–441.

[15] M. Hagemann and O. Schenk, Weighted matchings for the preconditioning of symmetric
indefinite linear systems, SIAM J. Scientific Computing, (2006), pp. 403–420.

[16] P. Hénon, P. Ramet, and J. Roman, PaStiX: A High-Performance Parallel Direct Solver
for Sparse Symmetric Definite Systems, Parallel Computing, 28 (2002), pp. 301–321.

[17] C.-J. Hsieh, M. A. Sustik, I. S. Dhillon, and P. K. Ravikumar, Sparse inverse co-
variance matrix estimation using quadratic approximation, in Advances in Neural Information
Processing Systems, J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger,
eds., vol. 24, Neural Information Processing Systems Foundation, 2011, pp. 2330–2338.

Large-Scale Inverse Covariance Matrix Estimation 20

[18] C.-J. Hsieh, M. A. Sustik, I. S. Dhillon, P. K. Ravikumar, and R. A. Poldrack,
BIG & QUIC: Sparse inverse covariance estimation for a million variables, in Advances in
Neural Information Processing Systems, C. Burges, L. Bottou, M. Welling, Z. Ghahramani,
and K. Weinberger, eds., vol. 26, Neural Information Processing Systems Foundation, 2013,
pp. 3165–3173.

[19] D. Irony, G. Shklarski, and S. Toledo, Parallel and fully recursive multifrontal su-
pernodal sparse Cholesky, Future Generation Computer Systems — Special issue: Selected
numerical algorithms archive, 20 (2004), pp. 425–440.

[20] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning
irregular graphs, SIAM J. Scientific Computing, 20 (1998), pp. 359–392.

[21] L. Li and K.-C. Toh, An inexact interior point method for l1-regularized sparse covariance
selection, Mathematical Programming Computation, 2 (2010), pp. 291–315.

[22] N. Li, Y. Saad, and E. Chow, Crout versions of ILU for general sparse matrices, SIAM
J. Scientific Computing, 25 (2004), pp. 716–728.

[23] L. Lin, J. Lu, L. Ying, R. Car, and W. E, Fast algorithm for extracting the diagonal
of the inverse matrix with application to the electronic structure analysis of metallic systems,
Commun. Math. Sci., 7 (2009), pp. 755–777.

[24] L. Lin, C. Yang, J. C. Meza, J. Lu, L. Ying, and W. E, SelInv — an algorithm for
selected inversion of a sparse symmetric matrix, ACM Trans. Math. Software, (2010).

[25] F. Oztoprak, J. Nocedal, S. Rennie, and P. A. Olsen, Newton-like methods for sparse
inverse covariance estimation, Advances in Neural Information Processing Systems, 25 (2012),
pp. 755–763.

[26] J. K. P. R. Amestoy, I. S. Duff and J.-Y. L’Excellent, A fully asynchronous mul-
tifrontal solver using distributed dynamic scheduling, SIAM Journal of Matrix Analysis and
Applications, 23 (2001), pp. 15–41.

[27] B. Rolfs, B. Rajaratnam, D. Guillot, I. Wong, and A. Maleki, Iterative thresh-
olding algorithm for sparse inverse covariance estimation, Advances in Neural Information
Processing Systems, 25 (2012), pp. 1574–1582.

[28] J. Rothman, P. Bickel, E. Levina, and J. Zhu, Sparse permutation invariant covariance
estimation, Electron. J. Stat., 2 (2008), pp. 494–515.

[29] K. Scheinberg and I. Rish, Learning sparse Gaussian Markov networks using a greedy
coordinate ascent approach, in Machine Learning and Knowledge Discovery in Databases,
J. Balczar, F. Bonchi, A. Gionis, and M. Sebag, eds., vol. 6323 of Lecture Notes in Computer
Science, Springer Berlin / Heidelberg, 2010, pp. 196–212.

[30] , Learning sparse Gaussian Markov networks using a greedy coordinate ascent approach,
in Proceedings of the 2010 European Conference on Machine Learning and Knowledge Dis-
covery in Databases: Part III, 2010, pp. 196–212.

[31] O. Schenk and K. Gärtner, Solving unsymmetric sparse systems of linear equations with
PARDISO, Journal of Future Generation Computer Systems, 20 (2004), pp. 475–487.

[32] O. Schenk, A. Wächter, and M. Weiser, Inertia-revealing preconditioning for large-
scale nonconvex constrained optimization, SIAM J. Sci. Comput., 31 (2008), pp. 939–960.

[33] K. Takahashi, J. Fagan, and M.-S. Chin, Formation of a sparse bus impedance matrix
and its application to short circuit study, IEEE Power Engineering Society, 1973, pp. 63–69.

Large-Scale Inverse Covariance Matrix Estimation 21

[34] J. M. Tang and Y. Saad, A probing method for computing the diagonal of a matrix inverse,
Numerical Linear Algebra with Applications, 19 (2012), pp. 485–501.

[35] M. Yuan and Y. Lin, Model selection and estimation in the Gaussian graphical model,
Biometrika, 94 (2007), pp. 19–35.

