Technische Universitat Chemnitz
Sonderforschungsbereich 393

Numerische Simulation auf massiv parallelen Rechnern

Matthias Bollhofer

A Robust ILU Based on
Monitoring the Growth of the
Inverse Factors

Preprint SFB393/00-31

Abstract

An incomplete LU decomposition with pivoting is presented that progressively
monitors the growth of the inverse factors of L, U. The information on the growth of
the inverse factors is used as feedback for dropping entries in I and U. This method
yields a robust preconditioner in many cases and is often effective especially when
the system is highly indefinite. Numerical examples demonstrate the effectiveness of
this approach.

Keywords: sparse matrices, I LU, sparse approximate inverse, AINV | pivoting,
condition estimator.

AMS subject classification: 65F05, 65F10, 65F50.

Preprint-Reihe des Chemnitzer SFB 393

SFB393/00-31 July 2000

Contents

1 Introduction

2 A simple /LU approach
3 Stabilized ILU

4 Numerical Results

5 Conclusions

Author’s addresses:

Matthias Bollhofer
Fakultat fiir Mathematik
TU Chemnitz

D-09107 Chemnitz

http://www.tu-chemnitz.de/~bolle/

16

1 Introduction

We consider problems of the form

(1) Ax =0,

with A € R™"™ nonsingular and b € R". We focus on problems where A is sparse and where
we do not have much information about the system beforehand. These systems might be
highly indefinite or ill-conditioned. Since often these systems are very large solving them
is a challenge for numerical algorithms. Sometimes it is exceedingly difficult to solve them
by iterative techniques and in these cases direct solvers might be preferred. However, there
are situations in which ‘general purpose’ or ‘black—box’ iterative solvers are required. The
most popular and promising iterative techniques so far are preconditioned Krylov-subspace
solvers, see, e.g., [15, 22, 12]. Among many techniques, preconditioners based on incomplete
LU-factorizations, see e.g., [17, 18, 19] are known to give excellent results for many im-
portant classes of problems, such as those arising from the discretization of elliptic partial
differential equations.

Nevertheless, there are still many situations where incomplete LU decomposition give poor
results. One often has to play around with the parameters, e.g., to adapt a drop tolerance
in the incomplete LU decomposition to obtain a successful preconditioner. This is time—
consuming since for any problem one has to select the correct values. This reduces the
flexibility as a ‘black-box’ solver. In addition by decreasing parameters to obtain a suc-
cessful preconditioner we might get enormous fill-in or an unacceptable computational
time. In this case direct solvers are the only alternative.

The intention of this paper is to take a closer look at incomplete LU decompositions and
especially on how entries are dropped. The main key used here for analyzing dropping in
the incomplete LU decomposition is its strong relation [7, 8] to factored sparse approximate
inverse methods [3, 4, 2, 16, 21]. In an earlier paper [8] comparisons between an incom-
plete LU decompositions with pivoting and a factored approximate inverse with pivoting
have shown several examples where the approximate inverse was superior to the ILU. So
apparently I LUs may gain more stability from approximate inverses by taking a close look
at their relations and especially at the way how entries are dropped.

The main idea is to monitor the growth of the inverse factors of L, U while computing L,
U and to use this information as feedback for a refined dropping strategy for the entries of
L and U.

2 A simple ILU approach

We start with a simple description of a class of incomplete LU factorizations. For the
solution of (1) we construct an approximate decomposition

A=~ LDU,

where L,U" are lower triangular matrices with unit diagonal and D is diagonal. One way
to construct these decompositions is to partition A as

B F nn
A_{E C]GR

with B € R and the other blocks have corresponding size. Then A is factored as

@) B F] [1 0][Dsg 0 1 Up
E C| | Lg I 0o S||o I |
I D U
where
(3) S =C — LgDgUp € R*Fn=k

denotes the so—called Schur-complement. The exact LU-decomposition of A (if it exists)
can be obtained by successively applying (2) to the Schur-complement S. Even if there
exists a decomposition (2) for A and for S, there is no need to compute Lg, Ur, S exactly
when constructing a preconditioner. A common approach for reducing fill-in consists of
discarding entries in Lg, Ur of small size and defining the approximate Schur—complement
only with these sparsified vectors Lg, Up. Here we will concentrate on

(4) S':B—EEF—(E—EEB) Ur

as one possible definition of an approximate Schur-complement. Equation (4) can be ob-
tained from the lower right block of L='AU.
We use the MATLAB notation [1] for convenience. For two integers k, [, k : [denotes the
sequence (k,k +1,...,1) with the convention that whenever & > [the set is empty. For a
matrix A = (4;5) , we define

Aptgr = (Aij)i_p

=k,...,l,j=q,...,r °

i=1,...,m, j=1,....,n

The notation : as a subscript indicates that all columns/rows entries are taken. Thus, A. >
denotes the second column of A and A, denotes its second row. Similarly for a nonempty
set s C {1,...,m} we denote by A,. the matrix (A;;) . With this notation the
associated I LU algorithm is roughly as follows.

i€s,j=1,...,n

Algorithm 1 (Incomplete LU factorization (/LU))
Given A = (Ay);; € R™ and a drop tolerance T € [0,1]. Compute A~ LDU.

L: U:[,S:A,Dll :Sll'
fori=1:n-1
_ QT _
Dit1n = z‘+1:n,i/Sii7 Qit+1:n = i,i+1:n/Sz'z'
Drop all entries |p;|,|q;| if they are less than T.
. _
Li+1:n,’i — pi+1;n7 Ui,i+1:n = qi+1:n-
i+Lini+lm — Qitlini+lin — Litlmildii+1lm — i+1mg — i1, ii+1:n
St tini Lit1miD (S Lit1m.i8i) U
Dii1i41 = Sit1,it1
end

Practical versions of incomplete LU decompositions are typically implemented in a slightly
different way. It is usually not advisable to update the whole S; 1., i+1., by a rank-one or
rank-two modification. Instead, typically only the leading row of S;i1., 1. is computed,
and the transformations on the other rows are post—poned. This corresponds to the so—
called I,K,J version of Gaussian elimination[21]. Besides saving memory, this approach is
easier to implement since all updates and modifications are performed only once for each

row. Thus one can use simple sparse row storage schemes, e.g. the Compressed Sparse Row
(CSR) format [21].

Algorithm 2 (Incomplete LU factorization, I, K, J version)
Given A = (Ay);; € R™™ and a drop tolerance T € [0,1]. Compute A~ LDU.

L=U=I1,S=AC=R=0.
fori=1:n
w = Ai,:
forj=1,...,1—1 and when wy # 0
w; = w;/Dj;
if jw;| <71, w; =0, else Wit = Wjy1.0 — W;Uj j11m
end
for all j >i: if \wj/w;| <7, w; =0
Define Dy = wi, Ui jn = Win/Diiy Ligi1 = Wiy
end

Mathematically Algorithm 2 can be read as a special version of Algorithm 1, if the approx-
imate Schur—complement is replaced by

Si—l—l:n,i-}—l:n = Di+lin,it+lin — Li—l—l:n,iDi,iUi,i-l—l:n-

Clearly this replacement would also end up in an exact LU decomposition once we do not
drop entries anymore.

3 Stabilized ILU

One problem in dropping entries in Algorithm 1 or Algorithm 2 is that we do not have
control of the changes which are affected by dropping. One way to get a more reliable
dropping criterion is to take the norm of the i—th row of A into account, e.g. replace 7 by
7-||A;.||1- This is essentially what the ILUT-Algorithm [19] does. A slightly refined version
of this strategy, at least if the information on the Schur—complement is available, could be
to consider the norm of the +—th row of the Schur—complement as well. This makes sense
especially when the corresponding row of the Schur-complement has significantly smaller
entries. Le., instead of dropping entries that are less than 7 or 7-||A4;.||; in absolute value,
we could drop entries that are less than 7 - min{||A; .||, ||Siinll1} in absolute value. Often
both choices are a very good compromise but clearly there may still be cases where we
could end up in a poor preconditioner.

Algorithm 1, 2 can be supplemented with pivoting. When column pivoting is added to Al-
gorithm 2 it essentially corresponds to the ILUTP—Algorithm which is part of SPARSKIT,
see e.g. [21, 20]. So far we have ignored this option to have more clear presentation. Later
on, we will return to this point and finally include pivoting. For simplicity let us consider
the algorithms without pivoting at this stage.

Recently it has been shown in [7] that Algorithm 1 has a strong relation to sparse approx-
imate inverse preconditioners. Without going into the details, we will roughly describe the
idea of AINV—type algorithms [3, 4, 2, 8]. The idea is to directly compute upper triangular
matrices W, Z such that W' AZ = D, with a diagonal matrix D. The version which we
will focus on is the so—called right looking AINV, where W and Z are updated by a rank—1
update. Essentially a biorthogonalization process for W and Z is performed, in which W' A
and ZT AT are transformed step by step to upper triangular form. Clearly this only holds
if no dropping is applied to W, Z.

Algorithm 3 (Factored Approximate INVerse, rank—1 update version)
Given A = (Ajj);; € R and a drop tolerance T € [0,1]. Compute A~ ~ ZD™'WT.

p=q=(0,....,.00eR*" Z=W =1,C=R=0.

fori=1:n
Din = Z:l;AlTn,7 Qi:n = W;;A:,i:n
Set Pitin = pi+1:n/p’ia qit1:n = qi+1:n/qi
W:,i-i—l:n = W:,i-i—l:n - VV:,ipi-i-lzn7 Z:,i-i—l:n = Z:,i-i—l:n - Z:,iQi+1:n
Drop entries Wiy of Wi ivtm, if |[Wi| < T
Drop entries Zy of Zi.iivim, if | Zr| < T
end
Choose diagonal entries of D as the components of p (or equivalently of q).

In principle we could modify Algorithm 1 such that the inverses of its triangular factors L, U
are computed on the fly. For this purpose we supplement Algorithm 1 with a progressive
inversion of L,U. At step ¢ — 1, U is of the form

_ Ul:ifl,lzifl Ul:ifl,i:n
=1 "0 1

and the ¢-th step will compute the entries U; ;1. and add them to the current U to get
Upew. Let g7 be the row vector ¢" = Ui. — eiT. Note that the 'diagonal’ element ¢; of ¢ is
zero. Then,

Unew =U + eiqT = (I + eiqT)U-

It follows that
Ul =U Y IT+eq) ' =UYI—eq").

new

Of course analogous arguments hold for L. This provides a formula for progressively com-
puting L~ ", U~! throughout the algorithm. We call the inverse factors Z, W as in Algorithm
3. With these additional factors Z, W and a modified Schur-complement it was shown in
[7] that the supplemented version of Algorithm 1 is essentially equivalent to Algorithm 3.

4

Theorem 4 Suppose that Algorithm 1 is supplemented with a progressive inversion of
L,U. Suppose in addition that in step 1 of Algorithm 1 an entry Ly is discarded only if
|Ljilmax{1} U {|Wi;| : k <i} <7,i=1,...,n. Suppose that in Algorithm 1 and 3 Wy,
is dropped from Wi i1 if |Wi| < 7. If the (modified) Schur-complement Sii1mit1:m is
defined via

T
Si—l—l:n,i-i—l:n — VV;,Z‘+1;nA:,i+1:na

then we have for any k > 1:
(L7) = Wil < 7(2(k —1) — 1)

and the diagonal entries of D are those of p.

Proof. See [7]. O

The most interesting point about this relation is that Theorem 4 requires to modify the
dropping strategy for L (and similarly for U). Now typically applying dropping to sparse
approximate inverse factors is less harmful than for incomplete LU decompositions, because
in dropping small entries of size 7 in W, Z the effective error in W' AZ is only between linear
and quadratic with respect to 7. And W AZ is the matrix which needs to be transformed
to an approximately diagonal matrix D. On the other hand if we apply dropping to the
factors L,U of an ILU the related effect is rational since we do not know in advance the
effect for LY AU L. But for preconditioning, this is precisely what we need to know. So if
we can construct an /LU that is somehow almost equivalent to an approximate inverse,
then we might hope that dropping is more reliable and the resulting preconditioner is much
more efficient for those situations where dropping has a serious impact on the quality of
the preconditioner. Numerical results in [8] illustrate that for some extremely indefinite
and ill-conditioned problems the approximate inverse behaves better than an I LU.

To turn the result of Theorem 4 into an algorithm we will certainly not invert L,U in
Algorithm 1. Let us take a look at the criterion for dropping entries in L. We need to
know max{1} U {|Wy| : k < i}, which means we need to know the i—th row of L™, i.e.,
Wi 1= (L)1 1. At least it would be convenient to have an estimate for [[(L™'); 1. 1|1
which could serve as a substitute for {|W};| : k& < i}. To do this we use a general condition
estimator for triangular matrices from [14, 9] as a helpful estimate for ||(L~1); 1.1
This condition estimator is based on solving a system with an upper triangular matrix U
where the right hand side y only consists of +1 and the signs are chosen to successively
maximize the solution x of Uz = y. Another look at this condition estimator shows that
the components of x = U™'y precisely estimate ||(U™");.inll1. To adapt this estimator to
our problem we will consider Lzy, = yr, and Uz = yp to get estimates for |[(L71); 111

and [|(U™") 1-1.l1-
Algorithm 5 (Condition Estimator for (L ') adapted from [14, 9])
Let L = (Lyj);; € R™" be unit lower triangular. Compute Lz =y, where y' e (£1,---,+1).

p=pr=p_=xz=(0,..., 0)T € R, and let v = 0 be the associated 1-norm of p
5

fori=1:n
ro=1—p,o =—l—p,
Let s be the set of nonzero components of Liy1.
P+,s = Ds + Ls,ix+7 P—s = DPs + Ls,ix—
v = v = polh + Ipeals. vo = v = Ipells + lp—sll
if ey | +ve > e |+ v
Ti=oT4, V=Vy
Ps = P+,s» P—s = P+s
else
T, =T_,V=V_
Ps = P—s, P+,s = P—s
end
end

In principle one could also use different condition estimators, e.g. [5, 6]. But what we really
need is not an estimate for the norm of L~! but an estimate for the norm of each row of
L~!. From this point of view to take as right hand side a vector y which only consists of
+1 is reasonable and is more attractive for this problem.

Now we can supplement Algorithm 1 with the condition estimator Algorithm 5 applied to
the L and U' factors of the ILU and the components of z; = L'y, xy = U 'y, are
serving as estimates for (Lfl)i,m—l, (U’l)lzi_l,i. We still have to discuss the choice of the
approximate Schur—complement. Although Theorem 4 is based on defining the approximate
Schur-complement via Sii1.4it1: = W:;HmA:,Hlm, it can be seen in the proof of this
Theorem that an analogous relation will hold for the case where p, ¢ of Algorithm 3 are
defined via

(5) Pin = Z;TiATWi:n,:a Qi:n = WIAZ,zn

In this case the related Schur—complement for Theorem 4 is
(6) Si+1:n,i+1:n — W;;+1;nAZ:,i+1:n-

In fact, when Algorithm 3 is supplemented with pivoting, (5) is used to ensure that p; =
¢; # 0. Furthermore (6) is related to the choice of S in Algorithm 1 since it consists of
taking the lower right block of L AU 1. Clearly the definition of the approximate Schur—
complement in Algorithm 1 is not precisely the same as (6). But according to [7], one has
a close connection to Algorithm 3 with this choice of an approximate Schur—-complement
if dropping is applied in slightly different way.

As a next step to define the ILU we introduce pivoting. We define permutation vectors
m,0, such that A(w,0) = LD(w,0)U provided that no dropping is applied. In principle,
applying permutation matrices IT, 3 to (2), changes this equation to

I O B F I O\ _ 1 0 Dg 0 1 Up¥

o 11’ E C O ©) | OLg I 0 IITSY® 0 I '
This illustrates how S, L and U have to be adapted. It is clear that if we include the
condition estimator, analogous changes are made. It should also be obvious that in practice

one will not physically interchange rows of L and columns of U but instead one uses index
vectors.

In principle we can introduce a pivoting process to Algorithm 1 which ensures that in the
permuted matrix |p;| > a@max;—;1, . |pj| and |g;| > amaxj—;;1,., |g;|. This guarantees
that after the division by p;, ¢; the entries of p;/p;, ¢;/¢; are less than 1/a in absolute value.
Here the parameter a € [0, 1] is chosen a priori. The choice a = 1 refers to strict pivoting,
i.e. the maximum entry in absolute value will become p; or ¢;, while any smaller choice of
a causes only pivoting if the diagonal entry is much smaller than the maximum entry of
|Piv1nls [Gir1.n|- Now we can go one step further and use the freedom in the choice of pivots
to add a strategy of Markowitz type [10], i.e., we consider the set of pivots |py| that are
larger than o max;—;11,.» |pj| and among these we take the one with the minimum fill-in.
This is a typical strategy to maintain sparsity in the Schur-complement when using direct
methods [10]. To do this, replace max;—;;1,.., |p;| by z and define a set piv(p) by

(7) piv(p,z) = {k: |px| > az}.

For any k, let nnzc;(k) denote the number of nonzeros of S;., , and let nnzr;(k) denote the
number of nonzeros of Sy ;.,. As pivot we will choose j € piv(p, z) such that

(8) nnzc;(j) = min nnzc;(k).

kepiv(p,z)
I.e., among all admissible pivots choose the one which locally minimizes the fill-in. The
same process needs to be repeated for ¢. In theory this process needs to be alternated
between p and ¢ because we have to make sure the diagonal pivots are not getting smaller.
For this reason we always increase z. A local pivoting step can then look as follows.

Algorithm 6 (Local pivoting with respect to fill-in)
Given A = (Ajj);; € R™™ and a pivoting tolerance o € [0, 1].
Let S;.p i:n denote the Schur-complement on entry to step i of Algorithm 1.

z2=0
while pivots not satisfactory
Pim = Sijin, 2= max{z, maX;—; ..n |pj|}
Choose p € piv(p, z) such that nnzc;(p) is minimal.
Interchange columns/components i, of p, o, Sip.., Utsi—1,:
Qi:n = Sz’:n,i7 z = max{za max;—i,..n |qj|}
Choose i € piv(q, z) such that nnzr;(p) is minimal.
Interchange columns/components i, p of ¢, ™, S. i, L.1:i-1
end

The while loop only terminates if no more interchanges are performed.

Together with the condition estimator in Algorithm 5, Algorithm 6 is used to stabilize the
incomplete LU decomposition from Algorithm 1. We summarize these changes to a new
ILU algorithm.

Algorithm 7 (Stabilized Incomplete LU factorization (ILUSTAB))
Given A = (Ayj),; € R™", a drop tolerance 7 € [0,1] and a pivoting tolerance o € [0,1].
Compute A(m,o0) ~ LDU.
L:U:I,S:A,Du :Sll,ﬂ':O': (]_,7’0)
rr=pr=pir=p-r=av=pr=psv=p-v=(0,...,0) €ER", vy =vy =0.
fori=1:n-1

Apply Algorithm 6.

Whenever p requires pivoting, interchange py,p+uv,p— v, Ty as well

Whenever q requires pivoting, interchange pr,p+ r,p—.1,Tr as well

— ! _
Li—i—l:n,i = DPit1:ns Ui,i—l—l:n = Qi+1:n-

Apply step i of Algorithm 5 for L with

v, T, p, Py, P replaced by vy, rr, pr,py.L,P- 1
Apply step i of Algorithm 5 for UT with

v, T, p, P+, p— replaced by vy, vy, pu, pyu, P-u

drop all entries |Lj;| of Liy1mg, if | Lyl max{1, |zr;|} < 7min{||A; |1, [|Siinll1}
drop all entries |Uj;| of Ui v, if Uil max{1, |zp;|} < 7min{||A;.||1, || Siinll1 }

Sitimittn = Sitrmiittn — Littin,iSiitim — (Sittni — Liv1m,iSii) Uiitim

Di—l—l,i—l—l = Si—i—l,i—i—l
end

The two major differences between Algorithm 1 and Algorithm 7 are the application of
pivoting and the inclusion of a condition estimator. The latter is motivated by the strong
relations between incomplete LU factorizations and factored approximate inverse precon-
ditioners.

4 Numerical Results

This section presents numerical experiments to validate the algorithms. So far, Algorithm
7 is implemented in MATLAB [1].

e The matrices are initially reordered using the symmetric minimum degree ordering
[13].

e An a priori scaling is used such any row of the given matrix has unit 1-norm.

e For the pivoting process a = 0.1 is used.

e Different values were used for the drop tolerance 7 = 0.1, 0.3.

For the numerical experiments several unsymmetric matrices from the Harwell-Boeing
Collection [11] were chosen.

The result are compared with

e LU from MATLAB also with pivoting tolerance a = 0.1

e LUINC from MATLAB with o = 0.1 and drop tolerances 7 = 0.1, 0.01, 103,
1074, 1075

e JLUTP from SPARSKIT using the same tolerance o = 0.1 for pivoting but 7 = 0.1,
0.01, 1073, 107, 107 for dropping.

The numerical results for ILUTP [21] were performed on an SGI workstation with two
190 MHz R10000 (IP25) processors under IRIX 6.2 and 512 MB memory.

As iterative solvers GMRES(30) [22] is used. The iteration was stopped after the residual
norm was less than ,/eps times the initial residual norm, where eps ~ 2.2204 - 10716
denotes the machine precision. The iteration was stopped after 500 steps. Every iterative
solution which broke down or did not converge within the number of steps was noted as a
failure.

We briefly describe the results for several matrices and then give detailed numerical results
for several selected examples.

To give a rough idea on how the method performed on the Harwell-Boeing collection we
simply summarize in Table 1 which method successfully solved how many problems with
respect to the drop tolerance 7. The tests were done on 94 matrices from the Harwell-Boeing
collection.

Table 1: Summary of results — Successful Computation

| Harwell-Boeing Collection (94 test matrices) |

Preconditioner Drop tolerance 7
0.3]0.1]0.01[103]10°7]107°
ILUSTAB 89 [92				
LUINC		31]52] 68	79	87
ILUTP	[53]69] 78	84	90	

Note that there were only two matrices which could not be solved with ILUSTAB for
7 € {0.3,0.1}. These are the matrices facsimile/fs7603, grenoble/gre216b. These matrices
could be solved with 7 = 0.01. But LUINC could also not solve facsimile/fs7603 and
for facsimile/fs7603 ILUTP needed 7 = 10~*. For grenoble/gre216b LUINC and ILUTP
needed 7 = 107",

We now comment on several matrices from the Harwell-Boeing—Collection. This collection
consists of many matrices from different areas. Related matrices are put together in a group
and comments are done with respect to these groups. For some selected examples we will

9

show separate tables. In each table (e.g., Table 2) we will present the the choice of the
drop tolerance 7 and the related fill-in factor (that is the ratio of the number of nonzeros
of L + U divided by the number of nonzeros of A). Next the number of iteration steps
using GMRES(30) is shown. For the MATLAB algorithms LU, ILUSTAB and LUINC
we use the flop count as measure for the number of operations. The flop count is split
into the flopsrequired for the decomposition and the flopsto solve a linear system using
GMRES(30).

e CHEMWEST: These matrices are some of those for which LUINC and ILUTP needed
smallest drop tolerances to be successful while ILUST AB was able to solve all of
them already for 7 = 0.3. Detailed results for the three biggest WEST-matrices are
given in Table 2, 3, 4.

Table 2: Matrix CHEMWEST /WEST0989

Method / 7 fill-in | # it. flops
factor | steps dec. ‘ solve
| sparse LU || 32[1] 1.2:10°]9.9-10*
0.3 1.3 20 || 1.8-10° | 1.4-10°
ILUSTAB 0.1 1.5 14 || 1.7-10° | 8.3-10°
101 07] —[r110*] —
102 1.0 — 14107 —
LUINC 1073 1.2 — 20107] —
107¢ 1.6 — [3810F] —
1073 1.9 6 || 4.7-10% | 2.7-10°
10T 1.0 —
1072 1.4 —
ILUTP 1073 1.9 —
10°¢ 2.4 309
1077 2.7 10

e FACSIMILE: LUINC from MATLAB could not solve most of these matrices for
7 =10.1,0.01. For 7 = 1072 it was able to solve 50% of them and for 7 = 10~%,107°
only 151836, fs7602, fs7603 could not be solved. For those problems that could be
solved, the fill-in was moderate and the number of iteration steps was small.

In contrast to this ILUSTAB could solve all of these matrices already for 7 = 0.3
except fs7603 which could not be solved. The fill-in was small as well. The number
of iteration steps was small except for fs7602 which required 60 steps for 7 = 0.3 and
31 for 7 = 0.1.

ILUTP solved most of these problems for 7 = 0.1. All problems including fs7603 were
solved for 7 = 1074, 107°.

10

Table 3: Matrix CHEMWEST/WEST1505

Method / 7 fill-in | # it. flops
factor | steps || dec. | solve
sparse LU | 42 1]4.0-10° | 1.7:10° |
0.3 1.4 22 || 3.5-10° | 2.5-10°
ILUSTAB 0.1 1.7 17 || 4.0-10° | 1.7-10°
101 0.7 — || 1.7-10% —
102 1.0 — | 2.2-10% —
LUINC 103 1.2 — |1 3.2-10% —
10~* 1.7 16 || 6.8-10* | 1.5-10°
10~ 2.0 6 || 8.6-10* | 4.1-10°
1071 1.0 —
1072 1.4 —
ILUTP 1073 1.9 —
10~4 2.4 —
10°° 2.7 —

Table 4: Matrix CHEMWEST/WEST2021

Method / 7 fill-in | # it. flops
factor | steps || dec. | solve
sparse LU | 56| 1] 1.2:10°] 2.7-10° |
0.3 1.6 20 || 6.8-10° | 2.9-10°
ILUSTAB 0.1 1.7 14 || 6.7-10° | 1.7-10°
107! 0.7 — 1] 2.2-10% —
1072 0.9 — |1 3.0-10% —
LUINC 1073 1.2 — | 4.6-10% —
101 1.6 — [8710 | —
107 1.9 6| 1.2-10° | 5.5-10°
1071 1.0 —
102 1.4 —
ILUTP 1073 1.9 —
10~* 2.5 —
10~ 3.1 14

11

For those problems that could be solved the fill-in was small. The largest number of
iterations were 155 for fs7602 and 7 = 0.1, 62 for 57602 and 7 = 1073. For all other
methods it was less, if they could be solved at all.

e GEMAT: ILUSTAB could not solve these matrices for 7 = 0.3 but for 7 = 0.1.
LUINC could solve these matrices for 7 = 10~* but with roughly four times of the
fill-in of ILUSTAB.

ILUTP could solve these matrices for 7 = 107 but with more than twice as much
fill-in as ILUSTAB. For these matrices the LU decomposition needed more than 70
times of fill than the initial matrix.

For gemat12 see Table 5. The results for gematl1 are similar.

Table 5: Matrix GEMAT/GEMAT12

Method / 7 fill-in | # it. flops
factor | steps | dec. | solve
| sparse LU || 735] 1] 1.7:10° | 1.0-10" |
0.3 1.0 — || 1.4-10° —
ILUSTAB 0.1 1.3 67 || 2.0-10° | 3.5-107
107! 0.6 — || 1.8-10° —
102 1.4 — || 1.6:10° —
LUINC 1073 2.7 — [1.3-107 —
104 5.2 10 || 5.4-107 | 5.7-10°
10~ 9.2 51 1.3-10% | 3.9-10°
1071 1.0 —
102 2.0 —
ILUTP 10~ 3.4 17
10~* 5.2
10°° 7.4 4

e GRENOBLE: for 7 = 0.1 LUINC could only solve grell5, gre216a, gre343, gre512.
But even for some of those the fill-in factor was already enormous (e.g. 5.9 for
gre2l6a, 7.7 for gre343, 11.3 for gre512). The same problem occurred for the other
matrices that could only be solved for smaller 7. All matrices could finally be solved
with 7 = 107°.

ILUSTAB solved all matrices except gre216b, grel107 for 7 = 0.3. The fill-in was
slightly better (e.g. i.e. 3.8 for gre216a, 4.9 for gre343, 7.8 for gre512). grel107 could
be solved with 7 = 0.1 but with a fill-in factor 7.4. This was still better than LUINC,
which needed 7 = 1072 and produced a fill-in factor 23.0!

For 7 = 0.1, ILUTP could solve grell5s, grel85, gre2l16a. But even then the fill-in
factor was sometimes large (i.e. 7.0 for gre216a, 12.6 for gre512). The same problem

12

occurred for the other matrices that could only be solved for smaller 7. For example
grel107 could be solved with 7 = 1072 and a fill-in factor 21.3. All matrices could
finally be solved with 7 = 107°.

The problem with the fill-in also extremely affects the sparse LU decomposition. For
example grel107 required a fill-in factor 44.1!

For those problems that could be solved by one of these methods the number of
iteration steps was moderate.

e LNS: ILUSTAB solved them all for 7 = 0.3. The fill-in was moderate (3.6 for Ins3937
was already maximum) an so was the number of iteration steps (at most 29).
LUINC could not solve any of these matrices for 7 = 0.1,0.01 but Ins511, Insp511,
Ins3937, Insp3937 for T = 1073, The biggest matrices required twice as much fill-in
as ILUSTAB.

ILUTP could solve the two smallest matrices for 7 = 0.1 and the medium size matrices
for 7 = 1073,

The two biggest matrices could only be solved for 7 = 107°. For Ins3937 see Table
6. The results for Insp3937 were quite similar.

Table 6: Matrix LNS/LNS3937

Method / 7 fill-in | # it. flops
factor | steps || dec. | solve
| sparse LU || 46.1] 1] 2.9:10° | 4.9-10° |

0.3 3.6 28 || 2.3-107 | 1.4-107
ILUSTAB 0.1 4.9 16 || 4.1-107 | 7.7-10°

1071 1.0 — || 6.4-10° —

102 3.7 — | 1.0-107 —
LUINC 103 7.4 29 || 3.2-107 | 2.0-107
10~* 12.3 91 6.6-107 | 7.1-10°
107° 17.0 91 1.0-10% | 5.0-10°

101 0.8 —
1072 1.4 —
ILUTP 1073 2.5 —
104 3.5 —
10°° 4.4 —

e NUCL: ILUSTAB could solve all matrices for 7 = 0.3 but the fill-in was poor, e.g.,
28.6 for nnc1374. The number of iteration steps was at most 28.
LUINC did not solve any of these matrices for 7 = 10~,...,1075.
ILUTP could solve all the problem for 7 = 1072 and a better fill-in factor than
ILUSTAB (e.g. 6.6 for nnc1374 but 463 iteration steps).

13

Here the direct solver produced significantly less fill-in for nnc1374 (factor 14.6) than
ILUSTAB.

e PORES: PORES1, PORES3 could be solved by ILUSTAB for 7 = 0.3 and ILUTP
for 7 = 0.1. LUINC needed 7 = 0.01 for PORES3. The number of iteration steps
was small except for PORES3, 7 = 0.1 and ILUTP which needed 248 steps, but for
7 = 0.01 the number of steps were small while the fill-in was still below the fill-in of
the original matrix. For matrix PORES2 see Table 7.

Table 7: Matrix PORES/PORES?2

Method / 7 fill-in | # it. flops
factor | steps || dec. | solve
| sparse LU | 51| 1][2510°]2.9-10° |
0.3 1.0 54 || 6.8-10° | 6.9-10°
ILUSTAB 0.1 1.2 15][9.6-10° | 1.5-10°
107! 0.5 — || 4.4-10* —

1072 0.6 113] 6.0-10* | 1.4-107
LUINC 1073 1.1 26 || 1.6-10° | 3.1-10°
101 1.8 9| 4.1-10° | 8.3-10°
107° 24 5 6.7-10° | 4.7-10°
1071 0.4 —
102 0.8 —
ILUTP 1073 1.7 30
10°* 3.2 13
107° 4.6 9

e SAYLOR: SAYLR1/SAYLR3 were solved by ILUSTAB for 7 = 0.3 and ILUTP for
7 =0.1. For SAYLR3, LUINC failed for all 7. For SAYLLR4 see Table 8.

e SHERMAN: ILUSTAB solved all the matrices for 7 = 0.3, but for sherman3 it
needed 138 iteration steps. For the other matrices the iteration count was less than
half as much. The fill-in was less than twice as much as the initial fill. The number of
iterations was much lower for 7 = 0.1 but with more fill-in. LUINC could only solve
sherman4, sherman5 for 7 = 0.1 and it needed 123 iteration steps for sherman5. For
7 = 0.01 it needed only a moderate number of iteration steps, but shermanl still
could not be solved for 7 = 1072, ILUTP could solve all matrices but for sherman?2
it needed 7 = 1075 (see Table 9). For sherman4 and 7 = 0.1 the number of iteration
steps (449) was still big. This changed when using 7 = 0.01.

14

Table 8: Matrix SAYLOR/SAYLRA4

Method / 7 fill-in | # it. flops
factor | steps || dec. | solve
sparse LU | 147] 1] 3.7-10" [1.5-10° |
0.3 2.6 44 | 1.6-107 | 1.8-107
ILUSTAB 0.1 3.1 15 [[2.0-107 | 5.2-10°
1071 0.6 — t110°] —
1072 0.6 — 1105 | —
LUINC 1073 0.6 — r110°| —
10~* 1.6 33 || 9.5-10° | 1.2:107
107° 2.7 11 || 3.5-10° | 3.1-10°
1071 0.6 352
1072 0.6 | 155
ILUTP 1073 0.6 | 153
1077 2.4 18
107° 3.5 8

Table 9: Matrix SHERMAN/SHERMAN?2

Method / 7 fill-in | # it flops
factor | steps dec. ‘ solve
sparse LU | 140 1]81-107 | 1.4-10° |
0.3 0.4 30 || 1.6-10° | 4.4-10°
ILUSTAB 0.1 0.6 14 || 2.6-10° | 1.7-10°
107! 02| — 9710 —
102 0.4 21 | 2.6-10° | 2.6-10°
LUINC 1073 0.7 7\ 7.7-10° | 7.5-10°
10~4 1.1 5| 2.4-10° | 6.2-10°
10=° 1.7 4 5.1-10° | 5.9-10°
10t 0.3 —
1072 0.6 —
ILUTP 1073 1.0 —
104 1.6 —
10°° 2.1 61

15

The numerical examples have illustrated the robustness of taking the growth of the in-
verse triangular factors into account when computing an incomplete LU decomposition.
Of course ILUSTARB is neither always the most efficient nor always the fastest (with respect
to the flops) nor always the ILU with the smallest amount of fill-in. But in many cases
it is a pretty good compromise between standard incomplete LU decompositions and the
full sparse LU decomposition. In many examples it is not necessary to use a trial-and-—
error strategy for choosing the drop tolerance. The drop tolerance is automatically adapted
with respect to the growth of the inverse factors. In several cases where a direct solver is
superior to iterative method (cf.Table 2), 3, 4 with respect to the number of flops, the
fill-in for ILUSTARB is still moderate and often even less less than that for LUINC, ILUTP.
Conversely on some problems which cause trouble to direct solvers (cf. Table 5) ILUSTAB
gains from its sparsity and being used as iterative solver.

The drawback of this algorithm is of course that it is more comparable with sparse direct
solvers because it requires explicit knowledge of the Schur—complement. Clearly there are
several problems where standard incomplete LU decompositions used as preconditioners
give powerful iterative solvers. In these cases apparently ILUSTAB will be slower because
one has a certain time consuming overhead for computing and administrating the approx-
imate Schur—complement.

5 Conclusions

A version of an incomplete LU decomposition has been presented that performs dropping
with respect to the growth of the inverses of the triangular factors. We have illustrated that
the resulting preconditioner is very robust. Often one can avoid adapting the parameters
to a specific matrix and still get a preconditioner that is computed in a sensible time with
moderate fill-in. For many examples this has turned out to be a good compromise between
sparse direct solvers and standard incomplete LU decompositions. Since this preconditioner
shares several properties with sparse direct solvers, an implementation based on modified
direct solvers seems to be reasonable. Currently codes from direct solvers like the Harwell—
Subroutine-Library are under investigation to build this kind of preconditioner. Real-time
results for bigger problems will be presented in a forthcoming paper.

References

[1] MATLAB - The language of technical computing. The MathWorks Inc., 1996.

[2] M. Benzi, J. K. Cullum, and M. Tuma. Robust approximate inverse preconditioning for
the conjugate gradient method. Technical report LA-UR-99-2899, Los Alamos National
Laboratory, Scientific Computing Group, 1999.

[3] M. Benzi, C. D. Meyer, and M. Tuma. A sparse approximate inverse preconditioner for the
conjugate gradient method. SIAM J. Sci. Comput., 17:1135-1149, 1996.

16

[4]

M. Benzi and M. Tama. A sparse approximate inverse preconditioner for nonsymmetric
linear systems. SIAM J. Sci. Comput., 19(3):968-994, 1998.

C. H. Bischof. Incremental condition estimation. STAM J. Matriz Anal. Appl., 11(2):312-322,
1990.

C. H. Bischof, J. G. Lewis, and D. J. Pierce. Incremental condition estimation for sparse
matrices. SIAM J. Matriz Anal. Appl., 11(4):644-659, 1990.

M. Bollhoefer and Y. Saad. ILUs and factorized approximate inverses are strongly related.
Part I: Overview of results. Technical Report umsi—2000-39, Minnesota Supercomputer
Institue, University of Minnesota, 2000.

M. Bollhoefer and Y. Saad. ILUs and factorized approximate inverses are strongly related.
Part II: Applications to stabilization. Technical Report umsi—2000-70, University of Min-
nesota at Minneapolis, Dep. of Computer Science and Engineering, 2000.

A. Cline, C. B. Moler, G. Stewart, and J. Wilkinson. An estimate for the condition number
of a matrix. SIAM J. Numer. Anal., 16:368-375, 1979.

I. Duff, A. Erisman, and J. Reid. Direct Methods for Sparse Matrices. Oxford University
Press, 1986.

I. Duff, R. Grimes, and J. Lewis. Sparse matrix test problems. ACM Trans. Math. Software,
15:1-14, 1989.

R. Freund, G. Golub, and N. Nachtigal. Tterative solution of linear systems. Acta Numerica,
pages 1-44, 1992.

J. A. George and J. W. Liu. Computer Solution of Large Sparse Positive Definite Systems.
Prentice-Hall, Englewood Cliffs, NJ, USA, 1981.

G. Golub and C. V. Loan. Matriz Computations. The Johns Hopkins University Press, third
edition, 1996.

M. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. J.
Res. Nat. Bur. Standards, 49:409-436, 1952.

S. Kharchenko, L. Kolotilina, A. Nikishin, and A. Yeremin. A reliable AINV—type precondi-
tioning method for constructing sparse approximate inverse preconditioners in factored form.
Technical report, Russian Academy of Sciences, Moscow, 1999.

J. Meijerink and H. A. V. der Vorst. An iterative solution method for linear systems of which
the coefficient matrix is a symmetric m—matrix. Math. Comp., 31:148-162, 1977.

N. Munksgaard. Solving sparse symmetric sets of linear equations by preconditioned conju-
gate gradient method. ACM Trans. Math. Software, 6:206-219, 1980.

Y. Saad. TLUT: a dual treshold incomplete ILU factorization. Numer. Lin. Alg. w. Appl.,
1:387-402, 1994.

Y. Saad. SPARSKIT and sparse examples. NA Digest, 1994.
Y. Saad. [lterative Methods for Sparse Linear Systems. PWS Publishing Company, 1996.

Y. Saad and M. Schultz. GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 7:856-869, 1986.

17

Other titles in the SFB393 series:

99-01

99-02

99-03

99-04

99-05
99-06
99-07

99-08

99-09

99-10

99-11
99-12

99-13

99-14
99-15

99-16

99-17

99-18

99-19

99-20

99-21

99-22

P. Kunkel, V. Mehrmann, W. Rath. Analysis and numerical solution of control problems
in descriptor form. January 1999.

A. Meyer. Hierarchical preconditioners for higher order elements and applications in com-
putational mechanics. January 1999.

T. Apel. Anisotropic finite elements: local estimates and applications (Habilitationsschrift).
January 1999.

C. Villagonzalo, R. A. Romer, M. Schreiber. Thermoelectric transport properties in disor-
dered systems near the Anderson transition. February 1999.

D. Michael. Notizen zu einer geometrisch motivierten Plastizitatstheorie. Februar 1999.
T. Apel, U. Reichel. SPC-PM Po 3D V 3.3, User’'s Manual. February 1999.

F. Troltzsch, A. Unger. Fast solution of optimal control problems in the selective cooling
of steel. March 1999.

W. Rehm, T. Ungerer (Eds.). Ausgewéhlte Beitrage zum 2. Workshop Cluster-Computing
25./26. Méarz 1999, Universitat Karlsruhe. Méarz 1999.

M. Arav, D. Hershkowitz, V. Mehrmann, H. Schneider. The recursive inverse eigenvalue
problem. March 1999.

T. Apel, S. Nicaise, J. Schoberl. Crouzeix-Raviart type finite elements on anisotropic
meshes. May 1999.

M. Jung. Einige Klassen iterativer Auflosungsverfahren (Habilitationsschrift). Mai 1999.

V. Mehrmann, H. Xu. Numerical methods in control, from pole assignment via linear
quadratic to Hy control. June 1999.

K. Bernert, A. Eppler. Two-stage testing of advanced dynamic subgrid-scale models for
Large-Eddy Simulation on parallel computers. June 1999.

R. A. Romer, M. E. Raikh. The Aharonov-Bohm effect for an exciton. June 1999.

P. Benner, R. Byers, V. Mehrmann, H. Xu. Numerical computation of deflating subspaces
of embedded Hamiltonian pencils. June 1999.

S. V. Nepomnyaschikh. Domain decomposition for isotropic and anisotropic elliptic prob-
lems. July 1999.

T. Stykel. On a criterion for asymptotic stability of differential-algebraic equations. August
1999.

U. Grimm, R. A. Rémer, M. Schreiber, J. X. Zhong. Universal level-spacing statistics in
quasiperiodic tight-binding models. August 1999.

R. A. Romer, M. Leadbeater, M. Schreiber. Numerical results for two interacting particles
in a random environment. August 1999.

C. Villagonzalo, R. A. Romer, M. Schreiber. Transport Properties near the Anderson Tran-
sition. August 1999.

P. Cain, R. A. Romer, M. Schreiber. Phase diagram of the three-dimensional Anderson
model of localization with random hopping. August 1999.

M. Bollhéfer, V. Mehrmann. A new approach to algebraic multilevel methods based on
sparse approximate inverses. August 1999.

99-23
99-24

99-25

99-26

99-27

99-28
99-29

99-30

99-31

99-32

99-33

99-34

99-35

99-36

99-37

99-38

99-39

99-40
00-01

00-02

00-03

00-04

D. S. Watkins. Infinite eigenvalues and the QZ algorithm. September 1999.

V. Uski, R. A. Romer, B. Mehlig, M. Schreiber. Incipient localization in the Anderson
model. August 1999.

A. Meyer. Projected PCGM for handling hanging in adaptive finite element procedures.
September 1999.

F. Milde, R. A. Romer, M. Schreiber. Energy-level statistics at the metal-insulator transi-
tion in anisotropic system. September 1999.

F. Milde, R. A. Romer, M. Schreiber, V. Uski. Critical properties of the metal-insulator
transition in anisotropic systems. October 1999.

M. Thef. Parallel multilevel preconditioners for thin shell problems. November 1999.

P. Biswas, P. Cain, R. A. Romer, M. Schreiber. Off-diagonal disorder in the Anderson
model of localization. November 1999.

C. Mehl. Anti-triangular and anti-m-Hessenberg forms for Hermitian matrices and pencils.
November 1999.

A. Barinka, T. Barsch, S. Dahlke, M. Konik. Some remarks for quadrature formulas for
refinable functions and wavelets. November 1999.

H. Harbrecht, C. Perez, R. Schneider. Biorthogonal wavelet approximation for the coupling
of FEM-BEM. November 1999.

C. Perez, R. Schneider. Wavelet Galerkin methods for boundary integral equations and the
coupling with finite element methods. November 1999.

W. Dahmen, A. Kunoth, R. Schneider. Wavelet least squares methods for boundary value
problems. November 1999.

S. I. Solovev. Convergence of the modified subspace iteration method for nonlinear eigen-
value problems. November 1999.

B. Heinrich, B. Nkemzi. The Fourier-finite-element method for the Lamé equations in ax-
isymmetric domains. December 1999.

T. Apel, F. Milde, U. Reichel. SPC-PM Po 3D v 4.0 - Programmers Manual II. December
1999.

B. Nkemzi. Singularities in elasticity and their treatment with Fourier series. December
1999.

T. Penzl. Eigenvalue decay bounds for solutions of Lyapunov equations: The symmetric
case. December 1999.

T. Penzl. Algorithms for model reduction of large dynamical systems. December 1999.

G. Kunert. Anisotropic mesh construction and error estimation in the finite element
method. January 2000.

V. Mehrmann, D. Watkins. Structure-preserving methods for computing eigenpairs of large
sparse skew-Hamiltonian/Hamiltonian pencils. January 2000.

X. W. Guan, U. Grimm, R. A. Romer, M. Schreiber. Integrable impurities for an open
fermion chain. January 2000.

R. A. Romer, M. Schreiber, T. Vojta. Disorder and two-particle interaction in low-
dimensional quantum systems. January 2000.

00-05

00-06
00-07

00-08

00-09

00-10

00-11

00-12

00-13
00-14

00-15

00-16

00-17

00-18
00-19

00-20
00-21

00-22

00-23

00-24

00-25

00-26

P. Benner, R. Byers, V. Mehrmann, H. Xu. A unified deflating subspace approach for classes
of polynomial and rational matrix equations. January 2000.

M. Jung, S. Nicaise, J. Tabka. Some multilevel methods on graded meshes. February 2000.

H. Harbrecht, F. Paiva, C. Perez, R. Schneider. Multiscale Preconditioning for the Coupling
of FEM-BEM. February 2000.

P. Kunkel, V. Mehrmann. Analysis of over- and underdetermined nonlinear differential-
algebraic systems with application to nonlinear control problems. February 2000.

U.-J. Gorke, A. Bucher, R. Kreiflig, D. Michael. Ein Beitrag zur Losung von
Anfangs-Randwert-Problemen einschlieflich der Materialmodellierung bei finiten elastisch-
plastischen Verzerrungen mit Hilfe der FEM. Marz 2000.

M. J. Martins, X.-W. Guan. Integrability of the D? vertex models with open boundary.
March 2000.

T. Apel, S. Nicaise, J. Schoberl. A non-conforming finite element method with anisotropic
mesh grading for the Stokes problem in domains with edges. March 2000.

B. Lins, P. Meade, C. Mehl, L. Rodman. Normal Matrices and Polar Decompositions in
Indefinite Inner Products. March 2000.

C. Bourgeois. Two boundary element methods for the clamped plate. March 2000.

C. Bourgeois, R. Schneider. Biorthogonal wavelets for the direct integral formulation of the
heat equation. March 2000.

A. Rathsfeld, R. Schneider. On a quadrature algorithm for the piecewise linear collocation
applied to boundary integral equations. March 2000.

S. Meinel. Untersuchungen zu Druckiterationsverfahren fiir dichteveranderliche Stromungen
mit niedriger Machzahl. Marz 2000.

M. Konstantinov, V. Mehrmann, P. Petkov. On Fractional Exponents in Perturbed Matrix
Spectra of Defective Matrices. April 2000.

J. Xue. On the blockwise perturbation of nearly uncoupled Markov chains. April 2000.

N. Arada, J.-P. Raymond, F. Troltzsch. On an Augmented Lagrangian SQP Method for a
Class of Optimal Control Problems in Banach Spaces. April 2000.

H. Harbrecht, R. Schneider. Wavelet Galerkin Schemes for 2D-BEM. April 2000.

V. Uski, B. Mehlig, R. A. Romer, M. Schreiber. An exact-diagonalization study of rare
events in disordered conductors. April 2000.

V. Uski, B. Mehlig, R. A. Romer, M. Schreiber. Numerical study of eigenvector statistics
for random banded matrices. May 2000.

R. A. Romer, M. Raikh. Aharonov-Bohm oscillations in the exciton luminescence from a
semiconductor nanoring. May 2000.

R. A. Romer, P. Ziesche. Hellmann-Feynman theorem and fluctuation-correlation analysis
of i the Calogero-Sutherland model. May 2000.

S. Beuchler. A preconditioner for solving the inner problem of the p-version of the FEM.
May 2000.

C. Villagonzalo, R.A. Romer, M. Schreiber, A. MacKinnon. Behavior of the thermopower
in amorphous materials at the metal-insulator transition. June 2000.

00-27 C. Mehl, V. Mehrmann, H. Xu. Canonical forms for doubly structured matrices and pencils.
June 2000. S. I. Solov’ev. Preconditioned gradient iterative methods for nonlinear eigenvalue
problems. June 2000.

00-29 A. Eilmes, R. A. Romer, M. Schreiber. Exponents of the localization lengths in the bipartite
Anderson model with off-diagonal disorder. June 2000.

00-30 T. Grund, A. Rosch. Optimal control of a linear elliptic equation with a supremum-norm
functional. July 2000.

The complete list of current and former preprints is available via
http://www.tu-chemnitz.de/sfb393/preprints.html.

