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Abstract

This paper discusses some relationships between Incomplete LU �ILU� factoriza�
tion techniques and factored sparse approximate inverse �AINV� techniques� While
ILU factorizations compute approximate LU factors of the coe�cient matrix A�
AINV techniques aim at building triangular matrices Z and W such that W�AZ is
approximately diagonal� The paper shows that certain forms of approximate inverse
techniques amount to approximately inverting the triangular factors obtained from
some variants of incomplete LU factorization of the original matrix� A few useful�
and already known� applications of these relationships will be overviewed�
Keywords� sparse matrices� Incomplete LU �ILU�� variants of ILU� sparse approx�
imate inverse� AINV�
AMS subject classi�cation� ��F	�� ��F
	� ��F�	�

� Introduction

Preconditioned Krylov�subspace iterations are among the most e�cient techniques for
solving linear systems of the form�

Ax � b� ���

where A � R
n�n is nonsingular and b � R

n is a given right hand side� see e	g	� 
���
��� �� �
�	 Among the most popular preconditioners are those based on approximate
factorizations obtained from direct solution methods� such as the LU factorization 
����
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pp	 ���	 Alternative techniques appeared in recent years which compute approximate
solutions of ��� via an approximate inverse of A� instead of a factorization	 One of the
main motivations for using preconditioners of this type is parallelism	 Another important
reason is that ILU preconditioners� which have been developed forM matrices 
���� often
fail for inde�nite matrices	

A few of the approximate inverse techniques are based on minimizing kI�AMk in some
appropriate norm 
��� ��� ��� ��	 Others compute the approximate inverse in factored
form by seeking two sparse unit upper triangular matrices W and Z� and a diagonal
D� such that W�AZ � D� see e	g	 
�� 
� �� ��� ���	 As it turns out� the latter class
of preconditioners show an algebraic behavior that is similar to that of the well�known
incomplete LU decompositions	 For example� they are stable for M� and H�matrices�
in perfect analogy with known results on incomplete LU decompositions in 
��� ���	

It is worth mentioning that there has been some work on methods for inverting triangular
matrices which are computed from a standard LU factorization� based on the same
motivations� see 
���	 However� our paper does not consider these methods	

The purpose of this paper is to take an in�depth look at the relationships between
factored approximate inverse preconditioners �AINV� and incomplete LU decomposition
methods	 In particular� it will be shown that AINV methods generate factors which
can be viewed as approximations of the inverses of the triangular factors obtained by
certain variants of incomplete LU 	 Using a slight modi�cation of the strategies to drop
entries we will also show that matrices resulting from these methods can be viewed as
the exact inverses of triangular factors obtained via an incomplete LU decomposition	
Speci�cally� what is required is to suitably modify or construct modi�ed approximate
Schur�complements such that the inverse factors are those �or at least close to those�
obtained by factored approximate inverse techniques	

� Incomplete LU factorizations

Incomplete LU factorizations construct approximate L� D� U factors of A such that

A � LDU

where L�U� are lower triangular matrices with unit diagonal	 A partial LU factorization�
when it exists� can be recursively expressed by considering the �rst step�

�
a�� f
e C

�
�

�
� �
g I

� �
� �
� S

� �
� h
� I

�
� ���

with � � a��	 The terms �� g� h and S satisfy g� � e � R
n���� � �h � f � R

��n�� and

S � C � g � h � R
n���n�� � ���
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The matrix S denotes the so�called Schur�complement	 An exact LU decomposition is
obtained by applying ��� recursively on the resulting Schur�complement	 The process
is completed by substituting the factorization S � LSDSUS� when it exists� into ��� to
obtain �

a�� f
e C

�
�

�
� �
g LS

� �
� �
� DS

� �
� h
� US

�
� ���

which is the �nal LU factorization	

In incomplete factorizations� entries are dropped during this procedure in the L�U factors
and in the Schur�complement	 A common strategy is to drop entries in the �rst column
of L according to a certain �dropping rule� and apply a similar dropping rule to the
�rst row of U 	 As a result of this procedure� the row h � ���f � and column g � e���

are replaced by sparsi�ed approximations

�h � h �g � g

leading to the approximate Schur complement

�S � C � �g � �h �
�

which is a sparsi�ed version of ���	 However� there are several other ways of de�ning
approximate Schur complements from approximations to g and h	 For example� we can
multiply both sides of ��� to the left by the inverse of the approximate L factor obtained
by replacing g by �g	 Equating the resulting ��� �� blocks leads to

�S � C � �g f � ���

From an algorithmic point of view� the process amounts to multiplying the current
matrix� i	e	� the matrix on the left�hand�side of ���� to the left by

�
� �
��g I

�
�

In other words the next Schur complement is obtained by performing the usual row
operations in Gaussian elimination using a sparsi�ed version of L� obtained by dropping
some elements	

Similarly� a column�based version of this process consists of multiplying both sides of
��� to the right by the inverse of of the approximate U factor obtained by replacing h
by �h	 This leads to the approximation

�S � C � e �h� ���

A fourth option we mention consists of a combination of these two operations	 First�
operate with the approximation to the inverse of L to the left of the matrix A� and then
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operate with the approximation to the inverse of U to the right of the resulting matrix	
The ��� �� block of the resulting matrix is the Schur complement

�S � C � �g f � �e� �g �� �h� ���

Other ways of de�ning an approximate Schur�complement can be derived from other
equivalent expressions of the Schur�complement	 In the case of an exact factorization
�no dropping� the update formulas �
�� ���� ���� and ���� will all lead to the same S	
In practice� �
� is the most common scheme for de�ning Incomplete LU factorizations�
see� e	g	 
��� or 
���	 Typically� �
� produces the smallest amount of �ll�in compared
with the other formulas	 The update ��� has also been used in a number of papers

��� �� �� ��	 In the symmetric positive de�nite case� it is guaranteed to produce a stable
ILU factorization� see 
���	

��� Update variants

In order to simplify the description of the algorithms to be considered we make the
following observation which allows us to express all four types of updates just described
in a concise manner	 Consider� for example� the update �
�	 The update for entry �i� j� of
C is performed only when �gi and �hj are both nonzero� i	e	� when their original terms in
g and h have both not been dropped	 We now notice that if we call S the current Schur
complement matrix� i	e	� the matrix on the left�hand�side of ���� then �
� is equivalent
to performing the following update for each pair �i� j� such that sik � skj �� ��

sij � sij �
sikskj
dkk

���

but to restrict this update to the cases when gi and hj have both not been dropped	
Thus� �
� can be expressed as �Perform ��� when �gi �� � and �hj �� ��	 Interestingly� each
of �
�� ���� ���� and ���� can be expressed in this manner	

� Update �
�� Perform ��� when �gi �� � and �hj �� �

� Update ���� Perform ��� when �gi �� �

� Update ���� Perform ��� when �hj �� �

� Update ���� Perform ��� when �gi �� � or �hj �� �	

A little explanation is required for the last case	 If �gi �� � and �hj � �� then the formula
will coincide with ���� which is the same as ��� for this particular situation	 Similarly for
the opposite case when �gi � � and �hj �� �� which leads to Formula ���	 When both �gi
and �hj are nonzero� then the term cij� �gifj�ei�hj can be viewed as a the term sij which
has undergone two updates� one of which is extraneous	 Therefore we need to correct
this update by adding �gi��hj 	
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Throughout the paper we will use the above formalism� i	e	� all updates �
 � �� will be
expressed in the form �if version��gi� �hj� then perform update ����� in which version��gi� �hj�
is a boolean function which takes the following values for the four di�erent cases under
consideration�

� Update �
�� version��gi� �hj� � f �gi �� � and �hj �� � g

� Update ���� version��gi� �hj� � f �gi �� � g

� Update ���� version��gi� �hj� � f �hj �� � g

� Update ���� version��gi� �hj� � f �gi �� � or �hj �� � g 	

��� Block versions

It is useful to generalize the above arguments to the case when the ����� term a�� in
��� is replaced by a block B of size k � k of the matrix A� with k � �	 The partial LU
factorization� when it exists� is now expressed by

�
B F
E C

�
�

�
LB �
G I

� �
DB �
� S

� �
UB H
� I

�
� ����

where LB� U
�
B � R

k�k are lower triangular matrices with unit diagonal and DB � R
k�k is

diagonal	 Here� LB �DB � UB refer to an already computed LU�decomposition of B	 The
matrices DB � G� H and S satisfy GDBUB � E � R

n�k�k � LBDBH � F � R
k�n�k and

the Schur complement now becomes

S � C �GDBH � R
n�k�n�k ����

The same four versions of the approximate Schur complement as those de�ned by �
��
� � �� ��� can be de�ned similarly	 We list them all below for future reference	

�S � C � �GDB
�H ����

�S � C � �GL��B F ����

�S � C �EU��
B
�H ����

�S � C � �GL��B F �
�
E � �GL��B B

�
U��
B
�H ��
�

At this point we make an important observation regarding the approximate Schur�
complement	 For convenience we call the p�th Schur complement� the Schur complement
obtained by eliminating unknowns i � �� � � � � p	 The zero�th Schur complement is� by
de�nition� the original matrix and the �i� ���st Schur complement can be obtained by
applying ��������� to the i�th Schur complement	 When dropping is applied� the p�th
Schur complement� a matrix of size n � p� will vary depending on which of the four






formulas ������ � �� ��
� is used	 Instead of this p�step procedure� we could alternatively
obtain an approximate Schur�complement directly by using one step of the above process
with k � p� taking the same equations from �������
�	 The important property which
we point out is that these two methods would lead to the same approximate Schur�
complement	

Property � The p�th �approximate� Schur complement S obtained from applying p
consecutive steps of one of the four formulas ��� � ��� with k � �	 is identical with the
�approximate� p�th Schur complement obtained from � step of the same formula among
��� � ���	 with k � p


��� Dropping Strategies

There are two broad classes of dropping strategies	 In the �rst category there are strate�
gies� which drop elements based only on the pattern of the matrix	 This includes the
level�of��ll strategy 
���	 A second category of methods drops elements dynamically�
based on their magnitude 
��� ��� Other strategies combine graph based methods with
threshold dropping	

It is important to point out here that the results we show concern not only the �static�
dropping strategies but also some dynamic dropping� e	g	 with respect to a prescribed
drop tolerance � � similar to the threshold based ILUT preconditioning	 To be more
speci�c� throughout the paper we assume that any dropping rule we use for sparsifying
a vector has information about its numerical values and its associated coordinates	 For
example a dropping rule applied to the entries gi�k of G uses only information on gi�k and
the related coordinates �i� k�	 Possible dropping rules of this type could be for example

� drop gi�k if jgi�kj � � �

� drop gi�k if �i� k� is outside a speci�c pattern�

� drop gi�k if jgi�kj � �ke�i Ak�

where � is a �xed drop tolerance	

For more complex dynamic dropping� di�erent versions of Gaussian elimination may
produce di�erent ILU factors even if the corresponding exact Gaussian elimination ver�
sions would produce the same factors	 This is because the dropping strategies may
yield di�erent patterns	 In general� threshold�based methods are harder to analyze than
pattern�based algorithms	

��� K�I�J implementations

A sample routine for performing an incomplete LU decomposition is given by Algorithm
�	 Algorithm � is based on the so�called K� I� J version �or �rank�one� update version�
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of Gaussian elimination	 We make use of our earlier observation on a uni�ed way to
handle the approximate Schur�complements ����� ��
�� ���� and ���� in Algorithm �	
The di�erent updates sij � sij �

sikskj
dkk

of the approximate Schur�complement can be

expressed in terms of a logical value version��gi� �hj� which were de�ned earlier	 The
notation changes in the algorithm and the variables �gi and �hj are now called pi and qj	

Algorithm � �Incomplete LU factorization �ILU��

Input� A � �aij�ij � R
n�n 
 Output� ILU factorization A � LDU 


�
 p � q � � � R
n 	 L � U � I	 S � A


�
 for k � �� � � � � n
�
 dkk � skk


 for i � k � �� � � � � n and when sik �� � or ski �� �
�
 pi � sik�dkk	 qi � ski�dkk
�
 Apply a dropping rule to pi and qi
�
 lik � pi	 uki � qi
�
 for j � k � �� � � � � n and when sik �� � and skj �� �
�
 if version�pi� qj� then� sij � sij �

sikskj
dkk

�
 end

��
 end

��
 end

A signi�cant drawback of Algorithm � lies in its practical implementation	 Each step of
the procedure alters rows k � � to n of the matrix S� which is typically held in a single
data structure	 This leads to the use of expensive linked lists� or elbow room	 In spite of
these drawbacks the algorithm is attractive for several reasons� and it has been used by
a few authors to develop incomplete factorizations 
��� �
�	 One of its advantages is the
ease with which powerful pivoting and reordering strategies can be implemented	 The
next section describes a di�erent implementation which consists of swapping the k and
i loops in Algorithm �	

��� I�K�J variants of ILU

A more common alternative to implement incomplete LU factorizations is based on the
I� K� J version of Gaussian elimination	 This is sketched in Algorithm �	

When the same static dropping strategy is used� e	g	� one that is based on level�of��ll�
it is known that Algorithm � and Algorithm �� with S de�ned by ����� will deliver the
same factors	 However this relation is still true for dynamic dropping strategies� if the
dropping rule is applied in the same way	 Recall that Algorithms � and � perform the
same sequence of operations in a di�erent order	 If an element is dropped in one it will
also dropped in the other if the exact same criterion is applied	 For this to be true one
should be careful that the same rule is applied for partial results in the factorizations	
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Algorithm � �Incomplete LU factorization �ILU��

Input� A � �aij�ij � R
n�n 
 Output� ILU factorization A � LDU 


�
 L � D � U � I

�
 for i � �� � � � � n
�
 w � e�i A


 for k � �� � � � � i� � and when wk �� �
�
 wk � wk�dkk
�
 Apply a rule to drop wk

�
 for j � k � �� � � � � n and if �wk �� � and ukj �� ��
�
 wj �� wj �wkukj
�
 end

�
 end

��
 dii � wi

��
 for all j � i� lij � wj

��
 for all j � i� uij � wj�wi
 Apply a dropping rule to uij
�

 end

In practice� incomplete factorization algorithms are typically organized such that the
L�D�U factors are stored in one single data structure	 The attraction of the implemen�
tation in Algorithm � is clear� the rows of L and U are determined one at a time and
are easily added to the existing data�structure	

� Relations between AINV and ILUs

There are two broad classes of approximate inverse methods	 The �rst includes methods
which compute directly an approximate inverse M to A� see� e	g	� 
�� ���	 The second
includes those methods which obtain this approximate inverse in the form of a product
of two triangular factors	 A method in this category� called AINV� was proposed in 
�� 
�	
It is brie�y outlined next	

��� Factored Approximate Inverse �AINV	

The method in 
�� 
� computes a decomposition of the form W�AZ � D� where W�Z
are unit upper triangular matrices� and D is a diagonal	 In the exact factorization case�
the matrices W and Z are the inverses of the factors L� and U � respectively� of the
standard LDU decomposition A � LDU � when this decomposition exists	 The matrices
W and Z can be directly computed by a biorthogonalization procedure	 Indeed� since

W�A � DU

�



is upper triangular� we immediately get e�i W
�Aej � �� for any j � i� which means

that column i of W is orthogonal to the �rst i � � columns of A	 A procedure can be
devised to make the i�th column of W orthogonal to the columns �� � � � � i � � of A� via
linear combinations with �rst i � � columns of W 	 Alternatively� columns i � �� � � � � n
of W can be made orthogonal to the �rst i columns of A	 This makes it possible to
successively orthogonalize all columns of W against each of the columns of A	 During
this procedure one can drop small entries� or entries outside a certain sparsity pattern	
The resulting incomplete biorthogonalization process� which is sketched next� produces
an approximate factored inverse	

Algorithm � �Factored Approximate INVerse �right�looking AINV��

�
 Input� A � �Aij�ij � R
n�n 
 Output� Z�D�W such that A�� � ZD��W�


�
 Let p � q � ��� � � � � �� � R
n 	 Z � 
z�� � � � � zn� � In	 W � 
w�� � � � � wn� � In


�
 for k � �� � � � � n

a
 pk � w�k Aek� qk � e�k Azk
�
 for i � k � �� � � � � n
�a
 pi �

�
w�i Aek

�
�pk� qi �

�
e�k Azi

�
�qk

�
 Apply a dropping rule to pi� qi
�
 wi � wi �wkpi� zi � zi � zkqi
�
 Apply a dropping rule to wj�i and zj�i	 for j � �� � � � � i

�
 end

��
 end

��
 Choose diagonal entries of D as the components of p or q


Line ��� and �
� are labeled with an �a� because they represent only one of two available
options	 An alternative way of computing W and Z is based on the fact that W�AZ
should become approximately diagonal	 Instead of orthogonalizing W �resp	 Z� with
respect to the columns of A� we can apply a biconjugation process that enforces the bi�
orthogonality of the columns of W and Z	 For this we must enforce e�kW

�AZej � � for
all k �� j� � � k� j � i	 This will result in simple changes to Algorithm ��	 Speci�cally�
the second option which we label with a �b� consists in changing lines ��a� and �
a� into
the the following lines�

�b	 pk � w�k Azk� qk � w�k Azk

b	 pi �

�
w�i Azk

�
�pk� qi �

�
w�k Azi

�
�qk

Clearly� if no entry is dropped and if there exists an LDU decomposition of A� then
W � L��� Z � U��	 In this case it can be immediately seen by induction that after
step i of the algorithm� columns i��� � � � � n of W are orthogonal to column �� � � � � i of A
and likewise columns i��� � � � � n of Z are orthogonal to rows �� � � � � i of A	 Remarkably�
the computations of Z and W can be performed independently of each other for option
�a�	

�



It is important to note that in the original version of AINV 
�� 
�� no dropping is applied
to pi or qi	 One is only applied to wi and zi by discarding entries inW and Z that are less
than a certain drop tolerance	 Moreover� it has been pointed out in 
��� that dropping
entries of p and q produces poor results	 The problem with dropping elements in p� q is
that small entries jpj�pij may multiply large entries of Z��i resulting in discarded entries
in the approximate inverse that might not be small at all	

We still consider this variant because it shows very strong direct connections with various
implementations of ILU	 More general results� that concern practical variants� will be
shown in Section �	�	 In 
�� 
� p and q were de�ned using option �a�� while option �b�
was used in 
��� �� for symmetric positive de�nite matrices	

Note that the strict biorthogonality property of the exact factors no longer holds if drop�
ping is introduced	 Interestingly� however� stability can still be proved for H�matrices�
in the case of incomplete LU factorizations as well as for AINV� see for example 
��	

��� ILU with progressive factor inversion

In order to establish a bridge between the AINV and the ILU approaches� we introduce
an intermediate algorithm that can be viewed as an ILU process with a simultaneous
inversion of the factors which it produces	 Speci�cally� if at step k� � we have a matrix
U of the form�

U �

�
� U�� U�� U��

O � O
O O I

	



the k�th step will compute the entries in position ����� of the above matrix and add
them to the current U to get Unew	 Consider the row vector q

� � e�k U � e�k 	 Note that
the �diagonal� element qk of q is zero	 Then�

Unew � U � ekq
� �

Because of the structure of U and q it is easy to see that q�U � q�� and so

Unew � �I � ekq
��U�

Hence the relation�

U��
new � U���I � ekq

���� � U���I � ekq
�� � U�� � U��ekq

� � ����

If we were to compute the inverse of U progressively� the columns zj � j � �� � � � � n of
this corresponding progressive approximate inverse� could therefore be updated by the
following formula at the k�th step�

zi �� zi � zkqi� i � k � �� � � � � n�

��



Analogous arguments hold for the L factor	 This provides a formula for progressively
computing L�� and U�� throughout the ILU factorization algorithm	 We call the inverse
factors W and Z as in Algorithm �	

Algorithm � �ILU with progressive inversion of L and U�
Input� A � �aij�ij � R

n�n 
 Output� ILU factorization A � LDU 


�
 p � q � � � R
n 	 L � U � I	 W � 
w�� � � � � wn� � Z � 
z�� � � � � zn� � I	 S � A


�
 for k � �� � � � � n
�
 dkk � skk


 for i � k � �� � � � � n and when sik �� � or ski �� �
�
 pi � sik�dkk	 qi � ski�dkk
�
 Apply a dropping rule to pi and qi
�
 lik � pi	 uki � qi
�
 wi � wi � wkpi	 zi � zi � zkqi
�
 for all l � i� apply a dropping rule to wli and to zli
�
 for j � k � �� � � � � n and when sik �� � and skj �� �
��
 if version�pi� qj� then� sij � sij �

sikskj
dkk

��
 end

��
 end

�

 end

��� A 
rst comparison theorem

The notation we used in Algorithm 
 already suggests that Z�W coincide with those of
Algorithm �	 This is con�rmed by the next theorem which establishes a few relations
between various versions of AINV and ILU	

Theorem 	 Assume that in Algorithm � and Algorithm � the same dropping rules are
applied to p and q and that no dropping rule is applied to W�Z
 Then certain choices
of S in Algorithm �	 and the choice of options �a� or �b� in Algorithm � will imply the
following identities


Choice of Alg
 � Alg
 � Alg
 � Alg
 � Alg
 � Alg
 �
S � �a�	 �b� ��
� �a� ���� �b� ���� �a�

� � �

L�� �WAlg���� L�� �WAlg����

Identities U�� � ZAlg���� U�� � ZAlg����

diag �DAlg��� � pAlg�� diag �DAlg��� �

�
pAlg��
qAlg��

diag �DAlg��� � qAlg��

��



Proof
 We will only prove the �rst result for W and p� since the proof for the other
cases is analogous	 We will show by induction on k� that W is identical in both methods
after any step k� that the �rst k diagonal entries of D coincide with p�� � � � � pk and that

sij � w�i Aej � for all i� j � k� ����

Initially� for k � � there is nothing to show since obviously W � I in both algorithms
and S � A	 Now suppose that W is identical before we enter step k of each algorithm	
Suppose that the �rst k�� diagonal entries of D coincide with the �rst k�� components
of p and that

sij � w�i Aej � for all i� j � k�

We immediately obtain pk � w�k Aek � skk � dkk and

pi � w�i Aek�dkk � sik�dkk� for all i � k � �� � � � � n�

From this it follows that p
�new�
i from both algorithms is identical and satis�es p

�new�
i � lik�

for any i � k	 Since we choose the same dropping rule for both algorithms� this equality
still holds after sparsifying these entries	

Obviously the update procedure

w
�new�
i � w

�old�
i � w

�old�
k p

�new�
i � for all i � k

from Algorithm � is the nontrivial update part on

W �new� �W �old�
�
I � ekp

�
�

in Algorithm 
	 Now for the new entries sij� i� j � k we have the update procedure

s
�new�
ij �� s

�old�
ij � p

�new�
i s

�old�
kj

� e�i

�
�������

Ik��
�

�p
�new�
k	� �
			

	 	 	

�p
�new�
n �

	








S�old�ej

� e�i

�
�������

Ik��
�

�p
�new�
k	� �
			

	 	 	

�p
�new�
n �

	








�W �old���Aej � e�i �W

�new���Aej �

This completes the proof	 �

��



��� Dropping elements in W and Z

As mentioned earlier� Algorithm � is more general than the original AINV algorithm

�� 
� which does not allow dropping entries in the update factors from p� q but only
in the updated matrices Z�W 	 The previous theorem does not address this case since
its assumptions do not allow dropping in W and Z	 The key to getting a connection
between AINV and ILU�type factorizations lies is equation ����	 If a Schur�complement
is constructed so that this relation holds between AINV and an ILU factorization� it is
easy to see that both algorithms will result in comparable W s and Zs	 The results to be
proved next concerns such update versions� i	e	� they are valid for the Schur complements
de�ned by either of the following three expressions�

S � �W�A�� � or S � �AZ�� � or S � �W�AZ�� � ����

where the square subscripts indicate that an appropriate submatrix is extracted	 In these
situations� we may expect for example W� to be close to L�� in some sense� i	e	� that
W� can be viewed as an approximation to the inverse of L	

We will need two simple lemmas before establishing the general result	 We begin with
some required additional notation	 The matrix W at the k�th step of the Algorithm 

is denoted by W �k�� starting with W �
� � I	 It is obtained from W �k��� by the relation�

W �k� �W �k���
h
I � ek�p

�k���
i
�Gk ����

where Gk is the matrix of elements that have been dropped in the process and p�k� is
the vector denoted by p in the algorithm� as step k	 The vector p�k� has zero elements
in positions � through k� i	e	� e�j p

�k� � � for all j � k	

Lemma � Denote by Qk the matrix

Qk � I � ek�p
�k��� ����

and let Gk the matrix of elements dropped in the matrix W �k� at step k
 Then	

Gk Qk�l � Gk � 	 l 	 k � � � ����

Proof
 Note that �Gk�ij � � for j � k or i � k	 Therefore� we can write

Gk �
X

i�k� j�k

gijeie
�
j

and so

GkQk�l �
X

i�k� j�k

gijeie
�
j

�
I � ek�l�p

�k�l���
�
�

X
i�k� j�k

gijeie
�
j � Gk

�

This relation is key to establishing the next lemma	

��



Lemma � Let W �k�� Gk de�ned by ���� and ���� and let

L��k � Q� �Q� � � �Qk

then

I �W �k�L�k �

kX
i��

Gi ����

Proof
 Exploiting the result of Lemma � we can write

W �k� � W �k���Qk �Gk � �W
�k��� �Gk�Qk

� 
�W �k��� �Gk���Qk�� �Gk�Qk � 
W
�k��� �Gk�� �Gk�Qk��Qk

� 
W �k��� �Gk�� �Gk�� �Gk�Qk��Qk��Qk

� � � �

� 
W �
� �G� � � � � �Gk�Q�Q� � � �Qk

This essentially gives the result by recalling that W �
� 
 I	 �

We now need to link the AINV algorithm �Algorithm �� with Algorithm 
	 To interpret
AINV as a form of ILU� the de�nition of the approximate Schur�complement must be
adapted	 Standard computations of the Schur�complement in Algorithm � correspond
to the de�nition in ��
�� ����	 We now consider a hypothetical version of Algorithm 
�
in which the Schur�complement is de�ned via one of the options in ����	

An important observation is that we will obtain the same W matrices in algorithms
� and 
� if the same dropping rule is used for p in both algorithms� and if the Schur
complement is de�ned from ���� in Algorithm 
	

Lemma � indicates that W �k� is an approximate inverse of L�k if the sum of the matrices
Gi remains small� a statement which can be made more precise if a drop tolerance
strategy is invoked	 Putting these observations together leads to the following result	

Theorem 
 Assume that in Algorithm � wij is dropped if jwjij � �	 i � k� j � k
 Then	
the L�factor and the matrix W produced by Algorithm � are such that	

j�I �WL��ij j � �j � i��� � � i � j � n ����

If in addition the Schur�complement in Algorithm ��� is de�ned through ���� and if
the related version of Algorithm � uses the same dropping rules for W as Algorithm �	
whereas no dropping is applied to p� q	 then the matrices W produced by both algorithms
are identical


Proof
 The �rst part of the theorem follows by applying the previous lemma with k 
 n�
and noting that in position �i� j� of W � dropping occurs at most �j � i� times since at
step k dropping takes place only in the rectangle of pairs �i� j� such that i � k � j	

��



The second part of the theorem was stated above without proof	 A rigorous proof would
be by induction	 In short� both sequences satisfy the same recurrence relation�

W �k� �W �k����I � ek�p
�k�����Gk

because p�k� and Gk are the same in both algorithms due to the common dropping
rules	 This leads to the same sequence of W �s for both algorithms	 �

Though all the analysis has been made for the lower triangular factor L and the asso�
ciated W � it is clear that analogous relationships can be established between U�� and
Z �apply Theorem � to A��	 We mention that an algorithm of this type was recently
presented in 
�� for the symmetric positive de�nite case where the Cholesky factor was
taken as a by�product from the AINV factor	

We now consider the more general situation when no dropping is applied to p and q
in Algorithm � while Algorithm 
 does perform dropping	 In this case the W matrices
obtained by both algorithms are no longer �easily� comparable	 This is because the
vectors p� q in the recurrence ���� are no longer the same	 We could modify Algorithm

 so that dropping is also not done in p and q but only in L after p� q have been used
to update W and Z	 This amounts to simply moving Line � of the algorithm to behind
line �	 Speci�cally� only Lines 
�� change in the algorithm and they become�


a	 wi � wi � wkpi� zi � zi � zkqi
�a	 Apply a dropping rule to pi and qi
�a	 lik � pi� uki � qi

We will refer to this algorithm� as the a�version of Algorithm 
	 If the goal is to mimic
the behavior of the actual AINV �no dropping in p� q�� then clearly this version is more
suitable and practical	

There are now two sequences of L matrices produced by this version of the algorithm	
One is the sequence Lk seen before which uses the vectors p

�k� before dropping	 The
second is a sequence �Lk which corresponds to the actual L�factors produced by the
factorization and which uses the vectors p� q after dropping is applied	 Therefore� we
de�ne the elementary factors corresponding to this second sequence�

�Qk � I � ek��p
�k��� � I � ek�p

�k� � fk�
� ����

in which fk is the column vector of elements that have been dropped in p
�k�� and

�L��k � �Q� � �Q� � � � �Qk

which is the transpose of the inverse L�factor produced at the end of step k of algorithm

	 A standard result of LU factorizations is that �Lk is simply the matrix with column

�




vectors �p�i�� i � �� � � � � k� to which we add the identity	 Similarly for Lk	 Therefore� it is
clear that�

L�k �
�L�k �

kX
i��

eif
�
i ��
�

We de�ne�

Fk �

kX
i��

eif
�
i � ����

Putting Equation ��
� into ���� gives the following generalization of Theorem �	

Theorem �� Assume that the a�version of Algorithm � is used and let W �k�� Gk� Fk
de�ned by ���� and ����	 and �Lk the L�factor obtained at step k of the same algorithm

Then the following equality holds

I �W �k� �L�k �

kX
l��

Gl �W �k�Fk � ����

Furthermore	 assume that at step k of Algorithm � an entry lik is discarded at most if

jlikj � max
j�k�����n

jwjkj � �

whereas no dropping is applied for p	 q in Algorithm �
 In both algorithms it is assumed
that wij is dropped if

jwij j � �� i � k� j � k � ����

Then for Algorithm � the following holds for any j � i�

j �I �W �L��ij j � ��j � i��� ����

If in addition the Schur�complement in Algorithm ��� is de�ned through ����	 then the
matrices W produced by Algorithm � and the related version of Algorithm � are identical


Proof
 Relation ���� follows immediately from ��
� and ����	 Denote W �n� by W and�
similarly Fn by F 	 For the rest of the theorem� we write W as

W �
nX

k��

wke
�
k

from which we infer that

WF �
nX

k��

wke
�
k

nX
k��

ekf
�
k �

nX
l��

wlf
�
l

��



We now consider the entry �i� j� on both sides of ����

je�i �I �W �L��ej j �

�����
nX
l��

e�i Glej

������
���e�i WFej

��� � ����

From Theorem �� we already have a bound for the �rst term on the right�hand�side
�����

nX
l��

e�i Glej

����� � �j � i�� � � i � j � n ����

For the second term� we write

je�i WFej j �

�����
nX

k��

e�i wkf
�
k ej

����� �
nX

k��

je�i wkj jf
�
k ej j

Notice that e�i wk � � for k � i and similarly f�k ej � � for k � j so the above inequality
becomes

je�i WFejj �
X

k�j� k�i

je�i wkj jf
�
k ej j �

X
k�j� k�i

max
i
jwkij jf

�
k ej j

According to the dropping strategy each term in the sum does not exceed �	 Therefore�

je�i WFejj �
X

k�j� k�i

� � �j � i�� ����

Substituting ���� and ���� into ���� yields the desired result ����	 �

As in Theorem � all the analysis can be carried over to establish analogous relationships
between U�� and Z	

��� Left�looking AINV

An equivalent alternative to Algorithm �� at least without dropping was suggested in


� and was referred to as the �left�looking� version of AINV	 The method consists
essentially of computing the approximate inverses W and Z column�wise instead of
using rank�� updates as in Algorithm �	

Algorithm �� �Factored Approximate INVerse �left�looking AINV��

Input� A � �Aij�ij � R
n�n 
 Output� Z�D�W such that A�� � ZD��W�


�
 p � q � � � R
n 	 p� � q� � a��� W � Z � D � In

�
 for i � �� � � � � n
�
 for j � �� � � � � i� �


a
 Pj �
�
w�i Aej

�
�pj Qj �

�
e�j Azi

�
�qj

�
 apply a dropping rule to Pj and Qj

�
 wi � wi �wj Pj� zi � zi � zj Qj

��



�
 for all l � i� apply a dropping rule to wli	 zli

�
 end

�a
 pi � w�i Aej	 qi � e�j Azi
�
 end

��
 Choose diagonal entries of D as the components of p or q


This algorithm is almost identical to Algorithm � except that the updates in Z�W are
now performed in sequence� column by column� while in Algorithm � the updates are
performed simultaneously for all columns	 This di�erence corresponds to the di�erence
between certain versions of the Gram�Schmidt orthogonalization algorithm	 Similarly to
Algorithm �� Algorithm �� also has a �b� option which consists of the following changes
to lines ��a� and ��a��

�b	 Pj �
�
w�i Azj

�
�pj Qj �

�
w�j Azi

�
�qj

�b	 pi � w�i Azj � qi � w�j Azi

The simple relation between Algorithms � and �� is stated in the following proposition
which is straightforward to verify	

Proposition �� Assume that the same dropping rule is applied to p� q and P�Q and
that the same dropping rule is also applied to W and Z in Algorithm � and Algorithm
��
 Then both algorithms will compute the same W 	 Z
 They also compute the same D
if the same choice is made for the D entries in their lines �� and �� respectively


In fact the equality between both algorithms also includes the case when each column
is sparsi�ed only once	 For Algorithm �� this would be a more natural dropping rule�
i	e	� entries of zli� wli would be discarded only if j � i � �	 For step k of Algorithm �
the associated dropping rule would sparsify only column k�� of W and Z which might
lead to extreme �ll�in for W and Z	

��� Bordering methods

An analysis similar to the one developed in the previous sections was discussed in the
earlier report 
�� which established links between ILU and approximate inverse methods
based on �bordering�	 An approximate inverse method of this type was discussed in 
���	
The main idea is to partition the �k� k� principal submatrix of A as

Ak �

�
B f
e� c

�

where B 
 Ak�� is of dimension k � �	 Assume that we already know the factorized
approximate inverse of B� in the formW�BZ � D whereW�Z are unit upper triangular

��



and D is diagonal	 Then the factored inverse of Ak can be obtained by writing

W�
newAkZnew 


�
W g
� �

���
B f
e� c

��
Z h
� �

�
�

�
D �
� s

�

The above relation immediately shows that h� s� g must satisfy the equations

B�g � �e ����

Bh � �f ����

s � c� g�f � e�h� g�Bh� ��
�

To develop approximate inverse methods� we can simply use vectors g� h provided from
approximately solving systems ���� and ���� and then computing s	 In fact� we could
simply utilize the relation W�BZ � D to approximate h� g and discard some entries
according to a dropping rule	 This means that we compute g and h from

g �� �WD��Z�e � h �� �ZD��W�f

and apply a dropping rule to g and h	 The algorithm now becomes clear	 Start with
the ����� matrix which has a trivial factorized approximate inverse and then build�
recursively� the approximate inverses of the �k� k� principal submatrix of Ak from that
of the �k � �� k � �� principal submatrix� for k � �� � � � � n	 It is also possible to develop
additional variants to the algorithm depending on how the diagonal elements of D
are selected	 Denote the columns of the �nal W and Z matrices by wj and zj� j �
�� � � � � n	 Then� formula ��
� corresponds to the choice s � w�k Akzk	 Two other choices
are obtained by taking s � c�g�f 
 wkAkek which corresponds to ���� or s � c�e�h 

e�k Akzk which is analogous with ����	

In 
�� a result similar to Theorem � was mentioned� though this applies again to non�
practical versions	 However� it was also shown that there is a practical relation between
bordered factored inverse methods and Algorithm ��	 Speci�cally� a �rst result is that
both algorithms compute the same W and D when ��� the choice s � w�k Akek is used
in the bordered approximate inverse algorithm� ��� the same dropping rule is used for
W in both algorithms� and ��� no dropping is applied to Z in the bordering method	
A second result is that both algorithms compute the same D and Z under analogous
conditions	

� Consequences

The comparison results established in the previous sections can provide theoretical in�
sight into known algorithms by exploiting the body of existing literature on ILU and
AINV	 On the practical side� they can also help develop improved variants of both ILU
and AINV	 In fact new algorithms have already been developed by exploiting these re�
lationships in both directions	 In the following we brie�y discuss a few of these known
results and point to other potential applications yet to be explored	

��



��� AINV with pivoting

In 
�� we applied what is known from ILU algorithms to devise pivoting techniques for
approximate inverse methods	 This technique can be easily inferred from the following
relation which holds at step k�

W�AZ �

�
D �
� S

�

where W� and Z are the inverses of the matrices L and U respectively of the LU
factorization	 As was seen in earlier sections� these are also close to the W and Z
matrices obtained at step k of the AINV procedure	 If we apply permutations  �� ! to
S� on the left and right respectively� it is easy to determine how this permutation must
be also applied to W and Z for consistency�

�
I �
�  �

�
W�AZ

�
I �
� !

�
�

�
D �
�  �S!

�

This means that the corresponding rows of W and ! need to be permuting according
to the permutation applied to S	 As for which permutation to apply� we can use the
parallel with ILU� since S is more or less the same matrix that is obtained from the ILU
factorization	 For example� we can simply do a column permutation as is done in ILUTP

���	 The strategy suggested in 
�� is to use row and column pivoting successively a few
times �in the same step� until the pivot satis�es a certain stability condition both for
the k�th row and the k�th column of S	 For details see 
��	 Numerical experiments� do
con�rm that this procedure is much more robust than a non�pivoting AINV	

��� An ILU based on monitoring the growth factors

Proceeding in the reverse direction� the relationships established in this paper have also
allowed to design more robust ILU techniques	 Here� we cite two independent works

�� ��	 The paper 
�� introduces dropping strategies in ILU that are more rigorous than
simple�minded threshold techniques� by exploiting the parallel between ILU and AINV

��	

The fundamental relation which was exploited in 
�� is ����	 As shown by Theorem ��
this relation insures that the W matrix is close to the inverse of the factor L	 Therefore
the L�factor will clearly be stable� in the sense that its inverse will have a moderate
norm	 Similarly for the U factor	

In 
��� an incomplete Cholesky factorization was extracted as a by�product of the AINV
process for the symmetric positive de�nite case 
��	 This can be seen as another way
of exploiting the relationships between ILU and AINV	 Numerical observation have
shown that AINV preconditioning often outperforms the standard incomplete Cholesky
factorization for the Conjugate Gradient	 In 
��� it was shown that only the by�product

��



incomplete Cholesky decomposition was able to obtain results comparable with those
of AINV	 However� the crucial dropping strategy ���� is not employed	 We believe that
such a dropping strategy may substantially enhance the quality of the factor produced
by the method	

��� Theory
 Results for SPD matrices and for H�matrices

From a theoretical point of view� some results on approximate inverse methods can be
derived by exploiting the relationship with ILU � for which much is known	 This line of
argument was indeed exploited� for example� in 
�� by transferring the related incomplete
Cholesky decomposition 
���	
An immediate corollary for the symmetric positive de�nite case is the following	

Corollary �� Let A be symmetric positive de�nite
 Suppose that Algorithm � and Al�
gorithm � apply the same dropping rule to p and q and that no dropping is applied to W
and Z

If Option �b� is used in Algorithm � and if S in Algorithm � is de�ned via ����	 then
both Algorithms do not break down
 In addition both methods compute the same W and
Z and W � Z
 The diagonal entries of S in Algorithm � are positive and coincide with
the entries of p � q in Algorithm �


Proof
 This follows immediately from Theorem � and Property �	 �

It is well�known that the ILU decomposition of an H�matrix exists for any of the
dropping strategies discussed in Section �	�� see� e	g	� 
��� ���	 It immediately follows
that W and Z of Algorithm � exist for this case	 Likewise for M�matrices we know
that the computed L and U are again M�matrices	 Consequently W and Z have to be
nonnegative in this case	 However this argument only applies for the theoretic way of
dropping in p and q	 A proof for the natural way of dropping is given in 
��	

��� Further applications

The few applications just described indicate that much can be gained by exploiting good
qualities of a technique form one class to improve the corresponding algorithm from the
other class	 Another possible application which does not seem to have been explored
is to exploit level�of��ll strategies used in ILU techniques� for developing pattern�based
dropping strategies for AINV methods	 Finding good patterns for dropping in AINV
methods remains poorly understood	 For matrices with good diagonal dominance prop�
erties� level�of��ll techniques work quite well� and� when combined with blocking they
are often the preferred techniques for solving certain types of problems in �uid dynamics�
for example	

��



In ILU�p� a level�of��ll lev is attributed to each element during factorization	 Each
element that is updated by formula such as ��� will have its lev value updated by the
formula

lev�sij� � minflev�sij� � lev�sik� � lev�skj� � �g

Initially� any nonzero element is assigned a lev value of �� and any zero element is
�implicitly� assigned an in�nite lev value	 It is typical to process the ILU factorization
in two phases� a symbolic one and a numeric one	 The pattern of ILU�p� is determined
in the symbolic factorization	 This pattern can now be used for obtaining a pattern for
AINV	 Consider� in Line 
 of Algorithm �� the update to wj the j�th column of W 	 This
update is wj � wj � wkpj� or� component�wise wij � wij � wikpj 	 Now recall that pj is
nothing but sjk� so

wij � wij � wiksjk

Using the same model for decrease of the elements in the factorization� we can easily
see that a good way to de�ne the level of �ll of wij is

lev�wij� � minflev�wij� � lev�wik� � lev�sjk� � �g

Notice that computing the lev values for the L factors is inexpensive	

A hint at another potential class of applications is provided by the recent paper 
��	
There� some information about W�Z is exploited to gain insight on suitable dropping
strategies when building L and U 	 ILU and AINV can be viewed as some kind of opti�
mization methods� which produce factors that approximate either A directly �for ILU�
or its inverse �for AINV�	 A rule of thumb seems to be that ILU works better than AINV
methods when it produces factors that are stable	 In other words� accuracy�stability �
fast convergence	 If we �nd factors L from ILU� such that L�� � W and W is well�
behaved then clearly both criteria of accuracy and stability are satis�ed	 This suggests
that strategies which combine both criteria should be developed	 In 
�� a dropping strat�
egy was found which ensured that L�� �W � using the result of Theorem ��	 But other
strategies may exist	

� Conclusions

We have shown a number of inter�relations between factored approximate inverse and
related incomplete factorizations of ILU type	 We also established relations between
di�erent approaches to compute factored approximate inverses	 It was shown that ap�
proximate techniques are intimately related to ILU factorizations	 Indeed� they can be
viewed as a process for obtaining the inverses of the L and U factors directly from the
elementary subfactors that arise in Gaussian elimination	 What is interesting is that
with an appropriate set of assumptions on the patterns used for dropping� many other
relationships can be established	 This equivalence permits to establish some results on
existence and� more generally� to better understand the algorithms	 For example� it is

��



now clear that ILU and AINV factorizations are two extremes where elementary factors
are all inverted �in AINV� or kept are they are �in ILUs�	 It is also clear� however� that
there is a multitude of variation in between these two extremes and it is quite con�
ceivable that better methods would be adaptive algorithms that lie in between � where
adaptivity here is understood in relation to stability	
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