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Abstract

In this paper an algebraic multilevel method is discussed that mainly focuses on the
use of a sparse approximate inverse smoother. In particular strategies are presented to
adapt the sparse approximate inverse smoother to a given problem.
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1 Introduction

We consider the problem of solving a large sparse linear system

Ax = b,

where A is a given n× n real matrix, b ∈ Rn is a given right hand side and we are seeking a
solution x ∈ Rn. In particular, we assume that the matrix is sparse and usually arises from
some discretization of partial differential equations. We assume that the matrix is unstruc-
tured and no further information is available except the matrix itself. Beside direct methods
and black–box incomplete LU decomposition techniques, algebraic multilevel methods have
become an attractive alternative for solving these kind of systems [26, 12, 15, 29, 19, 20]. Al-
gebraic multilevel methods construct an approximation to A−1 that can be mainly described
by the following principles.

1. The smoothing process,

2. Coarsening process,

3. The recursive application of the same principle to a smaller matrix.

In the most simple case of a linear iteration scheme [33]

x(k+1) = x(k) + M(b−Ax(k)), k = 0, 1, 2, . . .
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with initial guess x(0) ∈ Rn, one can describe this process by the associated iteration matrix
I − MA. In the easiest form of multilevel methods, i.e. a two–level method, this iteration
matrix could be described, e.g. by

I −MA = (I − SA)(I − PA−1
H RA)(I − SA).(1)

The matrix S is called the smoother, it can be applied initially or at the end (which is
referred to as pre and post smoothing) and even more than one step of smoothing is quite
common. P and R> are n×N matrices with N � n and describe the interaction between the
initial system and a smaller (nonsingular) N ×N coarse grid system AH . To generalize this
approach to a multilevel approach the same principle is applied to AH . In algebraic multigrid
methods (AMG) one often prescribes the choice of the smoother and major work is spent
in the construction of the matrices P and R>, which is called the coarsening process. This
coarsening process uses information from the graph of the matrix and the coefficients of the
matrix itself. If more information is provided, e.g. information about the mesh, one can also
incorporate this data into the setup of the AMG (see e.g. [32, 16, 12]). It is quite common to
use AH = RAP and R = P>.

The work in this paper is motivated by an earlier paper [4] and by the class of algebraic
multigrid methods that mainly construct the prolongation P and the restriction operator R
from a successive sequence of approximate block Gaussian elimination steps [25, 19, 21, 9, 28].
Given a nonsingular matrix A,

A =
(

A11 A12

A21 A22

)
with a nonsingular submatrix A11, the inverse of A can be written as

A−1 =
(

A−1
11 0
0 0

)
+
(
−A−1

11 A12

I

)
S−1

22

(
−A21A

−1
11 I

)
,

where S22 = A22 − A21A
−1
11 A12 denotes the Schur complement. Note that if A and A11 are

nonsingular, so is S22. The use of this formula in AMG requires

1. to select an appropriate partitioning of the matrix A, e.g. by using a symmetric permu-
tation matrix Π and considering a suitable leading block of Π>AΠ,

2. the construction of a cheap but effective approximation B11 for A−1
11 .

Natural candidates for smoother, prolongation, restriction operators and the coarse grid sys-
tem are the matrices

S =
(

B11 0
0 0

)
, P =

(
−B11A12

I

)
, R =

(
−A21B11 I

)
and AH = RAP.

For the algebraic multilevel method one could use either

A−1 ≈ MA = S + PA−1
H R,(2)

which we will refer as the additive algebraic multigrid (AAMG) version, or as mentioned
previously we could use MV from

I −MV A = (I − SA)(I − PA−1
H RA)(I − SA).
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This version is called V-cycle version of algebraic multigrid. Again, to obtain more than
two levels of multigrid one has to apply the same principle recursively to AH .

The paper is organized as follows. In Section 2 we will present the main idea for the con-
struction of the AMG in this paper. Section 3 will discuss how the set of fine grid nodes, the
basis for the setup of the smoother, is constructed. A theoretical justification of this approach
is given. The aim of Section 4 is to introduce a special adapted sparse approximate inverse
smoother that is originally based on the SPAI method [10]. We will comment on some tech-
nical implementation details in Section 5. Finally we will show several examples to illustrate
this approach.

2 The basic idea

Suppose that a nonsingular n × n matrix A is given. The idea of the approximate inverse
preconditioner SPAI [10, 1] is to minimize

‖I −AB‖F .

This problem can be decoupled as

‖I −AB‖2
F =

n∑
i=1

‖ei −ABei‖2
2.

Each minimization problem can be solved independently. This makes this approach attractive
for parallel computations. The major problem with this approach is that in several applica-
tions, particulary those that arise from the discretization of partial differential equations, the
inverse A−1 of A is not approximately sparse. In this case one may obtain a dense matrix B
and the construction of B becomes inefficient. On the other hand, the use of sparse approxi-
mate inverses as smoothers in multigrid methods may still be attractive [30, 19, 20, 7, 6]. The
most simple way to accelerate the construction of B is to restrict the construction of B to a
submatrix AF ,F of A called the fine grid part of A. Suppose we have a permutation Π such
that

Π>AΠ =
(

AF ,F AF ,C
AC,F AC,C

)
.

If AF ,F is suitably chosen, e.g. if AF ,F is strictly diagonal dominant, then we may expect that
A−1
F ,F is approximately sparse and therefore we expect the reduced minimization problem

‖I −AF ,FBF ,F‖F ,

to be well-posed. Since this is only a partial approximate inverse, one has to find a comple-
mentary part and this can be done in terms of multigrid methods. In terms of the residual
matrix

I −Π>AΠ
(

BF ,F 0
0 0

)
=
(

I −AF ,FBF ,F 0
−AC,FBF ,F I

)
we observe that this matrix has approximately lower rank if ‖I − AF ,FBF ,F‖F is small and
the remaining part

R =
(
−AC,FBF ,F I

)
is precisely the restriction operator. To construct a restriction / interpolation from the residual
matrix was discussed in [4] but for a general (full size) sparse approximate inverse. Here we
get the lower rank directly from the norm minimization.

To turn this idea into an efficient multigrid method we have to discuss the following problems.
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1. The detection of a subset F ⊂ {1, . . . , n} such that the inverse of AF ,F is approximately
sparse,

2. The construction of the sparse approximate inverse itself,

3. The setup of the associated algebraic multigrid method.

In the sequel we will discuss these three topics. For technical reasons we will assume that the
diagonal entries of A are nonnegative. This can always be achieved, e.g. by a row scaling from
the left.

One assumption which we will make throughout the paper is that the vector

11 =
(

1 · · · 1
)>(3)

satisfies
A11 ≈ 0.(4)

It is a realistic assumption for problems arising from the discretization of second order partial
differential equations and several others, since the vector 11 represents the set of constant
functions.

3 Selection of fine grid nodes

We will now give a theoretic justification for the construction of the fine grid. The key idea is
the following. One way to construct a set F of fine grid nodes could be to use the partitioning
obtained from an existing AMG. I.e. in [19] this was done for SPAI [10] based on the coarsening
from [26].

Here we will use a different approach. Our aim is to construct a set F such that A−1
FF is

approximately sparse. I.e., given an n× n matrix A, find a permutation matrix Π such that
for the permuted matrix

Π>AP =
(

AFF AFC
ACF ACC

)
,

the leading submatrix AFF satisfies

A−1
FF = BFF + R,

where BFF is sparse and R is an error matrix of small norm. In many serious application
problems arising from the discretization of second order partial differential equations the
diagonal entries of A are positive and at the same time the row sums are almost zero. The
most simple criterion for finding such a block is diagonal dominance.

Definition 1 An n × n matrix A = (aij) is said to be (strictly) diagonally dominant, if for
all i = 1, . . . , n

|aii| >
∑
j: j 6=i

|aij |.

Let A be diagonal dominant and γ = maxi
∑

j: j 6=i |aij |/|aii|. Denote by ∆ the diagonal matrix
which contains only the diagonal entries of A on the main diagonal. Then we can write A as

A = ∆(∆−1A) = ∆(I − E).
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Using the Neumann series [22] we can write A−1 as

A−1 = (∆−1A)−1∆−1 =

( ∞∑
k=0

Ek

)
∆−1 =

(
l∑

k=0

Ek +O
(

γl+1

1− γ

))
∆−1.

So if γ < 1 is small enough, e.g. we may think of γ = 1
2 , 2

3 , then only few powers of E are
required (say e.g. l = 2) and the remaining error is small.

The problem with this approach is, that in practice the diagonal dominance criterion is too
restrictive to end up in an sufficiently large submatrix AFF , since the off–diagonal entries
can have any sign (not only zero or negative). There are only few elementary cases where
one can guarantee that the off–diagonal entries are nonpositive. This means that in general
these kind of matrices are far away from diagonal dominance. So one has to search for more
appropriate criteria. A mathematically simple way to find a criterion which ensures that a
given nonsingular matrix A possesses a sparse approximate inverse can be stated using an LU
decomposition. We first start with the case of a diagonal dominant matrix and then discuss
the general case.

Lemma 2 Let A = (aij) and A> be diagonal dominant n× n matrices and suppose that for
all i, j = 1, . . . , n we have ∑

j: j 6=i

|aij | 6 γ|aii|,
∑
i: i6=j

|aij | 6 γ|ajj |

for a constant γ < 1. Then A has an LU decomposition A = LDU with unit lower triangular
matrices L and U> and a diagonal matrix D. The inverse triangular factors L−1 and U−1

satisfy
‖L−1‖1 6 1 +

γ

1− γ
, ‖U−1‖∞ 6 1 +

γ

1− γ
.

Let K > 0 be a fixed natural number. Then |L−1| has at most K off–diagonal entries in every
column that are larger than γ

K(1−γ) and likewise |U−1| has at most K off–diagonal entries in
every row that are larger than γ

K(1−γ) .

Proof:
Let A = (aij). Performing one step of the LU decomposition we obtain

A =
(

1 0
L21 I

)(
1 0
0 S22

)(
1 U12

0 I

)
,

where

L21 =
(

ai1

a11

)
i>2

, U12 =
(

a1j

a11

)
j>2

, S22 =
(

aij −
ai1a1j

a11

)
i,j>2

.

From the fact that
∑

j:j 6=i |aij | 6 γ|aii| for all i = 1, . . . , n we obtain for i = 2, . . . , n that∑
j>2:
j 6=i

∣∣∣∣aij −
ai1a1j

a11

∣∣∣∣ 6
∑
j>2:
j 6=i

|aij |+
∣∣∣∣ ai1

a11

∣∣∣∣∑
j>2:
j 6=i

|a1j |

6 γ|aii| − |ai1|+
∣∣∣∣ ai1

a11

∣∣∣∣ (γ|a11| − |a1i|)

6 γ

(
|aii| −

∣∣∣∣ai1a1i

a11

∣∣∣∣)
6 γ

∣∣∣∣aii −
ai1a1i

a11

∣∣∣∣ .
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We observe that the Schur complement S22 satisfies the diagonal dominance criterion with
the same constant γ. The same argument can be applied to S>22. Using induction it follows
that the resulting factors L = (lij) and U = (uij) satisfy∑

i: i>j

|lij | 6 γ,
∑
j: j>i

|uij | 6 γ.

From this it follows that L = I − EL and U = I − EU with matrices EL, EU such that
‖EL‖∞ 6 γ and ‖EU‖∞ 6 γ. Applying Neumann series [22] we obtain

‖L−1‖1 6
1− γn

1− γ
, ‖U−1‖∞ 6

1− γn

1− γ
.

Since
1− γn

1− γ
6 1 +

γ

1− γ
,

we conclude that the off-diagonal entries of L−1 = (λij) and U−1 = (ρij) satisfy∑
i: i>j

|λij | <
γ

1− γ
,
∑
j: j<i

|ρij | <
γ

1− γ
.

It follows that for a given natural number K there are at most K off–diagonal entries in each
row such that each of them is at least of absolute value γ

K(1−γ) . 2

This lemma shows that diagonal dominance can also be used to ensure that the inverse trian-
gular factors are approximately sparse. In the diagonal dominant case ‖L−1‖1 and ‖U−1‖∞
are moderately bounded. To verify this, one does not need to compute L and U explicitly. Of
course this is not true in general.

The following lemma generalizes this relatively simple criteria for the existence of a sparse
approximate inverse, if the matrix owns an LU decomposition.

Lemma 3 Suppose that A = LDU , where L and U> are lower triangular matrices with
unit diagonal and D is a diagonal matrix. Let K > 0 be a natural number. Suppose that
‖L−1‖1 6 1 + α and ‖U−1‖∞ 6 1 + α. Then |L−1| has at most K off–diagonal entries in any
column that are larger than α

K , |U−1| has at most K off–diagonal entries in any row that are
larger than α

K .

Proof:
This is clear. 2

Of course we are not going to compute a complete LU decomposition of A or a submatrix
of A in order to find out whether its inverse triangular factors are nicely bounded or not. As
mentioned earlier in (4) we assume that A11 ≈ 0, where 11 is as in (3). If A11 ≈ 0, then this
vector can serve as good estimate for ‖A−1‖. Therefore we simplify the criterion from Lemma
3 as follows

1. We compute an incomplete LU decomposition instead of an exact LU decomposition.
The incomplete LU decomposition we use is MILU(0) [18, 17], i.e., we ignore fill–in and
at the same time the approximate LU decomposition satisfies

LDU = A + E, LDU11 = A11.
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In other words diagonal compensation is applied to ensure that the factorization is exact
for the vector 11. By this constraint we also try to enforce to keep ‖L−1‖ and ‖U−1‖
close to the norm of the exact inverse triangular factors.

2. The matrices L−1 and U−1 are of course not explicitly computed. Their norm is esti-
mated by

‖L−1‖ → |L−111|, ‖U−>‖ → |U−>11|.
To do this, it is simply required to perform one forward and one backward solve during
the computation of MILU(0). The components of |L−111| are obviously a lower bound
for ‖L−1‖∞ since ‖11‖∞ = 1 and hopefully the estimate is close enough to the true
norm. Similar arguments apply to U .

To find a submatrix AF ,F such that its inverse triangular factors are approximately sparse
we proceed as follows. Initially we do not know whether the norms of ‖L−1‖ and ‖U−1‖ are
moderately bounded. So we have to seek for a submatrix of A such that in any step k of the
incomplete LU decomposition, the norms of ‖L−1

k ‖ and ‖U−1
k ‖ do not exceed a prescribed

tolerance. This will give the fine grid. The cheapest way of doing this is to start with the
initial matrix A, compute the incomplete LU decomposition step by step as in Algorithm 4.

Algorithm 4 (MILU(0) detection of a sparse approximate inverse) Given a
matrix A and a bound α we set F = C = ∅. Perform an MILU(0) decomposition of A.
for k = 1, 2, . . . , n

compute column k of L and row k of U according to MILU(0).
if the k–th component of |L−111| or |U−>11| is greater than α,
then C = C ∪ {k}
else F = F ∪ {k}

This procedure of detecting fine / coarse grid nodes has one slight disadvantage. It strongly
depends on the prescribed initial permutation of the coefficient matrix A. It may happen
that for a couple of steps k = 1, . . . , l the norm estimates of the inverse triangular factors
stay below the given bound α, i.e. many nodes from k = 1, . . . , l can be moved to the fine
grid. Then at a certain step l + 1 suddenly the norm estimates of the triangular factors start
to grow more and more, resulting in many nodes that have to be moved to the coarse grid.
Another undesired effect may be caused by the fact that the factorization is only incomplete
and the norms of L−1 and U−1 might be too inaccurate. Of course one should avoid these
effects. To do this we use an additional algorithm to reorder the matrix beforehand. The idea
is to preselect columns and rows according to a heuristic that constructs a (hopefully) large
block AF ,F , such that for a given γ < 1

AF ,F11 > (1− γ)∆F ,F11.(5)

Here ∆ again denotes the diagonal part of A and we assume for simplicity that its diagonal
entries are positive. This criterion means that for all i ∈ F

−
∑

j∈F :j 6=i

aij 6 γaii.

If A has positive diagonal entries and non–positive off-diagonal entries, then this criterion is
equivalent to diagonal dominance in the sense of Definition 1. Otherwise it means, that for
the test vector 11,

∆−1
F ,FAF ,F11 > (1− γ)11,
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the matrix ∆−1
F ,FAF ,F11 is uniformly bounded from below. We hope that the inverse relation

A−1
F ,F∆F ,F11 6

1
1− γ

11

is also satisfied. But of course this is only a heuristic argument, except for the case that A−1
F ,F

is non-negative. The purpose of the MILU(0) fine grid detection in Algorithm 4 is precisely
the counter part that fits with this heuristic. While the following heuristic only computes an
initial guess for F , Algorithm 4 verifies and ensures (within the limits of an ILU and the norm
estimates), that the inverse triangular factors are bounded.

The heuristic algorithm that is put in front of Algorithm 4 can roughly be described as follows.
We compute three sets F , C and U . F reflects the desired set of fine grid nodes, C the coarse
grid nodes that have to be taken out and, finally U denotes a set of nodes that are left over.
The heuristic constructs a permutation matrix Π such that the permuted system Π>AΠ can
be written as

Π>AΠ =

 AF ,F AF ,U AF ,C
AU ,F AU ,U AU ,C
AC,F AC,U AC,C

 .

For these initial guesses of F , C and U we ensure that(
AF ,F AF ,U

)
11 > (1− γ)∆F ,F11.(6)

This can be read as an (unsafe) indicator to find out if the MILU(0) decomposition of(
AF ,F AF ,U
AU ,F AU ,U

)
(7)

is moderately bounded. I.e. MILU(0) is not performed on the whole matrix but only on this
preprocessed submatrix (7). In Algorithm 4 any column / row that does not fit with the
estimates for L−1, U−1 is removed from F , U , and added to C. We give a simple sketch
for this heuristic algorithm. It can be seen as some kind of generalization of the coarse grid
selection scheme in [26].

Algorithm 5 (Heuristics for finding an initial fine grid set F) Given a matrix A
and a bound α we set F = C = ∅, U = {1, . . . , n}. For all i we define sets Λi, Σi and
Ni.

Λi := {j ∈ U : aij 6= 0,
∑

k∈F∪U\j
aik > (1− γ)aii}.

Λi describes those nodes such that the row sum in row i becomes sufficiently large if one of
the nodes from Λi is moved to the coarse grid C.
Λ>i := {j ∈ U : i ∈ Λj}. Λ>i is the dual set with respect to Λi.

Σi := {j ∈ U : aij < 0 smallest possible such that
∑

k∈F∪U\Σi

aik > (1− γ)aii}.

Σi describes those nodes such that the row sum in row i becomes sufficiently large if ALL
nodes from Σi would be moved to the coarse grid C.
Σ>

i := {j ∈ U : i ∈ Σj}. Σ>
i is the dual set with respect to Σi.

For all i ∈ U : Ni = {j ∈ F : j → U if i → F}
Ni describes those fine grid nodes that have to be moved back to the set U of undetermined
nodes, if i becomes a member of the fine grid F .
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while max |Λ>i | > 0 or max |Σ>
i | > 0

if there exists Λi such that |Λi| = 1
then choose one of these and set C = C ∪ Λi

elseif there exists a Λ>i with |Λ>i | > 0
then choose Λ>i such that |Λ>i | − |Ni| is maximal and set C = C ∪ {i}
else choose Σ>

i with maximal |Σ>
i | and set C = C ∪ {i}

update Λj ,Λ>j , Σj ,Σ>
j , Nj, F , U .

The concept of Algorithm 5 roughly reads as follows.

1. If for a single row i there exists exactly one j such that row sum in row i becomes
sufficiently large after removing aij , then j is moved to the coarse grid.

2. Otherwise we are seeking for a node i such that as many rows as possible become
sufficiently large, if i is moved to the coarse grid. This is measured by the size of the
adjoint set Λ>i .

3. It may happen, that it is not enough to move a single node i to the coarse grid in order
to produce sufficiently large row sums. For this case the sets Σi,Σ>

i are created. In this
case |Σ>

i | counts the number of rows such that their row sum increases significantly if i
is moved to the coarse grid.

We summarize the results of this section. We have developped two algorithms for the construc-
tion of a submatrix AF ,F such that its inverse is approximately sparse. Initially Algorithm 5
computes sets F , C and U of fine grid nodes, coarse grid nodes and remaining undetermined
nodes. This heuristic enforces that the relation (3) is at least partially satisfied (see (6)). This
algorithm is followed by Algorithm 4, which computes a modified incomplete LU decompo-
sition with no fill–in. Any node from F ∪ U is removed and added to C, if the prescribed
estimated bounds for the L−1 and U−1 are exceeded.

After the detection of a set of fine grid nodes F the next step consists of computing a sparse
approximate inverse to AF ,F .

4 Construction of an adapted sparse approximate inverse

For the computation of a sparse approximate inverse of a given matrix AF ,F there are essen-
tially two major concepts. One concept is based on the AINV–type algorithms [2, 3]. These
kind of algorithms directly construct unit upper triangular factors W and Z such that W>AZ
is approximately diagonal. Another concept is based on a non–factored sparse inverse matrix
B, such that ‖I − AB‖F is small (see SPAI, [10]). Here we will concentrate on the second
approach. Let ej denote the j–th unit vector. The idea is based on the observation that

‖I −AB‖2
F =

n∑
j=1

‖ej −ABej‖2
2

can be minimized for each column separately. The problem in practice is to select a suitable
nonzero pattern for Bej , since otherwise the minimization problem ‖ej − ABej‖2

2 = min
becomes too costly. The matrix for which we construct the sparse approximate inverse here
is not A itself but AF ,F . The purpose of the selection process to determine F is precisely to
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construct AF ,F such that A−1
F ,F is approximately sparse. But even in this case we have no

prediction on the positions of large nonzero components in |A−1
F ,F |. There are several ways

to define the pattern of BF ,F . One could e.g. use powers of I + |AF ,F | or use the residual
ej −ABej [10]. A closely related strategy consists of minimizing ‖ej −ABej‖2

2 using GMRES
[27] applied to sparse vectors and drop small entries [8]. In order to minimize ‖ej − ABej‖2

2

one prescribes for all strategies a tolerance τ . As long as ‖ej −ABej‖2
2 > τ , the minimization

process is continued, i.e. depending on the strategy for defining the pattern of B, new nonzero
components are added or a further GMRES step is performed.

But simply to reduce the error ‖I − AF ,FBF ,F‖F in algebraic multilevel methods is not
enough. From the point of view of a block ILU decomposition one has to take the Schur
complement (coarse grid system) into account. Even if ‖(I−AC,FBC,F )AF ,C‖F is small, ‖(I−
AC,FBC,F )AF ,CA

−1/2
H ‖F may be large.

This can be seen from the following theorem, which discusses the positive definite case.

Theorem 6 Let A be symmetric positive definite,

A =
(

AF ,F AF ,C
AC,F AC,C

)
and let BF ,F a nonsingular approximate inverse of AF ,F . Define E via

E = AC,F (A−1
F ,F −B>

F ,F )AF ,F (A−1
F ,F −BF ,F )AF ,C

and introduce the Schur complement by

SC,C = AC,C −AC,FA−1
F ,FAF ,C .

Define an approximate block LU decomposition M via

M =
(

I 0
AC,FBF ,F I

)(
AF ,F 0

0 AH

)(
I BF ,FAC,F
0 I

)
,

where AH = SC,C + E.
Then in the sense of quadratic forms the following inequalities hold:(

1−
√

σ
)
M 6 A 6

(
1 +

√
σ
)
M,

where the parameter σ is has to satisfy the quadratic form relation

E 6 σAH .

Proof:
The proof can be easily adapted from [11]. 2

Note that the block 2-level preconditioner M in Theorem 6 can easily be extended to the case
when AF ,F is replaced by a preconditioner.

Suppose that A is symmetric and positive definite. The main problem is to obtain a small σ.
If BF ,F ≈ A−1

F ,F , then we may expect that in general ‖E‖ is relatively small. But to obtain a
small σ one has to ensure that

v>Ev 6 σv>AHv
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for all v and especially for those eigenvectors v that are associated with the small eigenvalues
of AH . A similar observation can also be found in [23]. In practice we do not know v in
advance. But we assume that the test vector 11 may serve as a good test vector to obtain
a small σ. The optimal case would be to force the approximate inverse BF ,F to satisfy the
equation

BF ,FAF ,C11 = A−1
F ,FAF ,C11,

or equivalently
AF ,FBF ,F w = w, where w = AF ,C11.(8)

Instead of only minimizing ‖I −AF ,FBF ,F‖F one has to minimize

‖I −AF ,FBF ,F‖F subject to AF ,FBF ,F w = w, where w = AF ,C11.

The concept of adding a linear constraint to the minimization process of the sparse approx-
imate inverse can already be found in [14], there for the whole system and with a different
test vector. The linear constraint (8) has one essential disadvantage. We do not know, if the
components of |w| are bounded from below. As we will see later, this is an important con-
dition to make the solution of this constraint minimization problem numerically stable. For
this reason below we describe a different linear constraint.

In general, problems arising from the discretization of partial differential equations fulfill the
condition (

AF ,F AF ,C
AC,F AC,C

)
11 = f ≈ 0,

where f is vector that is zero almost everywhere except for a few components that are asso-
ciated with boundary conditions. Suppose for simplicity that

AF ,F11 + AF ,C11 = 0.

Multiplying by BF ,F yields

BF ,FAF ,F11 = −BF ,FAF ,C11.

If we ensure that the sparse approximate inverse BF ,F is constructed such that

BF ,FAF ,F11 = 11,(9)

then we also obtain

−BF ,FAF ,C11 = BF ,FAF ,F11 = 11 = −A−1
F ,FAF ,C11.

Thus instead of simply minimizing ‖I − AF ,FBF ,F‖F we consider the following constraint
minimization problem

‖I −AF ,FBF ,F‖F = min subject to BF ,FAF ,F11 = 11.(10)

Lemma 7 The constraint minimization problem (10) is equivalent to the following linear
system. Suppose that |F| = l. Denote by E1, . . . , El the sequence of unit vectors such that the
columns of Ei correspond to the nonzero pattern of Bei. Set w = AF ,F11.(

C>C W
W> 0

)(
x
λ

)
=
(

C>e
11

)
,
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where

C =

 AF ,FE1 0
. . .

0 AF ,FEl

 , W =

 w1E
>
1

...
wlE

>
l

 , x =

 E>
1 BF ,Fe1

...
E>

l BF ,Fel

 , e =

 e1
...
el

 .

u If the nonzero pattern of each column BF ,Fei covers {1, . . . , l} and if w = AF ,F11 is a
nonzero vector, then the constraint linear system is uniquely solvable.

Proof:
Set xi = E>

i BF ,Fei and Ai = AF ,FEi. We note that for all i = 1, . . . , l we have

‖ei −AF ,FBF ,Fei‖2
2 = ‖ei −Aixi‖2

2 = x>i A>
i Aixi − e>i Aixi − x>i A>

i ei + 1.

Thus to minimize ‖ei − AF ,FBF ,Fei‖2
2 obviously is a quadratic minimization problem. A

necessary and sufficient condition for the minimization problem is that its Jacobian satisfies

A>
i Aixi = A>

i ei,

since A>
i Ai is symmetric positive definite. Altogether we have

C>Cx = C>e.

The linear constraint BF ,FAF ,F11 = v can be rewritten as

11 = BF ,FAF ,F11 =
l∑

i=1

BF ,Feie
>
i Av =

l∑
i=1

Eixiwi = W>x.

Using the Lagrangian multiplier approach we augment ‖ei − AF ,FBF ,Fei‖2
2 with the dual

linear constraint Wλ. This resulting matrix of the Jacobian is precisely(
C>C W
W> 0

)
.

For the second part one can see immediately that W has full rank, if all weights w1, . . . , wl

are nonzero and the matrix [E1, . . . , El] contains all unit vectors. 2

Note that the condition AF ,F11 > 1
1−γ ∆F ,F11 in equation (5) is used again in Lemma 7. It

ensures that the weights w1, . . . , wl are of the same order as the associated diagonal entries.

To construct the sparse approximate inverse subject to a linear constraint (10) we will proceed
as follows. We start solving the unconstraint minimization problem ‖I − AF ,FBF ,F‖F . Here
one can use GMRES [8] or, if A is symmetric positive definite, cg [13] could be used. After the
unconstraint minimization problem has been solved sufficiently accurate, we use the solution
as initial guess for the constrained minimization process. For the constraint minimization
process we work on a projected system. We define a projector P via

P = I −W (W>W )−1W>,

where W>W =
∑l

i=1 w2
i EiE

>
i is a diagonal matrix. The projection is cheap to apply. We

decompose the solution x from Lemma 7 as

x = W (W>W )−111 + Py

12



for a suitable y. By this definition we ensure that

W>x = 11

is already fulfilled. The constraint linear system from Lemma 7 reduces to

P>CC(W (W>W )−111 + Py) = P>C>e

This is equivalent to the system

(P>CCP )y = P>C>
(
e− CW (W>W )−111

)
.

In other words, y has to minimize the projected minimization problem

‖CP y −
(
e− CW (W>W )−111

)
‖2.(11)

This problem is again solved using cg applied to the projected normal equations. Usually
it suffices only to apply one or two steps of the constraint minimization problem, since the
initial guess is a relatively accurate solution of the unconstraint minimization problem.

In this section we have discussed how to minimize the residual matrix ‖I − AF ,FBF ,F‖F in
order to construct a sparse approximate inverse BF ,F . In the sense of multigrid methods more
has to be done than to simply minimize the residual. For this purpose the linear constraint
BF ,FAF ,F11 = 11 is added. The solution of this constrained minimization problem leads to
an augmented linear system. The associated numerical solution can be computed solving the
projected minimization problem (11).

5 Basic construction of the AMG

After the description of the selection of the fine grid nodes and the construction of the
smoother we comment on the practical set up of the AMG preconditioner.

For the numerical experiments we focus on the additive AMG (2), since this approach is
attractive because it does not require to store the coarse grid systems.

We concentrate on the class of symmetric positive definite matrices, although many arguments
also apply to general matrices. This will be discussed in a later paper.

5.1 AMG setup

Starting with the initial matrix A0 = A, on any level k = 0, 1, 2, . . . we are faced with a
matrix Ak of size nk × nk. We select fine grid nodes F ⊂ {1, . . . , nk} such that for a suitable
permutation matrix Π we have

Π>
k AkΠk =

(
AFF AFC
ACF ACC

)
,

Then we construct a sparse approximate inverse BFF subject to the constraint minimization
problem (10). This approximate inverse in general will not be symmetric. We define the
smoother Sk by

Sk = Πk
1
2

(
BFF + B>

FF 0
0 0

)
Π>

k ,

13



the prolongation operator P and restriction R by

Pk = Πk

(
−BFFAFC

I

)
, Rk = P>

k .

Finally we set

Ak+1 = Rk

(
AFF AFC
ACF ACC

)
Pk.

Using this sequence of matrices, the additive algebraic multigrid preconditioner
(AAMG) M ≡ M0 is defined via

Mk = Sk + PkMk+1Rk, if k < l

Ml = A−1
l .

5.2 Further details

In this subsection we comment on further practical details. For Algorithm 5 we use γ = 2
3

in inequality (5). For the bound α of the inverse triangular factors in Algorithm 4 we use
α = γ

1−γ which is motivated by the diagonal dominant case. From a practical point of view it
is not recommended to minimize precisely ‖I −AF ,FBF ,F‖F , since the diagonal entries of A
may have different orders of magnitude. From the point of view of block Gaussian elimination
we locally compute(

I 0
−AC,FBF ,F I

)(
AF ,F AF ,C
AC,F AC,C

)(
I −BF ,FAF ,C
0 I

)
=

(
AF ,F (I −AF ,FBF ,F )AF ,C

AC,F (I −B>
F ,FAF ,F ) AH

)
,

where AH denotes the coarse grid system. Before we compute BF ,F , we could use an simple
initial guess BF ,F by using

B
(0)
F ,F = 2∆−1

F ,F −∆−1
F ,FAF ,F∆−1

F ,F ,

which is the linear part of the Neumann expansion for A−1
F ,F . Here ∆F ,F again denotes the

diagonal part of AF ,F . We use the diagonal matrix

G = diag (g1, . . . , gl), where gi =
√
‖B(0)

F ,Fei‖∞

to scale the residual matrix I − AF ,FBF ,F . Thus, instead of minimizing ‖I − AF ,FBF ,F‖F ,
we minimize

‖G(I −AF ,FBF ,F )G−1‖F

Similarly we compute a crude approximation to each column of ‖AHei‖∞,

h2
i = ‖AC,C −AC,F diag (B(0)

F ,F )AF ,C‖∞

and use the associated diagonal matrix H with hi on the main diagonal for scaling, i.e. we
consider the diagonally scaled problem(

GAF ,FG G(I −AF ,FBF ,F )G−1 (GAF ,CH
−1)

(H−1AC,FG) G−1(I −B>
F ,FAF ,F )G H−1AHH−1

)
.

14



For each column of G(I −AF ,FBF ,F )G−1 we minimize the norm of the residual

ri = G(I −AF ,FBF ,F )ei
1
gi

.

For each column we require that

‖ri‖ 6 min{
√

τ , τ‖gie
>
i AF ,CH

−1‖∞}.

The value
√

τ is used to make sure that the residual ‖ri‖ is small in any case, even if the i–th
row of AF ,C is empty.

6 Numerical results

In this section we illustrate the effectiveness of the new procedures and, in particular, our
chosen heuristic approximations. Our computations were done in MATLAB 5.3 [31]. The
experiments are performed on an Linux PC with Pentium III processor (1 GHz).

The algebraic multilevel method based on the adapted sparse approximate inverse precondi-
tioner will be denoted by AMG–SPAI. We will compare this AMG with the classical AMG
[26] (AMG–RS). For AMG–SPAI we will use the additive algebraic multigrid preconditioner
(AAMG). For AMG–RS we will use the V –cycle preconditioner with one pre smoothing and
one post smoothing step. In principle an additive variant could also be used [24]. As usual,
Gauss–Seidel (and its adjoint) are used as smoothers. Both preconditioners are used in con-
junction with the cg method [13].

Example 8 We consider the problem

−ε2uxx − uyy = f in [0, 1]2

u = g on ∂[0, 1]2

where ε strongly varies from 100 to 10−5. For this problem we use the variational formulation
and piecewise quadratic finite elements, cf. e.g. [5]. The discretization is done using a uniform
triangulation with two additional boundary layers of size ε

4 ×1 near the left and also near the
right boundary (see picture below). Within these boundary layers the triangles are condensed
by an additional factor ε/4 in x–direction.
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We consider linear systems of size 961, 3969 and 16129. Table 1 shows the number of cg
iteration steps for both AMGs. We examine the aspect of scalability (with respect to the
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Table 1: Anisotropic Dirichlet, quadratic elements, cg iteration steps

ε versus scalability (system size)

AMG ε 961 3969 16129

100 16 26 50
RS 10−3 20 34 71

10−5 20 33 61

100 17 19 22
SPAI 10−3 13 16 18

10−5 17 19 21

system size) and robustness (with respect to ε). For this reason Table 1 denotes the number
of iteration steps in both directions. Note that this problem has positive off–diagonal entries
for all values of ε. This explains, why here AMG–RS does not scale that well. The dependence
with respect to the variation of ε seems to be small for both approaches.

Next we examine the computational amount of work in flops (see Table 2). We scale the
number of flops by the number of flops for one matrix–vector multiplication. The number have
to be multiplied by 102 (see legend). The construction of the preconditioner scales perfectly
for AMG–RS, a slight increase is observed for AMG–SPAI. Overall the construction of AMG–
SPAI is more costly, which is caused by the computation of the sparse approximate inverse
smoother while at the same time the Gauss–Seidel smoother in AMG–RS is for free. This
additional amount of work is compensated by the smaller and bounded number of iteration
steps. The results also show that not only the number of iterations is almost constant for
AMG–SPAI. But the cost for the iterations also scales quite well.

Table 2: Anisotropic Dirichlet, quadratic elements, flops ·102

# flops A·x (coarsening + cg)

ε versus scalability (system size)

AMG ε 961 3969 16129

100 0.4+2.3 0.4+3.7 0.4+7.2
RS 10−3 0.3+2.5 0.3+4.4 0.3+9.2

10−5 0.3+2.5 0.3+4.2 0.3+7.9

100 3.5+1.0 4.0+1.1 4.4+1.3
SPAI 10−3 2.1+0.6 2.7+0.7 3.2+0.9

10−5 2.1+0.7 2.8+0.9 3.3+1.0

For n = 16129 we now present the size of the coarse grid systems. We observe in Table 3 that
the coarseing process for AMG–SPAI constructs coarse grids that are slightly smaller than
for AMG–RS. For ε = 0 the coarsening process of AMG–RS is unsatisfactory due to the high
number of positive off–diagonal entries.
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Table 3: Anisotropic Dirichlet, quadratic elements, coarsening for n = 16129

size of each level

AMG ε 1 2 3 4 5 6 7

100 16129 8064 2204 2
RS 10−3 16129 8064 3200 574 224 96 32

10−5 16129 8064 3200 574 224 96 32

100 16129 5655 1944 685 236 70 20
SPAI 10−3 16129 5557 1826 601 173 97 60

10−5 16129 5569 1842 601 172 98 71

We note that the sparse approximate inverse smoothers that are constructed by AMG–SPAI
are very sparse. In contrast to AMG–RS we need more space to store the sparse approximate
inverse smoothers, while AMG–RS uses Gauss–Seidel smoothing.

Table 4: Anisotropic Dirichlet, quadratic elements, density of the smoother

average number of nonzeros per row for each level

AMG ε 1 2 3 4 5 6 7

100 6.7 8.6 10.7 13.6 17.4 17.8 10.5
SPAI 10−3 4.7 5.3 6.4 7.2 10.6 6.7 5.0

10−5 4.7 5.2 6.4 7.2 7.8 4.3 2.6

We can see from Table 4 that the memory requirement for the sparse approximate inverse is
close to the size of the original system (approximately 6 entries per row). So the overhead for
storing the approximate inverse is small.

Example 9 We consider the same problem as in Example 8. But this time we use piecewise
bilinear elements. Note that due to the anisotropy for small ε the associated stencil degenerates
in the middle of the domain but the off–diagonal entries will not tend to zero (Figure 1). In
this example, the associated matrix is an M–matrix if ε = 1, but for other values of ε the
matrix has significant positive off–diagonal entries (as one can see from Figure 1).

We first examine the number of cg steps (see Table 5). Here we observe that AMG–RS scales
perfectly for ε = 1, which is the M–matrix case. For ε = 10−3, 10−5 the number of iteration
steps significantly grows. Also the method scales poorly as the problem size increases. In
contrast to this, AMG–SPAI only shows a small increase in the number of iteration steps.

Next we examine the computational amount of work in flops (Table 6).

Table 7 shows the size of the sequence of coarse grid systems when using n = 16129. For
ε = 1, A is an M–matrix and clearly AMG–RS is superior to AMG–SPAI. For the other cases
the size of the coarse grid systems are comparable.
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Figure 1: Bilinear stencils in different parts of the domain
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Table 5: Anisotropic Dirichlet, bilinear elements, cg iteration steps

ε versus scalability (system size)

AMG ε 961 3969 16129

100 13 15 16
RS 10−3 50 107 212

10−5 50 104 211

100 19 18 24
SPAI 10−3 23 29 35

10−5 29 36 41

Table 6: Anisotropic Dirichlet, bilinear elements, flops ·102

# flops A·x (coarsening + cg)

ε versus scalability (system size)

AMG ε 961 3969 16129

100 2.2+1.0 2.4+ 1.1 2.4+ 1.2
RS 10−3 2.4+4.8 2.5+10.0 2.5+20.0

10−5 2.4+4.8 2.5+10.0 2.5+20.0

100 2.9+1.0 3.5+ 0.9 4.5+ 1.4
SPAI 10−3 3.3+1.0 4.1+ 1.4 4.8+ 1.8

10−5 3.4+1.3 4.1+ 1.7 4.9+ 2.1
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Table 7: Anisotropic Dirichlet, bilinear elements, coarsening for n = 16129

size of each level

AMG ε 1 2 3 4 5 6 7

100 16129 4258 1111 318 100 33 6
RS 10−3 16129 6219 2626 256 75 7

10−5 16129 6219 2626 256 75 7

100 16129 5923 2125 749 254 80 19
SPAI 10−3 16129 5557 1831 591 169 25 1

10−5 16129 5594 1861 607 156 17

The sparse approximate inverse smoothers constructed using AMG–SPAI are almost as sparse
as in the case of quadratic elements, as shown in Table 8. Note that here the original system
is also more dense (approximately 9 entries per row).

Table 8: Anisotropic Dirichlet, bilinear elements, density of the smoother

average number of nonzeros per row for each level

AMG ε 1 2 3 4 5 6 7

100 7.2 9.4 12.6 15.7 18.3 22.9 10.0
SPAI 10−3 8.6 10.6 12.0 11.3 8.5 6.3 1.0

10−5 8.5 10.3 11.1 11.5 7.0 4.8

7 Conclusions

We have presented a new algebraic multigrid method that is based on a special interplay
between the selection of the fine grid nodes and the construction of the adapted sparse ap-
proximate inverse. One essential constraint that we have used is that A11 ≈ 0. This limits of
course the applicability of the new AMG. The numerical experiments show that for anisotropic
problems the AMG scales well. This compensates the overhead that is needed for the setup
of the preconditioner.
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