
Technische Universität Berlin

Institut für Mathematik

On the Impact of Inverse-Based

dropping on ILUs derived from

direct methods

M. Bollhöfer

Technical Report 758-2002

Preprint-Reihe des Instituts für Mathematik
Technische Universität Berlin

Report 758-2002

On the Impact of Inverse-Based dropping on ILUs
derived from direct methods

∗Matthias Bollhöfer

Abstract

In this paper we present a new incomplete LU decomposition which is based on
an existing sparse direct solver. In contrast to many incomplete LU decompositions
this ILU incorporates information about the inverse factors L−1 and U−1 which
have direct influence on the dropping strategy. We demonstrate in several large scale
examples that this implementation constructs a robust preconditioner.

Keywords: sparse matrices, ILU , sparse direct methods, approximate inverse, condition
estimator.

AMS subject classification: 65F05, 65F10, 65F50.

1 Introduction

The solution of large sparse unstructured linear systems in industrial applications remains
one of the major challenges in modern numerical analysis. Often sparse direct solvers
[11, 13, 17] are used to solve linear systems despite of the (sometimes) enormous amount
of memory which might be required by these methods. This limits the size of the applica-
tion that can be computed in practice or forces the method to use swap space on the hard
disk drive which extremely slows down this approach. In recent years, iterative solvers, e.g.
Krylov subspace methods [20, 26, 33] often combined with preconditioners like incomplete
LU decompositions [33], have become quite popular and successful in many application
problems such as those arising from the discretization of elliptic partial differential equa-
tions. However, there are still several problems from industrial applications which yield
large unstructured matrices for which iterative solvers fail. One often has to tune several
parameters (like drop tolerances or levels of fill–in) over a wide range of possible choices
to obtain a successful preconditioner. This time–consuming process requires to select the
correct values for every specific application and wrong parameters may cause an enormous
fill–in or an unacceptable computational time.

∗Institut für Mathematik, MA 4–5, Technische Universität Berlin, D–10623 Berlin, Germany.
email: bolle@math.tu-berlin.de, URL: http://www.math.tu-berlin.de/∼bolle/.

1

On the Impact of Inverse-Based dropping on ILUs derived from MA50 2

In an earlier paper [6] we have presented an incomplete LU decomposition, where the
norms of the inverse triangular factors L−1 and U−1 have direct influence on the dropping
strategy. In [6] this new kind of ILU was illustrated with several small and moderate size
examples that could be handled with MATLAB [35].

In this paper we show how an existing sparse direct solver can be modified to work with
this new strategy. We have implemented the new algorithm in FORTRAN. It has three
innovative aspects.

1. During the computation of the approximate triangular factors L and U the algorithm
uses the row norm of any row of L−1 (resp. U−>) to control the process of dropping
entries of small size. This strategy is justified, see [7], by relations between incomplete
LU decompositions and factored sparse approximate inverses [4].

2. To compute the norms of the inverse triangular factors approximately, we proceed
analogously to [6] and modify an algorithm [8, 25] that is originally used for condition
estimation. Even more, we will present a new an improved version of it.

3. The (FORTRAN) implementation is based on the direct solver MA50, which is the
main LU decomposition part of MA48 [17]. Several questions that arise when sup-
plementing a direct solver with this new dropping strategy will be discussed.

After a brief introduction of incomplete LU decomposition methods and sparse direct LU
decomposition techniques we will discuss these three aspects in detail. Finally, several large
scale examples from different application areas will demonstrate the effectiveness of this
approach.

2 Incomplete and sparse direct LU decompositions

In this section we briefly present the main ingredients for incomplete LU decompositions
as well as for sparse direct factorizations. We start with sparse direct techniques. Suppose
that we wish to solve the linear system

Ax = b,(1)

where A is a real nonsingular n× n matrix and b, x ∈ Rn are the right hand side and the
solution of the system. The LU decomposition of A can be characterized as follows. Let
A = (aij) and suppose that the pivot β = a11 6= 0. We can then write A as

A =

(
β d
c E

)
=

(
1 0
Lc I

)(
β 0
0 S

)(
1 Ud

0 I

)
,(2)

where Lc = c/β, Ud = d/β and S = E − cd/β denotes the Schur complement. After
the Schur complement S is computed the same procedure is applied to S (instead of A).
Finally one obtains A = LDU provided that no zero pivot is encountered. Some sparse

On the Impact of Inverse-Based dropping on ILUs derived from MA50 3

direct solvers are seeking for row/and column permutations in order to reduce the fill–in
(e.g. MA48 [17]). These strategies of Markowitz–type [13] require the Schur–complement to
be explicitly computed at every step. Other LU decomposition methods compute only one
column S at each step and avoid an explicit representation of the whole Schur complement
[10, 11, 24, 27]. These strategies may be combined with an a priori column permutation (see
e.g. [22]) to improve sparsity. These strategies are supplemented with a 1stability constraint
like

|β| > γ ‖c‖∞(3)

for a moderate constant γ, say γ = 0.1.

Incomplete LU factorization techniques follow a different strategy. Here the (approximate)
Schur complement S̃ is kept sparse by dropping entries. Typically this is done by dropping
entries that are less than a prescribed threshold or that are outside a specific pattern (cf.
[33]). In the simplest case one uses the pattern of A. In this case this strategy is known
as ILU(0) [29]. The second strategy is used in [30, 32, 33] and essentially corresponds to
the ILUT algorithm. For an overview of some variants of incomplete LU decomposition see
[33]. Incomplete LU decompositions often compute the approximate factorization column
by column (or row by row) and avoid the explicit computation of S at any step. This
extremely simplifies the data structures, see e.g. [33]. There exist techniques which try to
avoid permutations, e.g. reordering and rescaling the initial matrix appropriately before
the incomplete LU decomposition is performed (see e.g.[2, 16]). However, these techniques
cannot guarantee that (3) is satisfied and maybe interchanges destroy the initial ordering.

Often incomplete LU decompositions are faster to compute than (complete) LU decompo-
sitions, if the correct parameters are known. Since these decompositions are even in exact
arithmetic only approximate factorizations, one has to compensate this by an additional
iterative process for the solution of Ax = b. In particular Krylov subspace methods only
refer to A implicitly by applying matrix–vector multiplications. Examples are methods
like GMRES [34] or QMR [19] or other iterative solvers (see e.g. [20, 26, 33]). Typically
Krylov subspace methods converge in a moderate number of steps if A is close to the iden-
tity [26]. To accelerate the iterative process, the incomplete LU decomposition is used as
preconditioner, i.e., Ax = b is replaced by an equivalent preconditioned system like

(L−1AU−1) y = L−1b, where x = U−1y

and hopefully L−1AU−1 = D + E ≈ D is approximately diagonal so that additional
diagonal scaling (e.g. by D−1 from the left) should be sufficient.

3 Robustness of incomplete LU decompositions

In order to construct an ILU that is more robust than existing approaches [33, 32], we
have to take a closer look on how preconditioners are used. Suppose we have constructed

1In principle a stability constraint like |β| > γ ‖d‖∞ could also be considered. From a practical point of
view this additional constraint is too costly for the Markowitz–type algorithms and impossible to satisfy
for column–oriented codes

On the Impact of Inverse-Based dropping on ILUs derived from MA50 4

an incomplete LU–decomposition

A = L̃D̃Ũ −R ≈ L̃D̃Ũ ,

where L̃ and Ũ> are lower triangular with unit diagonal and D̃ is diagonal. When we apply
L̃D̃Ũ as preconditioner in a Krylov subspace method, then we have to construct L̃, D̃, Ũ
such that

L̃−1AŨ−1 = D̃ − L̃−1RŨ−1 ≈ D̃.

In other words the inverse matrices L̃−1 and Ũ−1 determine the approximation properties
of the preconditioner. Instead of simply dropping entries from L̃, Ũ if they are small, i.e.
at step k drop l̃jk, ũkm if they satisfy

|l̃jk| 6 τ, |ũkm| 6 τ

for any j,m > k, one should take the inverse factors L̃−1, Ũ−1 into account. This was the
main motivation in [6] to use the dropping rule∣∣∣l̃jk∣∣∣ · ∥∥∥e>k L̃−1∥∥∥∞ 6 τ(4)

for any entry l̃jk of L̃ such that j > k. A similar rule is used for Ũ .

Remark. Condition (4) is the main condition to construct a link between incomplete
LU decomposition methods and factored approximate inverse techniques (see e.g. [1, 3,
4, 28]). For a detailed discussion see [7]. It may explain why on the one side incomplete
LU decompositions obtained as a by-product from the AINV process [5] and ILUSTAB [6]
(MATLAB experiments) on the other side are that robust.

The major problem to satisfy (4) is to estimate ‖e>k L̃−1‖, since the inverse of L̃ is usually
not available.

4 Condition estimators

In order to drop entries l̃jk that satisfy satisfy |l̃jk| ·‖e>k L̃−1‖ 6 ε in step k of the incomplete
LU decomposition, we need estimates on the norm of e>k L̃

−1. In principle this problem
requires estimating the row norms of an inverse triangular factor independent on whether
L̃ (or L) arises from (approximate) factorizations. For a lower triangular matrix L there
is a simple way to get a lower bound of ‖e>k L−1‖∞. The problem how to find a good test
vector b has been addressed in [8] in order to construct an estimate for the norm of L−1.
Essentially the authors use the inequality

∥∥e>k L−1b∥∥∞ 6 ‖e>k L−1‖∞‖b‖∞ and seek for a
single test vector b such that ‖b‖∞ = 1 and

‖e>k L−1‖∞ ≈
∥∥e>k L−1b∥∥∞

for all steps k = 1, . . . , n. Clearly e>k L
−1b requires solving a system Lx = b by forward

substitution and to use the k–th component xk ≈ e>k L
−1b as estimate. In [8] a right hand

side b is chosen with values from ±1. At step k of the forward elimination process Lx = b

On the Impact of Inverse-Based dropping on ILUs derived from MA50 5

the sign of bk is determined such that the sum of |xk| and the 1-norm of the last n − k
components of

v> =
(
b1 · · · bk 0 · · · 0

)
L−>

is maximized. In practice v can be easily computed in each step k by a rank–1 update
using column k of L. In the sparse case this update is still cheap if one exploits the
nonzero structure of L. Note that we need the norm of any row of L−1. Locally one can

choose the larger value of |x−k |, |x
+
k | depending on the sign of bk. Globally the norm of the

updated components of v is much more important, since we still need good estimates for
the remaining components of x. For this reason we only maximize

‖ (vl)l=k+1,...,n ‖1

but use the larger value of |x−k |, |x
+
k | as estimate for ‖e>k L−1b‖∞. This slightly differs from

the original approach [8]. For sparse matrices the cost of this condition estimator is of
the same order as the forward substitution process. We will demonstrate this condition
estimator in an abstract algorithm that essentially follows the idea of the original method
[8].

Algorithm 1 Given a lower triangular matrix L with unit diagonal we compute estimates
x = (x1, . . . , xn) such that xk ≈ ‖e>k L−1‖∞.

Set v = (0, l21, . . . , ln1)
>, x1 = 1.

for k = 2, . . . , n
x+ = 1− vk, x− = −1− vk
Let I be the set of row indices of the nonzero entries from lk+1,k, . . . , ln,k.
ν+ = ‖(vi + likx+)i∈I‖1, ν− = ‖(vi + likx−)i∈I‖1.
if ν+ > ν−: xk = x+, else xk = x−
for all i ∈ I: vi = vi + likxk
xk = max{|x+|, |x−|}

end

This algorithm may serve as a good heuristic to estimate the norm of L−1. There is one
drawback that particularly may show up when being applied to triangular factors that
arise from LU decompositions. In the sparse case the update procedure vi := vi + likxk
(hopefully) only requires updating a few values. If only relaxed column pivoting (3) is
used in the LU decomposition and no pivoting at all with respect to U , then it is likely
that a few large entries dominate the 1–norm of the updated v just because they have
different order of magnitude. I.e. while these components possibly increase by Algorithm
1, several others may decrease. This motivates a second strategy how to determine xk’s
sign. Instead of taking a norm one could count how many components increase versus
how many components decrease and use this to determine the sign of xk. The additional
overhead is small, since one only has to solve a system with a second right hand side.

Algorithm 2 Given a lower triangular matrix L with unit diagonal we compute estimates
y = (y1, . . . , yn) such that yk ≈ ‖e>k L−1‖∞.

On the Impact of Inverse-Based dropping on ILUs derived from MA50 6

Set v = (0, l21, . . . , ln1)
>, y1 = 1.

for k = 2, . . . , n
y+ = 1− vk, y− = −1− vk, n+ = 0, n− = 0
Let I be the set of row indices of the nonzero entries from lk+1,k, . . . , ln,k.
for i ∈ I: if |vi + liky+| > max(2|vi|, 1/2)}: n+ = n+ + 1

if max(2|vi + liky+|, 1/2) < |vi|: n+ = n+ − 1
if |vi + liky−| > max(2|vi|, 1/2)}: n− = n− + 1
if max(2|vi + liky−|, 1/2) < |vi|: n− = n− − 1

if n+ > n−: yk = y+, else yk = y−
for all i ∈ I: vi = vi + likyk
yk = max{|y+|, |y−|}

end

Essentially Algorithm 2 counts how many components increase or decrease by a factor at
least 2. In any case it is ensured that very small components (less than 1/2) are not taken
into account.

The conjunction of Algorithm 1 and 2 has been tested for several matrices when being
applied to the triangular factors that arise from an LU decomposition. It has been observed
that there were only a very few cases when the combination of both strategies produced
row-norms of L−1, U−> that were several orders of magnitude less than the exact values.

Example 3 To illustrate this effect consider the matrix lnsp3937 from the Harwell–
Boeing collection. An LU decomposition of this matrix has been constructed using MAT-
LAB’s function lu. For the resulting U factor (diagonally scaled) Algorithm 1, 2 are used
and compared with the exact row norms of U−>. For better illustration, the original row
norms of U−> were ordered in increasing order. Note that the estimate must be less than
or equal to the exact norms.

Figure 1 shows that the Algorithm 1 alone produces estimates that are sometimes much
less than the exact values. This only rarely happens when the combination of Algorithm 1
and 2 are used.

Example 4 Another example is the matrix west2021 from the Harwell-Boeing Collec-
tion. The same algorithms as in the previous example were applied. For the results see
Figure 2.

This observation was not only made for these examples but for several others, too.

For this reason the implementation of ILUSTAB uses Algorithm 1 and Algorithm 2.

5 Implementation aspects

We will now describe how the condition estimator from Algorithms 1,2 is implemented
based on the direct method MA50, a code from the Harwell–Subroutine–Library. MA50 is

On the Impact of Inverse-Based dropping on ILUs derived from MA50 7

Figure 1: estimated row norms of U−> using only Algorithm 1 (left) and, using Algorithm
1 and 2 (right)

0 500 1000 1500 2000 2500 3000 3500 4000
10

0

10
2

10
4

10
6

10
8

10
10

0 500 1000 1500 2000 2500 3000 3500 4000
10

0

10
2

10
4

10
6

10
8

10
10

ro
w

n
or

m
of
U
−
>

ro
w

n
or

m
of
U
−
>

number of columns number of columns

Figure 2: estimated row norms of U−> using only Algorithm 1 (left) and, using Algorithm
1 and 2 (right)

0 500 1000 1500 2000
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

0 500 1000 1500 2000
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

ro
w

n
or

m
of
U
−
>

ro
w

n
or

m
of
U
−
>

number of columns number of columns

On the Impact of Inverse-Based dropping on ILUs derived from MA50 8

the core part of MA48 [17]. We will give a sketch on the way the method is implemented
and then describe the changes necessary to implement the dropping strategy as well as the
updating process for the approximate Schur complement. Analogously to [6] we will refer
to this method as ILUSTAB. The algorithm MA50 itself is a two–pass algorithm. So we
comment on each pass separately

5.1 First Pass

The whole Schur complement is explicitly computed. Here a pivoting strategy of Markowitz
type [13] is used which constructs row and column permutations based on a compromise
between sparsity and numerical stability of the diagonal pivots. During this pass the already
computed parts of the L and U factor are discarded in order to save memory.

Changes. Algorithms 1,2 are simply interlaced with the first pass of the elimination pro-
cess. At step k of the incomplete LU decomposition only estimates for xk,L ≈ ‖e>k L−1‖
and xk,U ≈ ‖U−1ek‖ are required. To do this we simply supplement step k of the incom-
plete factorization process with step k of Algorithms 1,2 applied to L and with step k of
Algorithms 1,2 applied to U>. This gives the desired estimates xk,L and xk,U . Using xk,L
and xk,U we get a dropping rule for column k and row k of the Schur complement S. Step
k of the first pass roughly looks as follows.

Algorithm 5 (Step k of ILUSTAB, first pass) Let S = (sij)i,j>k be the Schur com-
plement on entry to step k. For k = 1, S is substituted by the original matrix A.

Find a row index i > k and a column index j > k using MA50’s pivoting strategy

Compute xk,L and xk,U from step k of Algorithms 1,2 applied to L and U>

Interchange row i and k of S and column j and k of S.

for all l,m > k
if |slk| > τ |skk|/max{1, |xk,L|} or |skm| > τ |skk|/max{1, |xk,U |}:

slm = slm − slkskm/skk

We will call this version ILUSTAB–T since this kind of approximate Schur complement
can be seen as the generalization of the Tismenetsky approach [36].
We will also include computations using the more simple and sparser Schur complement
which computes updates only if both values |slk| and |skm| are larger than their prescribed
thresholds:

if |slk| > τ |skk|/max{1, |xk,L|} and |skm| > τ |skk|/max{1, |xk,U |}:
slm = slm − slkskm/skk

The simplified version will be called ILUSTAB–S.

On the Impact of Inverse-Based dropping on ILUs derived from MA50 9

5.2 Second Pass

The permutation from the first pass is recovered. Instead of the whole Schur complement
only one column at each step is computed. The amount of memory necessary to hold L
and U is known from the first pass and only a small overhead of memory is needed.

One major problem of this approach is the fast computation of column k of the Schur
complement in step k of the algorithm. In principle one has to solve a triangular system
with that part of L that has already been computed. MA50 uses an elegant depth–first–
search strategy [23] to detect only that part of L that is needed. Even more, this strategy
is supplemented with a technique called pruning [18, 24].

Changes. The condition estimates for L,U have been saved from the first pass and need
not be recomputed. For the sparse triangular solve the Gilbert-Peierls strategy [23] and
as an alternative, a binary search tree have been tested. For ILUSTAB–T even a modified
version of pruning [18] was possible. For details see Section 6.1.

Remark. In contrast to [6] here pivoting is only performed with respect to the columns
(see (3)). Numerical experiments which also ensure row stability have been made. In most
of the examples the additional overhead did not pay off. So row stability is not considered
here.

We briefly comment on some minor supplements to the algorithm. To update the l–th row
slm, m = k + 1, . . . , n of the Schur complement S we have to form a linear combination of
row k and row l of S. In order to skip an update slm → slm − slkskm/skk of row l, slk/skk
should not only satisfy |slk| 6 τ |skk|/max{xk,L, 1}, but the norm of row k compared with
row l should be small, i.e.

|slk|
|skk|
‖ (sk,k+1, . . . sk,n) ‖1 6 τ‖ (sl,k+1, . . . sl,n) ‖1.

Likewise a similar criterion should be satisfied column–wise for column m:

|skm|
|skk|

‖ (sk+1,k, . . . sn,k) ‖1 6 τ‖ (sk+1,m, . . . sn,m) ‖1.

In the first pass of the algorithm the norms of each column and row of the Schur complement
can be easily computed, since the Schur complement is explicitly available. For the second
pass this is only feasible for the columns, since in every step k of the second pass only
column k of the Schur complement is available. As a consequence, the criterion for the row
is modified to

|slk|
|skk|
‖ (ak1, . . . akn) ‖1 6 τ‖ (al1, . . . aln) ‖1.

This additional criterion is already used as dropping rule in ILUTP [33] from SPARSKIT.

6 Numerical results

This section will present numerical results for the MA50–based ILUSTAB. The numeri-
cal experiments first discuss the different strategies for the second pass. Next ILUSTAB

On the Impact of Inverse-Based dropping on ILUs derived from MA50 10

is applied to a broad class of problems from different application areas, namely circuit
simulation, computational fluid dynamics and chemical engineering.

We will compare ILUSTAB with the direct solver MA50 as well as with incomplete LU
decompositions. As ILU we will use MA50 with the built–in dropping strategy that drops
entries whose modulus are less than a given drop tolerance τ . As second incomplete LU
decomposition ILUTP [33] from SPARSKIT is used. All codes are written in FORTRAN77.
The experiments are performed on an IBM RISC 6000 with 4 Power 3–II (375 MHz)
processors and 4 GBytes of memory. The matrices were computed using 64–bit address
length.

• For ILUTP the matrices are initially reordered using the symmetric minimum degree
ordering [21]. Since the matrices tested here are unsymmetric, this reordering does
not guarantee that the fill–in will be small.

• An a priori scaling is used such any row of the given matrix has unit 1–norm. Like
the symmetric reordering, scaling does not necessarily simplify the problem.

• For the pivoting process γ = 0.1 is used in (3) for all algorithms.

• For the MA50–based codes the default settings were used, i.e., the codes switch to
full matrix processing once the fill–in of the Schur–complement reaches 50% nonzero
entries.

• Different values were used for the drop tolerance. We will comment on this in detail.

For the numerical experiments several unsymmetric matrices were chosen from the Harwell–
Boeing collection [14, 15, 31], the SPARSKIT collection [31] and Tim Davis’s collection
[9].

As iterative solvers GMRES(30) [34] is used. The iteration was stopped after the residual
norm was less than

√
ε times the initial residual norm, where ε ≈ 2.2204 · 10−16 denotes

the machine precision. The iteration was stopped after 500 steps. Every iterative solution
which broke down or did not converge within the number of steps was noted as a failure.

6.1 Fast computation of the approximate Schur complement

For the second pass of ILUSTAB four different implementations were tested.

1. ILUSTAB-T with a binary search tree

2. ILUSTAB-T with the Gilbert–Peierls strategy [23] and modified pruning [18]

3. ILUSTAB-S with a binary search tree

4. ILUSTAB-S with the Gilbert–Peierls strategy

On the Impact of Inverse-Based dropping on ILUs derived from MA50 11

The graph–oriented strategy [23] requires to change the dropping rules. I.e. the 1–norm
of any column of the Schur complement has to be replaced by the 1–norm of the original
column. In order to have comparable results for these different kind of implementations,
we temporarily used the same simplified dropping strategy for the binary search tree. In
Subsection 6.2 we turn back to the dropping strategy based on the norm of any column of
the Schur complement.

Table 1: Legend of symbols used for all figures

∗ · · · ∗ ILUTP
× · · ·× ILUSTAB–T default, binary search tree
+ · · ·+ ILUSTAB–S default, binary search tree
� · · · � ILUSTAB–T Gilbert-Peierls strategy with modified pruning
? · · · ? ILUSTAB–T Gilbert-Peierls strategy
◦ · · · ◦ ILUSTAB–S Gilbert-Peierls strategy

MA50
2 · · ·2 MA50 with simple dropping strategy

Figure 3 shows the amount of computation time for the second pass of ILUSTAB depending
on the choice of the drop tolerance τ . The algorithms are applied to the matrix twotone
(see Example 6) and to the matrix rma10 from Example 8. See Table 1 for the meaning of
the symbols.

In the sequel, for all figures the drop tolerances are taken from the left to the right starting
with τ = 1 and decreasing. The scale in the x–direction is logarithmic! The dotted lines
are only included to give a better impression about the development of the performance
when changing the drop tolerance. Only the marks represent numerically computed values.
If any method did not converge for coarser drop tolerances, then the leading marks on
the left are skipped. On the right end of the x-scale computations were not necessarily
performed for all smaller drop tolerances.

From Figure 3 one can see that at least in these examples the binary search tree is faster
than the backtracking versions. This holds for ILUSTAB-T as well as for ILUSTAB-S. For
rma10 the second pass slows down although the drop tolerance increases but one might
expect an acceleration. This is not related with the slight modification of pruning. This can
verified from the performance of the algorithm [23] without pruning which also included
in Figure 3 for the matrix rma10, it is even slower.

As another example we consider Example 9 where the same effect can be observed (see
Figure 4).

While the binary search tree incorporates dropping during the triangular solves, the back-
tracking strategy does not. This may be an explanation for the dramatic differences. In
this sense the two pass approach significantly differs from the ILU approach in [24]. For
most of the sample matrices the binary search tree was superior. As a consequence, the
backtracking versions are not considered anymore for the remaining numerical examples.

On the Impact of Inverse-Based dropping on ILUs derived from MA50 12

Figure 3: computation time for pass 2 using different implementations. Matrix
twotone (left) and, matrix rma10 (right). Legend see Table 1.

10
−5

10
−4

10
−3

10
−2

10
−1

60

70

80

90

100

110

120

130

140

10
−4

10
−3

10
−2

10
−1

10
0

0

50

100

150

200

250

300

co
m

p
u
ta

ti
on

ti
m

e
[s

ec
]

co
m

p
u
ta

ti
on

ti
m

e
[s

ec
]

drop tolerance τ drop tolerance τ

Figure 4: computation time for pass 2 using different implementations. Matrix
venkat01 (left) and, matrix venkat50 (right). Legend see Table 1.

10
−4

10
−3

10
−2

10
−1

10
0

0

50

100

150

200

250

300

350

10
−4

10
−3

10
−2

10
−1

10
0

0

100

200

300

400

500

600

700

800

900

co
m

p
u
ta

ti
on

ti
m

e
[s

ec
]

co
m

p
u
ta

ti
on

ti
m

e
[s

ec
]

drop tolerance τ drop tolerance τ

On the Impact of Inverse-Based dropping on ILUs derived from MA50 13

All examples in Section 6 refer to ILUSTAB-T and ILUSTAB-S using the binary search
tree.

6.2 Linear systems arising from different application areas

We now comment on several sample matrices. We will distinguish these matrices by their
application area, such that circuit simulation or chemical engineering or CFD (computa-
tional fluid dynamics). Several matrices (those from CFD) have almost symmetric patterns.
For these kind of matrices one may prefer symmetric permutations. Non–symmetric per-
mutations may sometimes reorder the matrix such that nonzeros occur far away from the
diagonal. In this situation the matrix may fill up quickly [12]. Since MA50 also includes
this option, we will comment on several examples with symmetric pivoting. Recently a new
method has been proposed to reorder matrices and to scale them a–priori [16]. This has
a dramatic impact on many iterative solution techniques based on approximate factoriza-
tion techniques [2, 16]. We will compare the results on the original matrices and on the
preprocessed matrices.

In each application area we will first give an overview over the numerical results subject
to matrices from specific areas. The matrices examined are collected in the following three
classes:

• circuit simulation, Table 2

• Computational fluid dynamics (CFD), Table 3

• chemical engineering, Table 4

In Tables 2, 3 and 4 we illustrate for several drop tolerances τ , how many linear systems
can be solved using the associated preconditioner and at most 500 steps of GMRES(30).
The comparison is illustrate for the new MA50–based ILU and ILUTP from SPARSKIT.
Tables 2, 3, 4 give a first impression on the effectiveness of the new approach. They also
confirm earlier experiments [6] performed on smaller matrices in MATLAB .

6.3 Matrices from circuit simulation problems

We now give detailed numerical results on matrices which arise from circuit simulation
problems. An overview on the performance depending on the drop tolerance τ is shown in
Table 2.

From Table 2 one can observe that especially ILUSTAB-T is relatively insensitive with
respect to the choice of τ . In fact systems with all sample matrices could be solved with
500 steps of GMRES(30) already using a drop tolerance τ = 0.1.

A large scale example from this application area will be presented to demonstrate the
performance of ILUSTAB compared with a sparse direct method MA50, MA50 with drop

On the Impact of Inverse-Based dropping on ILUs derived from MA50 14

Table 2: Circuit Simulation

Summary of results — Successful Computation, 11 test matrices

Precnd. Drop tolerance τ

0.5 0.3 0.1 0.01 10−3 10−4 10−5 10−6

ILUSTAB-T 7 9 11 11 11 11 11 11
ILUSTAB-S 6 6 6 7 11 11 11 11

MA50(τ) 0 0 1 2 3 8 9 10

ILUTP 6 6 6 7 8 8 10 10

tolerance τ and ILUTP. It should be pointed out that the computation time of ILUSTAB
will usually be closer to that of the direct solver MA50 than to that of ILUTP, since
the ILUSTAB has been derived from this direct method and it uses the associated data
structures.

The numerical experiments will also report on the fill–in (number of nonzeros of L + U
normalized by the number of nonzeros of A). Note that the MA50–based codes switch
to full matrix processing once the density of the Schur complement exceeds 50% of the
nonzeros. This aspect has influence on the amount of memory, since row indices need not
be stored for the associated submatrix.

Example 6 The matrix twotone from the Davis collection arises from the harmonic
balance method for efficient frequency domain analysis of large nonlinear circuits, it has
n = 120750 with 1224224 nonzero entries.

For this matrix ILUTP was not able to solve the problem without using MC64, since
either the method did not converge (τ > 10−1) or the memory requirement was gigantic
(τ 6 10−2). Figure 5 refers to ILUTP after MC64 is applied.

No improvement was observed for the MA50–based codes using preprocessing. Therefore
the results shown in Figure 5 are based on the original matrix. The simple dropping strategy
that is included to MA50 required a drop tolerance of τ 6 10−5 to compute an ILU that
ended up in a convergent GMRES iteration. Even in this case the time (1.8 · 103 [sec] for
τ = 10−5) is far beyond the time of the direct solver. These results are not included in
Figure 5 since they are far out of range. Here ILUSTAB-T is best with respect to fill–in,
ILUSTAB-S is the fastest (but more sensitive with respect to τ). Note that for relatively
large drop tolerances the total computation time is typically overlayed by the iterative
solution part while the factorization part starts dominating for smaller τ .

On the Impact of Inverse-Based dropping on ILUs derived from MA50 15

Figure 5: Solvers for matrix twotone, computation time (left) and, memory re-
quirement (right). Legend see Table 1.

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

200

250

300

350

400

450

500

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

6

7

8

9

10

11

12

13

co
m

p
u
ta

ti
on

ti
m

e
[s

ec
]

fi
ll
–i

n
n
z(
L

+
U

)/
n
z(
A

)

drop tolerance τ drop tolerance τ

6.4 Linear systems from CFD applications

In this subsection the performance of the numerical methods is examined for many exam-
ples from CFD. Problems arising in CFD typically have symmetrically structured nonzero
patterns. For this reasons we include results using symmetric pivoting. But it should be
noted that even the direct solver was not able to handle all problems using diagonal piv-
oting (88 of 91 matrices). Table 3 shows again the robustness of ILUSTAB with respect
to the drop tolerance τ . For this class of problems symmetric pivoting often has given the
best results.

Example 7 The first example in this application area is the matrix fidapm11 of size n =
22294 with 623554 nonzero entries. It is obtained from the SPARSKIT collection. It arises
from finite element modeling of a fully-coupled Navier-Stokes equation with temperature
equation and chemical convection-diffusion.

The nature of this problem gives an (almost) symmetric pattern and therefore MA50–based
codes use symmetric permutations in this case. MA50 gains from its option to compute
part of the decomposition in full storage mode. The fill–in factor 94.5 is less serious once
one takes into account that a submatrix of size 6260 is factored as dense matrix.

For ILUTP again preprocessing is strongly recommended to end up with fill–in that is still
computable.

As Figure 6 shows, even preprocessing does not always cure the problem of memory re-
quirement. While the MA50–based codes did not need preprocessing and even performed
better on the original matrix, ILUTP still needs a significant amount of memory, although

On the Impact of Inverse-Based dropping on ILUs derived from MA50 16

Table 3: Computational fluid dynamics (CFD)

Summary of results — Successful Computation, 91 test matrices

MA50 (sym. piv) 88

Precond. Drop tolerance τ

0.5 0.3 0.1 0.01 10−3 10−4 10−5 10−6

ILUSTAB-T 45 65 75 84 86 88 88 88
ILUSTAB-S 29 41 64 73 81 84 84 86

sy
m

.p
iv

.

MA50 (τ) 0 0 4 10 28 41 56 62

ILUSTAB-T 46 66 77 83 83 87 88 89
ILUSTAB-S 26 43 64 72 77 83 85 88

MA50 (τ) 0 0 4 11 28 48 64 65

ILUTP 11 15 27 46 55 57 59 62

its fill–in is still much below that of the direct solver.

Example 8 The matrix rma10 (Davis collection) arises from finite element modeling in
CFD. Its size is n = 46835 with 2374001 nonzero entries.

Here again symmetric pivoting is recommended for the MA50–based codes. Pivoting with-
out preserving the symmetric pattern has turned out to be a little bit worse. Again from
a practical point of view, ILUTP only worked in combination with MC64. See Figure 7
for a summary of the performance of the algorithms. The gain of using an incomplete ILU
decomposition compared with the direct solver reduces to the memory savings. In this
example the simple dropping strategy of MA50 needed τ = 10−7 to construct an ILU that
converges. Even in this case the time was 1.97 · 102 which more than factor 2 more than
the direct method. The fill-in was close to that of the direct method. These results are not
included in Figure 7 since they are partially far out of range.

Example 9 The next two examples are the matrix venkat01 and venkat50 from the
Davis collection. They are obtained from an unstructured solver for the 2D Euler equations
at different time steps (t = 1 and t = 50). Their size is n = 62424 with 1717792 nonzero
entries.

For this kind of matrix symmetric pivoting has turned out to be more efficient. In Figures
8 and 9 we summarize the methods. Here we note that MC64 did not significantly change
neither the computation time nor the memory requirements. For the matrix venkat50,
MA50 needed at least τ = 10−4. The computation time was more than 103 (out of range).

On the Impact of Inverse-Based dropping on ILUs derived from MA50 17

Figure 6: Solvers for matrix fidapm11, computation time (left) and, memory
requirement (right). Legend see Table 1

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

500

1000

1500

2000

2500

3000

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

10

20

30

40

50

60

70

80

90

100

co
m

p
u
ta

ti
on

ti
m

e
[s

ec
]

fi
ll
–i

n
n
z(
L

+
U

)/
n
z(
A

)

drop tolerance τ drop tolerance τ

Figure 7: Solvers for matrix rma10, computation time (left) and, memory re-
quirements (right). Legend see Table 1

10
−4

10
−3

10
−2

10
−1

10
0

20

40

60

80

100

120

140

10
−4

10
−3

10
−2

10
−1

10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

co
m

p
u
ta

ti
on

ti
m

e
[s

ec
]

fi
ll
–i

n
n
z(
L

+
U

)/
n
z(
A

)

drop tolerance τ drop tolerance τ

On the Impact of Inverse-Based dropping on ILUs derived from MA50 18

Figure 8: Solvers for matrix venkat01, computation time (left) and, memory
requirements (right). Legend see Table 1.

10
−4

10
−3

10
−2

10
−1

10
0

0

20

40

60

80

100

120

140

160

180

10
−4

10
−3

10
−2

10
−1

10
0

0

1

2

3

4

5

6

7

8

co
m

p
u
ta

ti
on

ti
m

e
[s

ec
]

fi
ll
–i

n
n
z(
L

+
U

)/
n
z(
A

)

drop tolerance τ drop tolerance τ

Figure 9: Solvers for matrix venkat50, computation time (left) and, memory
requirements (right). Legend see Table 1.

10
−4

10
−3

10
−2

10
−1

10
0

0

20

40

60

80

100

120

140

160

180

200

10
−4

10
−3

10
−2

10
−1

10
0

0

1

2

3

4

5

6

7

8

9

co
m

p
u
ta

ti
on

ti
m

e
[s

ec
]

fi
ll
–i

n
n
z(
L

+
U

)/
n
z(
A

)

drop tolerance τ drop tolerance τ

On the Impact of Inverse-Based dropping on ILUs derived from MA50 19

Example 10 The matrix av41092 (Davis collection) arises from a finite element problem.
Its size is n = 41092 with 1683902 nonzeros.

From the pattern of this matrix one may expect the methods to be significantly improved
by MC64. The MA50–based codes are not significantly improved using MC64. In contrast
to this, ILUTP fails without MC64 since the memory requirement is too big. See Figure
10 for the numerical results. Here the first pass of both ILUSTAB versions consumes most
computation time, especially between .2 and 10−2.

Figure 10: Solvers for matrix av41092, computation time (left) and, memory
requirements (right). Legend see Table 1

10
−4

10
−3

10
−2

10
−1

10
0

0

100

200

300

400

500

600

700

800

900

1000

10
−4

10
−3

10
−2

10
−1

10
0

2

4

6

8

10

12

14

16

18

co
m

p
u
ta

ti
on

ti
m

e
[s

ec
]

fi
ll
–i

n
n
z(
L

+
U

)/
n
z(
A

)

drop tolerance τ drop tolerance τ

For problems from CFD, ILUSTAB in combination with diagonal pivoting has turned out
to be a good compromise between memory requirement and computation time. Usually
ILUSTAB-T is more robust but slower than ILUSTAB-S. In the rarely happened that
for the relevant drop tolerances the performance of ILUSTAB was significantly behind
that of the direct method, but often significant improvements especially with respect to
memory were observed. ILUTP is very sensitive with respect to the choice of τ . Using
MC64 preprocessing is often useful for ILUTP but it does not always help.

6.5 Problems arising from chemical engineering

As final area of problems several matrices arising in chemical engineering are discussed.
These matrices are typically unstructured and symmetric pivoting is not used for these
problems. Table 4 shows that ILUSTAB-T performs excellent when being applied to these
kind of matrices. Especially the robustness with respect to the choice of the drop tolerance
τ is impressive.

On the Impact of Inverse-Based dropping on ILUs derived from MA50 20

Table 4: Chemical Engineering

Summary of results — Successful Computation, 62 test matrices

Precond. Drop tolerance τ

0.5 0.3 0.1 0.01 10−3 10−4 10−5 10−6

ILUSTAB-T 50 50 55 60 62 62 62 62
ILUSTAB-S 23 28 33 38 47 57 60 62

MA50(τ) 2 3 9 14 20 29 36 45

ILUTP 17 20 22 32 36 42 45 46

Example 11 The matrix lhr71c from the Davis collection arises from light hydrocarbon
recovery problems in chemical engineering. Its size is n = 70304 with 1528092 nonzero
entries.

In Figure 11 we show the numerical results. Surprisingly in this case, the MA50–based
codes are not very much affected by MC64, although the original system is strongly un-
symmetric already with respect to the pattern. But without MC64, ILUTP performs worse.
With respect to memory savings ILUSTAB-T is a good compromise between the pure ILU
(without pivoting with respect to sparsity) and the exact direct solver.

Figure 11: Solvers for matrix lhr71c, computation time (legend see Table 1)

10
−8

10
−6

10
−4

10
−2

10
0

20

30

40

50

60

70

80

90

10
−8

10
−6

10
−4

10
−2

10
0

3

3.5

4

4.5

5

5.5

co
m

p
u
ta

ti
on

ti
m

e
[s

ec
]

fi
ll
–i

n
n
z(
L

+
U

)/
n
z(
A

)

drop tolerance τ drop tolerance τ

Example 12 The final example is the matrix bayer02 from the Davis collection. It arises
from chemical process simulation (n = 13935, 63679 nonzeros.

On the Impact of Inverse-Based dropping on ILUs derived from MA50 21

In contrast to the matrices from CFD the matrix bayer02 is strongly unsymmetrically
structured. Here additional preprocessing accelerates all methods, but the MA50–based
methods are less sensitive with respect to preprocessing. Preprocessing has a strong influ-
ence on ILUTP. This can be seen not only from the different performance with respect to
the computation time but also with respect to the drop tolerance which has to be adjusted
down to 10−9 without preprocessing (cf. Figure 12).

Figure 12: Solvers for matrix bayer02, computation time (left) and, memory
requirements (right). Legend see Table 1.

10
−8

10
−6

10
−4

10
−2

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10
−8

10
−6

10
−4

10
−2

10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

co
m

p
u
ta

ti
on

ti
m

e
[s

ec
]

fi
ll
–i

n
n
z(
L

+
U

)/
n
z(
A

)

drop tolerance τ drop tolerance τ

6.6 Observations

We have seen from several numerical examples that incomplete LU decompositions that
simply drop small entries do not necessarily result in good preconditioners. Other addi-
tional techniques are required. For ILUTP this is often achieved using MC64 and confirms
previous observations [2, 16]. In this case ILUTP often is the fastest method. But this
does not necessarily mean that it is also the most efficient method with respect to memory
savings. For MA50 it has turned out that simply dropping small entries is not really helpful
which also confirms similar observations on ILUs that are derived from a direct solver [24].
A significant improvement are the dropping strategies of ILUSTAB. ILUSTAB-T usually
is less sensitive with respect to the drop tolerance τ , ILUSTAB-S is often faster. The ro-
bustness with respect to τ makes it much easier to tune the parameters. Quite often a
relatively big τ is sufficient. In addition ILUSTAB inherits the benefits of incomplete LU
decompositions to save memory in those cases where direct solvers require a large amount
of memory. Its performance in general does not significantly vary when preprocessing like
MC64 is added, since it is based on a direct method that performs pivoting with respect
to the sparsity pattern. When switching to smaller drop tolerances it turns more and more

On the Impact of Inverse-Based dropping on ILUs derived from MA50 22

Figure 13: Solvers for matrix bayer02 (after applying MC64), computation time
(left) and, memory requirements (right). Legend see Table 1.

10
−4

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

10
−4

10
−3

10
−2

10
−1

10
0

0.5

1

1.5

2

2.5

3

3.5

4

co
m

p
u
ta

ti
on

ti
m

e
[s

ec
]

fi
ll
–i

n
n
z(
L

+
U

)/
n
z(
A

)

drop tolerance τ drop tolerance τ

to a direct method. For those cases where the direct solver performs excellent, the gains of
ILUSTAB are smaller and may reduce to memory savings. The additional administration
together with some changes that were necessary for the incomplete factorization process
slow down ILUSTAB slightly but still time and memory requirement are often comparable
with the direct solver.

7 Conclusions

We have presented several numerical examples for ILUSTAB. The main technique of this
ILU is that the row/column norms of the inverse triangular factors are estimated using
a condition estimator. The implementation is based on an existing direct solver (MA50).
Numerical experiments have shown the improved robustness of this approach. The method
significantly gains with respect to computational time and even more with respect to
memory savings. Parameters like the drop tolerance are relatively robust with respect to
the variation of the problem. While using a rough drop tolerance one often saves memory
and time, already for a moderate drop tolerance ILUSTAB solves most of the sample
matrices. Extremely small drop tolerances are rare in practice, although possible. Even in
the case of a small drop tolerance the algorithm gains from the advantages of the original
direct solver. This makes this approach attractive as alternative to direct solvers. So far
there is only little theory based on links to approximate inverse techniques. These are
currently under investigation.

On the Impact of Inverse-Based dropping on ILUs derived from MA50 23

References

[1] M. Benzi, J. K. Cullum, and M. Tůma. Robust approximate inverse preconditioning for the
conjugate gradient method. SIAM J. Sci. Comput., 22:1318–1332, 2000.

[2] M. Benzi, J. C. Haws, and M. Tůma. Preconditioning highly indefinite and nonsymmetric
matrices. SIAM J. Sci. Comput., 22:1333–1353, 2000.

[3] M. Benzi, C. D. Meyer, and M. Tůma. A sparse approximate inverse preconditioner for the
conjugate gradient method. SIAM J. Sci. Comput., 17:1135–1149, 1996.

[4] M. Benzi and M. Tůma. A sparse approximate inverse preconditioner for nonsymmetric
linear systems. SIAM J. Sci. Comput., 19(3):968–994, 1998.

[5] M. Benzi and M. Tůma. A robust incomplete factorization preconditioner for positive definite
matrices. Numer. Lin. Alg. w. Appl., 2001. To appear.

[6] M. Bollhöfer. A robust ILU with pivoting based on monitoring the growth of the inverse
factors. Linear Algebra Appl., 338(1–3):201–218, 2001.

[7] M. Bollhöfer and Y. Saad. On the relations between ILUs and factored approximate inverses.
SIAM J. Matrix Anal. Appl., 24(1):219–237, 2002.

[8] A. Cline, C. B. Moler, G. Stewart, and J. Wilkinson. An estimate for the condition number
of a matrix. SIAM J. Numer. Anal., 16:368–375, 1979.

[9] T. Davis. Sparse matrix collection. available online at
http://www.cise.ufl.edu/∼davis/sparse/.

[10] T. A. Davis. Algorithm 8xx: Umfpack v3.2, an unsymmetric-pattern multifrontal method
with a column pre-ordering strategy. Technical Report TR-02-002, Univ. of Florida, 2002.

[11] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu. A supernodal
approach to sparse partial pivoting. SIAM J. Matrix Anal. Appl., 20(3):720–755, 1999.

[12] I. S. Duff. Private communication. CERFACS, 2001.

[13] I. S. Duff, A. Erisman, and J. Reid. Direct Methods for Sparse Matrices. Oxford University
Press, 1986.

[14] I. S. Duff, R. G. Grimes, and J. G. Lewis. Sparse matrix test problems. ACM Trans. Math.
Software, 15:1–14, 1989.

[15] I. S. Duff, R. G. Grimes, and J. G. Lewis. Users’ guide for the Harwell–Boeing sparse matrix
collection (release 1). Technical Report RAL–TR–92–086, Rutherford Appleton Laboratory,
Oxfordshire, England, 1992.

[16] I. S. Duff and J. Koster. The design and use of algorithms for permuting large entries to the
diagonal of sparse matrices. SIAM J. Matrix Anal. Appl., 20:889–901, 1999.

[17] I. S. Duff and J. Reid. The design of MA48, a code for the direct solution of sparse unsym-
metric linear systems of equations. ACM Trans. Math. Software, 22:187–226, 1996.

[18] S. Eisenstat and J. W. H. Liu. Exploiting structural symmetry in a sparse partial pivoting
code. SIAM J. Sci. Comput., 14:253–257, 1993.

On the Impact of Inverse-Based dropping on ILUs derived from MA50 24

[19] R. Freund and N. Nachtigal. QMR: A quasi-minimal residual method for non-hermitian
linear systems. Numer. Math., 60:315–339, 1991.

[20] R. W. Freund, G. H. Golub, and N. M. Nachtigal. Iterative solution of linear systems. Acta
Numerica, pages 1–44, 1992.

[21] J. A. George and J. W. Liu. Computer Solution of Large Sparse Positive Definite Systems.
Prentice-Hall, Englewood Cliffs, NJ, USA, 1981.

[22] J. R. Gilbert, C. Moler, and R. Schreiber. Sparse matrices in MATLAB: Design and imple-
mentation. SIAM J. Matrix Anal. Appl., 13:333–356, 1992.

[23] J. R. Gilbert and T. Peierls. Sparse partial pivoting in time proportional to arithmetic
operations. SIAM J. Sci. Statist. Comput., 8:862–874, 1988.

[24] J. R. Gilbert and S. Toledo. An assessment of incomplete-lu preconditioners for nonsym-
metric linear systems. Informatica, 24:409–425, 2000.

[25] G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins University
Press, third edition, 1996.

[26] A. Greenbaum. Iterative Methods for Solving Linear Systems. Frontiers in Applied Mathe-
matics. SIAM Publications, 1997.

[27] A. Gupta. Improved symbolic and numerical factorization algorithms for unsymmetric sparse
matrices. SIAM J. Matrix Anal. Appl., 24:529 – 552, 2002.

[28] S. Kharchenko, L. Kolotilina, A. Nikishin, and A. Yeremin. A reliable AINV–type precondi-
tioning method for constructing sparse approximate inverse preconditioners in factored form.
Numer. Lin. Alg. w. Appl., 8(3):165–179, 2001.

[29] J. Meijerink and H. A. V. der Vorst. An iterative solution method for linear systems of which
the coefficient matrix is a symmetric M–matrix. Math. Comp., 31:148–162, 1977.

[30] N. Munksgaard. Solving sparse symmetric sets of linear equations by preconditioned conju-
gate gradient method. ACM Trans. Math. Software, 6:206–219, 1980.

[31] National Institute of Standards. Matrix market. available online at
http://math.nist.gov/MatrixMarket/.

[32] Y. Saad. ILUT: a dual threshold incomplete ILU factorization. Numer. Lin. Alg. w. Appl.,
1:387–402, 1994.

[33] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing, Boston, 1996.

[34] Y. Saad and M. Schultz. GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 7:856–869, 1986.

[35] The MathWorks Inc. MATLAB version 6.1 release 12, 2001. a software program.

[36] M. Tismenetsky. A new preconditioning technique for solving large sparse linear systems.
Linear Algebra Appl., 154–156:331–353, 1991.

