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Abstract

We discuss the construction of algebraic multilevel preconditioners for the conjugate gra-
dient method and derive explicit and sharp bounds for the convergence rates. We present
several numerical examples that demonstrate the efficiency of the preconditioner.

1 Introduction

For the solution of large sparse linear systems of the form

Ax = b, A ∈ GL (n,R), b ∈ Rn, (1)

sparse approximate inverses [17, 16, 7, 12, 3, 18] have been successfully employed as preconditioners
for Krylov–subspace methods [9, 19, 11]. The general principle in these methods is to construct a
matrix B that is sparse and approximates A−1. Several techniques have been developed, such as
minimizing the norm of ‖AB − I‖ subject to some prescribed pattern [16, 7, 12] or biconjugate
techniques that are based on approximate factorizations Z>AW ≈ D, where Z,W are upper
triangular matrices and D is diagonal [3, 4].

These techniques work well for large classes of matrices, but there are cases when the sparse
approximate inverse needs a large number of nonzero entries to become a suitable approximation to
the inverse of A. Also, in the case of approximate inverses based on norm–minimizing techniques,
it happens frequently that many singular values of the residual matrix E = I − AB are quite
small, while a small number of singular values are big and stay big even when more fill–in for B
is allowed.

Consider the following example.

Example 1 For the symmetric positive definite matrix LANPRO/NOS2 from the Harwell–Boeing
collection [8], we apply the sparse approximate inverse suggested in [17, 16] with the sparsity
pattern of Ak, k = 0, 1, 2, 3. This approach constructs an approximate inverse L of the Cholesky
factor L̃ of A−1, i.e., L̃ ≈ L where L̃L̃> = A−1. To evaluate the quality of the preconditioner,
we set E = I − ωL>AL for a suitably chosen parameter ω, i.e., E is our residual, adapted to
the symmetric positive case. The scaling parameter ω is chosen, so that as many eigenvalues as
possible of L>AL are close to 1. In Figure 1 we display the singular values of E in decreasing
order. We observe that most of the singular values tend to 0, while a few singular values stay close
to 1 even when increasing the number of nonzeros for L.

The observation that many singular values are small but some stay large, even when the fill-in
in the approximate inverse is increased, can be interpreted as follows. The matrix B approximates
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Figure 1: Singular values of the residual matrix E
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A well on a subspace of large size, while there is almost no approximation on the complementary
subspace. In the numerical treatment of partial differential equations this effect is typically called
smoothing property [13].

If, after scaling the norm to 1, many of the singular values of the matrix E = I−AB are small,
while the others are close to 1, then it follows that

E = I −AB = UV > + F = E0 + F, (2)

with matrices U, V > ∈ Rn,r and ‖F‖ 6 η < 1, i.e., the residual E = I −AB can be approximated
well by a matrix of rank r much smaller than n. Here realistically r 6 cn with c ≈ 0.5. We want
to use such an approximative factorization UV > for the preconditioning of large scale problems.
If the rank r of the approximation is of this order, then, to keep the storage requirements small, it
would be ideal to have a sparse representation of the approximation UV >. This does not necessary
mean that U, V have to be sparse, e.g. we could have E0 = PZ−1P̂> with sparse matrices P, P̂ , Z,
while their product need not be sparse at all.

In order to determine such a sparse factorization, we observe that if η � 1, then the entries of
E0 only slightly differ from those of E. So we may expect that an appropriate selection of columns
of E will be a good choice for determining UV >. This is underscored by the following lemma.

Lemma 1 [6]. Let E ∈ Rn,n and let E = [U1, U2] diag (Σ1,Σ2)[V1, V2]> be the singular value
decomposition of E with U1, V1 having r columns and ‖Σ2‖2 6 ε. Then there exist a permutation
matrix Π = [Π1,Π2] with analogous partitioning such that

inf
Z∈Rr,r

‖U1Z − EΠ1‖ 6 ε. (3)

By applying Lemma 1 to E> instead of E we can analogously approximate V1 by suitably
chosen rows of E.

In [6] it has been discussed how one can use approximate factorizations such as (2) to modify
a given preconditioner B. Instead of iterating with the preconditioned matrix AB one uses the
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updated preconditioned matrix AB(I+(AB)−1UV >). In order to avoid that a small error, between
the exact subspace U (associated with large singular values of E) and a set of columns of E, blows
up the norm of UV >, one determines a decomposition of the form

E = (AB)PS + F. (4)

Here we require that ‖F‖ 6 η and P, S> ∈ Rn,r to keep the error AB(I + (AB)−1UV >) − I =
AB(I+PS)−I small. But since E = I−AB, this means that we have to determine a factorization

AB(I + PS) = I − F (5)

with ‖F‖ 6 η.
For the analysis of such a preconditioner, we need to study the approximation properties of

the correction term I +PS in (5). A detailed analysis and sharp convergence bounds that extend
results of [6] are given in Section 3.

Furthermore, to obtain an efficient linear system solver, in (4) we have to find a representation
PS = P (Z−1P̂>) with sparse matrices P, P̂ , Z and we also have to find an efficient method to
determine the desired columns of E as suggested by Lemma 1. Both topics have been discussed
in [6]. To determine the columns of E for the construction of the preconditioner, one could use a
QR–like decomposition with column pivoting of EΠ = QR and use as P the first r columns of Q.
A more elegant choice would be to use instead of the first r columns of Q the first r columns of EΠ,
since their columns span the same space as the associated columns of Q. But the computation of
such a QR–like decomposition, i.e., in particular the computation of the pivoting matrix Π, has
to be carried out with small memory requirements.

Once a strategy for constructing and updating sparse approximate inverse preconditioners has
been established, this approach can be applied in a recursive way, leading to algebraic multigrid
type methods. These methods are discussed in Section 2. Essential for the success of these
multilevel processes is the coarsening process that we discuss in Section 4. We illustrate our
results with several numerical examples.

In the sequel for symmetric matrices A,B we will use the notation A > B, if A − B has
nonnegative eigenvalues. When talking about a matrix P we do not strictly distinguish between
the matrix P itself and the space {Px : x ∈ Rr} that is spanned by its columns.

2 Algebraic Multilevel Preconditioners

In this section we briefly review two types of algebraic multilevel preconditioners for symmetric
positive definite systems that were introduced in [6]. Since here we concentrate on the symmetric
case, we focus on preconditioners B = LL> and use the symmetrized version of residual matrix
E = I − L>AL. The symmetrized version of (4) then is as

E = (L>AL)PS + F.

Let A ∈ Rn,n be symmetric positive definite. Suppose that LL> is a symmetric positive definite
matrix that is an approximation to A−1 and that we use as preconditioner for the conjugate
gradient method [10]. Here it is understood that L is a sparse matrix, so that linear systems can
be solved with low complexity on the available computer architecture. Suppose that one realizes
during the iteration process that the approximation of A−1 by LL> is not satisfactory, i.e., that
the condition number of the preconditioned matrix M = L>AL is not small enough to get fast
convergence of the conjugate gradient method.

In order to improve the preconditioner one can determine a matrix of the form

M (1) = L(I + PZ−1P>)L> (6)

with P ∈ Rn,p, Z ∈ Rr,r nonsingular, sparse and r smaller than n, so that M (1) is a better
approximation to A−1 than LL>. In (6) the sparse approximate inverse LL> is augmented as
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LL> −→ LL>+
n
×
r

r × n

Note that one does not have to assume that P has low rank, but only that r 6 cn with c < 1, e.g.
c = 0.5. It is very important, however, that P,Z are sparse.

The particular form (6) resembles that of an algebraic two–level method, where multiplication
with P, P> corresponds to the mapping between fine and coarse grid and Z represents the coarse
grid system. Note further, that in using L(I + PZ−1P>)L> as a preconditioner for A, only a
system with Z has to be solved.

As shown in Lemma 1, skilfully chosen columns/rows of the residual matrix E = I −M =
I − L>AL can be used to approximate the invariant subspace of E associated with its large
eigenvalues. As will be shown below, precisely this invariant subspace has to be approximated by
P . In the sense of the underlying undirected graph of E, we refer to those nodes as coarse grid
nodes whose columns/rows of E will be used to approximate the invariant subspace of E associated
with its largest singular values while the remaining nodes are called fine grid nodes. The process
of detecting a suitable set of coarse grid nodes will be called coarsening process. Once one has
selected the coarse grid nodes, they are in a natural way embedded in the initial graph. In addition
the subset of coarse grid nodes has its own related graph. It has been shown for special case in [6]
that among all symmetric positive preconditioners for A of type M = L(I + PZ−1P>)L> with
fixed L and P the choice Z = P>MP is (almost) optimal in the sense of quadratic forms. In this
case the graph of Z describes a natural graph associated with the coarse grid nodes. We will call
it coarse grid in analogy to the graph associated with a grid in the numerical solution of partial
differential equations.

Recalling the well-known techniques of constructing good preconditioners for the conjugate
gradient method applied to symmetric positive definite systems, e.g. [10, 14, 20], we should
choose P and Z such that

µA 6
(
M (1)

)−1

6 µκ(1)A (7)

with κ(1) as small as possible and µ > 0. Here κ(1) > 1 is the condition number of M (1)A, i.e.,
the ratio of the largest by the smallest eigenvalue of M (1)A and thus κ(1) = 1 would be optimal.
It is well-known that a small condition number is essential for fast convergence of the conjugate
gradient method [10].

For a discretized elliptic partial differential equation one can construct optimal preconditioners
(with a condition number that does not depend on the fineness of the discretization) using multi-
grid methods [14]. In order to obtain a similar preconditioner from sparse approximate inverses,
consider the use of LL> in a linear iteration scheme with initial guess x(0) ∈ Rn. The iteration
scheme [22] for the solution of Ax = b has the form

x(k+1) = x(k) + LL>(b−Ax(k)), k = 0, 1, 2, . . . .

The error propagation matrix I−LL>A satisfies x−x(k+1) = (I−LL>A)(x−x(k)). In multilevel
techniques [13] one uses this iteration for pre and post smoothing and in addition one has to add
a coarse grid correction. In terms of the error propagation matrix this means that instead of
I − LL>A we have (I − LL>A)(I − P̂Z−1P̂>A)(I − LL>A) as error propagation matrix, where
P̂ = LP . This product can be rewritten as I −M (2)A with

M (2) = 2LL> − LL>ALL> + (I − LL>A)P̂Z−1P̂>(I −ALL>)

= L
(
2I −M + EPZ−1P>E

)
L>, (8)

where M = L>AL and E = I −M . Note that when applying M (2) to a vector x, the matrices
A (or M) and LL> have to be applied only twice, i.e., the application of this operator is less
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expensive than it looks. Again one is interested in choosing P,Z such that

µA 6
(
M (2)

)−1

6 µκ(2)A (9)

with κ(2) as small as possible.
To derive the approximation properties of M (1),M (2) we first discuss the optimal factors P,Z

for given A,L. We use the spectral decomposition of the residual matrix

E = I − L>AL = I −M = V ΛV >, (10)

where Λ = diag (λ1 . . . , λn) with diagonal elements in decreasing order and V = [v1, . . . , vn] is
orthogonal.

For a given fixed rank r, it has been shown in [2, 6] that

P := [v1, . . . , vr] , Z := P>MP (11)

gives an (almost) optimal approximation, i.e., we obtain the minimal κ(1) in (7). But this obser-
vation is more of theoretical interest, since in practice the spectral decomposition is not available
and even if it were available, then it would be very expensive to apply, since the matrix P would
be a full matrix. Instead we would like to determine P,Z that are inexpensive to apply and still
produce good approximation properties in M (1) and M (2). The specific choice Z = P>MP then
corresponds to an exact two–level method. A more general choice of Z should satisfy the relation

γZ 6 P>MP 6 ΓZ

to fit into the framework which we will present in Section 3. One can read Z as a perturbed coarse
grid system or a perturbed 2–level method, when P>MP is not solved exactly. The common
choice to perturb P>MP would be to substitute (P>MP )−1 recursively by further multilevel
steps. To do this we replace the term Z−1 in

L
(
I + PZ−1P>

)
L>, where Z = P>MP, (12)

by a further additive approximation L1

(
I + P1A

−1
H,1P

>
1

)
L>1 , where L1L

>
1 is a factored sparse ap-

proximate inverse of the exact coarse grid system P>MP , P1 is used to define the next coarsening
step and AH,1 = (P>1 L

>
1 ZL1P1). A three–level preconditioner then has the form

M
(1)
2 = L

(
I + P

(
L1

(
I + P1A

−1
H,1P

>
1

)
L>1

)
P>
)
L>

= LL> + LPL1L
>
1 P
>L> + LPL1P1A

−1
H,1P

>
1 L
>
1 P
>L.

For the construction of higher levels, the procedure is analogous. This leads to the following
algebraic multilevel schemes.

Definition 1 Let A ∈ Rn,n be symmetric positive definite and let n = nl > nl−1 > · · · > n0 > 0
be integers. For chosen full rank matrices P̂k ∈ Rnk,nk−1 , k = l, l − 1, . . . , 1, define Ak via

Ak =

{
A k = l

P̂>k+1Ak+1P̂k+1 k = l − 1, l − 2, . . . , 0.

Choose nonsingular Lk ∈ Rnk,nk such that LkL
>
k ≈ A−1

k , k = 0, . . . , l. Then multilevel sparse

approximate preconditioners M
(1)
l ,M

(2)
l are recursively defined for k = 0, 1, 2, . . . , l via

M
(1)
k =

{
A−1

0 k = 0

LkL
>
k + P̂kM

(1)
k−1P̂

>
k k > 0

(13)

and

M
(2)
k =

{
A−1

0 k = 0

Lk(2I − L>k AkLk)L>k + (I − LkL>k Ak)P̂kM
(2)
k−1P̂

>
k (I −AkLkL>k ) k > 0

(14)
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For l = 1 we obviously obtain the operators M (1) and M (2). If one exactly decomposes
A−1

0 = L0L
>
0 , e.g. by Cholesky decomposition and sets Πk = P̂lP̂l−1 · · · P̂k+1 then one obtains [6]

M
(1)
l =

l∑
k=0

ΠkLkL
>
k Π>k (15)

and
I −M (2)

l A = (I −ΠlLlL
>
l Π>l A) · · · (I −Π0L0L

>
0 Π>0 A) · · · (I −ΠlLlL

>
l Π>l A). (16)

One sees from (15) and (16) that M
(1)
l can be viewed as additive multilevel method, since all the

projections Πk are formally performed simultaneously, while M
(2)
l can be viewed as multiplicative

multilevel method, since the projections Πk are performed successively.

Operator M
(2)
l is immediately derived from the V –cycle method in partial differential equations

[13]. For operator M
(1)
l a special case occurs when LkL

>
k = 1

αk
I. In this case Ek = I − αkAk

and choosing columns of Ek can be expressed as applying a permutation Φk ∈ Rnk,nk−1 to Ek, i.e.

Pk = (I − αkAk)Φk. In this case M
(1)
l reduces to

M
(1)
l =

1

αl
(I + αlPlMl−1P

>
l ) =

1

αl

(
I +

αl
αl−1

Pl
(
I + αl−1Pl−1Ml−2P

>
l−1

)
P>l

)
.

For this type of operator in [15] optimal choices for αk have been discussed with respect to an a
priori chosen permutation matrix Φk. This kind of operator has also been studied in [1, 2].

In summary, the construction of updated preconditioners can be interpreted as a multilevel
scheme. In view of this interpretation we need an analysis of the approximation properties of the
resulting operators. In the following section we extend the analysis that was introduced in [6] and
sharpen the bounds derived there.

3 Approximation Properties

In this section we discuss the approximation properties of M (1) and M (2) from (6), (8) for the
case l = 1 and an approximate coarse grid system Z ≈ P̂>AP̂ . To simplify notation we will drop
the index k from Definition 1.

We first recall the following result:

Theorem 2 [6] Let A ∈ Rn,n be symmetric positive definite and let L ∈ Rn,n be nonsingular
such that M = L>AL 6 I. Let P ∈ Rn,r with rank (P ) = r, P̂ = LP and let W ∈ Rn,n−r have
n − r be such that W>MP = 0. Let, furthermore, Z ∈ Rr,r be symmetric positive definite such
that

γP>MP 6 Z 6 ΓP>MP (17)

with positive constants γ,Γ.
i) If

W>W 6 ∆W>MW, (18)

then for M (1) as in (13) we have

γ

γ + 1
A 6

(
M (1)

)−1

6 max{Γ,∆}A. (19)

ii) If in (17) γ > 1 and[
0 0
0 W>MW

]
6 ∆ [P,W ]

>
(M − EME) [P,W ] , (20)

then for M (2) as in (14) we have

A 6
(
M (2)

)−1

6 max{Γ,∆}A, (21)

where E = I −M .
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For the operator M (1) one can also estimate the condition number of M (1)A in terms of the
angle between the invariant subspace associated with the r smallest eigenvalues and P , see [2].
Note that in Theorem 2 we have ∆ > 1, since M 6 I. Thus, if we set Z = P>MP then γ = Γ = 1
and the bounds for M (1) are determined by ∆ only. Via (18) we see that the inequality for M is
only needed on the subspace W which is the M–orthogonal complement of spanP .

In the following result we sharpen the bounds for M (1),M (2) in Theorem 2.

Theorem 3 Under the assumptions of Theorem 2 the following holds.
i) If ∆, ∆̂ are constants satisfying

W>W 6 ∆W>MW, W>MW 6 ∆̂W>M2W, (22)

then for M (1) as in (13) we have

γ

γ + 1
A 6 (M (1))−1 6 max{Γ, 2(Γ + 1)∆∆̂

∆ + Γ∆̂
}A. (23)

ii) If in (17) γ > 1 and ∆̂ is a constant satisfying

W>MW 6 ∆̂W>(M − EME)W, (24)

then for M (2) as in (14) we have

A 6 (M (2))−1 6 Γ∆̂A. (25)

Proof. For the proof of i) set ∆ = max{Γ, 2 (Γ+1)∆∆̂

∆+Γ∆̂
}. It suffices to show that

(
M2 +MPZ−1P>M

)−1
6 ∆M−1.

Multiplying with [W,P ]
−1

from the left and its transpose from the right and using the fact that
W>MP = 0, we obtain(

W>M2W W>M2P
P>M2W P>M2P + P>MPZ−1P>MP

)−1

6 ∆

(
W>MW 0

0 P>MP

)−1

.

The diagonal blocks of the left hand side matrix are the inverses M−1
11 ,M

−1
22 of the Schur–

complements M11,M22, where

M22 = P>MPZ−1P>MP + P>M
(
I −MW (W>M2W )−1W>M

)
MP >

1

Γ
P>MP,

and

M11 = W>M2W −W>M2P
(
P>M2P + P>MPZ−1P>MP

)−1
P>M2W

> W>M2W −W>M2P

(
P>M2P +

1

Γ
P>MP

)−1

P>M2W

> W>M2W − Γ

Γ + 1
W>M2P

(
P>M2P

)−1
P>M2W

=
1

Γ + 1
W>M2W +

Γ

Γ + 1
W>M

(
I −MP

(
P>M2P

)−1
P>M

)
MW

=
1

Γ + 1
W>M2W +

Γ

Γ + 1
W>M

(
W
(
W>W

)−1
W>

)
MW

>

(
1

(Γ + 1)∆̂
+

Γ

(Γ + 1)∆

)
W>MW.

7



Since for all symmetric positive definite matrices(
A11 A12

A>12 A22

)
6 2

(
A11 0
0 A22

)
,

inequality (23) follows.
For ii), we set T = I−M1/2P (P>MP )−1P>M1/2, T̃ = I−M1/2PZ−1P>M1/2 and ∆ = Γ∆̂.

T is the exact orthogonal projection to M1/2W , which is the orthogonal complement of M1/2P
and T̃ can be interpreted as a special perturbation of T . We can see easily that

I −M1/2L−1M (2)L−>M1/2 = I − (2M −M2)− EM1/2PZ−1P>M1/2E = ET̃E.

In order to show (25), we have to find ∆ > 0 such that

∆(I − ET̃E) >M1/2L−1A−1L−>M1/2 = I,

or equivalently

ET̃E 6 (1− 1

∆
)I.

Note that (24) is equivalent to

TE2T 6 (1− 1

∆̂
)I.

This can be seen by multiplying with M1/2 on both sides and with [P,W ] from the right and its
transpose from the left. This yields

TE2T 6 (1− 1

∆̂
)I

or equivalently

[P,W ]>M1/2TE2TM1/2[P,W ] 6 (1− 1

∆̂
)[P,W ]>M [P,W ].

Again this is equivalent to[
0 0
0 W>EMEW

]
6 (1− 1

∆̂
)

[
P>MP 0

0 W>MW

]
and it follows that

ETE = ET 2E 6 (1− 1

∆̂
)I.

Since T̃ 6 (1− 1
Γ )I + 1

ΓT it suffices to choose ∆ > 0 such that

(1− 1

Γ
)EME +

1

Γ
EM1/2TM1/2E 6

(
1− 1

Γ
+

1

Γ
(1− 1

∆̂
)

)
M 6 (1− 1

∆
)M

to obtain (25). 2

Note that in Theorem 3, if W>W 6 ∆W>MW , then we already have W>MW 6 ∆W>M2W .
Thus ∆̂ 6 ∆ and

(Γ + 1)∆∆̂

∆ + Γ∆̂
6 ∆.

In this sense the bounds of Theorem 3 are sharper than the bounds of Theorem 2. But if ∆̂� ∆
then we have

(Γ + 1)∆̂

1 + Γ∆̂
∆

6 (Γ + 1)∆̂
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and this is almost an equality. So if Z is scaled such that Γ = 1, then we obtain the sharper bound

(M (1))−1 6 4∆̂A.

In other words, the inequality W>MW 6 ∆̂W>M2W gives much better information on the
approximation properties than the inequality W>W 6 ∆W>MW .

We have a similar situation for M (2). Clearly ∆̂ 6 ∆. But ∆̂� ∆ is possible.
We will demonstrate the difference between the bounds in Theorems 2 and 3 in the following

examples.

Example 2 Consider the problem

−(au′)′ = f in [0, 1], u(0) = u(1) = 0,

where

a(x) =


100 x ∈ [0, 1/4)
102 x ∈ (1/4, 1/2)
103 x ∈ (1/2, 3/4)
104 x ∈ (3/4, 1]

and on the interfaces 1/4, 1/2, 3/4 the mean value is taken. We discretize this problem using
piecewise linear finite elements and a uniform mesh size h = 1/512. We compare the condition
number of the preconditioned system matrix for the two–level preconditioners

M
(1)
i = D(I + PiA

−1
H,iP

>
i )D, M

(2)
i = D(2I −M + EPiA

−1
H,iP

>
i E)D,

where D is the positive square root of the diagonal of A and where Pi is the matrix of columns
2, 4, 6, . . . , 2i of E = I − 1

2M . Here M is defined via M = DAD. We have that AH,i = P>i MPi
is the coarse grid system. Note that except for the nodes located near 1/4, 1/2, 3/4, the matrix E
essentially corresponds to the matrix tridiag([ 1

4 ,
1
2 ,

1
4 ]). In Figure 2 we depict the exact condition

number of the preconditioned system for preconditioner M (1) as well as the bounds on the condition
numbers obtained by Theorems 2 and 3. The horizontal axis shows the number of columns used in
Pi.

Figure 2 shows that for M (1) the bound obtained by Theorem 2 is more pessimistic, especially
when more columns are used in Pi. The estimate from Theorem 3 is sharper.

Figure 3 shows the bounds for M (2). In this case one can not distinguish between the exact
value and both bounds (up to numerical rounding errors), but it should be noted that the bound of
Theorem 3 is the easiest one to obtain.

Example 2 illustrates the situation for a simple one–dimensional model problem. Our next
example demonstrates that similar results also holds in the two–dimensional case.

Example 3 Consider the problem

−ε2uxx − uyy = f in [0, 1]2

u = g on ∂[0, 1]2

where ε = 10−2. Again we use piecewise linear finite elements. The discretization is done using a
uniform triangulation with two additional boundary layers of size ε

4 × 1 near the left and also near
the right boundary (see the grid below). Within these boundary layers the triangles are condensed
by an additional factor ε/4 in x–direction. In y–direction the mesh size is h = 1/32.
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Figure 2: Bounds for the condition number when using preconditioner M (1). Exact condition
number versus ∆ (Theorem 2) and ∆̂ (Theorem 3).
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As in Example 2, we compare the exact condition number of the preconditioned system matrix

for M
(1)
i and M

(2)
i with the bounds of Theorems 2 and 3.

Figure 4 shows the comparison for the preconditioner M (1). It shows again that the bound of
Theorem 3 is much better than that of Theorem 2.

In Figure 5 we depict the results for M (2) where again the bounds and the exact value are
almost indistinguishable but again the one from Theorem 3 is the most easy bound to obtain.

The bounds obtained by Theorem 3 are in general sharper and easier to obtain than those of
Theorem 2, since in Theorem 3 both bounds for ∆̂ only require the subspace that is given by the
M–orthogonal complement of P . On the other hand the bounds of Theorem 2 can be more easily
generalized to the general case l > 1, see [6]). It is possible, though more technical, to generalize
the sharper bounds of Theorem 3 to the multilevel case (l > 1). The difficulties arise from the
fact that Γ is not as well isolated in (23) as in (19).
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Figure 3: Bounds for the condition number when using preconditioner M (2). Exact condition
number versus ∆ (Theorem 2) and ∆̂ (Theorem 3).
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In this section we have derived sharp bounds for the condition numbers of the multilevel
preconditioned systems. In practice to determine these bounds still requires the solution of an
eigenvalue problem. However, one could estimate ∆̂, e.g. by applying a test vector x to the
inequalities (22),(24). For more details see Section 4. The results so far require two spaces (or
matrices) P and W that are orthogonal with respect to the inner product defined by M = L>AL.
One can construct a sequence of well–suited matrices Pk in each step k using the results of
Theorems 2 and 3. This construction leads to a multilevel hierarchy. This will be the topic of the
next section.

4 A Simplified Coarsening Scheme

The approximation bounds that we have derived in Section 3 can be utilized to construct an
algebraic multilevel preconditioner by skilfully choosing columns of the residual matrix E. Here
we focus only on a sketch of the main idea and the basic ingredients.

The basic components of the construction are:

1. the residual matrix E = I −M = I − L>AL

2. the QR decomposition for E with respect to a special inner product

3. the pivoting strategy to detect suitable columns of E to define P

A detailed (and more technical) description of the implementation can be found in [6]. We
refer to this paper for numerical comparisons with other algebraic multilevel methods.

To describe the coarsening process, suppose that we have constructed a QR decomposition
with column pivoting of E,

E [Π1,Π2]︸ ︷︷ ︸
Π

= [P,W ]︸ ︷︷ ︸
Q

[
R11 R12

0 R22

]
︸ ︷︷ ︸

R

,

11



Figure 4: Bounds for the condition number when using preconditioner M (1). Exact condition
number versus ∆ (Theorem 2) and ∆̂ (Theorem 3)
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where Q is orthogonal in the inner product given by M , i.e., Q>MQ = I, then we already have
P>MW = 0. P and W fulfill the orthogonality condition of Theorems 2 and 3 and thus the quality
of P as coarse grid projection can be measured via the bounds in these two theorems. If we find
a suitable permutation of E such that sensible estimates for the bounds of Theorems 2 and 3 are
small, then P can serve as coarse grid projection. There are several approaches to compute an
approximate QR–decomposition. One possibility is to adapt a QR–like decomposition as in [21]
but other constructions are possible as well. We refer to [5, 6] for a detailed description of this
quite technical construction. There is one drawback of choosing P itself as coarse grid projection:
in general P is not sparse! But Theorems 2 and 3 are independent of the specific choice of the
basis in the space that is spanned by the columns of P . Since

EΠ1 = PR11,

the columns of EΠ1 and P span the same space. In addition EΠ1 refers to specific columns of E
and therefore we can expect EΠ1 to be sparse! We use this relation for the coarse grid projection
and finally substitute

P → EΠ1

as coarse grid projection.
Here we concentrate on the pivoting strategy. Beside many technical details in the implemen-

tation of a sparse approximate QR factorization in [6], there some important components that
make this approach effective and that are not as issue of the implementation. They are related to
the method of determining the pivots and even show up when using a full QR decomposition. At
first glance the best we can do for pivoting would be to locally maximize ∆ in inequalities (18),
(20), to obtain a feasible coarse grid matrix P̂ = LP (or equivalently P̂ → LEΠ1) for M (1) in (6)
and for M (2) in (7). However, for fixed r there exist

(
n
r

)
permutations which have to be checked

and for any of these choices one has to compute a QR decomposition of an n× r matrix EΠ1 to
get the corresponding ∆. Already for small r the costs are prohibitively expensive, e.g. for r = 2,
n(n − 1)/2 possibilities have to be checked. So in practice not more than r = 1 can be achieved
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Figure 5: Bounds for the condition number when using preconditioner M (2). Exact condition
number versus ∆ (Theorem 2) and ∆̂ (Theorem 3)
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in one step. Using P>MP = I we set

T = I − PP>M (26)

and it is easy to see that the M–orthogonal complement W of P is given by

W = TEΠ2. (27)

Using T from (26), the bounds (18) and (20) in Theorem 2 can be expressed as

1

∆
= min
Tx6=0

x>T>MTx

x>T>Tx
, (28)

and
1

∆
= min
Tx6=0

x>(M − EME)x

x>T>MTx
, (29)

respectively.
Analogously, for the bounds in Theorem 3 we have

1

∆̂
= min
Tx6=0

x>T>M2Tx

x>T>MTx
, (30)

and
1

∆̂
= min
Tx6=0

x>T>(M − EME)Tx

x>T>MTx
(31)

respectively.
To compute one of these Rayleigh quotients is still not feasible, since this would have to be done

in every step of the QR decomposition. Even more so, if we have already computed r columns of
the QR–decomposition, then every choice of column r + 1 has to be checked, i.e., if

Pr = [p1, . . . , pr]

13



are the first r columns of Q in the QR–decomposition, then any choice of

T = I − [Pr, pr+1][Pr, pr+1]>M

has to be checked. This is far too expensive and even if this were possible, there is no guarantee
that choosing the locally optimal pr+1 will globally give a good contribution to the prolongation
matrix P .

The easiest simplification would be to replace the minimum over all x by a specific choice of
x. An obvious candidate would be the eigenvector of M associated with its smallest eigenvalue.
However, as we will demonstrate in the following examples, local optimization does not necessarily
lead to a globally good choice.

Example 4 Consider the matrix

A =

 T −en 0
−e>n 1 + α −αe>1

0 −αe1 αT

 , where T =


2 −1

−1
. . .

. . .

. . .
. . . −1
−1 2

 ∈ Rn,n.

for α = 100. This example can be viewed as discretization of the problem −(au′)′ = f in [0, 1]
with a(x) = 1 for x ∈ [0, .5] and a(x) = α, x ∈ [.5, 1]. We will use diagonal preconditioning
and the exact eigenvector of the preconditioned system M associated with the smallest eigenvalue.
We repeat the coarsening process on every level and switch to Cholesky decomposition, once the
QR–decomposition needs more than 75% of the columns of E for the prolongation matrix. Since
the coarsening process stops at this stage, we denote this situation in Table 1 with “stopped”.

Table 1 (as well as the following tables) shows the size of the original system (resp. the sequence
of coarse grid matrices) and the related fill–in of these matrices for all levels. The fill–in is
measured by the density of the matrix compared with a full system (100% means that the matrix is
full). In Table 1 one can observe how much the system is reduced in each level of the coarsening
process. We denote by Est1 the estimate obtained using (28) with the smallest eigenvector and by
Est2 the estimate obtained from (29).

Table 1: Laplace 1–D, Coarsening. Comparison (for each level) of the number of unknowns and
the percentage of fill-in (strategy Est1 versus strategy Est2)

Strategy Levels: system size r, fill–in (%)
1 2 3 4 5

Est1 529, 1 527, 1 stopped —
Est2

1023
513, 1 257, 1 251, 3 stopped

On the coarser levels l > 1 the following happens. The natural choice would be to choose P
as every second column of E. This can be seen from the fact that 2P exactly corresponds to the
prolongation from geometric multigrid (except the first and the last row). This has happened in
the first steps for both strategies, but later the strategies choose the remaining nodes near to the
coefficient jump in [0.5, 1] of the underlying analytic problem. In this form the associated multilevel
preconditioners performs very badly.

The situation in Example 4 can also be observed in the two–dimensional case, but here the
situation is slightly better.

The example has shown that simply to locally optimize the bounds is not enough. This problem
even occurs for the exact QR factorization and represents a fundamental point for the pivoting
process. In the sequel we will address this problem and suggest a more effective pivoting strategy.
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One way out of this dilemma is to choose multiple columns of E at every step. Since P spans
the same space as suitable chosen columns of E, we have that two columns i, j of P or E are
M–orthogonal, if their distance is greater than 3 in the graph of M . This can be seen from the
fact that E,M have the same graph and E>ME may have nonzeros elements only for pairs (i, j)
that have a distance less than or equal to 3. Since any two possible choices for pr+1 commute if
their distance in the undirected graph of M is greater than 3, we can choose as many new nodes
in step r+ 1 as there are nodes with distance 4 or more between each other. Hence, after r coarse
grid nodes have been chosen, we choose the next coarse grid node such that ∆ in (28) is minimized
for all T of the form

T = I − [Pr, p
(1)
r+1][Prp

(1)
r+1]>M

Then we continue this procedure for every node of distance greater than 3 from node r + 1.

T = I − [Pr, p
(1)
r+1, p

(2)
r+1][Pr, p

(1)
r+1, p

(2)
r+1]>M

We repeat this strategy until there exists no new node with distance greater 3 to all selected nodes
of step r + 1.

Consider again Example 4 using this time multiple columns at one step.

Example 5 Using multiple columns in Example 4 we obtain the results depicted in Figure 2 that
shows the size of the system and the related fill–in for all levels. We denote by Est1m the estimate
obtained using (28) with the smallest eigenvector and by Est2m the estimate obtained from (29)
in combination with multiple chosen columns.

Table 2: Laplace 1–D, Coarsening. Comparison (for each level) of the number of unknowns and
the fill-in (strategy Est1 versus strategy Est2, both with multiple column choice)

Strategy Levels: system size r, fill–in (%)
1 2 3 4 5 6 7

Est1m 512, 1 256, 1 128, 2 63, 5 31, 9 15, 19
Est2m

1023
512, 1 256, 1 128, 2 63, 5 31, 9 15, 19

Here the coarsening process constructs exactly the grid that corresponds to the geometric multi-
grid case. It follows that the preconditioners are optimal, see Table 3.

Table 3: Laplace 1–D. Preconditioned CG: number of iteration steps and flops for different pre-
conditioners (none/diagonal/both multilevel preconditioners)

Strategy preconditioned system

A MA M
(1)
l A M

(2)
l A

Est1m 26 1.0·106 11 8.7·105

Est2m
5037 8.2·107 1023 2.1·107

26 1.0·106 11 8.7·105

A similar improvement can be observed in the two–dimensional case.

Example 6 Finally we use an example from the Harwell–Boeing collection. The matrix we use
is

A =


D B 0

B> D
. . .

. . .
. . . B

0 B> D

 , D =

[
786432 0

0 256

]
, B =

[
−393216 6144
−6144 64

]
,
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which essentially corresponds to the matrix LANPRO/NOS2 from the Harwell–Boeing collection.
We use this matrix for n = 190 (95 diagonal blocks). Although this matrix is not very big, its
condition number is very large and it has large positive off–diagonal entries. This matrix is a real
challenge for the coarsening process. Here the multiple column based strategies Est1m and Est2m
strategies construct coarse grids which end up in perfect multilevel scheme while the single column
based versions Est1 and Est2 fail already during the generation of the coarse grid. Essentially Est1
and Est2 start with similar nodes as Est1m and Est2m but then they start taking nodes in the
neighbourhood of the previously chosen nodes leading to a coarse grid with insufficient reduction.
Table 4 shows the coarsening process and Table 5 gives the behaviour of the preconditioned cg
method.

Table 4: NOS2, Coarsening. Comparison (for each level) of the number of unknowns and the
percentage of fill-in (single column strategies Est1 and Est2 versus multiple column strategies
Est1m, Est2m)

Strategy Levels: system size r, fill–in (%)
1 2 3 4 5

Est1 129, 8 128, 18 stopped —
Est2 125, 8 118, 19 stopped —

Est1m
190, 2

94, 6 46, 13 22, 26 10, 52
Est2m 94, 6 46, 13 22, 26 10, 52

We should point out that the fast convergence of the cg method for the single column strategy is
exclusively based on selecting too many nodes and using the Cholesky decomposition for the final
system, where the final system has size 128 and 118 which is pretty close to the size of the original
system. The multiple column based strategy impressively demonstrates that the coarsening process
can do significantly better. An almost perfect multilevel hierarchy with small number of cg steps is
generated.

Table 5: NOS2. Preconditioned CG: number of iteration steps and flops for different precondi-
tioners (none/diagonal/both multilevel preconditioners)

Strategy preconditioned system

A MA M
(1)
l A M

(2)
l A

Est1 20 3.7·105 8 2.4·105

Est2 28 4.9·105 12 3.4·105

Est1m
1062 3.9·106 540 2.5·106

22 2.0·105 9 1.8·105

Est2m 22 2.0·105 9 1.8·105

These examples have illustrated that simply using the locally optimal column is not necessarily
optimal from a global point of view, while using multiple columns at every step was very successful.
Another technique introduced in [6] consists of locally locking the neighbouring nodes of a chosen
column node in the graph theoretical sense. This leads to an alternative way for improving
the local optimization. Numerical examples with an efficient implementation of an approximate
QR factorization in [6] show that this kind of algebraic multilevel strategy is competitive with
other algebraic multigrid methods especially for non-standard situations, i.e. matrices with many
positive off-diagonal entries.
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5 Conclusion

We have derived estimates for the condition number and hence for the convergence rates of alge-
braic multilevel preconditioners and demonstrated their quality by examples. These estimates can
be used in the construction of algebraic multilevel methods. To do this one computes a special
QR–decomposition with column pivoting, where the pivoting strategy is driven by an estimate of
the condition number. This process, however, is in general not monotone. Numerical examples
show that this process needs to be supplemented with other heuristic techniques to safeguard the
local optimization. These techniques often improve the optimization and in many cases they lead
to a good approximation of the global optimum.
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