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Abstract

We investigate thef@cient iterative solution of large-scale sparse linearayston shared-memory multiprocessors.
Our parallel approach is based on a multilevel ILU precaodér which preserves the mathematical semantics of
the sequential method in ILUPACK. We exploit the parallmliexposed by the task tree corresponding to the nested
dissection hierarchy (task parallelism), employ dynanateesiuling of tasks to processors to improve load balance,
and formulate all stages of the parallel PCG method confbwitla the computation of the preconditioner to increase
data reuse. Results on a CC-NUMA platform with 16 processwsal the parallelféiciency of this solution.

Key words: Large sparse linear systems, factorization-based prétamdg, preconditioned conjugate gradients,
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1. Introduction

One of the numerical problems which arises most frequentimodern linear algebra is the solution of large
sparse systems of equations. In applications involvingltkeretization of partial dierential equations (PDES), the
efficient solution of sparse linear systems is one major contiputd task. The same key subproblem appears in
many other application areas as, e.g., in quantum physicsauit and device simulation. This is also the case for
nonlinear equations as well as large-scale eigenvalue gt@tipns since the iterative methods employed in those
problems usually require the solution of multiple lineastgyns. As the size of the underlying applications increases
(e.g., three spatial dimensions for PDEs or increasing rurabdevices in integrated circuits), the development of
fast and #icient numerical solution techniques becomes crucial.

Sparse direct solvers have proven to be extremgigient for a large class of application problems, but they
are also known to perform poorly for others. For examplesatimethods are highlyfiecient when applied to two-
dimensional (D) PDEs, but they dramatically slow down for three-dimenald8D) problems because of consid-
erable fill-in [1]. Approximate factorization techniquesnsbined with Krylov subspace methods are an appealing
alternative for these kind of application problems wheitériibecomes an issue [2].

In this paper we present a parallel variant of a highfiyceent multilevel incomplete LU factorization (ILU)
method which has been successfully applied in sparse laade application problems with up to millions of equa-
tions [3, 4, 5]. This multilevel method is based on the sdechinverse-based approach which lays the foundations
for the software package ILUPACKThe fundamental éierence between ILUPACK and other common ILU pre-
conditioners resides in controlling the growth of the irseetriangular factors; see [3, 6] for a theoretical justtfaa
of this approach and [7] for an extensive empirical compaeatudy of the sequential variant of ILUPACK and other
preconditioners.
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Parallel computation of ILU-type preconditioners and tieedtive solution of sparse linear systems on distributed-
memory architectures has been extensively studied in the ganes and Plassman’s approach [8] identifies a high
degree of parallelism in the computation of ILU(0) precdiogiers by means of a multicoloring of the undirected
graph representing the nonzero adjacency structure obtfieaient matrix. The codes are available in BlockSolve95,
a parallel library which can be installed as an external pgelof PETSt Karypis and Kumar [10] introduced paral-
lel threshold (PILUT) preconditioners, and Hysom and Potl$¢ developed level-of-fill (PILUK)) preconditioners;
both approaches are based on graph partitionings with tedesubdomains and small edge cuts. A similar method
is presented in [11] by Made and Van der Vorst. Within eactdsuatain, these approaches order the interior nodes
prior to the boundary nodes, ensuring that, during the akin of the interior nodes, no fill-edges (and thus new
dependencies) arise between interior vertices belongidiferent subdomains. However, during the elimination of
the boundary nodes, fill-edges arise among nodes belongidifférent subdomains, which have to be managed for
efficient parallel computation. While PILWYY is based on a multicoloring of the subdomain intersectiaph [9],
PILUT uses a multistage algorithm [10] which starts by esiflif forming the graph resulting from the elimination of
the interior nodes. At each stage of the algorithm, an indéeet subset of the boundary nodes is computed and elim-
inated, and the new graph which results from this elimimaigoexplicitly formed for the next stage. The PILUT and
PILU(k) codes are distributed as part of the Hyldierary. A somewhat dferent approach is the one of pARMS [12],
the parallel version of the ARMS (Algebraic Recursive Meliel Solvers) [13] library. pARMS is based on a domain
decomposition approach which uses ARMS for the subdomamesdollowed by a preconditioned iterative scheme
for the Schur complement corresponding to the boundarysiode

The main contribution of the parallelization approach pregsd in this paper consists of the interplay between the
algebraic levels generated by the multilevel ILU method @iedconcurrency which is induced by the nested dissec-
tion hierarchy. The resulting method is multilevel in twaatitions, accommodating the semantics of the algebraic
approach while exploiting a high degree of parallelism dtemeously. Another important novelty of our paralleliza-
tion approach is that we target the recent uprise of multe ppocessors and, in preparation for the future many-core
systems, we address the iterative solution of linear systesimgtechniquesvhich may yield higher performance for
shared-memory architectures than message-passing.ticuter;, our method exhibits the following features:

e Algebraic parallelization based on a task tree (built froested dissection) to match the degree of hardware
parallelism of the target platform.

e Parallelization driven by the dependencies in the task(teesk-parallelisn), not limited by the control struc-
tures of a codedontrol-parallelisn).

e Dynamic scheduling to improve load-balancing during execumanaged by a run-time that can be tuned for
a particular target platform and a specific application feohb

e Application of the preconditioner conformal with the logistructure built during its construction to reduce the
number of data transferences (cache misses). The sameemgui is also set for other major operations in
PCG: matrix-vector products, inner products, axgyupdates.

e Use of OpenMP to parallelize all stages of the parallel gmiuf the linear system: computation and application
of the preconditioner as well as the other matrix operatiarthe preconditioned conjugate gradient (PCG)
iterative method [14].

We believe that the analysis of these techniques in conmibmaitith the focus on a platform like a shared-memory
multiprocessor are two significant original contributiafghis paper. While in this paper we restrict our discussion
to symmetric positive definite (SPD) systems of equatioresexpect our parallelization approach to be also suitable
for more general cases.

The paper is organized as follows. In Section 2 we presergeheral framework for the parallelization approach:
the iterative solution process is first reviewed, and thespreconditioner and its parallel version are presentd.n

4httpy/www.mcs.anl.gofpetsgpetsc-as.
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Section 3 addresses the parallelization of the applicatfahe parallel preconditioner and other matrix and vector
operations inside the PCG method. In Section 4 we demoagtratéfectiveness of our method for several large-
scale examples which confirm that speed-up close to linegabeattained using a moderate number of processors on
a shared-memory machine. A few concluding remarks clospdper in Section 5.

2. Iterative solution of symmetric positive definite linearsystems

Consider the linear system of equations
Ax = b, 1)

whereA € R™" is a large sparse SPD matrkx,e R", andx € R" is the sought-after solution. We propose to solve
(1) iteratively using the PCG method, with the precondigiobased on anultilevel incomplete Cholesky (MIC) de-
compositior[3]. We start by reviewing the foundations of the PCG methodubsection 2.1. The framework of the
serial preconditioner and its parallel variant are presgitt subsections 2.2 and 2.3, respectively. The computitio
aspects related with thefizient computation of the parallel preconditioner are pmése:in subsection 2.4 and, fi-
nally, subsection 2.5 briefly discusses the numericalioglatbetween the sequential and the parallel precondisone
offering evidence that the semantics of our approach to phzatien is close to its sequential counterpart.

2.1. Preconditioned conjugate gradients

The PCG method is among the best iterative approaches te S&» systems. When applied to (1), the conver-
gence rate of the method is strongly related to the conditionber of the preconditioned system

K= /lmax(MilA)//lmin(MilA), (2)

where an fficient preconditioneM ~ Awill cause the iteration to converge in a moderate numbetepfs In practice,
the PCG method consists of a sequence of matrix-vectorptioéitions, scalar productaxpyupdatesy := y+a - X),
and the application of the preconditiordr Thus, the bulk of the computational cost of the method iséerhatrix-
vector products and the computatitT*A. While the distribution of the cost among these two operatidepends
on the application problem, numerical experience with IAGR indicates that applying the preconditioner is often
the most expensive operation.

2.2. The multilevel incomplete Cholesky preconditioner
The Cholesky decomposition éfe R™" is defined as

A=LL"T = (LDY?)(DY?L)" = LDLT, (3)

whereL € R™" is unit lower triangular and € R™" is diagonal. In the incomplete Cholesky decomposition we
compute an approximate factorizatibBL" such thatA = LDL"T + E. Compared with (3), small perturbations are
introduced in the form of a matri& which consists of those entries dropped during the facticn process. However

a small||E|| does not always imply tha#l = LDLT is a good preconditioner fok as, for the PCG method, the actual
requisite is that the condition number of the preconditibsgstemM—1A = (LDL")"*Ais small. This is certainly
fulfilled if |ID-Y2L1EL-TD-%?| is small.

Inverse-based incomplete factorization techniques [3bype the computation of a preconditiodddL™ with
IL71| < v for some prescribed smal > 1. Typically,y = 3,v = 5 orv = 10 are good choices. The usage of
inverse-based factorization techniques is grounded innar theoretical properties. To review these, consider a
partial incomplete factorization

_(B F\_ T
A:(F c )—LDL +E, (4)

with C € R™™, L a unit triangular matrix satisfyingl. || < v, and matrices. andD partitioned as

(Le O (Dg O
L_(LF Im),D—( 0 Sc)’ 5)
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wherel, refers to the identity square matrix of ordey Dg is a diagonal matrix an8c € R™™ is the approximate
Schur complement d8 in A. A first argument in favor of inverse-based incomplete feztgions addresses the error
that is introduced by dropping small entries.Af= LDLT + E, thenL™!AL"T = D + L"'EL"" = D + E so that
IIEI < YAIE]. Depending on the method employed to obtain the approxi®etier complemerc, the bound can
be further improved tE|| < v||E||; for details, refer to [3]. This addresses, at least pdytitile objective of keeping
ID-Y2L-EL-TD-Y?|| small. The second and more important argument relatessedMssed decompositions and
algebraianultilevel methodsTo review this, consider the case when no dropping is appiié4), i.e.,E = 0. Denote
the eigenvalues oA as 0< A; < --- < 4, and the eigenvalues &¢ in (5) as O< u; < -+ < um. If L from (5)
satisfieg|L™!||> < v, then the eigenvalues & are in the range of the small eigenvalueg\pfhat is,

V2

g AR V2 A,
1-IDg ll2vAi

A< pi <
for all i such thatt; < 1/(||Déll|2v); for the proof, refer to [6]. In terms of PDEs this statestttie “coarse grid
system”Sc reveals the low eigenmodes of the original systemit also justifies the use of a small boundince
otherwise the eigenvalue inclusion is meaningless. Theatibg of keeping|L™}|| below a prescribed moderate
boundy is thus disclosed as an algebraic coarsening strategycdifypthe system at hand does not initially satisfy
IL71]| < v, except if some strict diagonal dominance

n
1
Ao <1- =
; |a|| a|]| V’
j#
fori =1,...,n—m, is satisfied (cf. [6]). This is often an unrealistic case,ghdrefore, additional pivoting in (4) is
necessary in practice to achieve a snitl'||. As a consequence, pivoting for inverse-based incompéetefization

techniques is fairly dierent from those employed in any other incomplete facttdma. Inverse-based pivoting
requires to skip a large portion of unknowns (such as 30%hduhe partial factorization.

Example 1. We illustrate the pivoting ffect for the case of the 2D Laplacian problem based on a fivatgstar
difference stencil (see Figure 1, left) on a uniform square grithio spatial dimensions havingn127grid nodes in
each direction. The initial system is also reordered usiagtad dissection which can be seen observed the similarity
between Figure 1 and the graph@n Figure 3. The ILUPACK pivoting strategy is repeated far &d introduces
several levels of approximate partial factorizations qfey(4) in order to successively forfie™1|| < v on every level.

We also illustrate the total multilevel preconditionerédeigure 1, right) composed over seven levels along with the
size of the system matricesSt and further coarser level matrices. |.e., we state the roasriL+ LT in the diagonal
blocks and F and F in the sub and super block diagonal part and repeat this repngation for $ and all subsequent
levels.

Example 1 illustrates the necessity of a multilevel apphdacobtain an inverse-based incomplete factorization.
Moreover, the parallelization of this approach is signifitta more challenging than that of a standard incomplete
factorization, where pivoting is used occasionally, asfageard, and where the multilevel formulation is rare. The
efficient parallelization of an inverse-based decomposisaroimplicated by the need of interlacing algebraic levels
with the concurrency constraints.

The pivoting strategy in ILUPACK employs an estimation|jaf || obtained along with the computation of the
incomplete Cholesky decomposition. Specifically, if at sostepk of the factorization, the norm of theth row of
L1 exceeds the bound then thek-th row and column of the matrix are moved, respectivelyh last row and
column of the matrix; otherwise the factorization contisiigsee Figure 2 for a sketch of the pivoting process). This
finally results in a partial factorization of a permuted syst Rejected columyr®ws can be viewed dsad pivots
with respect to the inverse constrajiihtl|| < v.

The factorization procedure stops when only rejected pis@main in the rows and columns yet to be factorized.
In other words, the trailing principal submatrix startirtgsame rowcolumnk + 1 only contains elements from those
rows and columns which have been rejected. The computdtibie &chur complement with respect to the factorized
k x k leading part completes the firslgebraic levelsee Figure 2). For the next algebraic level, the whole ntkihio
restarted on the Schur complement. This recursive procassforms this approach into a multilevel method we will
refer to as the MIC (decomposition). The computation candpeessed algorithmically as follows:

4



ILUPACK multilevel preconditioner (7 levels)
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Figure 1: sequential MIC (first algebraic level) applied B Raplacian (left), sequential MIC skeleton accumulatedrall levels (right).
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Figure 2: ILUPACK pivoting strategy.

1. ReordeA — PTAP = A using some fill-reducing ordering matrix In addition, a diagonal scaling — S AS
is also applied such that the diagonal entries become onesifplicity, hereafter we will not mention this

preprocessing step.
2. Compute a partial incomplete Cholesky decompositiof: of

B FT

ﬁTAﬁz( E C ):LDLT+E, (6)

whereC e Rk is the trailing principal containing only elements fromeeted rows and columng, refers
to some error matrix due to dropping (see [3] for detailsyl D are defined as in (5), withL || < v.

3. Proceed to the next algebraic level by repeating stepsl 2 avith A = Sc until S¢ is void or “dense enough”
to be factorized using a dense Cholesky solver.

The arithmetic intensity (ratio of flops to memory accessddhe kernels in the MIC decomposition is usually
much lower than that of the operations arising in sparsetinethods, basically because of the presence of dropping.
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In the MIC, entries are dropped on-the-fly based on availablmerical information so that, in general, it is not
possible to know the sparsity pattern of the factor(s) inaate via, e.g., a preliminary symbolic analysis. Hereby,
exploiting (dense) level-3 BLAS for the MIC exhibits litteppeal other than at step 3. Nevertheless, the solution
of linear systems via the MIC is considered a competitiveratitive to BLAS-3-based direct methods whenever the
fill-in in the approximate factors is within a modest mulépif the number of nonzero elementsiin

2.3. Parallel multilevel factorization

Our parallelization approach @égebraig i.e., it is exclusively based on the information deriveahfirthe sparsity
pattern of the linear system. In particular, we exploit thamection between symmetric sparse matrices and undi-
rected graphs. Consider the gra®h = {V, E} associated with matrid = (&), consisting of node¥ = {1,...,n}
and edge& = {{i, j} : &j # 0A i # j}. Thus,Ga reflects the nonzero pattern (excluding the diagonah.of

Nested dissection is a heuristic ordering strategy thatisstg finding asmallsubset ofGa, called vertex or node
separator, which split6, into two subgraphs of roughlgqual dimension These two subgraphs are disconnected
as there is no edge B between them. Thus, they identify blocks of rgaedumns ofA which can be factorized
independently (hence in parallel). The subgraphs are mdetred recursively via nested dissection, if their dimensi
is still “large”, or, e.g., using minimum degree otherwié&e result of applying this ordering procedure is a permuted
system matrixA — IITAIl = A;. In Figure 3,G, is recursively split into four subgraphs (1,1), (1,2), {1a&d
(1,4), first using separator (3,1) and then repeatedly bars¢prs (2,1) and (2,2). Gaussian elimination appliedeo th
corresponding reordered system matrix allows to factdtiezediagonal blocks associated with the subgraphs (1,1),
(1,2), (1,3) and (1,4) independently. After that, the efiation proceeds with (2,1) and (2,2) in parallel until, fipal
separator (3,1) is treated. This property is captured bytdkk dependency tree in Figure 3. Parallelism revealed
by the task treetfee parallelism) has been heavily used in parallel sparse direct methodstlogeast years (see,
e.g., [15, 16]).
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NHENEES

N

@) (31 L3
Ga A A— IITAIL = A; Task dependency tree

Figure 3: Nested dissection ordering. From left to righstad dissection, natural ordering, nested dissectiomlegimg, and task dependency tree.

The task tree imposes a certain order in which the ILU preitmmeér can be computed. The MIC starts by
processing the leaves of the task tree and proceeds bofidawards the root. Initially, the diagonal blocks assaatat
with leaf nodes can be processed by the framework describsdhbsection 2.2 while other parts are updated only.
We refer to this level as the bottom tree level. However, tHE 8 forced to complete the processing of all nodes
in the current tree level before moving up one level in the treerarchy. The top half of Figure 4 illustrates how the
MIC proceeds at the bottom tree level. Bad pivots identifigdh®e inverse-based strategy are postponed within the
blocks corresponding to this tree level. Once the first ladgébraic level is completed in the bottom tree level, the
MIC enters the second local algebraic one, and the procespésited until the set of bad pivots is “small enough”.
The computation eventually enters the next tree level aodrporates the remaining bad pivots, rejected in the last
local algebraic level of the previous tree level. The bottwadf of Figure 4 shows how the input matrix for the next
tree level is constructed from the Schur complement reguftiom the bottom tree level. We will refer to matrices
like those in Figure 4 as thglobal matricesof the parallel MIC. The MIC continues processing the lewélthe tree
until it reaches the root, where the sequential frameworkpetes the computation.

Our parallel approach exploits that each node of the cutreatevel is associated with the factorization of certain
blocks of the matrix. In Figure 3, for example, fill patterns aised to specify the correspondence between nodes
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Figure 4: Sketch of the parallel MIC. Top: the MIC within thettom tree level. Bottom: once all algebraic levels withie bottom tree level are
processed, the MIC enters the tree level above it.

of the task dependency tree and blocks of the matrix. Alsactimputations within a node only involve updates on
blocks which will be factorized in ancestor nodes that aomglthe path to the root node. Following the example in
Figure 3, task (1,1) only updates those blocks that will berlactorized in tasks (2,1) and (3,1). Hereafter, we will
refer to blocks that are updated in a task asdstribution blocks To increase the degree of parallelism, the updates
from descendant nodes to an ancestor node are kept in spardtibution blocks with dierent data structures;
thus, e.g., updates from tasks (1,1) and (1,2) to (2,1) apté ikeseparate contribution blocks so that they can be
performed locallyindependently. The entries of the global matrices can bevered by adding the corresponding
entries of the contribution blocks. Operating in this mantie factorization of the blocks within the same tree level
can proceed in parallel. When these computations are céadplthe updates of the contribution blocks can also
proceed concurrently.

Let us elaborate this idea further. Although our algoritran be easily generalized for non-complete binary task
trees, we assume for simplicity that we start from a comgi@tary task tree witts leaves of heighh = log, s+ 1.
The input global matrix for the bottom tree level, corresgion to the reordered matrik — I1T AIl = Ay, is split into
thetree-path additivesum

A = (M(l,l))TA(l,l)M(l,l) +oet (M(l,s))TA(l,s)M(l,s)’ (7)

whereA)) contains certain blocks of the original matrix aktf>) is an appropriate block permutation matrix; see

Figure 5. The contribution blocks of the leaves are initiadi with the original entries o&; divided by 2-%, where

| is the tree level the contribution block belongs to. For egkemin Figure 5, the contribution blocks of task 2}

corresponding to nodes,(®) and (31) are initialized with the original entries éf, divided by 2 and 4, respectively.
The parallel computation starts at the bottom tree levei wite independent task per leaf. All tasks employ the

algorithm in subsection 2.2, butfEér in the input data: task (j),starts withA = A%, Within one task and a local

algebraic level, the following partial factorization issticomputed:

(BN AL [ ADDAD( LD)T)
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Heresg‘l’i refers to those nodes which were rejected inside a locabedgelevel, and the double partitioning lines
represent the boundaries between blocks to be factorizeddy(1j) and its contribution blocks. The next local
algebraic level of the MIC then proceeds forward with thechrtDmpIemensg”) as the input. The computation
continues processing local algebraic levels until the bad pivots is “small enough”. Then, the parallel algorithm
proceeds with the computations corresponding to the tastteeinext upper level of the tree. Each task)®f this
tree level constructs a new submati®%X composed by those parts of the system that were rejected bigiltiren,
along with a summation of their contribution blocks. That is

A0 | (AT . (AR

(ZK) (ZK) (ZKN\T
ARK _ 2 3 (AhS ) . (9)
(é,k) (.2,k) . (.2,k)
A 3 h
with
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ARY=l 0 se) (ST AR =(Ser - Stres S D+ Sp )-m=3...h

(1,2k-1) (1,2k) (1,2k-1j (1,2K)
S¢a1 Sca S +S5;

.....

A2 — (M(z,l))TA(Z,l)M(Z,l) +.. 4 (M(Z,S/Z))TA(Z,S/Z)M(2,3/2)
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corresponding to the second tree level (8gén Figure 4).

In addition, at every algebraic level of the local MIC perfard by each taskj(k), a diagonal scaling¥ —
SGRMAGRSIK and a fill-reducing ordering\id — (PURYTAGKPGK are applied. Both transformations must be
restricted to the blocks gk to be factorized by the task.

2.4. Computational aspects: bringing all together

Assume for simplicity that the task tree is binary and congpldhe parallel MIC first computesindependent
factorizations, corresponding to the leaf nodes; th&¢R,submatrices from the next-to-lowest level are constdicte
from parts of the system rejected by the children along withramation of the contribution blocks. After this merging
stage, matrices at this level are factorized aptisubmatrices for the next level are built. This processpeaged at
each level of the tree till the root node is reached.

We note however that the order in which tasks are executskigtnedule) is only constrained by the dependencies
captured in the task tree. Therefore, in practice, there isaed for a global synchronization point (a barrier) betwee
tree levels. We will exploit this in a mechanism to schedalks for execution at run time, which takes into account
only dependencies among tasks. Our parallel algorithmrgpete the MIC is sketched in pseudocode in Algorithm 1,
and combines the building blocks presented so far with amyntask scheduling mechanism. Clearly the algorithm
is also valid for incomplete task trees.

Algorithm 1 : Computes the parallel MIC of the reordered sys#em A; = I1T Al

1 [IT, T ] « nesteddissectionGa) > obtain task tred and permutatioril

2 Q « {leavesT) } > initialize Q with all leaves ofT

3 mark all tasks ofl as not executed

4 Begin parallel region

5 pid < getprocesddentifier()

6 | repeat

7 while pending tasks in @o

8 tid « dequeueD) > remove ready task from the head@f

9 map [tid ] « pid > process pid in charge of task tid
10 execute(tid) > construct tid’s submatrix and compute local MIC

mark tid as executed
if all dependencies gbarent(tid)have been resolvettien

| enqueue(parent(tidl) > insert new ready task at the tail
end

end
until not all tasks executed
End parallel region

R e
AN 0 N P

[
(<2}

=
~

Algorithm 1 maintains a centralized (shared) qué&€ueontaining only tasks with their dependencies fulfilled
(ready tasks). The shared queue is initialized with all #evés of the task tree, and then a group of “processes”
(actually threads) is spawned (line 4). Processes entewlfie loop when there are tasks ready for execution.
The mapping of tasks to processes (line 8) is completely miymyawhich aims at improving load-balancing. The
computational core of the algorithm is represented by thiet@aoutine “execute” (line 10), which constructs the
submatrix associated with a task and performs the correpgecomputations. There are no synchronization points
inside the routine; this is a consequence of splitting ble¢hdata structures and the computations of the MIC. When
a process completes the execution of a task, it checks wtigtlsibling task has been already computed (this implies
that all dependencies of its parent task have been resodv/ébdree is binary) and, in such case, the process inserts
the parent task i (line 13). For simplicity, details on the safe concurrertess to centralized data structures are
omitted from the algorithm.

Algorithm 1 only exploits tree parallelism at levels beldwetroot. It also checks the degree of sparsity of the
Schur complement at the root task, and, “in case it is densag#i, employs the LAPACK (dense) factorization
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routine with parallelism extracted from a multi-threadetpblementation of the level 3 BLAS. In parallel sparse
direct methods, tree parallelism is combined with adddidppes of parallelism (e.qg., pipelining parallelism [16]
node parallelism [15]; see also the references thereinuse:; frequently, a large bulk of the computation occurs
at the higher levels of the tree, where the degree of tredlglism is already more limited. For example, results
in [15] report that often more than 75% of the computatiores @arformed in the top three levels of the assembly
tree (a structure similar to the task tree) in a multifrorsiagérse direct method. In the parallel MIC this situation
hardly occurs, mainly because of dropping. As our experiseill demonstrate, tree parallelism provides enough
concurrency for a moderate number of processors in the ¢dg60

We next explain how the task trdeis obtained. Starting from a tree consisting of only one nhe root),T is
constructed (line 1) from top to bottom, by splitting thosafltasks which present a “high” estimated computational
cost into two leaves. (A binary tree is thus ensured to beimdta) The heuristic codt™¥ estimated for a given
task (1K) is defined as the number of edges of the corresponding spingf&a. A leaf task is split into two leaves
if ) > |_|f:| with f a parameter of our heuristic approach aBfthe number of edges @,. We choosef so
that, in general, there will be more leaf tasks than proasssmproving the probability of attaining a good overall
load balance of the computation; we found experimentally the [p, 2p], with p the number of processors, are
appropriate choices for most examples [17, 18]. Algorithrmassigns higher priority to leaf tasks over tasks with
descendants (sin€@is initialized with all the leaves of the task tree and thé&sagith descendants are inserted at the
tail of Q). The order in whichQ is initialized (line 2) also determines the execution sechedor the leaf tasks, and
we initialize Q with the leaves in descending order of their estimated cdste purpose is to prioritize execution of
the leaf tasks with higher computational cost so as to rethambunbalance due to their late schedule.

We consider two alternative approaches for the prepramgssep in line 1 of Algorithm 1. Both versions use
node-based multilevel nested dissection orderings (MLNI@Yyided by SCOTCH [19]. They ffer in the reorder-
ing strategy applied to the independent subgraphs comelépg to the leaves of the task tree. The first strategy,
ND-HAMD-A, executes the separator-finding mechanism repeatedlyese thdependent subgraphs until their size is
“small enough” (e.g.|[E| = 100). Then it switches to minimum degree to process smaljrsyds. After the pre-
processing is completed, the local MIC uses local reordesinategies which preserve the structure of the initial
partitioning into tasks. Specifically, only scaling is applin the initial local algebraic level, since this blocksha
already been reordered by the preprocessing step. Hovievany subsequent local algebraic level, Halo-AMD [20]
is used. In the second strate@p-HAMD-B, independent subgraphs fquiIIin@ < % are not further ordered via
nested dissection and preprocessing is stopped. Thisesdlue cost of the preprocessing represented in line 1 sig-
nificantly, and leaves the reordering algorithms to thellMi&. In our case the local MIC of each task is configured
such that Halo-AMD reorderings are applied at each localaigic level. The advantage of thiB-HAMD-B comes
from switching earlier to less expensive fill-reducing histirzs. This can be done concurrently exploiting the iniplic
parallelism obtained from the preprocessing step.

2.5. Numerical comparison between the sequential and tredlpbpreconditioner

For the parallel MIC the algebraic levels have to reveal tinecture of the task tree. This might lead to the
impression that the parallelization approach severelpgbsathe semantics of the original sequential precondition
Experimental results will show that in practice this is Hattie case. In this section we will explain why the parallel
MIC is expected to be numerically close to its sequentiahtepart.

MLND [21] has been considered to be well suited for paralbghputation and helpful as a fill-reducing ordering
as well. We next examine how the sequential MIC behaves whplieal to a system reordered by MLND. At this
point, it is important to review the role of the inverse-bdapproach in the computation. According to [3, 22], at each
stepi of the incomplete Cholesky decompositians LDLT, thei-th row of L™* is required to satisfyje’ L™}|| < v. In
general, we have that

e L e = “g;aydrlzl,

and an inexpensive estimate for this norm consists in chgasispecific vector, with entries from{+1}, such that

vi = |e'L7!2] is close to its upper bound max-1 |e'L~*Z; see [22] or [23] for details. The estimate = |yj| is

obtained while solving the systehy = 2. Therefore, at stepof the incomplete Cholesky factorizatigris updated

byy; :=yj — Iy for j > i such that; # 0. Since in genera is constructed to obtain a largyg|, it is likely that

those components ¢f| which are involved in many forward substitution steps beedange. By construction of the
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total task level

size 1 2 3

1 16129 15879 123 127
ol 2 4951 4733 107 111
ol 3 1865 1665 99 101
o| 4 883 689 94 100
S| 5 408 239 79 90
6 185 40 66 79

7 56 0 22 34

Table 1: Distribution of each algebraic level with respecthte task levels.

MLND, the separators are expected to lead to more fill-in t@nleaf nodes. That is, when the sequential code is
applied to the reordered system, it is likely that vertickached to the separators are initially rejected more often

This is confirmed by our numerical experiments.

Example 2. To illustrate how the sequential MIC postpones bad pivotspwesue Example 1 for the Laplacian
problem. Numerical experiments show that, at the first atgiedevel of the MIC, onl\80% of the nodes associated
with leaf tasks bu87%of the nodes associated with separators are rejected (gpedl, left).

When the MIC enters the second algebraic 1e88R6 of leaf nodes are rejected whi2% of separator nodes
are rejected again. This trend continues until the bulk af lrodes has been eliminated. Only after that, the MIC
begins to accept most of the separator nodes. Table 1 illitetrithe distribution of each algebraic level. One can see
in particular that the bulk of the algebraic levels is contrated in task level 1 (leaf tasks) until algebraic level 5.

The results from Example 2 are not uncommon. We observe@veral sample matrices that most of the separator
nodes are postponed over several levels of the MIC untildinis pssociated with leaf nodes are mostly factored. In this
sense, the sequential MIC wastes computation time reges@parator nodes which, by construction, are postponed
in the parallel MIC. This observation reinforces our prapos that the parallel MIC exhibits fundamentally the

semantics of the sequential algorithm.

3. Parallel PCG

3.1. Application of the MIC

The application of the preconditionst = LDLT to the original system involves solving the linear systém= r
at each step of the PCG, where R" andz € R" are, respectively, the residual and preconditioned resiterates of
the PCG. In the MIC, this operation is more challenging, beean addition to partial factorizations, one has to deal
with other matrix operations such as scalings or permutatiBor simplicity, the following discussion only consisler

permutation matrices as those generated by ILUPACK pigatirategy.
The application of the MIC can be described as solving theviahg linear system recursively:

__ _arfLe O Dg O Lt L\
Mz_r=P(LF | 0 & o | Pz=r, (20)

whereS¢ is the approximation that is obtained wh8g is replaced by the recursive application of the multilevel
factorization approach. Therefore, at each algebraid, léve computation is composed of the following three steps:

1. Se EB):zlf’r;soIve Le O (yB)z [B)for(yB)=y.
fc Lr | yc fc Yc

2. SolveSc2c = yc by recursively applying (10) witk = Zc andr = yc.
T T 5 o -1 . a
3. sove| b8 Le |2 )-(Ye|_(DPeve - and finally sez:= BT 28 |.
0 I Zc Ye Zc Zc
11



The recursion in step 2 is finalized when invoked with inﬁutz LCDCLE, the approximation o8¢ obtained as a
result of the last algebraic level. In this case the systesoliged directly. Hereafter, we will refer to steps 1 and 3
asforward substitution(FS) andbackward substitutioiBS), respectively. Actually, in the FS step only the leadin
block ofy is computed from forward substitution, appliedltgys = fg, while yc is obtained agc := fc — Lgyg. In
the BS step, only the leading block pis’computed by backward substitutionli§zs = Dg'ys — L{ Z.

3.2. Application of the parallel MIC

The application of the parallel MIC essentially operatethmsame manner as its sequential counterpart, but now
the FS and BS steps are spread over the tree levels, andatteeegiteringeaving the recursive step 2 may imply
moving ugdown in the tree hierarchy. We next consider the algorithrteims of the global matrices and vectors
because it is easier to describe, although its implementatttually splits the overall vectors conformally with the
computation of the parallel MIC (see [24] for details).

The parallel application of the MIC begins at the bottom tesel, proceeding bottom-up towards the root node.
The recursion described in subsection 3.1 is applied at leaeth algebraic level within the current tree level, until
all local contributions of this tree level fois andyc have been computed. Then step 2 employs an approximation
Sc that has been computed for the upper tree levels only (segé&). Therefore, entering the recursive call at this
point implies moving the parallel application of the MIC up dne tree level, where the input right-hand side vector
for this level,r, incorporates the contributions fg¢ computed by the previous tree levels. The algorithm coesnu
processing FS steps bottom-up, until it reaches the lasbeddc level within the root task. Then, the systdmgg = r
and ng = Dgly are solved and computation proceeds next top-down towaeldattom level of the tree. The
algorithm backtracks to each algebraic level within therenir tree level until the lower tree level is reached; see
Figure 7. The figure shows that, at the last BS step of the ctinmee level, the application of the inverse permutation
PT to 2 recovers the partitioning incorresponding to the lower tree level. Computation therktracks to the lower
tree level, where incorporates the contributions fay fesulting from the local BS steps of the upper tree levels.

bottom tree level

first FS step ms ®e last FS step =e &Cf
y y L
— Lo U next-to—lowest tree le\
| P -
— [ [ T 4 3 x\“éc—nx;‘z; r
A PH I e 8 =y o 1
. " after several PH IR RTER B R e EEE =:
N | Fs L O 1 o
steps @i - -
IR ZHEZ
7R ZAZ
A 4 ZERZE 7R

call to |
step 2 |

—

Figure 6: The application of the parallel MIC first proceeds$tdm-up towards the root task. From left to right: FS stejthin the bottom tree
level and how the computation enters the recursion from ¢tin to the next-to-lowest tree level.

3.3. Task scheduling

The operations involved in the application of the MIC (sparstrix-vector products and sparse triangular solves)
are memory-bounded computations exhibiting hardly ang datise. Therefore, memory related issues should be
considered carefully in the design of the mapping and sdimelmechanisms for the parallel algorithm. Our first
choice is the use of a static mapping of leaf tasks to the gsasaduring the execution of the PCG; i.e., a given process
always executes the same leaf tasks for all the applicatibiine MIC. Provided there is no process migration during
execution, this improves cache hit rate and reduces irgegssor communication, because each process repeatedly
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bottom tree level
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Figure 7: After reaching the root task, the application &f plarallel MIC proceeds top-down towards the bottom treelldom right to left: last
BS step of the next-to-lowest tree level, backtracking ftbemnext-to-lowest to the bottom one, and first BS step of i tree level.

accesses the same data structures (executes the same #agkaligh, in principle, this work distribution can be
explicitly computed via static mapping heuristics, in oppeoach we use instead the mapping resulting from the
computation of the MIC (recorded during execution of linef &gorithm 1). The same applies to tasks with descen-
dants; however, during the backtracking (top-down) of flge@thm, under certain circumstances which may result
in idle processes, at execution time we adopt decisionstwhaty alter the pre-assignment of the tasks to processes.

The recursion phase (bottom-up) essentially follows thetckof Algorithm 1, but now each process maintains
its own queue of ready taskQuiq. This implies replacing by Qg everywhere in Algorithm 1, except in line 13,
whereQ is replaced byQmapiaj. Besides, each process initializes its task queue in ghnaith initializations by
other processggueues, with the leaves pre-assigned t@Qjid ={ tid € leaves() : map][tid]=pid }) ordered by their
estimated costs. The number of floating-point arithmetierapions performed by the task is now used to estimate
the costs. The backtracking (top-down) of the algorithnkitshed in Algorithm 2. Each process maintains its own
priority queue of ready tasKdq, which prioritizes the execution of tasks with descendans leaf tasks. A given
task will not become ready until all its ancestors have beecw@ed, and therefore only tasks with descendants and
leaf tasks which are independent of each other can be sinealtesly inHpiq. If leaves were given priority over tasks
with descendants, the execution of the tasks belongingetsubtrees rooted at the tasks with descendants would be
delayed. This delay may result in idle processes, waitinghietasks which belong to these subtrees to become ready.
The execution of Algorithm 2 is asynchronous (there are tata barriers between tree levels), and it is possible
that a task with descendants becomes ready while the prthiesask has been mapped to is already executing a leaf
task. Whenever this occurs, the execution of this task igmasd to the process which resolves the dependencies of
the task with descendants (line 10). Otherwise, this tastsested inHmapchiia) (line 12) according to the prescribed
mapping of tasks with descendants to processes.

We have observed experimentally that, when the number afggses is moderate (up to 16), the inexpensive
heuristics described above provide fairly acceptabletgola for the mapping and scheduling of the parallel applica
tion of the MIC (see, e.g., [24]). We have no experimentalitsdor a larger number of processes.

3.4. Other operations

The iteration in the PCG method consists of a repeated sequdmperations: application of the preconditioner,
matrix-vector products, inner products, aaxpyupdates. In our parallelization of the PCG method, we shét t
last three computations and the associated data structomésrmally with the application of the preconditioner. In
particular, we consider two types of splittings, strucliyraquivalent to (7), for the vectors involved in the opéas
of the PCG.

For the first type of splitting, the right-hand side vedoas well as the residual vectorare stored as additive
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Algorithm 2 : Computes the backtracking of the parallel applicatiorhefMIC

1 mark all tasks ofl as not backtracked

2 pid « getprocessdentifier()

3 repeat

4 while pending tasks in iy do

5 tid < extractfpiq) > extract highest priority task frorbp;q
6 backtrack(tid) > construct tid’s subvectors and compute local BS steps
7 mark tid as backtracked

8 for child_tid € children(tid)do

9 if child_tid has descendantnd procesanap [ childtid ] currently executing a leaf tagken
10 | insert(childtid, Hyiq) > proc. pidnowin charge of childtid
11 else
12 | insert(childtid, Hmap [childtid]) > proc. map [childtid ] in charge of childtid
13 end
14 end
15 end

until not all tasks backtracked

=
[}

sums,
r = (M(lvl))Tr(lvl) 4o+ (M(l,S))Tr(l,S)’ r(lvj) — ( rg.l»j) H rgl’j) . rﬁlsj) )T ,
where the entries of the contribution bloolé%j), cey rﬁl’j) store partial contributions to the original entriesrcds

in (7). The second type of splitting is basedredundantopies. Here, the approximate solutiqrihe preconditioned
residualz, and the search directigmare split as

M@Dp = pdd, gD = ( D | g gD )T o s,

where the entries of the contribution blocpag‘j), e pﬁl’j) store redundant copies of the original entriegofit
can be shown [25] that, using this combination for the dali&tisigs of the iteration vectors x, z p, all the parallel
operations within the body of the PCG can proceed withouli@kponversions between the two types of splittings.

4. Computational results

In this section we evaluate the performance of our paradikles applied to a pair of challengingBapplica-
tion problems and a subset of irregularly structured mesritom the UF sparse matrix collection. The section
also includes a comparison of the performances of our ssluURARDISO, BlockSolve95, and Hypre-Euclid. PAR-
DISO [26, 27] is a state-of-the-art parallel supernodadisolver. BlockSolve95 is a parallel library for the stéda
iterative solution of symmetrically structured linear tgras based based on ILU(0)-preconditioned Krylov solvers.
Hypre is a library for the parallel preconditioning and &tve solution of sparse linear systems. Euclid provides
parallel incomplete level of fill factor preconditioninggi, the computation and application of parallel Ik)jgrecon-
ditioners. In contrast to our parallel solver and PARDIS@dRSolve95 and Hypre-Euclid target distributed-memory
multiprocessors, relying on MPI for message passing.

We describe first the environment settgommon to all the experimentsthis section. In the MLND [21] prepro-
cessing step and the Halo-AMD fill-reducing orderings [2@, set the SCOTCH [19] parameters to default values.
In general, the optimal parameter choice is highly probl@peshdent, but an exploration of the parameter space is
out of the scope of this paper. The same appliesdaadr, which control, respectively, the norm of the inverse and
drop tolerances in the incomplete factorization process §sep 2 at subsection 2.2). These two parameters determine
the fill-in, and hence the computational cost and storageired for the MIC preconditioner. Larger values»obr r
lead to cheaper but (maybe) iiective preconditioners, whereas smaller values can leptbtubitively high fill-in;
we refrain from optimizing’ andr, and set their values to= 5 andr = 1072 In the PCG method, we set the initial
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solution vector guess, = 0, and the iteration is stopped when the criterion describ¢28] is satisfied. All exper-
iments employ IEEE double-precision arithmetic for the muical calculations. The target platform is a SGI Altix
350 CC-NUMA shared-memory multiprocessor consisting ob8es with 32 GBytes of RAM connected via a SGlI
NUMAIlink network. Each node is composed of two Intel Itan2@1.5 GHz processors (256 KBytes level-2 and 6
MBytes level-3 cache) with 4 GBytes of local memory. All cadeere compiled by the C and F77 Intel compilers,
version 9.0. We used OpenMP rev. 2.5 as provided by theseimmpnd Intel MKL library, version 10.0, for the
BLAS-3 and LAPACK routines required by PARDISO and our piedatodes. The BlockSolve95 and Hypre-Euclid
codes were linked with an optimized MPI library included lre tSGI Message Passing Toolkit, version 1.12. The
parallel environment is configured so that one thread isddruer processor and no thread migration occurs during
the computation. The same applies to the MPI processesgdilmnparallel execution of the codes in BlockSolve95
and Hypre-Euclid.

Example 3. We consider a standard benchmark problem for the solutid?ifs: the Laplacian equation
—Au=f

in a 3D unit cubeQ = [0, 1]® with Dirichlet boundary conditions u= g on Q. Although this regular problem
is known to be best-suited for multigrid methods, we havecsad it because of its large scale and applicability.
For the discretization we use a uniform mesh of size ﬁ% The computational domaif is replaced by a grid
Qn = {(%,Yj,z) = (ih, jh,kh)[ i, j,k = 1,..., N} and the dfferential operator is replaced by finiteffitrences

1
—AU(X, Yj, Z) = 7 (—Ui—l,j,k — Ui j—1k = Ui jk-1 + BUijk — Uitk — Ui j+1k — Ui,j,k+1),

where y ~ u(Xi,Yj,z). Because of Dirichlet boundary conditions, any unknoyynsuch thatjj, k € {O,N + 1} is
explicitly available and becomes part of the right-handesigctor. The resulting linear system Atb has a sparse
SPD cogficient matrix with seven nonzero elements per row, ardM® unknowns. We choose & 100; 125; 150
and N = 200in our experiments, which results in four benchmark SPDdingystems of order r=1,000,000;
1,953,125; 3,375,000; and 8,000,000 unknowns.

Table 2 compares the performance of the sequential algoiitHLUPACK (results forp = 1) with the perfor-
mance of our parallel solver usim= 8 andp = 16 processors applied to Example 3. Two preprocessingaliees
are considered (see subsection 2N)+-HAMD-A andND-HAMD-B, and separate results are provided for the MLND,
MIC, and PCG stages. The execution of the MLND is completeljas (no parallelization has yet been attempted
for this stage in our approach). Therefore, for the MLND stamis not really the number of processors employed in
the execution; it is solely used to determine the degreem@letism which needs to be identified in order to enhance
the parallel performance of the MIC and PCG stages. NBetlAMD-A, the execution time is independent af the
graph is split to the same depth fpel, 8, and 16 (hereby the equal execution time of this stagelfthree values
of p), and this level is much deeper than it would be actually ss&ey for the flicient exploitation of parallelism.
(Fill-reducing is the guiding principle for such a deep splOn the other hand, the execution time of this stage using
ND-HAMD-B increases ap gets larger since, in this case, the splitting is stoppedas as enough parallelism has
been detected. A larger value pftranslates to additional levels of recursion in the nesisdedtion ofG,, and
therefore to larger execution times. For the sequentiaPAOK (p = 1) , the global cost is balanced among all three
stages (seBD-HAMD-A), but for the parallel MIC and PCG stages, the preprocestémmtends to concentrate a larger
bulk of the computational load gsincreases. We expect that a parallelization of this stag/desid to a significant
reduction of the cost of MLND, and this is currently being sigered as an extension of our work.

The table also reports the total number of nonzero elemarttsei triangular factor(s) (in millions) of the MIC
preconditioner, as well as the execution time and the pisdleed-up. As the number of processors is increased, the
number of nonzero elements becomes larger but this is gleanhpensated by the reduction of the execution times.
Speed-ups of up to 8.62 and 15.5 are obtained using 8 and tégsars, respectively. The superlinear speed-up is
due to the NUMA memory layout of the target architecture. Whbaly one processor is involved, the amount of
memory employed by the sequential algorithm in ILUPACK iggkx than the local memory per node. Accesses to
nonlocal storage slow down the performance of the sequatgierithm. When 8 or 16 processors are employed, the
size of the local data structures is considerably smallditiaey fit into the local memories.
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Finally the results in the table for the PCG stage show thebmurof iterations required for convergence, the
execution time, and the parallel speed-up. The iteratiamtonly increases slightly ag becomes larger, in a
practical demonstration of the close semantics betweesdbfeential and parallel preconditioners. This increase is
more than paid f by the reduction of the execution attained by the paralleGPSuperlinear speed-ups are also
observed in this stage (up to 10.9 and 19.2 using, respigi®/and 16 processors), the reason being the same as that
exposed for the MIC stage.

Preprocessing witihD-HAMD-B is superior taiD-HAMD-A. Although the execution time of the MIC stage is lower
for the second option, the former is both less computatipeapensive and produces higher quality preconditioners
(less number of iterations) so that the global cost is madeced.

MLND MIC PCG

n p Option T nnz. Tp Sp #lter. Tp Sp
ND-HAMD-X  (sec.) x10°¢  (sec.) [T1/Tp) (sec.) T1/Tp)
1 A 19.8 15.0 30.0 1.0 64 61.3 1.0
8 A 19.8 15.2 4.0 7.5 67 7.4 8.3
1008 16 A 19.8 15.3 2.5 12.3 67 4.3 14.1
1 B 0.0 13.6 36.0 1.0 57 49.9 1.0
8 B 5.7 14.0 4.9 7.4 63 6.6 7.6
16 B 7.1 14.2 2.9 12.5 66 4.0 12.2
1 A 42.8 295  60.9 1.0 78 146.0 1.0
8 A 42.8 29.8 8.2 7.5 81 19.4 7.5
105 16 A 42.8 30.0 4.8 12.7 82 10.7 13.7
1 B 0.0 26.8 737 1.0 68 116.8 1.0
8 B 12.0 27.5 10.0 7.4 72 15.8 7.4
16 B 15.3 28.0 5.6 13.2 78 9.4 12.4
1 A 82.2 51.1 108.0 1.0 90 296.8 1.0
8 A 82.2 51.8 14.3 7.5 91 38.5 7.7
156 16 A 82.2 52.0 8.1 13.3 93 215 13.8
1 B 0.0 46.6 1389 1.0 79 240.1 1.0
8 B 24.7 47.8 17.8 7.8 83 32.8 7.3
16 B 30.6 48.2  10.0 14.0 87 18.9 12.7
1 A 247.0 1219 303.3 1.0 117 1,332.0 1.0
8 A 247.0 1232 352 8.6 118 122.2 10.9
20 16 A 247.0 123.9 19.6 15.5 117 69.4 19.2
1 B 0.0 1111 366.0 1.0 103 1,010.2 1.0
8 B 89.7 113.4 45.9 8.0 107 104.2 9.7
16 B 108.0 114.6 24.9 14.7 107 57.7 17.5

Table 2: Performance results for Example 3.

Table 3 reports the performance of PARDISO and the ILUPAGISddl solvers (sequential ILUPACK f@e1
and our parallel solver fop=16). The results for PARDISO are decomposed into tiieint stages in this solver
(initial Reordering,Symbolic analysis, numeric&lactorization, and triangulgBdve). The column labeled ashz ”
in the results for PARDISO reflects the number of nonzerdesn(in millions) in the Cholesky factor. The number
of nonzeros as well as the execution time for PARDISO areifgigntly higher than those of the ILUPACK-based
solvers. This confirms that sparse direct solvers are haatypetitive for B application problems. Far > 125°
we expect that PARDISO will dramatically slow down becauseansiderable fill-in. On the other hand, the MIC
preconditioner exhibits a remarkable scalability as thelper of nonzero entries and execution time increase almost
linearly withn.

Example 4. The second example addresses an irregB8amproblem
—div (A gradu) = f,

in a 3D domain (see the left part of Figure 8), wheréxdy, z) is chosen with positive random gfieients. For the

discretization, linear finite elements are used. The sizerarmber of nonzero elements of the resulting sparse SPD

linear systems depend on the initial mesh refinement lewel,namber of further mesh refinements. Based on the
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PARDISO ILUPACK-based

n p nnz. Tre Tsy Tra Tso Tai nnz Tai
%1078 (sec.) (sec.) (sec.) (sec.) (sec.) x1076 (sec.)
106 1 786.1 16.9 53 1,714.7 20.5 1,757.4 13.6 85.9
16 785.2 17.1 6.3 183.5 12.9 219.8 14.2 14.0
1253 1 2,031.2 36.8 13.5 8,657.2 57.3 8,764.8 26.8 190.5
16 2,029.5 37.4 15.5 802.8 31.1 886.8 28.0 30.3

Table 3: Performance comparison between PARDISO and oali@asolver for Example 3.

initial mesh as shown in the left part of Figure 8, the mesmesfient tool NETGEN-efines the mesh up to two times
based on the meshing levels (very coarse, coarse, modéraeyery fine) as provided by the software. The right
part of Figure 8 presents the benchmark identifier, the baraitk code, the initial mesh refinement level, the number
of further refinements, the number of unknowns, the numbeomero elements in A, and the average number of
nonzero elements in each row for the 12 benchmark lineaesystve have selected for our experiments.

[ 1d. | Code | Initial Mesh [ #refs. | n | nnz | nnz/n |
1 VC very coarse 0 1,709 16,669 9.75
2 C coarse 0 9,583 112,563 11.75
3 M moderate 0 32,429 412,251 12.71
4 F fine 0 101,296 | 1,368,594| 13.51
5 VC2 | very coarse 2 271,272 | 3,686,268 13.59
6 M1 moderate 1 297,927 | 4,134,255| 13.88
7 VF very fine 0 658,609 | 9,294,721| 14.11
8 F1 fine 1 882,824 | 12,562,880 14.23
9 c2 coarse 2 906,882 | 12,854,824| 14.17
10 | VC3 | very coarse 3 2,382,864 | 34,128,924 14.32
11 M2 moderate 2 2,539,954 | 36,768,808 14.48
12 | VF1 very fine 1 5,413,520 | 78,935,174 14.58

Figure 8: Computational domain (of Example 4) i &ith some holes inside (left), and benchmark matrices tieguirom several discretizations
of the computational domain (right).

Table 4 compares the performance of the sequential algonthL UPACK with that of our parallel solver applied
to a pair of relatively small cases and a pair of large onexantple 4 (case F, M1, VC3, and VF1 in Figure 8). The
results in Table 4 are similar to those presented in Table 2.

The small variation in the number of nonzero elements antbthéncrease in the number of iterations with larger
p confirms that (for Example 4) our approach to parallelizajioeserves the mathematical basis of the sequential
approach.

The speed-ups attained for the two small cases (F and Mpya6 processors correspond to parall@ogencies
of up to 70% and 64% for the MIC and PCG stages, respectivelyweder, for both large problems (VC3 and
VF1), the parallel codes yield higheffieiencies (up to 100% and 108%, respectively). The causééostperlinear
speed-ups (for matrix VF1) are the same as mentioned efoti€@xample 3 aneh = 200°.

Preprocessing witliD-HAMD-B is superior tharND-HAMD-A in terms of global execution time. However, the
execution time of the MIC stage is higher for the former, amat bf the PCG step is similar for both alternatives (as
both the number of nonzero elements and number of iteratiangery close; see, e.g., results for VC3).

Table 5 shows the interaction between the number of Idgalges in the task tree and the execution times of
the MIC and PCG stages determined by the dynamic schedutitigy{usingND-HAMD-B). The height of the tree

Shttpy/www.hpfem.jku.gihetgen.
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MLND MIC PCG

n p Option T nnz. Tp Sp #iter. Ty Sp
ND-HAMD-X  (sec.) x10%  (sec.) [1/Tp) (sec.) [T1/Tp)
1 A 2.3 1.6 2.3 1.0 22 18 1.0
8 A 23 1.6 0.4 6.0 24 0.3 6.4
F 16 A 23 1.6 0.3 8.7 24 0.2 8.9
1 B 0.0 15 2.6 1.0 23 1.8 1.0
8 B 0.7 15 0.4 6.2 23 0.3 6.9
16 B 0.9 15 0.3 9.4 23 0.2 9.3
1 A 8.0 5.0 8.0 1.0 29 8.3 1.0
8 A 8.0 5.1 13 6.2 29 1.2 7.2
M1 16 A 8.0 51 0.8 10.1 30 0.8 10.3
1 B 0.0 4.7 9.8 1.0 28 7.7 1.0
8 B 2.3 4.8 1.4 7.2 28 1.2 6.5
16 B 2.7 4.8 0.9 11.1 29 0.8 9.9
1 A 82.1 449 839 1.0 52 136.8 1.0
8 A 82.1 44.9 11.2 7.5 52 17.1 8.0
VC3 16 A 82.1 44.9 6.5 13.0 53 10.0 13.7
1 B 0.0 452 108.8 1.0 50 1326 1.0
8 B 215 45.0 13.3 8.2 52 17.1 7.7
16 B 25.1 44.9 7.5 14.6 52 9.8 13.5
1 A 198.9 105.3 234.8 1.0 64 502.8 1.0
8 A 198.9 104.2 27.0 8.7 63 51.7 9.7
VEL 16 A 198.9 104.0 15.2 15.4 64 29.2 17.2
1 B 0.0 100.7  279.7 1.0 60 362.3 1.0
8 B 50.6 98.7 32.0 8.7 62 49.3 7.4
16 B 60.9 99.1 174 16.1 62 277 13.3

Table 4: Performance results for Example 4.

and the number of leaves is fixed during the MLND stage as atifimof f. We explore the results for a complete
binary tree § = ¢) and diferent values of = p times the value shown in the column labeledfasAs expected,

a larger value off leads to more leaves afod higher task trees and therefore to a higher degree oflelsail. In
general, this results in a lower execution time of the palablver. The column labeled agc” refers to the variation
codficient defined as the ratio between the standard deviatiotharatithmetic mean of the sum of the computational
costs of the tasks assigned to each thread. Thus, a lower f@luc indicates a more homogeneous distribution of
the computational load. The results clearly connect lowecetion times with a more balanced distribution of the
workload. The column labeled as “Gain” illustrates the tieéaacceleration in the execution times attained by using
values off = px 1.00,1.25,1.50 with respect to those obtained with= c. Values off > p x 1.50 do not lead

to a significant reduction of the execution times. Two majamatusions can be extracted from this experiment: by
manipulatingf at the MLND stage, one can adjust the degree of parallelisiladle to subsequent stages; and the
bulk of the computational load is concentrated at the leéés second observation is confirmed by the higher gains
attained by increasing).

Figure 9 reports the speed-up attained by the implementafithe MIC and PCG stages in our parallel solver for
Example 4. In all these executiorfsjs set top x 1.25. For both stages, all matrix benchmarks (except for wesri
with identifier 1 and 2) of this example deliver a higher spapdvhen the number of processors is increased.

Table 6 compares the performance of PARDISO and that of td®NCK-based solvers. Although the number of
nonzero elements for the smallest problem (F) is roughlyriBg larger for PARDISO, its overall computational time
is only twice higher. This confirms that direct solvers arg@xely dficient in exploiting level-3 BLAS performance
during the numerical factorization. The table also shoves fhr the two larger cases of this example (M1 and
VC3), PARDISO is no longer competitive due to the signifidactease of the cost in terms of memory consumption
(number of nonzero elements) and computational time (nuwfaperations).

Example 5. We consider four large-scale SPD test matrices from the &fgity of Florida sparse matrix collectidn

"httpy/www.cise.ufl.edfresearctsparsgmatrices.
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Task Tree MIC PCG

Code p f #levels  #leaves ve(%) Tp(s) Gain (%) Tp(s) Gain (%)

8 c 4 8 28.3 5.9 0.0 6.3 0.0

8 x1.00 5 11 17.8 4.9 16.3 4.7 24.8

8 x125 5 14 10.7 4.4 24.7 4.2 33.1

F1 8 x1.50 6 16 5.0 4.3 26.7 4.3 315
16 c 5 16 27.4 3.3 0.0 3.6 0

16 x1.00 6 22 16.3 2.8 16.2 2.8 22.5

16 x1.25 6 27 9.7 2.6 21.3 2.8 22.0

16 x1.50 7 32 4.7 25 24.4 2.9 18.0

8 c 4 8 14.8 16.1 0.0 21.2 0.0

8 x1.00 5 12 10.6 14.7 8.7 18.2 14.2

8 x125 5 15 4.9 13.3 17.4 17.3 18.4

VC3 8 x1.50 5 16 3.8 13.3 17.4 17.1 19.3
16 c 5 16 19.0 8.8 0.0 13.0 0.0

16 x1.00 6 22 12.4 7.9 10.4 10.5 19.2

16 x1.25 6 28 7.0 7.4 15.8 9.8 24.6

16 x1.50 7 33 6.4 8.2 6.9 10.8 19.2

Table 5: Role of parametdrand the dynamic scheduling policy for Example 4.
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Figure 9: Performance of the parallel MIC (left) and PCGl{tjgstages for Example 4.

We have selected them in order to evaluate the performarme parallelization approach with irregularly structured
problems arising from very fferent application areas; see Table 7 for details.

Table 8 compares the performance of the sequential algonthL UPACK with that of our parallel solver applied
to Example 5. Although fine-tuning of the MIC stage on an iidlnal basis yields better performance (i.e., less
memory angbr time to solution) than that shown in Table 8, we refrainselwres from optimizing andr, and set
their values tor = 5 andr = 1072, (We also made experiments with smaller drop toleranceshiese are skipped
to keep the presentation simpler.) For our parallel solwerpuseND-HAMD-B preprocessing withf set top x 2.0 to
let the dynamic scheduling policy improve load balancinge Tesults in Table 8 confirm that our approach yields
remarkable parallel performance for the MIC and PCG stagspitk of the irregular nature of these matrices. The
mild increase in the number of PCG steps as well as the supsarlspeed-ups which are attained in some cases
(see e.g., the results for UF1) can be justified because afittierlying irregularity of these matrices which, to some
extent, causes aftierent distribution of the nodes among the algebraic levéls wcreasing number of processors.
We remark that the increase in the number of iterations isertftan paid & by the reduction of the execution time
yielded by the parallel PCG.
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PARDISO

ILUPACK-based

Code p nnz Tre  Tsy Tra Tso Tail nnz. Tail
x1078 (sec.) (sec.) (sec.) (sec.) (sec.) x10°8 (sec.)
= 1 24.4 1.6 0.3 5.7 0.7 8.3 1.5 4.4
16 24.3 1.6 0.3 0.8 0.6 3.3 15 1.4
M1 1 97.7 6.0 0.9 36.9 2.7 46.5 4.7 17.5
16 97.4 6.0 1.2 4.4 1.8 13.4 4.8 4.3
VC3 1 1,870.8 64.9 13.3 3,717.3 57.3 3,582.8 45.2 240.0
16 1,867.5 66.9 15.8 377.0 24.4 484.1 44.9 42.4

Table 6: Performance comparison between PARDISO and oali@asolver for Example 4.

[ Code | Matrix name | Application area | n | nnz |
UF1 af_shell3 Sheet metal forming 504855 | 17562051
UF2 bmwcral Automotive crankshaft modeling 148770 | 10641602
UF3 G3_circuit Circuit simulation problem 1585478 | 7660826
UF4 Idoor Structural analysis 952203 | 42493817

Table 7: SPD test matrices with their code, name, applicai@a of origin, orden and number of nonzeramza.

We next describe the configuration of the parallel algorgimBlockSolve95 and in the Hypre-Euclid library
for Example 5. These algorithms require the system to beiloliséd among the processors. We used the k-way
partitioning heuristics included in METIS [21] to partiticand distribute accordingly the déieient matrix among
the processors, as the amount of communication and loaddia¢pof these algorithms heavily depend on the initial
distribution of the cofficient matrix. In this direction, the k-way partitioning hrestics keep the amount of work
associated with each subdomain roughly equal while minigithe size of the edge separator. The degree of par-
allelism which can be exploited by BlockSolve95 dependshenrhulticoloring of the adjacency graph which the
library internally computes. For Hypre-Euclid, the degoégarallelism which can be exploited during the ILY(
factorization depends on this initial distribution. In peular, the subdomain intersection graph should have dlsma
chromatic number [9]. The k-way partitioning heuristicsmat necessarily provide subdomain intersection graphs
with a small chromatic number, though their use is justifiedduse of the underlying irregularity of these matrices,
where a natural partitioning by hand is not readily avagabVe used = 0 andk = 1 for the PILUK) preconditioner
in Euclid because these values lead to the best metimeytrade-dfs. The rest of parameters of Euclid were set to
default values. The parallel PCG solver in both librarigsiigalized with the zero vector as the starting guess ard th
iteration is stopped when the number of iterations reacB88 ®r when the relative residual norm drops belowf10

Table 9 compares the performance of BlockSolve95 and th#teofLUPACK-based solvers. The results for
BlockSolve95 illustrate, from left to right, the executittime of the initial multicoloring of the adjacency grapheth
number of nonzero entries (in millions) in the incompleteot@sky factor, the execution time of the IC(0) precon-
ditioner, the number of iterations required for convergefacdagger reflects that the PCG method did not converge
within 2000 iterations), the execution time of the PCG splaed the overall execution time without considering the
initial k-way partitioning and distribution of the cfiicient matrix. The results of the ILUPACK-based solversirefe
to the number of nonzero elements in the MIC preconditiomer the overall execution time including the initial
ND-HAMD-B preprocessing step. Although the multicoloring-based@ggh in BlockSolve95 attains almost linear
speed-ups, it is not competitive to our approach in termsvefall solution time and robustness. This is in part due
to the 1C(0) factorization, which drops any fill-in out of tleeiginal sparsity pattern of\, but also because of the
multicoloring orderings, which lead to a high degradatiopieconditioner quality (i.e., high iteration counts) foe
matrices in our benchmark.

Table 10 reports the performance of Hypre-Euclid and theAROK-based solvers. The results for Hypre-Euclid
illustrate, for each value of the level-of-fitl from left to right, the number of nonzero entries (in mifig) in the
incompletd. factor, the execution time of the ILW(preconditioner, the number of iterations required fon@gence
(a dagger reflects that the PCG method did not converge vah0 iterations), the execution time of the PCG solver,
and the overall execution time without considering theiahik-way partitioning and distribution of the cfiient
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MLND MIC PCG
n p Option T nnz. Tp Sp #liter.  Tp Sp
ND-HAMD-X  (sec.) x10%  (sec) [1/Tp) (sec.) [T1/Tp)

1 B 0.0 19.5 33.6 1.0 331 307.9 1.0

2 B 3.4 192 16.9 2.0 365 154.1 2.0

UF1 4 B 4.8 19.2 8.5 4.0 371 69.8 4.4
8 B 6.3 19.2 4.3 7.9 379 334 9.2

16 B 7.5 19.3 23 14.6 403 201 15.3

1 B 0.0 10.2 24.6 1.0 756 3219 1.0

2 B 1.9 10.0 11.9 21 835 165.4 1.9

UF2 4 B 3.1 10.3 5.7 4.3 866 75.8 4.2
8 B 4.1 10.6 3.2 7.6 899 420 7.7

16 B 5.0 10.7 1.7 14.1 914 28.8 11.2

1 B 0.0 12.5 29.5 1.0 121 120.7 1.0

2 B 33 125 146 2.0 131  66.6 1.8

UF3 4 B 51 12.5 6.2 4.8 124 25.3 4.8
8 B 6.4 12.6 3.0 9.7 136 14.4 8.4

16 B 7.9 12.6 1.6 18.4 130 7.6 15.8

1 B 0.0 36.2 618 1.0 409 740.0 1.0

2 B 8.1 36.1 298 21 465 408.1 1.8

UF4 4 B 11.3 36.1 14.9 4.1 464 186.3 4.0
8 B 15.0 36.1 8.4 7.4 484 95.3 7.8

16 B 18.0 36.7 4.3 14.4 476 46.9 15.8

Table 8: Performance results for Example 5.

matrix. The results of Table 10 show that, for serial comfiorts, the inverse-based approach results in faster ealuti
times and increased robustness. For example, the ILU(TXppditioner could not successfully solve UF4, even
consuming more memory than the MIC preconditioner. (Werref¢7] for an extensive empirical comparative study
of the sequential version of ILUPACK and other precondiéan) What is more relevant for the purpose of this paper,
we can observe that our parallelization approach attamsurieable speed-ups compared to those of the Hypre-Euclid
parallel solvers for these irregular matrices. The poolirsgachieved by Hypre-Euclid in the parallel computatidn o
ILU(K) preconditioners is due to the combination of the followiwg factors. First, the k-way heuristic partitionings
do not necessarily provide subdomain graphs with a smadirohtic number, limiting the degree of parallelism
which can be exploited during the elimination of the bougdades. Second, the computational cost involved in the
elimination of the boundary nodes is high compared with ¢tigtte interior nodes. The higher speed-ups obtained by
Hypre-Euclid in the parallel computation of ILU(0) precdtimhers are due to the lower impact of this second factor,
i.e., withk = 1 the elimination of the boundary nodes becomes much mor@etationally demanding, resulting in

BlockSolve95 ILUPACK-based
Code p Tcol nnz  Tico) #iter. Tpce Tl nnz Tl
(sec.) x10® (sec.) (sec.) (sec.) %1076 (sec.)
1 24.1 9.0 10.6 1589 1650.3 1685.0 19.5 3415
UF1 8 2.9 9.0 1.3 1610 186.7 190.9 19.2 44.0
16 1.4 9.0 0.6 1504 82.6 84.6 19.3 29.9
1 11.8 5.4 7.1 ¥ ¥ ¥ 10.2 346.5
UF2 8 1.6 54 0.9 T T T 10.6 49.3
16 1.2 5.4 0.5 T ¥ ¥ 10.7 35.2
1 30.2 4.6 115 1828 2576.1 2617.8 12.5 150.2
UF3 8 3.6 4.6 1.2 1825 347.3 352.1 12.6 23.8
16 1.7 4.6 0.6 1829 166.2 168.5 12.6 17.1
1 89.3 21.7 154.2 1723 8220.0 84635 36.2 801.8
UF4 8 8.7 21.7 17.4 1650 771.4 797.5 36.1 118.7
16 3.8 21.7 6.5 1640 318.1 328.4 36.7 69.2

Table 9: Performance comparison between BlockSolve95 angdarallel solver for Example 5.
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significantly lower speed-ups. In contrast to Hypre-Eyahidr parallelization is more robust because its degree of
parallelism is not limited by an unproper distributioaloring of the subdomain graph and more important, because
the inverse-based approadfi@ently controls the fill-in across the interfaces (i.eg thaves concentrate the bulk of

the computation).

Hypre-Euclid ILUPACK-based
k=0 k=1
Code p nnza Tiuw  #iter.  Tpco Tan nnz. Tk Hter.  Tpce Tan nna Tan
x10%  (sec.) (sec.) (sec.) x1078 (sec.) (sec.) (sec.) %1076 (sec.)
1 9.0 9.0 1058 826.6 835.6 12.8 13.1 503 514.2 527.2 19.5 3415
UF1 8 9.0 49 1152 82.0 86.9 12.8 15.0 572 53.3 68.2 19.2 44.0
16 9.0 45 1214 43.6 48.1 12.9 14.6 597 28.7 43.2 19.3 29.9
1 5.4 6.1 1401 398.5 404.6 15.9 41.0 815 589.0 630.0 10.2 346.5
UF2 8 5.4 19.1 1426 60.4 79.5 15.6 221.2 845 62.6 283.8 10.6 49.3
16 5.4 40.7 1444 40.0 80.7 14.8 614.9 855 53.9 668.8 10.7 35.2
1 4.6 145 909 3949 409.4 6.1 14.9 497 2351 250.0 12.5 150.2
UF3 8 4.6 2.3 1244 65.1 67.4 6.1 2.7 673 41.3 44.1 12.6 23.8
16 4.6 14 1271 32.0 334 6.1 1.8 685 20.7 22.5 12.6 17.1
1 21.7 25.8 T T T 47.1 69.4 T T T 36.2 801.8
UF4 8 21.7 12.7 i i T 47.0 52.7 T i T 36.1 118.7
16 21.7 12.5 i i T 46.9 54.9 T i T 36.7 69.2

Table 10: Performance comparison between Hypre-Euclidoangarallel solver for Example 5.

5. Conclusions

Our approach to the parallel iterative solution of spansedr systems demonstrates that the degree of parallelism
exposed by MLND is sfiicient to dficiently exploit the hardware parallelism in shared-menmuaatforms with a
moderatenumber of processors. Due to the low fill-in usual in iteratolvers based on ILUPACK, even a reduced
number of processors can already provide reasonable éxedimes for large-scale sparse application problems.
The mechanisms proposed in this paper include the use of Mtd\Ndentify concurrent tasks in the context of
preconditioned iterative solvers, exploitation of tagkgilelism extracted from the task dependency tree, dymami
scheduling to improve load-balancing, careful mappingheftasks to processors to improve cache use and reduce
communication time, and a parallelization for shared-mgmuultiprocessors based exclusively in standard tools as

OpenMP.

Experimental results on a CC-NUMA platform with 16 processasing several large scale examples, show that
our approach yields a considerable reduction of the exaetitne for the MIC and PCG stages, while accommodating
the mathematical semantics of the inverse-based pre@amidig approach implemented in ILUPACK.
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