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Abstract

We investigate the efficient iterative solution of large-scale sparse linear systems on shared-memory multiprocessors.
Our parallel approach is based on a multilevel ILU preconditioner which preserves the mathematical semantics of
the sequential method in ILUPACK. We exploit the parallelism exposed by the task tree corresponding to the nested
dissection hierarchy (task parallelism), employ dynamic scheduling of tasks to processors to improve load balance,
and formulate all stages of the parallel PCG method conformal with the computation of the preconditioner to increase
data reuse. Results on a CC-NUMA platform with 16 processorsreveal the parallel efficiency of this solution.

Key words: Large sparse linear systems, factorization-based preconditioning, preconditioned conjugate gradients,
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1. Introduction

One of the numerical problems which arises most frequently in modern linear algebra is the solution of large
sparse systems of equations. In applications involving thediscretization of partial differential equations (PDEs), the
efficient solution of sparse linear systems is one major computational task. The same key subproblem appears in
many other application areas as, e.g., in quantum physics orcircuit and device simulation. This is also the case for
nonlinear equations as well as large-scale eigenvalue computations since the iterative methods employed in those
problems usually require the solution of multiple linear systems. As the size of the underlying applications increases
(e.g., three spatial dimensions for PDEs or increasing number of devices in integrated circuits), the development of
fast and efficient numerical solution techniques becomes crucial.

Sparse direct solvers have proven to be extremely efficient for a large class of application problems, but they
are also known to perform poorly for others. For example, direct methods are highly efficient when applied to two-
dimensional (2D) PDEs, but they dramatically slow down for three-dimensional (3D) problems because of consid-
erable fill-in [1]. Approximate factorization techniques combined with Krylov subspace methods are an appealing
alternative for these kind of application problems where fill-in becomes an issue [2].

In this paper we present a parallel variant of a highly efficient multilevel incomplete LU factorization (ILU)
method which has been successfully applied in sparse large scale application problems with up to millions of equa-
tions [3, 4, 5]. This multilevel method is based on the so-called inverse-based approach which lays the foundations
for the software package ILUPACK3. The fundamental difference between ILUPACK and other common ILU pre-
conditioners resides in controlling the growth of the inverse triangular factors; see [3, 6] for a theoretical justification
of this approach and [7] for an extensive empirical comparative study of the sequential variant of ILUPACK and other
preconditioners.
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Parallel computation of ILU-type preconditioners and the iterative solution of sparse linear systems on distributed-
memory architectures has been extensively studied in the past. Jones and Plassman’s approach [8] identifies a high
degree of parallelism in the computation of ILU(0) preconditioners by means of a multicoloring of the undirected
graph representing the nonzero adjacency structure of the coefficient matrix. The codes are available in BlockSolve95,
a parallel library which can be installed as an external package of PETSc4. Karypis and Kumar [10] introduced paral-
lel threshold (PILUT) preconditioners, and Hysom and Pothen [9] developed level-of-fill (PILU(k)) preconditioners;
both approaches are based on graph partitionings with balanced subdomains and small edge cuts. A similar method
is presented in [11] by Made and Van der Vorst. Within each subdomain, these approaches order the interior nodes
prior to the boundary nodes, ensuring that, during the elimination of the interior nodes, no fill-edges (and thus new
dependencies) arise between interior vertices belonging to different subdomains. However, during the elimination of
the boundary nodes, fill-edges arise among nodes belonging to different subdomains, which have to be managed for
efficient parallel computation. While PILU(k) is based on a multicoloring of the subdomain intersection graph [9],
PILUT uses a multistage algorithm [10] which starts by explicitly forming the graph resulting from the elimination of
the interior nodes. At each stage of the algorithm, an independent subset of the boundary nodes is computed and elim-
inated, and the new graph which results from this elimination is explicitly formed for the next stage. The PILUT and
PILU(k) codes are distributed as part of the Hypre5 library. A somewhat different approach is the one of pARMS [12],
the parallel version of the ARMS (Algebraic Recursive Multilevel Solvers) [13] library. pARMS is based on a domain
decomposition approach which uses ARMS for the subdomain solves, followed by a preconditioned iterative scheme
for the Schur complement corresponding to the boundary nodes.

The main contribution of the parallelization approach presented in this paper consists of the interplay between the
algebraic levels generated by the multilevel ILU method andthe concurrency which is induced by the nested dissec-
tion hierarchy. The resulting method is multilevel in two directions, accommodating the semantics of the algebraic
approach while exploiting a high degree of parallelism simultaneously. Another important novelty of our paralleliza-
tion approach is that we target the recent uprise of multi-core processors and, in preparation for the future many-core
systems, we address the iterative solution of linear systems usingtechniqueswhich may yield higher performance for
shared-memory architectures than message-passing. In particular, our method exhibits the following features:

• Algebraic parallelization based on a task tree (built from nested dissection) to match the degree of hardware
parallelism of the target platform.

• Parallelization driven by the dependencies in the task tree(task-parallelism), not limited by the control struc-
tures of a code (control-parallelism).

• Dynamic scheduling to improve load-balancing during execution managed by a run-time that can be tuned for
a particular target platform and a specific application problem.

• Application of the preconditioner conformal with the logical structure built during its construction to reduce the
number of data transferences (cache misses). The same requirement is also set for other major operations in
PCG: matrix-vector products, inner products, andaxpyupdates.

• Use of OpenMP to parallelize all stages of the parallel solution of the linear system: computation and application
of the preconditioner as well as the other matrix operationsin the preconditioned conjugate gradient (PCG)
iterative method [14].

We believe that the analysis of these techniques in combination with the focus on a platform like a shared-memory
multiprocessor are two significant original contributionsof this paper. While in this paper we restrict our discussion
to symmetric positive definite (SPD) systems of equations, we expect our parallelization approach to be also suitable
for more general cases.

The paper is organized as follows. In Section 2 we present thegeneral framework for the parallelization approach:
the iterative solution process is first reviewed, and the serial preconditioner and its parallel version are presented next.

4http://www.mcs.anl.gov/petsc/petsc-as.
5https://computation.llnl.gov/casc/linear solvers/sls hypre.html.
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Section 3 addresses the parallelization of the applicationof the parallel preconditioner and other matrix and vector
operations inside the PCG method. In Section 4 we demonstrate the effectiveness of our method for several large-
scale examples which confirm that speed-up close to linear can be attained using a moderate number of processors on
a shared-memory machine. A few concluding remarks close thepaper in Section 5.

2. Iterative solution of symmetric positive definite linearsystems

Consider the linear system of equations
Ax= b, (1)

whereA ∈ R
n,n is a large sparse SPD matrix,b ∈ R

n, andx ∈ R
n is the sought-after solution. We propose to solve

(1) iteratively using the PCG method, with the preconditioner based on amultilevel incomplete Cholesky (MIC) de-
composition[3]. We start by reviewing the foundations of the PCG method in subsection 2.1. The framework of the
serial preconditioner and its parallel variant are presented in subsections 2.2 and 2.3, respectively. The computational
aspects related with the efficient computation of the parallel preconditioner are presented in subsection 2.4 and, fi-
nally, subsection 2.5 briefly discusses the numerical relations between the sequential and the parallel preconditioners,
offering evidence that the semantics of our approach to parallelization is close to its sequential counterpart.

2.1. Preconditioned conjugate gradients

The PCG method is among the best iterative approaches to solve SPD systems. When applied to (1), the conver-
gence rate of the method is strongly related to the conditionnumber of the preconditioned system

κ = λmax(M−1A)/λmin(M−1A), (2)

where an efficient preconditionerM ≈ A will cause the iteration to converge in a moderate number of steps. In practice,
the PCG method consists of a sequence of matrix-vector multiplications, scalar products,axpyupdates (y := y+α · x),
and the application of the preconditionerM. Thus, the bulk of the computational cost of the method is in the matrix-
vector products and the computationM−1A. While the distribution of the cost among these two operations depends
on the application problem, numerical experience with ILUPACK indicates that applying the preconditioner is often
the most expensive operation.

2.2. The multilevel incomplete Cholesky preconditioner

The Cholesky decomposition ofA ∈ R
n,n is defined as

A = L̄L̄T = (LD1/2)(D1/2L)T = LDLT , (3)

whereL ∈ R
n,n is unit lower triangular andD ∈ R

n,n is diagonal. In the incomplete Cholesky decomposition we
compute an approximate factorizationLDLT such thatA = LDLT + E. Compared with (3), small perturbations are
introduced in the form of a matrixE which consists of those entries dropped during the factorization process. However
a small‖E‖ does not always imply thatM = LDLT is a good preconditioner forA as, for the PCG method, the actual
requisite is that the condition number of the preconditioned systemM−1A = (LDLT )−1A is small. This is certainly
fulfilled if ‖D−1/2L−1EL−TD−1/2‖ is small.

Inverse-based incomplete factorization techniques [3] pursue the computation of a preconditionerLDLT with
‖L−1‖ ≤ ν for some prescribed smallν > 1. Typically, ν = 3, ν = 5 or ν = 10 are good choices. The usage of
inverse-based factorization techniques is grounded in twomajor theoretical properties. To review these, consider a
partial incomplete factorization

A ≡

(

B FT

F C

)

= LDLT + E, (4)

with C ∈ R
m,m, L a unit triangular matrix satisfying‖L−1‖ 6 ν, and matricesL andD partitioned as

L =

(

LB 0
LF Im

)

, D =

(

DB 0
0 SC

)

, (5)
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whereIm refers to the identity square matrix of orderm, DB is a diagonal matrix andSC ∈ R
m,m is the approximate

Schur complement ofB in A. A first argument in favor of inverse-based incomplete factorizations addresses the error
that is introduced by dropping small entries. IfA = LDLT + E, thenL−1AL−T = D + L−1EL−T ≡ D + Ē so that
‖Ē‖ 6 ν2‖E‖. Depending on the method employed to obtain the approximateSchur complementSC, the bound can
be further improved to‖Ē‖ 6 ν‖E‖; for details, refer to [3]. This addresses, at least partially, the objective of keeping
‖D−1/2L−1EL−T D−1/2‖ small. The second and more important argument relates inverse-based decompositions and
algebraicmultilevel methods. To review this, consider the case when no dropping is applied in (4), i.e.,E = 0. Denote
the eigenvalues ofA as 0< λ1 6 · · · 6 λn, and the eigenvalues ofSC in (5) as 0< µ1 6 · · · 6 µm. If L from (5)
satisfies‖L−1‖2 ≤ ν, then the eigenvalues ofSC are in the range of the small eigenvalues ofA; that is,

λi 6 µi 6
ν2

1− ‖D−1
B ‖2νλi

λi ≈ ν
2 λi ,

for all i such thatλi ≪ 1/(‖D−1
B ‖2ν); for the proof, refer to [6]. In terms of PDEs this states that the “coarse grid

system”SC reveals the low eigenmodes of the original systemA. It also justifies the use of a small boundν since
otherwise the eigenvalue inclusion is meaningless. The objective of keeping‖L−1‖ below a prescribed moderate
boundν is thus disclosed as an algebraic coarsening strategy. Typically the system at hand does not initially satisfy
‖L−1‖ 6 ν, except if some strict diagonal dominance

n
∑

j=1
j,i

|a−1
ii ai j | 6 1−

1
ν
,

for i = 1, . . . , n−m, is satisfied (cf. [6]). This is often an unrealistic case and, therefore, additional pivoting in (4) is
necessary in practice to achieve a small‖L−1‖. As a consequence, pivoting for inverse-based incomplete factorization
techniques is fairly different from those employed in any other incomplete factorizations. Inverse-based pivoting
requires to skip a large portion of unknowns (such as 30%) during the partial factorization.

Example 1. We illustrate the pivoting effect for the case of the 2D Laplacian problem based on a five-point-star
difference stencil (see Figure 1, left) on a uniform square grid in two spatial dimensions having n= 127grid nodes in
each direction. The initial system is also reordered using nested dissection which can be seen observed the similarity
between Figure 1 and the graph GA in Figure 3. The ILUPACK pivoting strategy is repeated for SC and introduces
several levels of approximate partial factorizations of type (4) in order to successively force‖L−1‖ 6 ν on every level.
We also illustrate the total multilevel preconditioner (see Figure 1, right) composed over seven levels along with the
size of the system matrices A,SC and further coarser level matrices. I.e., we state the matrices L+ LT in the diagonal
blocks and F and FT in the sub and super block diagonal part and repeat this representation for SC and all subsequent
levels.

Example 1 illustrates the necessity of a multilevel approach to obtain an inverse-based incomplete factorization.
Moreover, the parallelization of this approach is significantly more challenging than that of a standard incomplete
factorization, where pivoting is used occasionally, as a safeguard, and where the multilevel formulation is rare. The
efficient parallelization of an inverse-based decomposition is complicated by the need of interlacing algebraic levels
with the concurrency constraints.

The pivoting strategy in ILUPACK employs an estimation of‖L−1‖ obtained along with the computation of the
incomplete Cholesky decomposition. Specifically, if at some stepk of the factorization, the norm of thek-th row of
L−1 exceeds the boundν, then thek-th row and column of the matrix are moved, respectively, to the last row and
column of the matrix; otherwise the factorization continues (see Figure 2 for a sketch of the pivoting process). This
finally results in a partial factorization of a permuted system. Rejected columns/rows can be viewed asbad pivots
with respect to the inverse constraint‖L−1‖ ≤ ν.

The factorization procedure stops when only rejected pivots remain in the rows and columns yet to be factorized.
In other words, the trailing principal submatrix starting at some row/columnk̂+ 1 only contains elements from those
rows and columns which have been rejected. The computation of the Schur complement with respect to the factorized
k̂× k̂ leading part completes the firstalgebraic level(see Figure 2). For the next algebraic level, the whole method is
restarted on the Schur complement. This recursive process transforms this approach into a multilevel method we will
refer to as the MIC (decomposition). The computation can be expressed algorithmically as follows:
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· leaf node factored

× leaf node rejected

◦ separator node factored

• separator node rejected
0 5000 10000 15000
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nz=398593

ILUPACK multilevel preconditioner (7 levels)

Figure 1: sequential MIC (first algebraic level) applied to 2D Laplacian (left), sequential MIC skeleton accumulated over all levels (right).
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Figure 2: ILUPACK pivoting strategy.

1. ReorderA→ PTAP= Â using some fill-reducing ordering matrixP. In addition, a diagonal scalingA→ S AS
is also applied such that the diagonal entries become one. For simplicity, hereafter we will not mention this
preprocessing step.

2. Compute a partial incomplete Cholesky decomposition ofÂ:

P̂T ÂP̂ ≡

(

B FT

F C

)

= LDLT + E, (6)

whereC ∈ R
n−k̂,n−k̂ is the trailing principal containing only elements from rejected rows and columns,E refers

to some error matrix due to dropping (see [3] for details), and L, D are defined as in (5), with‖L−1‖ / ν.

3. Proceed to the next algebraic level by repeating steps 1 and 2 with A ≡ SC until SC is void or “dense enough”
to be factorized using a dense Cholesky solver.

The arithmetic intensity (ratio of flops to memory accesses)of the kernels in the MIC decomposition is usually
much lower than that of the operations arising in sparse direct methods, basically because of the presence of dropping.
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In the MIC, entries are dropped on-the-fly based on availablenumerical information so that, in general, it is not
possible to know the sparsity pattern of the factor(s) in advance via, e.g., a preliminary symbolic analysis. Hereby,
exploiting (dense) level-3 BLAS for the MIC exhibits littleappeal other than at step 3. Nevertheless, the solution
of linear systems via the MIC is considered a competitive alternative to BLAS-3-based direct methods whenever the
fill-in in the approximate factors is within a modest multiple of the number of nonzero elements inA.

2.3. Parallel multilevel factorization
Our parallelization approach isalgebraic, i.e., it is exclusively based on the information derived from the sparsity

pattern of the linear system. In particular, we exploit the connection between symmetric sparse matrices and undi-
rected graphs. Consider the graphGA = {V,E} associated with matrixA = (ai j ), consisting of nodesV = {1, . . . , n}
and edgesE = {{i, j} : ai j , 0∧ i , j}. Thus,GA reflects the nonzero pattern (excluding the diagonal) ofA.

Nested dissection is a heuristic ordering strategy that starts by finding asmallsubset ofGA, called vertex or node
separator, which splitsGA into two subgraphs of roughlyequal dimension. These two subgraphs are disconnected
as there is no edge inGA between them. Thus, they identify blocks of rows/columns ofA which can be factorized
independently (hence in parallel). The subgraphs are next ordered recursively via nested dissection, if their dimension
is still “large”, or, e.g., using minimum degree otherwise.The result of applying this ordering procedure is a permuted
system matrixA → ΠTAΠ = A1. In Figure 3,GA is recursively split into four subgraphs (1,1), (1,2), (1,3) and
(1,4), first using separator (3,1) and then repeatedly by separators (2,1) and (2,2). Gaussian elimination applied to the
corresponding reordered system matrix allows to factorizethe diagonal blocks associated with the subgraphs (1,1),
(1,2), (1,3) and (1,4) independently. After that, the elimination proceeds with (2,1) and (2,2) in parallel until, finally,
separator (3,1) is treated. This property is captured by thetask dependency tree in Figure 3. Parallelism revealed
by the task tree (tree parallelism) has been heavily used in parallel sparse direct methods over the past years (see,
e.g., [15, 16]).
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GA A A→ ΠT AΠ = A1 Task dependency tree

Figure 3: Nested dissection ordering. From left to right: nested dissection, natural ordering, nested dissection reordering, and task dependency tree.

The task tree imposes a certain order in which the ILU preconditioner can be computed. The MIC starts by
processing the leaves of the task tree and proceeds bottom-up towards the root. Initially, the diagonal blocks associated
with leaf nodes can be processed by the framework described in subsection 2.2 while other parts are updated only.
We refer to this level as the bottom tree level. However, the MIC is forced to complete the processing of all nodes
in the current tree level before moving up one level in the tree hierarchy. The top half of Figure 4 illustrates how the
MIC proceeds at the bottom tree level. Bad pivots identified by the inverse-based strategy are postponed within the
blocks corresponding to this tree level. Once the first localalgebraic level is completed in the bottom tree level, the
MIC enters the second local algebraic one, and the process isrepeated until the set of bad pivots is “small enough”.
The computation eventually enters the next tree level and incorporates the remaining bad pivots, rejected in the last
local algebraic level of the previous tree level. The bottomhalf of Figure 4 shows how the input matrix for the next
tree level is constructed from the Schur complement resulting from the bottom tree level. We will refer to matrices
like those in Figure 4 as theglobal matricesof the parallel MIC. The MIC continues processing the levelsof the tree
until it reaches the root, where the sequential framework completes the computation.

Our parallel approach exploits that each node of the currenttree level is associated with the factorization of certain
blocks of the matrix. In Figure 3, for example, fill patterns are used to specify the correspondence between nodes
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Figure 4: Sketch of the parallel MIC. Top: the MIC within the bottom tree level. Bottom: once all algebraic levels within the bottom tree level are
processed, the MIC enters the tree level above it.

of the task dependency tree and blocks of the matrix. Also, the computations within a node only involve updates on
blocks which will be factorized in ancestor nodes that are along the path to the root node. Following the example in
Figure 3, task (1,1) only updates those blocks that will be later factorized in tasks (2,1) and (3,1). Hereafter, we will
refer to blocks that are updated in a task as itscontribution blocks. To increase the degree of parallelism, the updates
from descendant nodes to an ancestor node are kept in separate contribution blocks with different data structures;
thus, e.g., updates from tasks (1,1) and (1,2) to (2,1) are kept in separate contribution blocks so that they can be
performed locally/independently. The entries of the global matrices can be recovered by adding the corresponding
entries of the contribution blocks. Operating in this manner, the factorization of the blocks within the same tree level
can proceed in parallel. When these computations are completed, the updates of the contribution blocks can also
proceed concurrently.

Let us elaborate this idea further. Although our algorithm can be easily generalized for non-complete binary task
trees, we assume for simplicity that we start from a completebinary task tree withs leaves of heighth = log2 s+ 1.
The input global matrix for the bottom tree level, corresponding to the reordered matrixA→ ΠTAΠ = A1, is split into
thetree-path additivesum

A1 = (M(1,1))TA(1,1)M(1,1) + · · · + (M(1,s))TA(1,s)M(1,s), (7)

whereA(1, j) contains certain blocks of the original matrix andM(1, j) is an appropriate block permutation matrix; see
Figure 5. The contribution blocks of the leaves are initialized with the original entries ofA1 divided by 2l−1, where
l is the tree level the contribution block belongs to. For example, in Figure 5, the contribution blocks of task (1, 2)
corresponding to nodes (2, 1) and (3, 1) are initialized with the original entries ofA1 divided by 2 and 4, respectively.

The parallel computation starts at the bottom tree level with one independent task per leaf. All tasks employ the
algorithm in subsection 2.2, but differ in the input data: task (1,j) starts withA ≡ A(1, j). Within one task and a local
algebraic level, the following partial factorization is first computed:

(P̂(1, j))TA(1, j)P̂(1, j) ≈ L(1, j)D(1, j)(L(1, j))T ,

7
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
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















A(1,2)
11 (A(1,2)

21 )T (A(1,2)
31 )T
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22 (A(1,2)
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




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Figure 5: Tree-path additive matrix splitting ofA1.

where

L(1, j) =


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


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










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
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D(1, j)
B,11 0

0 S(1, j)
C













. (8)

HereS(1, j)
C,11 refers to those nodes which were rejected inside a local algebraic level, and the double partitioning lines

represent the boundaries between blocks to be factorized bytask (1,j) and its contribution blocks. The next local
algebraic level of the MIC then proceeds forward with the Schur complementS(1, j)

C as the input. The computation
continues processing local algebraic levels until the set of bad pivots is “small enough”. Then, the parallel algorithm
proceeds with the computations corresponding to the tasks in the next upper level of the tree. Each task (2,k) of this
tree level constructs a new submatrixA(2,k) composed by those parts of the system that were rejected by its children,
along with a summation of their contribution blocks. That is,

A(2,k) =


































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


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. . .
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
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
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, (9)

with

A(2,k)
22 =

























S(1,2k−1)
C,11 0 (S(1,2k−1)

C,21 )T

0 S(1,2k)
C,11 (S(1,2k)

C,21 )T

S(1,2k−1)
C,21 S(1,2k)
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
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, A(2,k)
m2 =

(

S(1,2k−1)
C,m2 , S(1,2k)

C,m2 , S(1,2k−1)
m2 + S(1,2k)

m2

)

,m= 3, . . . , h,

andA(2,k)
mn = (S(1,2k−1)

mn + S(1,2k)
mn )m,n=3,...,h. Note that this leads to the tree-path additive splitting ofthe global matrix

A2 = (M(2,1))TA(2,1)M(2,1) + . . . + (M(2,s/2))TA(2,s/2)M(2,s/2)
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corresponding to the second tree level (seeA2 in Figure 4).
In addition, at every algebraic level of the local MIC performed by each task (j, k), a diagonal scalingA( j,k) →

S( j,k)A( j,k)S( j,k) and a fill-reducing orderingA( j,k) → (P( j,k))TA( j,k)P( j,k) are applied. Both transformations must be
restricted to the blocks ofA( j,k) to be factorized by the task.

2.4. Computational aspects: bringing all together

Assume for simplicity that the task tree is binary and complete. The parallel MIC first computess independent
factorizations, corresponding to the leaf nodes; then,s/2 submatrices from the next-to-lowest level are constructed
from parts of the system rejected by the children along with asummation of the contribution blocks. After this merging
stage, matrices at this level are factorized ands/4 submatrices for the next level are built. This process is repeated at
each level of the tree till the root node is reached.

We note however that the order in which tasks are executed (task schedule) is only constrained by the dependencies
captured in the task tree. Therefore, in practice, there is no need for a global synchronization point (a barrier) between
tree levels. We will exploit this in a mechanism to schedule tasks for execution at run time, which takes into account
only dependencies among tasks. Our parallel algorithm to compute the MIC is sketched in pseudocode in Algorithm 1,
and combines the building blocks presented so far with a dynamic task scheduling mechanism. Clearly the algorithm
is also valid for incomplete task trees.

Algorithm 1 : Computes the parallel MIC of the reordered systemA→ A1 = Π
TAΠ

[ Π , T ] ← nesteddissection(GA) ⊲ obtain task treeT and permutationΠ1

Q← { leaves(T) } ⊲ initialize Q with all leaves ofT2

mark all tasks ofT as not executed3

Begin parallel region4

pid← get processidentifier()5

repeat6

while pending tasks in Qdo7

tid← dequeue(Q) ⊲ remove ready task from the head ofQ8

map [tid ]← pid ⊲ process pid in charge of task tid9

execute(tid) ⊲ construct tid’s submatrix and compute local MIC10

mark tid as executed11

if all dependencies ofparent(tid)have been resolvedthen12

enqueue(parent(tid), Q) ⊲ insert new ready task at the tail ofQ13

end14

end15

until not all tasks executed16

End parallel region17

Algorithm 1 maintains a centralized (shared) queueQ containing only tasks with their dependencies fulfilled
(ready tasks). The shared queue is initialized with all the leaves of the task tree, and then a group of “processes”
(actually threads) is spawned (line 4). Processes enter thewhile loop when there are tasks ready for execution.
The mapping of tasks to processes (line 8) is completely dynamic, which aims at improving load-balancing. The
computational core of the algorithm is represented by the call to routine “execute” (line 10), which constructs the
submatrix associated with a task and performs the corresponding computations. There are no synchronization points
inside the routine; this is a consequence of splitting both the data structures and the computations of the MIC. When
a process completes the execution of a task, it checks whether its sibling task has been already computed (this implies
that all dependencies of its parent task have been resolved as the tree is binary) and, in such case, the process inserts
the parent task inQ (line 13). For simplicity, details on the safe concurrent access to centralized data structures are
omitted from the algorithm.

Algorithm 1 only exploits tree parallelism at levels below the root. It also checks the degree of sparsity of the
Schur complement at the root task, and, “in case it is dense enough”, employs the LAPACK (dense) factorization

9



routine with parallelism extracted from a multi-threaded implementation of the level 3 BLAS. In parallel sparse
direct methods, tree parallelism is combined with additional types of parallelism (e.g., pipelining parallelism [16]or
node parallelism [15]; see also the references therein) because, frequently, a large bulk of the computation occurs
at the higher levels of the tree, where the degree of tree parallelism is already more limited. For example, results
in [15] report that often more than 75% of the computations are performed in the top three levels of the assembly
tree (a structure similar to the task tree) in a multifrontalsparse direct method. In the parallel MIC this situation
hardly occurs, mainly because of dropping. As our experiments will demonstrate, tree parallelism provides enough
concurrency for a moderate number of processors in the case of MIC.

We next explain how the task treeT is obtained. Starting from a tree consisting of only one node(the root),T is
constructed (line 1) from top to bottom, by splitting those leaf tasks which present a “high” estimated computational
cost into two leaves. (A binary tree is thus ensured to be obtained.) The heuristic costh(1,k) estimated for a given
task (1, k) is defined as the number of edges of the corresponding subgraph ofGA. A leaf task is split into two leaves
if h(1,k) > |E|

f , with f a parameter of our heuristic approach and|E| the number of edges ofGA. We choosef so
that, in general, there will be more leaf tasks than processors, improving the probability of attaining a good overall
load balance of the computation; we found experimentally that f ∈ [p, 2p], with p the number of processors, are
appropriate choices for most examples [17, 18]. Algorithm 1assigns higher priority to leaf tasks over tasks with
descendants (sinceQ is initialized with all the leaves of the task tree and the tasks with descendants are inserted at the
tail of Q). The order in whichQ is initialized (line 2) also determines the execution schedule for the leaf tasks, and
we initializeQ with the leaves in descending order of their estimated costs. The purpose is to prioritize execution of
the leaf tasks with higher computational cost so as to reduceload unbalance due to their late schedule.

We consider two alternative approaches for the preprocessing step in line 1 of Algorithm 1. Both versions use
node-based multilevel nested dissection orderings (MLND)provided by SCOTCH [19]. They differ in the reorder-
ing strategy applied to the independent subgraphs corresponding to the leaves of the task tree. The first strategy,
ND-HAMD-A, executes the separator-finding mechanism repeatedly on these independent subgraphs until their size is
“small enough” (e.g.,|E| = 100). Then it switches to minimum degree to process small subgraphs. After the pre-
processing is completed, the local MIC uses local reordering strategies which preserve the structure of the initial
partitioning into tasks. Specifically, only scaling is applied in the initial local algebraic level, since this block has
already been reordered by the preprocessing step. However,for any subsequent local algebraic level, Halo-AMD [20]
is used. In the second strategy,ND-HAMD-B, independent subgraphs fulfillingh

(1,k)

|E| ≤
1
f , are not further ordered via

nested dissection and preprocessing is stopped. This reduces the cost of the preprocessing represented in line 1 sig-
nificantly, and leaves the reordering algorithms to the local MIC. In our case the local MIC of each task is configured
such that Halo-AMD reorderings are applied at each local algebraic level. The advantage of theND-HAMD-B comes
from switching earlier to less expensive fill-reducing heuristics. This can be done concurrently exploiting the implicit
parallelism obtained from the preprocessing step.

2.5. Numerical comparison between the sequential and the parallel preconditioner

For the parallel MIC the algebraic levels have to reveal the structure of the task tree. This might lead to the
impression that the parallelization approach severely changes the semantics of the original sequential preconditioner.
Experimental results will show that in practice this is hardly the case. In this section we will explain why the parallel
MIC is expected to be numerically close to its sequential counterpart.

MLND [21] has been considered to be well suited for parallel computation and helpful as a fill-reducing ordering
as well. We next examine how the sequential MIC behaves when applied to a system reordered by MLND. At this
point, it is important to review the role of the inverse-based approach in the computation. According to [3, 22], at each
stepi of the incomplete Cholesky decompositionA ≈ LDLT , thei-th row of L−1 is required to satisfy‖eT

i L−1‖ < ν. In
general, we have that

‖eT
i L−1‖∞ = max

‖z‖∞=1
|eT

i L−1z|,

and an inexpensive estimate for this norm consists in choosing a specific vector ˆz, with entries from{±1}, such that
νi = |eT

i L−1ẑ| is close to its upper bound max‖z‖∞=1 |eT
i L−1z|; see [22] or [23] for details. The estimateνi = |yi | is

obtained while solving the systemLy = ẑ. Therefore, at stepi of the incomplete Cholesky factorizationy is updated
by y j := y j − l ji yi for j > i such thatl ji , 0. Since in general ˆz is constructed to obtain a large|y j |, it is likely that
those components of|y| which are involved in many forward substitution steps become large. By construction of the
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total task level
size 1 2 3

1 16129 15879 123 127
2 4951 4733 107 111
3 1865 1665 99 101
4 883 689 94 100
5 408 239 79 90M

IC
le

ve
l

6 185 40 66 79
7 56 0 22 34

Table 1: Distribution of each algebraic level with respect to the task levels.

MLND, the separators are expected to lead to more fill-in thanthe leaf nodes. That is, when the sequential code is
applied to the reordered system, it is likely that vertices attached to the separators are initially rejected more often.
This is confirmed by our numerical experiments.

Example 2. To illustrate how the sequential MIC postpones bad pivots wepursue Example 1 for the Laplacian
problem. Numerical experiments show that, at the first algebraic level of the MIC, only30%of the nodes associated
with leaf tasks but87%of the nodes associated with separators are rejected (see Figure 1, left).

When the MIC enters the second algebraic level,35% of leaf nodes are rejected while92% of separator nodes
are rejected again. This trend continues until the bulk of leaf nodes has been eliminated. Only after that, the MIC
begins to accept most of the separator nodes. Table 1 illustrates the distribution of each algebraic level. One can see
in particular that the bulk of the algebraic levels is concentrated in task level 1 (leaf tasks) until algebraic level 5.

The results from Example 2 are not uncommon. We observed for several sample matrices that most of the separator
nodes are postponed over several levels of the MIC until the parts associated with leaf nodes are mostly factored. In this
sense, the sequential MIC wastes computation time rejecting separator nodes which, by construction, are postponed
in the parallel MIC. This observation reinforces our proposition that the parallel MIC exhibits fundamentally the
semantics of the sequential algorithm.

3. Parallel PCG

3.1. Application of the MIC

The application of the preconditionerM = LDLT to the original system involves solving the linear systemMz= r
at each step of the PCG, wherer ∈ R

n andz ∈ R
n are, respectively, the residual and preconditioned residual iterates of

the PCG. In the MIC, this operation is more challenging, because in addition to partial factorizations, one has to deal
with other matrix operations such as scalings or permutations. For simplicity, the following discussion only considers
permutation matrices as those generated by ILUPACK pivoting strategy.

The application of the MIC can be described as solving the following linear system recursively:

Mz= r ≡ P̂T

(

LB 0
LF I

) (

DB 0
0 S̃C

) (

LT
B LT

F
0 I

)

P̂z= r, (10)

whereS̃C is the approximation that is obtained whenSC is replaced by the recursive application of the multilevel
factorization approach. Therefore, at each algebraic level, the computation is composed of the following three steps:

1. Set

(

r̂B

r̂C

)

:= P̂r ; solve

(

LB 0
LF I

) (

yB

yC

)

=

(

r̂B

r̂C

)

for

(

yB

yC

)

= y.

2. SolveS̃CẑC = yC by recursively applying (10) withz≡ ẑC andr ≡ yC.

3. Solve

(

LT
B LT

F
0 I

) (

ẑB

ẑC

)

=

(

yB
yC

)

=

(

D−1
B yB

ẑC

)

; and finally setz := P̂T

(

ẑB

ẑC

)

.
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The recursion in step 2 is finalized when invoked with inputS̃C = LCDCLT
C, the approximation ofSC obtained as a

result of the last algebraic level. In this case the system issolved directly. Hereafter, we will refer to steps 1 and 3
asforward substitution(FS) andbackward substitution(BS), respectively. Actually, in the FS step only the leading
block of y is computed from forward substitution, applied toLByB = r̂B, while yC is obtained asyC := r̂C − LFyB. In
the BS step, only the leading block of ˆz is computed by backward substitution inLT

BẑB = D−1
B yB − LT

F ẑC.

3.2. Application of the parallel MIC

The application of the parallel MIC essentially operates inthe same manner as its sequential counterpart, but now
the FS and BS steps are spread over the tree levels, and therefore entering/leaving the recursive step 2 may imply
moving up/down in the tree hierarchy. We next consider the algorithm interms of the global matrices and vectors
because it is easier to describe, although its implementation actually splits the overall vectors conformally with the
computation of the parallel MIC (see [24] for details).

The parallel application of the MIC begins at the bottom treelevel, proceeding bottom-up towards the root node.
The recursion described in subsection 3.1 is applied at eachlocal algebraic level within the current tree level, until
all local contributions of this tree level foryB andyC have been computed. Then step 2 employs an approximation
S̃C that has been computed for the upper tree levels only (see Figure 6). Therefore, entering the recursive call at this
point implies moving the parallel application of the MIC up by one tree level, where the input right-hand side vector
for this level,r, incorporates the contributions foryC computed by the previous tree levels. The algorithm continues
processing FS steps bottom-up, until it reaches the last algebraic level within the root task. Then, the systemsLCy = r
and LT

Cz = D−1
C y are solved and computation proceeds next top-down towards the bottom level of the tree. The

algorithm backtracks to each algebraic level within the current tree level until the lower tree level is reached; see
Figure 7. The figure shows that, at the last BS step of the current tree level, the application of the inverse permutation
P̂T to ẑ recovers the partitioning inz corresponding to the lower tree level. Computation then backtracks to the lower
tree level, where ˆz incorporates the contributions for ˆzc resulting from the local BS steps of the upper tree levels.
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first FS step last FS step

bottom tree level

next−to−lowest tree level
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call to 

FS
after several
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y yr̂ r̂

z rS̃C

Figure 6: The application of the parallel MIC first proceeds bottom-up towards the root task. From left to right: FS steps within the bottom tree
level and how the computation enters the recursion from the bottom to the next-to-lowest tree level.

3.3. Task scheduling

The operations involved in the application of the MIC (sparse matrix-vector products and sparse triangular solves)
are memory-bounded computations exhibiting hardly any data reuse. Therefore, memory related issues should be
considered carefully in the design of the mapping and scheduling mechanisms for the parallel algorithm. Our first
choice is the use of a static mapping of leaf tasks to the processes during the execution of the PCG; i.e., a given process
always executes the same leaf tasks for all the applicationsof the MIC. Provided there is no process migration during
execution, this improves cache hit rate and reduces interprocessor communication, because each process repeatedly
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after several
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y

y

ẑẑ

ẑ

z

P̂T

Figure 7: After reaching the root task, the application of the parallel MIC proceeds top-down towards the bottom tree level. From right to left: last
BS step of the next-to-lowest tree level, backtracking fromthe next-to-lowest to the bottom one, and first BS step of the bottom tree level.

accesses the same data structures (executes the same tasks). Although, in principle, this work distribution can be
explicitly computed via static mapping heuristics, in our approach we use instead the mapping resulting from the
computation of the MIC (recorded during execution of line 9 of Algorithm 1). The same applies to tasks with descen-
dants; however, during the backtracking (top-down) of the algorithm, under certain circumstances which may result
in idle processes, at execution time we adopt decisions which may alter the pre-assignment of the tasks to processes.

The recursion phase (bottom-up) essentially follows the sketch of Algorithm 1, but now each process maintains
its own queue of ready tasks,Qpid. This implies replacingQ by Qpid everywhere in Algorithm 1, except in line 13,
whereQ is replaced byQmap[tid]. Besides, each process initializes its task queue in parallel with initializations by
other processes/queues, with the leaves pre-assigned to it (Qpid ={ tid ∈ leaves(T) : map[tid]=pid }) ordered by their
estimated costs. The number of floating-point arithmetic operations performed by the task is now used to estimate
the costs. The backtracking (top-down) of the algorithm is sketched in Algorithm 2. Each process maintains its own
priority queue of ready tasksHpid, which prioritizes the execution of tasks with descendantsover leaf tasks. A given
task will not become ready until all its ancestors have been executed, and therefore only tasks with descendants and
leaf tasks which are independent of each other can be simultaneously inHpid. If leaves were given priority over tasks
with descendants, the execution of the tasks belonging to the subtrees rooted at the tasks with descendants would be
delayed. This delay may result in idle processes, waiting for the tasks which belong to these subtrees to become ready.
The execution of Algorithm 2 is asynchronous (there are not global barriers between tree levels), and it is possible
that a task with descendants becomes ready while the processthis task has been mapped to is already executing a leaf
task. Whenever this occurs, the execution of this task is assigned to the process which resolves the dependencies of
the task with descendants (line 10). Otherwise, this task isinserted inHmap[chil tid] (line 12) according to the prescribed
mapping of tasks with descendants to processes.

We have observed experimentally that, when the number of processes is moderate (up to 16), the inexpensive
heuristics described above provide fairly acceptable solutions for the mapping and scheduling of the parallel applica-
tion of the MIC (see, e.g., [24]). We have no experimental results for a larger number of processes.

3.4. Other operations

The iteration in the PCG method consists of a repeated sequence of operations: application of the preconditioner,
matrix-vector products, inner products, andaxpyupdates. In our parallelization of the PCG method, we split the
last three computations and the associated data structuresconformally with the application of the preconditioner. In
particular, we consider two types of splittings, structurally equivalent to (7), for the vectors involved in the operations
of the PCG.

For the first type of splitting, the right-hand side vectorb as well as the residual vectorr are stored as additive

13



Algorithm 2 : Computes the backtracking of the parallel application of the MIC

mark all tasks ofT as not backtracked1

pid← get processidentifier()2

repeat3

while pending tasks in Hpid do4

tid← extract(Hpid) ⊲ extract highest priority task fromHpid5

backtrack(tid) ⊲ construct tid’s subvectors and compute local BS steps6

mark tid as backtracked7

for child tid ∈ children(tid)do8

if child tid has descendantsand processmap [ child tid ] currently executing a leaf taskthen9

insert(childtid, Hpid) ⊲ proc. pidnow in charge of childtid10

else11

insert(childtid, Hmap [child tid ]) ⊲ proc. map [childtid ] in charge of childtid12

end13

end14

end15

until not all tasks backtracked16

sums,
r = (M(1,1))Tr (1,1) + · · · + (M(1,s))Tr (1,s), r (1, j) = ( r (1, j)

1 r (1, j)
2 . . . r (1, j)

h
)T ,

where the entries of the contribution blocksr (1, j)
2 , . . . , r (1, j)

h store partial contributions to the original entries ofr as
in (7). The second type of splitting is based onredundantcopies. Here, the approximate solutionx, the preconditioned
residualz, and the search directionp are split as

M(1, j)p = p(1, j), p(1, j) = ( p(1, j)
1 p(1, j)

2 . . . p(1, j)
h

)T , j = 1, . . . , s ,

where the entries of the contribution blocksp(1, j)
2 , . . . , p(1, j)

h store redundant copies of the original entries ofp. It
can be shown [25] that, using this combination for the data splittings of the iteration vectorsr, x, z, p, all the parallel
operations within the body of the PCG can proceed without explicit conversions between the two types of splittings.

4. Computational results

In this section we evaluate the performance of our parallel solver applied to a pair of challenging 3D applica-
tion problems and a subset of irregularly structured matrices from the UF sparse matrix collection. The section
also includes a comparison of the performances of our solution, PARDISO, BlockSolve95, and Hypre-Euclid. PAR-
DISO [26, 27] is a state-of-the-art parallel supernodal direct solver. BlockSolve95 is a parallel library for the scalable
iterative solution of symmetrically structured linear systems based based on ILU(0)-preconditioned Krylov solvers.
Hypre is a library for the parallel preconditioning and iterative solution of sparse linear systems. Euclid provides
parallel incomplete level of fill factor preconditioning, i.e., the computation and application of parallel ILU(k) precon-
ditioners. In contrast to our parallel solver and PARDISO, BlockSolve95 and Hypre-Euclid target distributed-memory
multiprocessors, relying on MPI for message passing.

We describe first the environment setupcommon to all the experimentsin this section. In the MLND [21] prepro-
cessing step and the Halo-AMD fill-reducing orderings [20],we set the SCOTCH [19] parameters to default values.
In general, the optimal parameter choice is highly problem dependent, but an exploration of the parameter space is
out of the scope of this paper. The same applies toν andτ, which control, respectively, the norm of the inverse and
drop tolerances in the incomplete factorization process (see step 2 at subsection 2.2). These two parameters determine
the fill-in, and hence the computational cost and storage required for the MIC preconditioner. Larger values ofν or τ
lead to cheaper but (maybe) ineffective preconditioners, whereas smaller values can lead toprohibitively high fill-in;
we refrain from optimizingν andτ, and set their values toν = 5 andτ = 10−2. In the PCG method, we set the initial
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solution vector guess ˜x0 ≡ 0, and the iteration is stopped when the criterion describedin [28] is satisfied. All exper-
iments employ IEEE double-precision arithmetic for the numerical calculations. The target platform is a SGI Altix
350 CC-NUMA shared-memory multiprocessor consisting of 8 nodes with 32 GBytes of RAM connected via a SGI
NUMAlink network. Each node is composed of two Intel Itanium2@1.5 GHz processors (256 KBytes level-2 and 6
MBytes level-3 cache) with 4 GBytes of local memory. All codes were compiled by the C and F77 Intel compilers,
version 9.0. We used OpenMP rev. 2.5 as provided by these compilers and Intel MKL library, version 10.0, for the
BLAS-3 and LAPACK routines required by PARDISO and our parallel codes. The BlockSolve95 and Hypre-Euclid
codes were linked with an optimized MPI library included in the SGI Message Passing Toolkit, version 1.12. The
parallel environment is configured so that one thread is binded per processor and no thread migration occurs during
the computation. The same applies to the MPI processes during the parallel execution of the codes in BlockSolve95
and Hypre-Euclid.

Example 3. We consider a standard benchmark problem for the solution ofPDEs: the Laplacian equation

−∆u = f

in a 3D unit cubeΩ = [0, 1]3 with Dirichlet boundary conditions u= g on ∂Ω. Although this regular problem
is known to be best-suited for multigrid methods, we have selected it because of its large scale and applicability.
For the discretization we use a uniform mesh of size h= 1

N+1. The computational domainΩ is replaced by a grid
Ωh = {(xi , y j, zk) = (ih, jh, kh)| i, j, k = 1, . . . ,N} and the differential operator is replaced by finite differences

−∆u(xi , y j, zk) ≈
1
h2

(

−ui−1, j,k − ui, j−1,k − ui, j,k−1 + 6ui jk − ui+1, j,k − ui, j+1,k − ui, j,k+1

)

,

where ui jk ≈ u(xi, y j , zk). Because of Dirichlet boundary conditions, any unknown ui jk such that i, j, k ∈ {0,N + 1} is
explicitly available and becomes part of the right-hand side vector. The resulting linear system Au= b has a sparse
SPD coefficient matrix with seven nonzero elements per row, and n= N3 unknowns. We choose N= 100; 125; 150;
and N = 200 in our experiments, which results in four benchmark SPD linear systems of order n=1,000,000;
1,953,125; 3,375,000; and 8,000,000 unknowns.

Table 2 compares the performance of the sequential algorithm in ILUPACK (results forp = 1) with the perfor-
mance of our parallel solver usingp = 8 andp = 16 processors applied to Example 3. Two preprocessing alternatives
are considered (see subsection 2.4):ND-HAMD-A andND-HAMD-B, and separate results are provided for the MLND,
MIC, and PCG stages. The execution of the MLND is completely serial (no parallelization has yet been attempted
for this stage in our approach). Therefore, for the MLND stage, p is not really the number of processors employed in
the execution; it is solely used to determine the degree of parallelism which needs to be identified in order to enhance
the parallel performance of the MIC and PCG stages. ForND-HAMD-A, the execution time is independent ofp: the
graph is split to the same depth forp=1, 8, and 16 (hereby the equal execution time of this stage forall three values
of p), and this level is much deeper than it would be actually necessary for the efficient exploitation of parallelism.
(Fill-reducing is the guiding principle for such a deep split.) On the other hand, the execution time of this stage using
ND-HAMD-B increases asp gets larger since, in this case, the splitting is stopped as soon as enough parallelism has
been detected. A larger value ofp translates to additional levels of recursion in the nested dissection ofGA, and
therefore to larger execution times. For the sequential ILUPACK (p = 1) , the global cost is balanced among all three
stages (seeND-HAMD-A), but for the parallel MIC and PCG stages, the preprocessingstep tends to concentrate a larger
bulk of the computational load asp increases. We expect that a parallelization of this stage will lead to a significant
reduction of the cost of MLND, and this is currently being considered as an extension of our work.

The table also reports the total number of nonzero elements in the triangular factor(s) (in millions) of the MIC
preconditioner, as well as the execution time and the parallel speed-up. As the number of processors is increased, the
number of nonzero elements becomes larger but this is clearly compensated by the reduction of the execution times.
Speed-ups of up to 8.62 and 15.5 are obtained using 8 and 16 processors, respectively. The superlinear speed-up is
due to the NUMA memory layout of the target architecture. When only one processor is involved, the amount of
memory employed by the sequential algorithm in ILUPACK is larger than the local memory per node. Accesses to
nonlocal storage slow down the performance of the sequential algorithm. When 8 or 16 processors are employed, the
size of the local data structures is considerably smaller and they fit into the local memories.
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Finally the results in the table for the PCG stage show the number of iterations required for convergence, the
execution time, and the parallel speed-up. The iteration count only increases slightly asp becomes larger, in a
practical demonstration of the close semantics between thesequential and parallel preconditioners. This increase is
more than paid off by the reduction of the execution attained by the parallel PCG. Superlinear speed-ups are also
observed in this stage (up to 10.9 and 19.2 using, respectively, 8 and 16 processors), the reason being the same as that
exposed for the MIC stage.

Preprocessing withND-HAMD-B is superior toND-HAMD-A. Although the execution time of the MIC stage is lower
for the second option, the former is both less computationally expensive and produces higher quality preconditioners
(less number of iterations) so that the global cost is more reduced.

MLND MIC PCG
n p Option T nnzL Tp Sp #Iter. Tp Sp

ND-HAMD-X (sec.) ×10−6 (sec.) (T1/Tp) (sec.) (T1/Tp)

1003

1 A 19.8 15.0 30.0 1.0 64 61.3 1.0
8 A 19.8 15.2 4.0 7.5 67 7.4 8.3

16 A 19.8 15.3 2.5 12.3 67 4.3 14.1
1 B 0.0 13.6 36.0 1.0 57 49.9 1.0
8 B 5.7 14.0 4.9 7.4 63 6.6 7.6

16 B 7.1 14.2 2.9 12.5 66 4.0 12.2

1253

1 A 42.8 29.5 60.9 1.0 78 146.0 1.0
8 A 42.8 29.8 8.2 7.5 81 19.4 7.5

16 A 42.8 30.0 4.8 12.7 82 10.7 13.7
1 B 0.0 26.8 73.7 1.0 68 116.8 1.0
8 B 12.0 27.5 10.0 7.4 72 15.8 7.4

16 B 15.3 28.0 5.6 13.2 78 9.4 12.4

1503

1 A 82.2 51.1 108.0 1.0 90 296.8 1.0
8 A 82.2 51.8 14.3 7.5 91 38.5 7.7

16 A 82.2 52.0 8.1 13.3 93 21.5 13.8
1 B 0.0 46.6 138.9 1.0 79 240.1 1.0
8 B 24.7 47.8 17.8 7.8 83 32.8 7.3

16 B 30.6 48.2 10.0 14.0 87 18.9 12.7

2003

1 A 247.0 121.9 303.3 1.0 117 1,332.0 1.0
8 A 247.0 123.2 35.2 8.6 118 122.2 10.9

16 A 247.0 123.9 19.6 15.5 117 69.4 19.2
1 B 0.0 111.1 366.0 1.0 103 1,010.2 1.0
8 B 89.7 113.4 45.9 8.0 107 104.2 9.7

16 B 108.0 114.6 24.9 14.7 107 57.7 17.5

Table 2: Performance results for Example 3.

Table 3 reports the performance of PARDISO and the ILUPACK-based solvers (sequential ILUPACK forp=1
and our parallel solver forp=16). The results for PARDISO are decomposed into the different stages in this solver
(initial Reordering,Symbolic analysis, numericalFactorization, and triangularSolve). The column labeled as “nnzL”
in the results for PARDISO reflects the number of nonzero entries (in millions) in the Cholesky factor. The number
of nonzeros as well as the execution time for PARDISO are significantly higher than those of the ILUPACK-based
solvers. This confirms that sparse direct solvers are hardlycompetitive for 3D application problems. Forn > 1253

we expect that PARDISO will dramatically slow down because of considerable fill-in. On the other hand, the MIC
preconditioner exhibits a remarkable scalability as the number of nonzero entries and execution time increase almost
linearly withn.

Example 4. The second example addresses an irregular3D problem

−div (A gradu) = f ,

in a 3D domain (see the left part of Figure 8), where A(x, y, z) is chosen with positive random coefficients. For the
discretization, linear finite elements are used. The size and number of nonzero elements of the resulting sparse SPD
linear systems depend on the initial mesh refinement level, and number of further mesh refinements. Based on the
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PARDISO ILUPACK-based
n p nnzL TRe TS y TFa TS o TAll nnzL TAll

×10−6 (sec.) (sec.) (sec.) (sec.) (sec.) ×10−6 (sec.)

1003 1 786.1 16.9 5.3 1,714.7 20.5 1,757.4 13.6 85.9
16 785.2 17.1 6.3 183.5 12.9 219.8 14.2 14.0

1253 1 2,031.2 36.8 13.5 8,657.2 57.3 8,764.8 26.8 190.5
16 2,029.5 37.4 15.5 802.8 31.1 886.8 28.0 30.3

Table 3: Performance comparison between PARDISO and our parallel solver for Example 3.

initial mesh as shown in the left part of Figure 8, the mesh refinement tool NETGEN6 refines the mesh up to two times
based on the meshing levels (very coarse, coarse, moderate,fine, very fine) as provided by the software. The right
part of Figure 8 presents the benchmark identifier, the benchmark code, the initial mesh refinement level, the number
of further refinements, the number of unknowns, the number ofnonzero elements in A, and the average number of
nonzero elements in each row for the 12 benchmark linear systems we have selected for our experiments.

Id. Code Initial Mesh # refs. n nnzA nnzA/n

1 VC very coarse 0 1,709 16,669 9.75
2 C coarse 0 9,583 112,563 11.75
3 M moderate 0 32,429 412,251 12.71
4 F fine 0 101,296 1,368,594 13.51
5 VC2 very coarse 2 271,272 3,686,268 13.59
6 M1 moderate 1 297,927 4,134,255 13.88
7 VF very fine 0 658,609 9,294,721 14.11
8 F1 fine 1 882,824 12,562,880 14.23
9 C2 coarse 2 906,882 12,854,824 14.17
10 VC3 very coarse 3 2,382,864 34,128,924 14.32
11 M2 moderate 2 2,539,954 36,768,808 14.48
12 VF1 very fine 1 5,413,520 78,935,174 14.58

Figure 8: Computational domain (of Example 4) in 3D with some holes inside (left), and benchmark matrices resulting from several discretizations
of the computational domain (right).

Table 4 compares the performance of the sequential algorithm in ILUPACK with that of our parallel solver applied
to a pair of relatively small cases and a pair of large ones in Example 4 (case F, M1, VC3, and VF1 in Figure 8). The
results in Table 4 are similar to those presented in Table 2.

The small variation in the number of nonzero elements and thelow increase in the number of iterations with larger
p confirms that (for Example 4) our approach to parallelization preserves the mathematical basis of the sequential
approach.

The speed-ups attained for the two small cases (F and M1) onp=16 processors correspond to parallel efficiencies
of up to 70% and 64% for the MIC and PCG stages, respectively. However, for both large problems (VC3 and
VF1), the parallel codes yield higher efficiencies (up to 100% and 108%, respectively). The cause for the superlinear
speed-ups (for matrix VF1) are the same as mentioned earlierfor Example 3 andn = 2003.

Preprocessing withND-HAMD-B is superior thanND-HAMD-A in terms of global execution time. However, the
execution time of the MIC stage is higher for the former, and that of the PCG step is similar for both alternatives (as
both the number of nonzero elements and number of iterationsare very close; see, e.g., results for VC3).

Table 5 shows the interaction between the number of levels/leaves in the task tree and the execution times of
the MIC and PCG stages determined by the dynamic scheduling policy (usingND-HAMD-B). The height of the tree

6http://www.hpfem.jku.at/netgen.
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MLND MIC PCG
n p Option T nnzL Tp Sp #Iter. Tp Sp

ND-HAMD-X (sec.) ×10−6 (sec.) (T1/Tp) (sec.) (T1/Tp)

F

1 A 2.3 1.6 2.3 1.0 22 1.8 1.0
8 A 2.3 1.6 0.4 6.0 24 0.3 6.4

16 A 2.3 1.6 0.3 8.7 24 0.2 8.9
1 B 0.0 1.5 2.6 1.0 23 1.8 1.0
8 B 0.7 1.5 0.4 6.2 23 0.3 6.9

16 B 0.9 1.5 0.3 9.4 23 0.2 9.3

M1

1 A 8.0 5.0 8.0 1.0 29 8.3 1.0
8 A 8.0 5.1 1.3 6.2 29 1.2 7.2

16 A 8.0 5.1 0.8 10.1 30 0.8 10.3
1 B 0.0 4.7 9.8 1.0 28 7.7 1.0
8 B 2.3 4.8 1.4 7.2 28 1.2 6.5

16 B 2.7 4.8 0.9 11.1 29 0.8 9.9

VC3

1 A 82.1 44.9 83.9 1.0 52 136.8 1.0
8 A 82.1 44.9 11.2 7.5 52 17.1 8.0

16 A 82.1 44.9 6.5 13.0 53 10.0 13.7
1 B 0.0 45.2 108.8 1.0 50 132.6 1.0
8 B 21.5 45.0 13.3 8.2 52 17.1 7.7

16 B 25.1 44.9 7.5 14.6 52 9.8 13.5

VF1

1 A 198.9 105.3 234.8 1.0 64 502.8 1.0
8 A 198.9 104.2 27.0 8.7 63 51.7 9.7

16 A 198.9 104.0 15.2 15.4 64 29.2 17.2
1 B 0.0 100.7 279.7 1.0 60 362.3 1.0
8 B 50.6 98.7 32.0 8.7 62 49.3 7.4

16 B 60.9 99.1 17.4 16.1 62 27.7 13.3

Table 4: Performance results for Example 4.

and the number of leaves is fixed during the MLND stage as a function of f . We explore the results for a complete
binary tree (f = c) and different values off = p times the value shown in the column labeled asf . As expected,
a larger value off leads to more leaves and/or higher task trees and therefore to a higher degree of parallelism. In
general, this results in a lower execution time of the parallel solver. The column labeled as “vc” refers to the variation
coefficient defined as the ratio between the standard deviation andthe arithmetic mean of the sum of the computational
costs of the tasks assigned to each thread. Thus, a lower value for vc indicates a more homogeneous distribution of
the computational load. The results clearly connect lower execution times with a more balanced distribution of the
workload. The column labeled as “Gain” illustrates the relative acceleration in the execution times attained by using
values of f = p × 1.00, 1.25, 1.50 with respect to those obtained withf = c. Values of f > p × 1.50 do not lead
to a significant reduction of the execution times. Two major conclusions can be extracted from this experiment: by
manipulatingf at the MLND stage, one can adjust the degree of parallelism available to subsequent stages; and the
bulk of the computational load is concentrated at the leaves(this second observation is confirmed by the higher gains
attained by increasingf ).

Figure 9 reports the speed-up attained by the implementation of the MIC and PCG stages in our parallel solver for
Example 4. In all these executions,f is set top× 1.25. For both stages, all matrix benchmarks (except for matrices
with identifier 1 and 2) of this example deliver a higher speed-up when the number of processors is increased.

Table 6 compares the performance of PARDISO and that of the ILUPACK-based solvers. Although the number of
nonzero elements for the smallest problem (F) is roughly 15 times larger for PARDISO, its overall computational time
is only twice higher. This confirms that direct solvers are extremely efficient in exploiting level-3 BLAS performance
during the numerical factorization. The table also shows that for the two larger cases of this example (M1 and
VC3), PARDISO is no longer competitive due to the significantincrease of the cost in terms of memory consumption
(number of nonzero elements) and computational time (number of operations).

Example 5. We consider four large-scale SPD test matrices from the University of Florida sparse matrix collection7.

7http://www.cise.ufl.edu/research/sparse/matrices.
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Task Tree MIC PCG
Code p f #levels #leaves vc (%) Tp (s) Gain (%) Tp (s) Gain (%)

F1

8 c 4 8 28.3 5.9 0.0 6.3 0.0
8 × 1.00 5 11 17.8 4.9 16.3 4.7 24.8
8 × 1.25 5 14 10.7 4.4 24.7 4.2 33.1
8 × 1.50 6 16 5.0 4.3 26.7 4.3 31.5
16 c 5 16 27.4 3.3 0.0 3.6 0
16 × 1.00 6 22 16.3 2.8 16.2 2.8 22.5
16 × 1.25 6 27 9.7 2.6 21.3 2.8 22.0
16 × 1.50 7 32 4.7 2.5 24.4 2.9 18.0

VC3

8 c 4 8 14.8 16.1 0.0 21.2 0.0
8 × 1.00 5 12 10.6 14.7 8.7 18.2 14.2
8 × 1.25 5 15 4.9 13.3 17.4 17.3 18.4
8 × 1.50 5 16 3.8 13.3 17.4 17.1 19.3
16 c 5 16 19.0 8.8 0.0 13.0 0.0
16 × 1.00 6 22 12.4 7.9 10.4 10.5 19.2
16 × 1.25 6 28 7.0 7.4 15.8 9.8 24.6
16 × 1.50 7 33 6.4 8.2 6.9 10.8 19.2

Table 5: Role of parameterf and the dynamic scheduling policy for Example 4.
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Figure 9: Performance of the parallel MIC (left) and PCG (right) stages for Example 4.

We have selected them in order to evaluate the performance ofour parallelization approach with irregularly structured
problems arising from very different application areas; see Table 7 for details.

Table 8 compares the performance of the sequential algorithm in ILUPACK with that of our parallel solver applied
to Example 5. Although fine-tuning of the MIC stage on an individual basis yields better performance (i.e., less
memory and/or time to solution) than that shown in Table 8, we refrain ourselves from optimizingν andτ, and set
their values toν = 5 andτ = 10−2. (We also made experiments with smaller drop tolerances, but these are skipped
to keep the presentation simpler.) For our parallel solver,we useND-HAMD-B preprocessing withf set top × 2.0 to
let the dynamic scheduling policy improve load balancing. The results in Table 8 confirm that our approach yields
remarkable parallel performance for the MIC and PCG stages despite of the irregular nature of these matrices. The
mild increase in the number of PCG steps as well as the super-linear speed-ups which are attained in some cases
(see e.g., the results for UF1) can be justified because of theunderlying irregularity of these matrices which, to some
extent, causes a different distribution of the nodes among the algebraic levels with increasing number of processors.
We remark that the increase in the number of iterations is more than paid off by the reduction of the execution time
yielded by the parallel PCG.
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PARDISO ILUPACK-based
Code p nnzL TRe TS y TFa TS o TAll nnzL TAll

×10−6 (sec.) (sec.) (sec.) (sec.) (sec.) ×10−6 (sec.)

F
1 24.4 1.6 0.3 5.7 0.7 8.3 1.5 4.4
16 24.3 1.6 0.3 0.8 0.6 3.3 1.5 1.4

M1
1 97.7 6.0 0.9 36.9 2.7 46.5 4.7 17.5
16 97.4 6.0 1.2 4.4 1.8 13.4 4.8 4.3

VC3
1 1,870.8 64.9 13.3 3,717.3 57.3 3,582.8 45.2 240.0
16 1,867.5 66.9 15.8 377.0 24.4 484.1 44.9 42.4

Table 6: Performance comparison between PARDISO and our parallel solver for Example 4.

Code Matrix name Application area n nnzA
UF1 af shell3 Sheet metal forming 504855 17562051
UF2 bmwcra1 Automotive crankshaft modeling 148770 10641602
UF3 G3 circuit Circuit simulation problem 1585478 7660826
UF4 ldoor Structural analysis 952203 42493817

Table 7: SPD test matrices with their code, name, application area of origin, ordern and number of nonzerosnnzA.

We next describe the configuration of the parallel algorithms in BlockSolve95 and in the Hypre-Euclid library
for Example 5. These algorithms require the system to be distributed among the processors. We used the k-way
partitioning heuristics included in METIS [21] to partition and distribute accordingly the coefficient matrix among
the processors, as the amount of communication and load balancing of these algorithms heavily depend on the initial
distribution of the coefficient matrix. In this direction, the k-way partitioning heuristics keep the amount of work
associated with each subdomain roughly equal while minimizing the size of the edge separator. The degree of par-
allelism which can be exploited by BlockSolve95 depends on the multicoloring of the adjacency graph which the
library internally computes. For Hypre-Euclid, the degreeof parallelism which can be exploited during the ILU(k)
factorization depends on this initial distribution. In particular, the subdomain intersection graph should have a small
chromatic number [9]. The k-way partitioning heuristics donot necessarily provide subdomain intersection graphs
with a small chromatic number, though their use is justified because of the underlying irregularity of these matrices,
where a natural partitioning by hand is not readily available. We usedk = 0 andk = 1 for the PILU(k) preconditioner
in Euclid because these values lead to the best memory/time trade-offs. The rest of parameters of Euclid were set to
default values. The parallel PCG solver in both libraries isinitialized with the zero vector as the starting guess and the
iteration is stopped when the number of iterations reaches 2000 or when the relative residual norm drops below 10−8.

Table 9 compares the performance of BlockSolve95 and that ofthe ILUPACK-based solvers. The results for
BlockSolve95 illustrate, from left to right, the executiontime of the initial multicoloring of the adjacency graph, the
number of nonzero entries (in millions) in the incomplete Cholesky factor, the execution time of the IC(0) precon-
ditioner, the number of iterations required for convergence (a dagger reflects that the PCG method did not converge
within 2000 iterations), the execution time of the PCG solver, and the overall execution time without considering the
initial k-way partitioning and distribution of the coefficient matrix. The results of the ILUPACK-based solvers refer
to the number of nonzero elements in the MIC preconditioner and the overall execution time including the initial
ND-HAMD-B preprocessing step. Although the multicoloring-based approach in BlockSolve95 attains almost linear
speed-ups, it is not competitive to our approach in terms of overall solution time and robustness. This is in part due
to the IC(0) factorization, which drops any fill-in out of theoriginal sparsity pattern ofA, but also because of the
multicoloring orderings, which lead to a high degradation in preconditioner quality (i.e., high iteration counts) forthe
matrices in our benchmark.

Table 10 reports the performance of Hypre-Euclid and the ILUPACK-based solvers. The results for Hypre-Euclid
illustrate, for each value of the level-of-fillk, from left to right, the number of nonzero entries (in millions) in the
incompleteL factor, the execution time of the ILU(k) preconditioner, the number of iterations required for convergence
(a dagger reflects that the PCG method did not converge within2000 iterations), the execution time of the PCG solver,
and the overall execution time without considering the initial k-way partitioning and distribution of the coefficient
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MLND MIC PCG
n p Option T nnzL Tp Sp #Iter. Tp Sp

ND-HAMD-X (sec.) ×10−6 (sec.) (T1/Tp) (sec.) (T1/Tp)

UF1

1 B 0.0 19.5 33.6 1.0 331 307.9 1.0
2 B 3.4 19.2 16.9 2.0 365 154.1 2.0
4 B 4.8 19.2 8.5 4.0 371 69.8 4.4
8 B 6.3 19.2 4.3 7.9 379 33.4 9.2

16 B 7.5 19.3 2.3 14.6 403 20.1 15.3

UF2

1 B 0.0 10.2 24.6 1.0 756 321.9 1.0
2 B 1.9 10.0 11.9 2.1 835 165.4 1.9
4 B 3.1 10.3 5.7 4.3 866 75.8 4.2
8 B 4.1 10.6 3.2 7.6 899 42.0 7.7

16 B 5.0 10.7 1.7 14.1 914 28.8 11.2

UF3

1 B 0.0 12.5 29.5 1.0 121 120.7 1.0
2 B 3.3 12.5 14.6 2.0 131 66.6 1.8
4 B 5.1 12.5 6.2 4.8 124 25.3 4.8
8 B 6.4 12.6 3.0 9.7 136 14.4 8.4

16 B 7.9 12.6 1.6 18.4 130 7.6 15.8

UF4

1 B 0.0 36.2 61.8 1.0 409 740.0 1.0
2 B 8.1 36.1 29.8 2.1 465 408.1 1.8
4 B 11.3 36.1 14.9 4.1 464 186.3 4.0
8 B 15.0 36.1 8.4 7.4 484 95.3 7.8

16 B 18.0 36.7 4.3 14.4 476 46.9 15.8

Table 8: Performance results for Example 5.

matrix. The results of Table 10 show that, for serial computations, the inverse-based approach results in faster solution
times and increased robustness. For example, the ILU(1) preconditioner could not successfully solve UF4, even
consuming more memory than the MIC preconditioner. (We refer to [7] for an extensive empirical comparative study
of the sequential version of ILUPACK and other preconditioners.) What is more relevant for the purpose of this paper,
we can observe that our parallelization approach attains remarkable speed-ups compared to those of the Hypre-Euclid
parallel solvers for these irregular matrices. The poor scaling achieved by Hypre-Euclid in the parallel computation of
ILU(k) preconditioners is due to the combination of the followingtwo factors. First, the k-way heuristic partitionings
do not necessarily provide subdomain graphs with a small chromatic number, limiting the degree of parallelism
which can be exploited during the elimination of the boundary nodes. Second, the computational cost involved in the
elimination of the boundary nodes is high compared with thatof the interior nodes. The higher speed-ups obtained by
Hypre-Euclid in the parallel computation of ILU(0) preconditioners are due to the lower impact of this second factor,
i.e., withk = 1 the elimination of the boundary nodes becomes much more computationally demanding, resulting in

BlockSolve95 ILUPACK-based
Code p TCol nnzL TIC(0) #iter. TPCG TAll nnzL TAll

(sec.) ×10−6 (sec.) (sec.) (sec.) ×10−6 (sec.)

UF1
1 24.1 9.0 10.6 1589 1650.3 1685.0 19.5 341.5
8 2.9 9.0 1.3 1610 186.7 190.9 19.2 44.0
16 1.4 9.0 0.6 1504 82.6 84.6 19.3 29.9

UF2
1 11.8 5.4 7.1 † † † 10.2 346.5
8 1.6 5.4 0.9 † † † 10.6 49.3
16 1.2 5.4 0.5 † † † 10.7 35.2

UF3
1 30.2 4.6 11.5 1828 2576.1 2617.8 12.5 150.2
8 3.6 4.6 1.2 1825 347.3 352.1 12.6 23.8
16 1.7 4.6 0.6 1829 166.2 168.5 12.6 17.1

UF4
1 89.3 21.7 154.2 1723 8220.0 8463.5 36.2 801.8
8 8.7 21.7 17.4 1650 771.4 797.5 36.1 118.7
16 3.8 21.7 6.5 1640 318.1 328.4 36.7 69.2

Table 9: Performance comparison between BlockSolve95 and our parallel solver for Example 5.
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significantly lower speed-ups. In contrast to Hypre-Euclid, our parallelization is more robust because its degree of
parallelism is not limited by an unproper distribution/coloring of the subdomain graph and more important, because
the inverse-based approach efficiently controls the fill-in across the interfaces (i.e., the leaves concentrate the bulk of
the computation).

Hypre-Euclid ILUPACK-based
k = 0 k = 1

Code p nnzL TILU(k) #iter. TPCG TAll nnzL TILU(k) #iter. TPCG TAll nnzL TAll

×10−6 (sec.) (sec.) (sec.) ×10−6 (sec.) (sec.) (sec.) ×10−6 (sec.)

UF1
1 9.0 9.0 1058 826.6 835.6 12.8 13.1 503 514.2 527.2 19.5 341.5
8 9.0 4.9 1152 82.0 86.9 12.8 15.0 572 53.3 68.2 19.2 44.0
16 9.0 4.5 1214 43.6 48.1 12.9 14.6 597 28.7 43.2 19.3 29.9

UF2
1 5.4 6.1 1401 398.5 404.6 15.9 41.0 815 589.0 630.0 10.2 346.5
8 5.4 19.1 1426 60.4 79.5 15.6 221.2 845 62.6 283.8 10.6 49.3
16 5.4 40.7 1444 40.0 80.7 14.8 614.9 855 53.9 668.8 10.7 35.2

UF3
1 4.6 14.5 909 394.9 409.4 6.1 14.9 497 235.1 250.0 12.5 150.2
8 4.6 2.3 1244 65.1 67.4 6.1 2.7 673 41.3 44.1 12.6 23.8
16 4.6 1.4 1271 32.0 33.4 6.1 1.8 685 20.7 22.5 12.6 17.1

UF4
1 21.7 25.8 † † † 47.1 69.4 † † † 36.2 801.8
8 21.7 12.7 † † † 47.0 52.7 † † † 36.1 118.7
16 21.7 12.5 † † † 46.9 54.9 † † † 36.7 69.2

Table 10: Performance comparison between Hypre-Euclid andour parallel solver for Example 5.

5. Conclusions

Our approach to the parallel iterative solution of sparse linear systems demonstrates that the degree of parallelism
exposed by MLND is sufficient to efficiently exploit the hardware parallelism in shared-memoryplatforms with a
moderatenumber of processors. Due to the low fill-in usual in iterative solvers based on ILUPACK, even a reduced
number of processors can already provide reasonable execution times for large-scale sparse application problems.
The mechanisms proposed in this paper include the use of MLNDto identify concurrent tasks in the context of
preconditioned iterative solvers, exploitation of task-parallelism extracted from the task dependency tree, dynamic
scheduling to improve load-balancing, careful mapping of the tasks to processors to improve cache use and reduce
communication time, and a parallelization for shared-memory multiprocessors based exclusively in standard tools as
OpenMP.

Experimental results on a CC-NUMA platform with 16 processors, using several large scale examples, show that
our approach yields a considerable reduction of the execution time for the MIC and PCG stages, while accommodating
the mathematical semantics of the inverse-based preconditioning approach implemented in ILUPACK.
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