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A Greedy-type expansion point selection for moment-matching methods in model order reduction mainly depends on the
computation of a sequence of reduced order models. Typically, the adaptive-order rational Arnoldi (AORA) method resembles
an efficient way for the computation of a Galerkin projection corresponding to a set of expansion points. We will provide an
extension of the AORA method, in order to reuse the orthonormal basis from previous calls of the AORA method.
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1 Introduction

We will discuss the application of moment-matching methods for model order reduction of linear dynamical systems

E ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t), (1)

where E ,A ∈ RN×N , B ∈ RN×m and C ∈ Rp×N . Moreover, we denote the state variable via x(t) ∈ RN , while u(t) ∈ Rm

and y(t) ∈ Rp refer to the input and output variable of the descriptor system. The transfer function of the dynamical system
is given as H(s) = C(sE − A)−1B. In general, the rational idea behind model order reduction results from the application
of a Galerkin projection Π = VnV

T
n to (1), in order to provide a reduced order quadruplet (Ẽ , Ã, B̃, C̃) of significant smaller

dimension n � N . For moment-matching methods, the columns of the orthonormal matrix Vn ∈ CN×n span the input
Krylov subspace Kn(−(s0E − A)−1E , (s0E − A)−1B) with s0 ∈ C, in order to preserve the input-output behaviour of the
dynamical system in the reduced order model [1]. Since the accuracy of the reduced order model remains limited for a single
expansion point, we usually investigate an adequate set of expansion points {s1, . . . , sp} ⊂ C. The missing a-priori error
estimation for moment-matching methods poses the problem of the reliable choice of a set of expansion points. Nevertheless,
the accuracy of the reduced order model might be obtained from a heuristic error estimation introduced by Grimme et al. [5].

2 Adaptive-order rational Arnoldi method

In general, the Greedy-type expansion point selection for moment-matching methods follows from the computation of a
sequence of reduced order models H̃1(s), . . . , H̃k(s) including different sets of expansion points Sl = Sl−1 ∪ {sl}, sl ∈ C,
for all l > 1, see [3]. If we assume that the dimension of the reduced order model has been chosen a-priori, each reduced order
model H̃i(s) (i = 1, . . . , k) follows from a rational Arnoldi-type method [7]. Thereby, the span of the orthonormal matrix
Vn ∈ CN×n fulfills

span(Vn) =

i⊕
l=1

Kjl(−(slE − A)−1E , (slE − A)−1B), (2)

where n = j1 + · · ·+ ji, see [4].
An efficient way for the adaptive computation of each dimension jl ≥ 0 (l = 1, . . . , i) remains from the adaptive-order

rational Arnoldi (AORA) method [6]. Let Y (j)(sl) ≡ CX(j)(sl) denote the output moment of the linear dynamical system
(1), where X(j)(sl) = [−(slE − A)−1E ]j(slE − A)−1B refers to the state moment. If Ỹ (j)(sl) = C̃X̃(j)(sl) determines
the output moment of the reduced order model, the AORA method increases the Krylov subspace of the expansion point
smax = arg maxs∈Sl |Y (j)(s) − Ỹ (j)(s)| with an additional vector in each iteration step. We remark that the computation
of the expansion point smax ∈ C from the transfer function error follows as a by-product of the rational Arnoldi method.
Moreover, the modified Gram-Schmidt procedure already ensures the computation of an orthonormal basis Vn ∈ CN×n.

3 Extension of rational Arnoldi-type methods

Of course, the drawback of the subsequent calls of the AORA method results from the fact, that the computation of the
orthonormal basis V (k)

n ∈ CN×n corresponding to the k–th call does not consider any previous orthonormal bases. Since we
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simply add a single expansion point sl ∈ C during each call of the AORA method, the idea of the modified adaptive-order
rational Arnoldi (mAORA) method is given as follows: At first, we call the AORA method subsequently with the expansion
points {s1}, {s1, s2}, . . . , {s1, . . . , sp}. Here, each call returns an orthonormal matrix V (l)

n ∈ CN×n spanning the subspace
(2) of dimension n = j1,i + · · · + jl,i (i = 1, . . . , p). Moreover, as long as ji,l+1 ≤ ji,l (i = 1, . . . , l), we are able to reuse
the orthonormal vectors from the previous call of the AORA method. Hence, we only have to explicitly solve a shifted linear
system, whenever the new expansion point sl+1 ∈ C has been selected or the dimension ji,l+1 > ji,l exceeds the previous
number of orthonormal vectors of the expansion point si ∈ C (i = 1, . . . , l).

We point out that the AORA and mAORA method coincide for at most two expansion points. More expansion points lead to
a sufficient approximation of the AORA method avoiding the complete recomputation of the orthonormal basis V (l)

n ∈ CN×n

due to the reuse of previous orthonormal vectors from V
(l−1)
n ∈ CN×n. In general, both methods lead to a comparable

sequence n = j1,i + · · ·+ jl,i (i = 1, . . . , p) in each subsequent call.

4 Numerical experiment

Finally, we will provide a numerical example for a Coplanar Waveguide1 resulting from the time-harmonic, first-order
Maxwell’s equations

ıω(εE) = −σE + ∇×H, ıω(µH) = ∇×E,

where E and H refer to the electric and magnetic field strength. The Coplanar Waveguide resembles a single-input, single-
output dynamical system with the frequency range [fmin, fmax] = [0.6, 3.0] GHz and N = 32924 degrees of freedom, cf.
Figure 1(a). On the boundary of the computational domain, we have employed the PEC boundary condition E × n = 0.
However, the relative error εrel(ω) = |H(ıω) − H̃(ıω)|/|H(ıω)|, ω = 2πf and f ∈ [fmin, fmax], in Figure 1(b) allows a
comparison between the AORA and mAORA method for eight expansion points and the dimension n = 25. The expansion
points have been determined adaptively on the basis of the rational Krylov residual, see [2].

In general, the numerical experiments indicate that the computational effort for the subsequent calls of the mAORA method
reduces about a factor of three. This is due to saving a substantial amount of systems solves with large-scale and highly
indefinite systems of the form (sE − A)x = f , s ∈ C.
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Fig. 1: Adaptive-order rational Arnoldi method in computational electromagnetism.
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1 The model problem has been developed within the MoreSim4Nano research project, see http://moresim4nano.org
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