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Technische Model Pr0b|em5

niversitat
Braunschweig Where do large matrix problems show up?

1D elliptic boundary value problem
—u'(x) = f(x), x€[0,1]

u0) = go, u(1) =g

2D elliptic boundary value problem

Q = [0,1] x[0,1]

—Au(x,y)
_UXX(X7y)_u,V,V(X7y) = f(va)f (va) € Q
ulx,y) = 9(x,y), (x,y) € 02

3D elliptic boundary value problem

~Au=fin[0,1]® + b.c.
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Technische Discretization using Finite Differences

niversitat
Braunschweig Where do large matrix problems show up?

1D problem: h= 5. [0,1] = Qs ={0,h,2h,...,1 - h,1}

e o o e o o
0 h  2h 1-2h 1-h 1
2D problem:
Q=1[0,17 - Qn= 1=h
{(k,hh: k,1=0,...N+1} 1-2h
y . . . . . .
h ...4‘
0 P p—
0 h 2h 12h 1+h A
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Discretization using Finite Differences in 1D

Where do large matrix problems show up?

1D boundary value problem
Differential equation
—u"(x) = f(x), u(0) = go, u(1) = gs

1
Difference equation

—Ui—1 + 2Uj — Ui
h2

3-point stencil

= f;, Up = Go, UN+1 = G1, Where u; = u(ih) Vi
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i % fvsucoall Linear System
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co’

Th:f —1 — ThU:f.
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Discretization using Finite Differences in 2D

Where do large matrix problems show up?

2D boundary value problem
Differential equation

—Ua(X,¥) — Uy (X, ¥) = —Au(x,y) = f(x,y), inQ = [0,1]%, y = g on 0Q
1

Difference equation

—Ui—1,j — Ujj—1 + 4Uj — Uiy1,j — Ui ji
2

5-point-difference stencil Q ° Q

AhU:f

Linear system
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2D 3D

0 10 20 30 40 50 60 70 80 90 100 0 100 200 300 400 500 600 700 800 900 1000
nz = 460 nz = 6400

@ discretization of partial differential equations leads to large sparse systems
@ size of the matrix increases as h — 0 but also depends on the spatial dimension.

@ nonzero pattern of a matrix A is connected to the discretization of the domain,
Ga:=(V,E), V={1,...,n}, E={(p,q) : apq # 0}, “graph of a matrix”
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e Partitioning the system
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Partitioning the System

Nested Dissection Preprocessing Step
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0 5 10 15 20 25 30 nz = 4089
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Partitioning the System

Sl Nested Dissection Preprocessing Step
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Partitioning the System

Nested Dissection Preprocessing Step
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Technische Partitioning the System

niversitat
Braunschweig Nested Dissection Preprocessing Step

@ each nested dissection step creates two decoupled subproblems

@ the more subproblems we produce (such as the number of processors/threads),
the more couplings we obtain

@ popular nested dissection codes METIS (Karypis/Kumar), SCOTCH (Pellegrini)

@ parallel version of METIS (PARMETIS) and SCOTCH (PT-SCOTCH) based on
MPI are available
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Parallel System Splitting

Parallel Matrix Splitting

= + + +

V2] 7z
A AG AG2) AG3) AGH

Parallel Vector Splitting
I - [ FE-( B T FRC T AN WL T
X PE) x(32) x(33) X34
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Technische lterative Solution
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Ax=b

@ To simplify the discussion, suppose that A is symmetric positive definite (SPD).

@ In modern Numerical Linear Algebra the default iterative solver for SPD systems is
the CG method (conjugate gradients)

f(x) = %XTAX — x"b convex function

f(x) =min= Vf(x) =0 Ax— b =0

Objective: provide search directions t, f, 3, . . . and successively minimize f along the
search directions

0. X initial guess.

1a. compute ay s.t. g1(a) := f(Xo + a1 ty) is minimal
1b. X1 := X0 + a1ty

2a. compute ap s.t. go(az) := f(X1 + aztr) is minimal
2b. Xo == X1 + aobp
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lterative Solution

@ each «y is easily computed by elementary calculus as

trr :
ak = XK where r, = b— Ax residual
it

@ locally a natural choice for tx would be the negative gradient (steepest descent)
tk = —=VI(Xk—1 + aklk) = rx.

on a global scale this is BAD.
@ globally optimal are A-conjugate search directions t, b, 3, . . .

t{ At = 0, for all k # |

This choice ensures that a4, . . ., ak also satisfy the k-dimensional minimization
problem
min h(a1 . ,ak), where h(a1,. A, Ozk) = f(Xo +atly +-- -+ Ozktk).
Of ooy (73

@ the associated method is called CG (conjugate gradients)
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The CG Method

X initial guess

r=»b-— Ax

t=r

p=r’r

fork=1,2,3,...
z=At
o= p/(t"z)
X =X+ at
r=r—az
Pold = P
p=r'r
B = p/poid
t=r+ gt

end

Hiding the technical details of the derivation, CG requires the computation of:
@ matrix-vector products
@ scalar products
@ vector updates
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jiechuische The Parallel Matrix-Vector Multiplication
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Suppose that p = 25~! and A is split as
A=ASD 1 AP oy AP

using nested dissection (binary tree, see earlier slides).

The single matrices A9 are distributed over the processors (MPI case) or accessed
by different threads (OpenMP)
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The Parallel Matrix-Vector Multiplication

Consider two classes of vectors

@ vectors with consistent representation
@ vectors with inconsistent representation

@ consistent vector copies

(B
x(s1
x(5:2) C T 1IN
X — . I
: CI
x(sP)
CI T

@ inconsistent vector splitting
[ CO I O R O
B EEEIEJEE BNl RJENE BN EJENEE §
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Parallel Matrix-Vector Multiplication

@ suppose that Ais splitas A= A" + A2 ... 4 ASP)

@ Assume that t is represented consistently by t&"), (2 ¢(sP)

@ matrix-vector multiplication can be performed in parallel

P

P
= At= (Z At = Z (A

q=1 g=1
@ define z(>9 by

259 . A g AN | L2 4 S50
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Parallel Matrix-Vector Multiplication

@ suppose that Ais splitas A= A" + A2 ... 4 ASP)

@ Assume that t is represented consistently by t&"), (2 ¢(sP)

@ matrix-vector multiplication can be performed in parallel

P

P
= At= (Z At = Z (A

g=1 g=1
@ define z(>9 by

259 . A g AN | L2 4 S50

@ format of the matrix-vector multiplication becomes an inconsistent representation
automatically

© no communication required
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Parallel Scalar Product
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scalar products can be performed easily if the vectors are of different type
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% Technische Parallel Scalar Product
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scalar products can be performed easily if the vectors are of different type

Let t be consistent and z be inconsistent
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., Technische Parallel Scalar Product
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scalar products can be performed easily if the vectors are of different type

Let t be consistent and z be inconsistent

P 14
:tTZ:tT(ZZ(Sq Zt(sq)) zsq
g=1 q=1

Local scalar products o4 := (t9)72(59) can be computed in parallel
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Parallel Scalar Product

scalar products can be performed easily if the vectors are of different type

Let t be consistent and z be inconsistent

P P
=tTz=t" (D 25 = (t=9)7 9.
g=1 q=1

Local scalar products o4 := (t9)72(59) can be computed in parallel

Total sum
U:O'1+"'—|—O'p

requires global communication (MPI_Reduce/MPI_Bcast respectively OpenMP
reduce+).
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% Technische Parallel Vector Update
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vector updates can be performed in parallel without any communication:

@ if r and z are both inconsistent, then

=r—az<r" .= _ 4z forallg=1,...,p

I~

@ if r and z are both consistent, then

r=r—az< 1S =5 _ 269 forallg=1,...,p
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The Parallel CG Method

@ use parallel matrix splitting for A
@ suppose that the initial guess for x is consistent
@ suppose that the right hand side b is inconsistent

X initial guess
r=»b-Ax
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The Parallel CG Method

@ use parallel matrix splitting for A
@ suppose that the initial guess for x is consistent
@ suppose that the right hand side b is inconsistent

X initial guess

r=5b- Ax
t = r (communication to make r consistent)
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The Parallel CG Method

@ use parallel matrix splitting for A
@ suppose that the initial guess for x is consistent
@ suppose that the right hand side b is inconsistent

X initial guess

r=b-— Ax

t = r (communication to make r consistent)
p = t'r (global communication)
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The Parallel CG Method

@ use parallel matrix splitting for A
@ suppose that the initial guess for x is consistent
@ suppose that the right hand side b is inconsistent

X initial guess

r=»b-— Ax

(communication to make r consistent)
Tr (global communlcatlon)

=1,2,3,.

z= At

=r
tr
k

—hb -n-\

or
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The Parallel CG Method

@ use parallel matrix splitting for A
@ suppose that the initial guess for x is consistent
@ suppose that the right hand side b is inconsistent

X initial guess
r=»b-— Ax

= r (communication to make r consistent)
=t"r (global communlcatlon)
ork=1,2,3,.

z= At

a = p/(t” 2) (global communication)

—hb -n-\
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The Parallel CG Method

@ use parallel matrix splitting for A
@ suppose that the initial guess for x is consistent
@ suppose that the right hand side b is inconsistent

X initial guess

r=»b-— Ax

(communication to make r consistent)
Tr (global communlcatlon)

=I
tr
k=1,2,3,.

—hb -n-\

or

Il
\a

/(t"z) (global communication)

Il
S X o
L+
o
R B

I~ X 2 IN
I

B

[

S
I

p

M. Bollhoéfer (TU BS) Effective Solvers Warwick 2011

24/33



The Parallel CG Method

@ use parallel matrix splitting for A
@ suppose that the initial guess for x is consistent
@ suppose that the right hand side b is inconsistent

X initial guess
r=»b-— Ax

t = r (communication to make r consistent)
p=t"r (global communlcatlon)
fork =1,2,3,.
z= At
a = p/(t” 2) (global communication)
X=X+ ot
r=r—az
Pold = P
t = r (communication to make r consistent)
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The Parallel CG Method

@ use parallel matrix splitting for A
@ suppose that the initial guess for x is consistent
@ suppose that the right hand side b is inconsistent

X initial guess
r=»b-— Ax

t = r (communication to make r consistent)
p=t"r (global communlcatlon)
fork =1,2,3,.
z= At
a = p/(t” 2) (global communication)
X=X+ ot
r=r—az
Pold =
t = r (communication to make r consistent)
p = t'r (global communication)
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The Parallel CG Method

@ use parallel matrix splitting for A
@ suppose that the initial guess for x is consistent
@ suppose that the right hand side b is inconsistent

X initial guess

r=»b-— Ax

(communication to make r consistent)
Tr (global communlcatlon)

=I
tr
k=1,2,3,.

—hb u-n-\

or

2 IN
[l
) \)>

-

/(t"z) (global communication)

X+ ot

r—az

=p

r (communication to make r consistent)
Tr (global communication)

S
S

=™ 'I""b\ﬁx

end
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aieall Properties of the CG Method
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@ the number of iteration steps for the CG can be measured by the condition number

_ )\max(A)
AT Amin(A)

Q if |v|la := Vv Av, then after / steps the approximate solution x; satisfies

VRa—1Y
Ix=xla <2 (YA Ix = nll
A

© Often x4 is large. One usually computes a preconditioner P = GG" =~ Aand
replaces A by the preconditioned system A= G 'AG™".
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The Parallel Preconditioned CG Method

x initial guess

r=b- Ax

t = r (communication to make r consistent)
Solve Pu =t (may require communication)
p = u’r (global communication)

fork=1,2,3,...
z=At
a = p/(t” 2) (global communication)
X=X+ at
r=r—az
Pold = P

t = r (communication to make r consistent)
Solve Pu = t (may require communication)
p = u’r (global communication)
B = p/poia
t=u+pt

end
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Technische Outllne
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© Parallel ILU
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Parallel Preconditioner

Braunschweig

Parallel Matrix Splitting

A\
NN
=
I
N
\
+
N

7] 77 iz
[ 1 [ 1] I
77 ERZ iz
A ABGT) AB2) AB3) AB4)

Preconditioner of the following block structure will not involve communication

.
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Jleciiyzcs Parallel Incomplete LU Factorization
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A Aiz L
{Am Azz]_)[Lm] [ Un Ue |

: s S= 1] +
SEERNSRESISEn NSRS |

ms
s,1)

1. Initially, compute for A .., A®P) an approximate LU decomposition (say,
dropping entries of small size), stop ILU when the leaf part is completed
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Jleciiyzcs Parallel Incomplete LU Factorization
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A A ~ Ly O Uy U
A Axp Loy | 0 Soo

} , Where Sy, = Agp — Lo Uiz

E?E

mainl
-

2. Compute local approximate Schur complement from A, L and U

Il
|
g
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E?E

muiy)
~E

il
|
g

-
|
E
3. Exchange data of local Schur complements and merge them
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Jleciiyzcs Parallel Incomplete LU Factorization
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A A Ly
{Am Azz]%[l-m] [ Un Uee ]

4. Repeat the same algorithms with p/2 processors (threads) on the next higher
level,i.e., compute ILU until the leading block is finished
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Parallel Incomplete LU Factorization

At A | | Ln O Uir U B
{ Azt Az ] = [ Ly | } [ 0 S» }’Where Se2 = Az — LarUrz

5. Again compute local approximate Schur complement
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% Technische Parallel Incomplete LU Factorization
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A(572,1) _ A(sf1,1) +A(sf1,2)"” A(572,p/4) :A(sf1,p/2—1) +A(sf1,p/2)

9

6. Again exchange data of local Schur complements and merge them
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Parallel Incomplete LU Factorization

A= LU

7. Eventually we end up with a single system that is computed with one processor
(thread) only
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Technische Parallel Incomplete LU Factorization
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@ The ILU is computed level by level, each time only using half as many processors
(or threads) as before

@ the exchange of the local Schur complements requires that two processors (resp.
threads) exchange their data.

@ |f we use OpenMP (shared memory), the local L and U factors are available to all
threads

@ if we use MPI (distributed memory), then merging the data leads to only one out
of two processors to keep the data and the factorization.

@ We need s = log, p local data exchanges
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Technische Parallel Forward / Backward Substitution
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@ forward substitution Lv = t works analogously to the ILU
@ each processors or thread can compute a local forward substitution on the leaf part.

@ two processors (threads) with common ancestor in the task tree merge their data for
the remaining part

© on the next level the right hand side is updated and the forward substitution is repeated

@ this procedure is repeated until the root node is reached.

@ backward substitution Uu = v works in reverse manner
@ the backward substitution starts at the root node and the result is provided to its children

@ Two threads (resp. processors) collect the root node data, update their individual right
hand sides and their own backward substitution

@ this procedure is continued until the leaf level is reached

@ each single forward and each single backward substitution steps requires as many
data exchanges as the ILU, except that less data is exchanged
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e Summary
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@ discretized PDEs lead to large sparse linear systems

@ partitioning the graph using nested dissection leads to a lay out suitable for
parallel computations

@ the hierarchy obtained from nested dissection can be described by a binary tree

@ nested dissection partitioning leads to a hierarchy of data partitioning
o parallel matrix splitting

e consistent and inconsistent vectors

@ data structures can be used for parallel iterative solution of linear systems
o matrix-vector multiplication
@ scalar product, vector updates

@ incomplete LU factorization

M. Bollhéfer (TU BS) Effective Solvers Warwick 2011 33/33



	Where do large matrix problems show up?
	Partitioning the system
	Iterative solution
	Parallel matrix and vector operations
	Parallel ILU
	Summary

