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Abstract

An algebraic multilevel (Ml) preconditioner is presented for the Helmholtz equation in
heterogeneous media. It is based on a multi-level incomplete LDLT factorization and pre-
serves the inherent (complex) symmetry of the Helmholtz equation. The Ml preconditioner
incorporates two key components for efficiency and numerical stability: symmetric maximum
weight matchings and an inverse–based pivoting strategy. The former increases the block
diagonal dominance of the system, whereas the latter controls ‖L−1‖ for numerical stabil-
ity. When applied recursively, their combined effect yields an algebraic coarsening strategy,
similarly to algebraic multigrid methods, even for highly indefinite matrices. The Ml pre-
conditioner is combined with a Krylov subspace method and applied as a “black-box” solver
to a series of challenging two and three-dimensional test problems, mainly from geophysical
seismic imaging. The numerical results demonstrate the robustness and efficiency of the Ml
preconditioner, even at higher frequency regimes.
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1 Introduction

The efficient simulation of acoustic, electromagnetic and elastic wave phenomena is of fundamental
importance in a wide range of engineering applications such as ultrasound tomography, wireless
communication, or geophysical seismic imaging. When the problem of interest is linear and the
time dependence is harmonic, the unknown wave field u typically satisfies the Helmholtz equation

(1) −∆u− k2u = f

in a bounded domain Ω ⊂ Rd, d = 2, 3, supplemented with appropriate physical or radiation
boundary conditions, which guarantee the well-posedness of the boundary value problem. Here
the wave number k = ω/c represents the ratio of the (constant) angular frequency, ω, and the
speed of propagation c. If the medium is heterogenous, c = c(x) varies in space and so does
k = k(x).

Higher values of k imply shorter wave lengths, λ = 2π/k, and thus require a smaller mesh size,
h, in any standard numerical method. For second-order finite differences or continuous piecewise
linear finite elements, the rule-of-thumb of at least “10 grid points per wave length”, that is

(2) kh ' 2π

10
,

∗Institute of Computational Mathematics, TU Braunschweig, D-38106 Braunschweig, Germany
(m.bollhoefer@tu-bs.de).
†Department of Mathematics, University of Basel, Rheinsprung 21, CH-4051 Basel, Switzerland (mar-

cus.grote@unibas.ch).
‡Department of Computer Science, University of Basel, Klingelbergstrasse 50, CH-4056 Basel Switzerland

(olaf.schenk@unibas.ch).

1



MULTILEVEL HELMHOLTZ PRECONDITIONING 2

yields reasonable accuracy. When the computational domain, Ω, extends over many wave lengths,
phase errors due to numerical dispersion tend to accumulate and induce an additional “pollution”
error of order k3h2 [4, 7]. To control it, an even finer mesh (or a high-order discretization) is
required. We shall ignore this effect here, that is choose h for a given k according to (2), but
remark that the smaller kh, the easier the numerical solution for a fixed problem size.

Discretization of (1) by finite differences or finite elements leads to a linear system of equations

(3) Ax = b,

where A is a large, sparse, ill-conditioned, complex symmetric (not Hermitian) N × N matrix;
moreover, at higher wave numbers, A becomes increasingly indefinite – here we always assume A
to be nonsingular, which is guaranteed for h sufficiently small [46].

According to (2), larger values of k imply even larger values of N ∼ h−d, thereby making the
problem even harder to solve. In two space dimensions, the fill-in needed by direct sparse solvers
scales as N logN ; hence, they are quasi-optimal in terms of storage and belong to the fastest and
most robust solution methods in practice. In three space dimensions, however, the fill-in scales
as N2 [28], and iterative methods thus become competitive. Yet the indefiniteness introduced
by the deceptively simple diagonal shift of the Laplacian in (1) has prevented most classical
preconditioners for elliptic problems, such as multigrid, domain decomposition, or incomplete
factorization based methods, from being as efficient as in the positive-definite case.

Classical multigrid methods rely on two key ingredients: smoothing and coarse grid correc-
tion, and both have difficulties at higher wave numbers. Indeed, standard Jacobi or Gauß-Seidel
smoothers become unstable, while the coarser grids must remain sufficiently fine due to the os-
cillatory nature of the solution [5, 33]. To overcome some of these difficulties, Elman, Ernst and
O’Leary [19] proposed Gmres smoothing together with flexible Gmres acceleration. For con-
stant k, Brandt and Livshits [11] overcame the inherent difficulty in defining a meaningful coarse
problem by augmenting the standard V-cycle with ray grids, where the oscillatory error compo-
nents are represented as products of smooth envelope functions and oscillatory lattice principal
components. Although their method converges independently of k, it does not easily generalize to
unstructured grids or heterogeneous media – see also [36] for a similar approach.

Alternatively, instead of applying a multigrid iteration directly to the Helmholtz equation
(1), one can apply it to a different nearby problem, where it is more effective, and then use
it to precondition an outer iteration. Due to its simplicity, this class of “shifted Laplacian”
preconditioners has recently received much attention. In 1983 Bayliss, Goldstein, and Turkel [6]
used a single Ssor sweep to approximately invert the Laplacian as a preconditioner for the Cg
methods applied to the normal equations. More recently, Laird and Giles [35] enforced coercivity
of the preconditioner by reverting the sign in front of the zeroth-order term. Erlangga, Vuik,
and Osterlee [20, 21] extended this approach by introducing a complex shift, thus proposing as a
preconditioner a standard multigrid V-cycle applied to

(4) −∆u− (1− iβ)k2u = f, i =
√
−1,

where β is a free parameter. Both (1) and (4) are discretized with centered finite differences on
the same equidistant grid and with identical boundary conditions. The complex shift induced by
β moves the spectrum away from the origin and corresponds to damping in the time domain. The
larger β, the faster the multigrid convergence of the perturbed problem is, yet clearly the per-
turbation must remain sufficiently small to yield a useful preconditioner for the original problem.
In practice, β = 0.5 was found to be effective [20, 43, 52]; for constant kh, the number of outer
iterations then increases only linearly with k. Airaksinen et al. developed a similar algebraic
multigrid preconditioner coupled with a full Gmres outer iteration [1].

Domain decomposition (Dd) methods reduce the solution of (3) to a succession of smaller
local problems, which can be solved by direct methods, for instance, and in parallel. To achieve
a convergence rate independent of the number of subdomains, a coarse space correction must
be included. Cai and Widlund established the convergence of a two-level overlapping Schwarz
method for (1) with constant k if the coarse grid is fine enough [14]. Later Cai et al. improved
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the convergence of overlapping Schwarz algorithms by adding Sommerfeld-like conditions at the
boundaries of the subdomains and Gmres acceleration [13].

Non-overlapping Dd methods are ineffective if Dirichlet or Neumann transmission conditions
are used at the interfaces, as they lead to local resonance. The use of complex (Sommerfeld-like)
Robin transmission conditions, however, yields convergent non-overlapping Dd methods [8,16,27,
32]. In [23], Farhat, Macedo, and Lesoinne extended the popular Feti (Finite Element Tearing
and Interconnecting) Dd method to (1) by introducing two key ingredients: a complex diagonal
interface matrix to regularize the problem in each subdomain and an auxilliary coarse problem
based on plane waves. Recently, an improved dual-primal variant (Feti-dph) was devised and
used to solve large problems from engineering applications in a parallel environment [22].

Incomplete LU (Ilu) factorization based preconditioners yield fast “black-box” preconditioners
for a wide range of problems [45]. Although fairly robust in practice, Ilu preconditioners often
fail on (3) at higher k or generate prohibitively large fill-in. Indeed, small or nonzero diagonal
entries can lead to unstable, highly ill-conditioned incomplete factors with a crippling effect on
the preconditioner; again, a diagonal complex shift prior to the incomplete factorization improves
the spectrum of the preconditioned system [38]. Alternatively, permutation and scaling strategies
applied to (3) as a preprocessing step yield an equivalent linear system, which is more diagonally
dominant, and thus reduce the need for partial pivoting.

In 1996 Olshowka and Neumaier introduced weigthed matchings as a static approximation
to the pivoting order in Gaussian elimination [41]. The subsequent fast algorithms by Duff and
Koster [17] for sparse matrices triggered a dramatic improvement of modern sparse direct solvers.
In particular, borrowing from classical Bunch and Kaufmann [12] pivoting for symmetric matrices,
Gärtner and Schenk [49] and Duff and Pralet [18] developed sparse direct solvers for symmetric
indefinite systems that are orders of magnitude faster and more memory efficient than previ-
ous methods. Today weighted matching techniques are regularly used in modern sparse direct
solvers [37,49,50]. Their positive impact on preconditioning has also been recognized both in the
unsymmetric [9] and in the symmetric highly indefinite case [30]. Recently, the combination of
fast weighted matching techniques with an inverse-based coarsening strategy from [10] enabled
Schenk, Bollhöfer, and Römer [47] to compute a few interior eigenvalues and eigenvectors of large,
sparse, real symmetric, and highly indefinite matrices with millions of rows and columns [48].

Here we develop a fast and robust algebraic multilevel preconditioner for (1) which combines
two key ideas: a graph–pivoting strategy based on weighted graph matchings and an inverse based
coarsening process, which drives the algebraic multilevel factorization. By using the symmetrized
version [18,49] of maximum weight matchings [17,41], we preorder on every level the linear system,
so that the largest entries in magnitude appear essentially in the tridiagonal part of the matrix.
Next, we compute a partial incomplete LDLT decomposition on every level, while rejecting pivots
whenever ‖L−1‖ exceeds a prescribed bound. When applied recursively, this procedure eventually
leads to our algebraic multilevel Ml preconditioner for (3), which is then solved with the Sqmr
(Symmetric Quasi-Minimal Residual) Krylov subspace method [25,26].

The outline of our paper is as follows. In Section 2 we introduce symmetric maximum weighted
matchings as a first key pre-processing step to our preconditioner. Next, we present the inverse-
based pivoting strategy in Section 3 and show why it can be interpreted as an algebraic coarsening
strategy from the point of view of traditional multigrid methods. We also analyze the eigenvalue
structure on two subsequent levels and show that the eigenvalues closest to the origin are revealed
by the coarsening process and that these smallest eigenvalues in modulus have their counter parts in
the coarse grid system. Finally in Section 4, we present numerical results for large-scale Helmholtz
problems both in two and three space dimensions to demonstrate the robustness and efficiency of
the Ml preconditioner.

2 The graph–pivoting strategy

We will now introduce a graph–pivoting strategy that identifies large entries in the coefficient
matrix A which yield acceptable pivots for the (multilevel) incomplete factorization process, when
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Figure 1: Nonsymmetric graph–pivoting. A small numerical value is indicated by a ◦-symbol and
a large numerical value by an •-symbol. Top: a symmetric indefinite matrix A and its bipartite
graph G. Middle: maximum weighted matched entries in M are denoted with squares and the
corresponding edges in boldface. Bottom: the permutation matrix PM = (e4; e1; e5; e2; e3; e6) and
its effect on A.

permuted on or next to the main diagonal. This strategy is based on maximum weighted matchings
in a bipartite graph associated with A and usually it improves the quality of the incomplete factors
in a fashion complementary to more traditional pivoting techniques.

2.1 Graph–pivoting for nonsymmetric matrices

For any matrix A = (aij) ∈ Rn×n, its nonzero entries define a weighted bipartite graph with edges
E = {(i, j) : aij 6= 0} of ordered pairs of row and column indices. A subset M ⊂ E is called a
matching, or a transversal, if every row index i and every column index j appears at most once
inM. A matchingM is called perfect if its cardinality is n; it then defines a permutation matrix
PM = (pij) with

(5) pij =

{
1 (j, i) ∈M,

0 else.

For any nonsingular matrix A, a (nonunique) perfect matching always exists.
We now seek a matching M which increases the diagonal dominance of the permuted matrix

PMA, in particular, we seek a permutation σ which maximizes the product of the diagonal values
of PMA,

(6)

n∏
i=1

|aσ(i)i|.

This maximization problem, known in combinatorial optimization as the linear sum assignment
problem or the bipartite weighted matching problem, is solved indirectly by a sparse variant of the
Kuhn–Munkres algorithm [34,40]. Its complexity is O(n3) for n×n full matrices and O (n1+α log n)
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Figure 2: Symmetric graph pivoting. Left: the matrix A from Figure 1 for the cycle permutation
PS = (e1; e2; e4)(e3; e5)(e6). Right: reordering the cycles symmetrically permutes the largest
elements into diagonal blocks.

with α < 1 for sparse matrices arising from finite-difference or finite-element discretizations [29] –
for instance, α = 0.5 for a standard second-order finite-difference discretization in the unit square.
However in practice, the algorithm typically scales linearly with n [49].

In Figure 1 we observe the effect of permuting a matrix A using the permutation PM associated
with the maximum weighted matchingM. Clearly, PMA is nonsymmetric but now has its largest
nonzero entries on the main diagonal.

2.2 Graph–pivoting for symmetric indefinite matrices

Numerical discretizations of the Helmholtz equation usually yield a (complex) symmetric matrix
A. While we seek to increase the diagonal dominance of A, we also wish to preserve that inherent
symmetry; hence, a symmetric permutation PAPT of A is needed. However, any symmetric
permutation will leave zero or small diagonal entries on the main diagonal, which then often lead
to instability in the incomplete factorization.

To circumvent the difficulties associated with small diagonal entries and yet preserve symmetry,
we thus consider 2× 2 diagonal block pivots,(

aii ai,i+1

ai+1,i ai+1,i+1

)
, ai,i+1 = ai+1,i .

Whenever aii and/or ai+1,i+1 is small, the corresponding off-diagonal entry ai,i+1 must be large
to guarantee a suitable 2 × 2 block pivot. Therefore we seek a permutation PS that permutes
large off-diagonal elements aij close to the main diagonal of PSAP

T
S . To do so, we exploit the

cycle structure of the permutation PM associated with the nonsymmetric maximum weighted
matching M. By reordering the rows of PM following individual cycles in M, we obtain a
new permutation PS which permutes the largest entries into diagonal blocks [29]. For instance,
the permutation PM = (e4; e1; e5; e2; e3; e6) from Figure 1 yields the cycle representation PS =
(e1; e2; e4)(e3; e5)(e6), shown in Figure 2. As we symmetrically permute A using PS , we observe
in Figure 2 how the largest entries of AS = PSAP

T
S are now located inside diagonal blocks. Since

longer cycles result in larger diagonal blocks, which would generate prohibitively large fill-in, all
longer cycles are subsequently broken down into disjoint 2× 2 or 1× 1 cycles.

In summary, the above graph-pivoting based on symmetric maximum weigthed matching per-
mutes and scales A such that all entries are at most one in modulus; moreover, every diagonal
block is either a 1× 1 scalar with |aii| = 1 (in exceptional cases we will have aii = 0), or a 2× 2
block with |ai+1,i| = |ai,i+1| = 1 and |aii|, |ai+1,i+1| < 1. If A is complex valued we apply graph
pivoting to |A| instead. Furthermore, to keep the fill-in introduced during the elimination process
minimal, we apply a nested dissection reordering [31] to the compressed graph of AS , thereby
perserving the 1× 1 and 2× 2 block structure determined above.

Numerical experiments [18, 30, 48, 49] indicate that graph-pivoting based on symmetric max-
imum weight matchings typically waives the need for dynamic pivoting strategies as in [12].
Nonetheless, in the event of a nearly singular 2 × 2 diagonal block, the corresponding rows and
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columns are permuted into the Schur complement and are handled on coarser levels subsequently,
as described in Section 3.

3 Inverse–based pivoting

The Ml preconditioner is based on a multilevel incomplete LDLT factorization which uses the re-
cent inverse-based pivoting strategy from [10,48] during the elimination process to (approximately)
control the norm of the inverse triangular factor, ‖L−1‖, a crucial prerequisite for stability and
accuracy. After describing the pivoting strategy, we shall deduce three important consequences
from it: its relation to block-diagonal dominance, its connection to approximate inverses, and its
similarity to algebraic multigrid methods.

3.1 The inverse-based pivoting strategy

Suppose the matrix A in (3) has been rescaled and reordered using the graph–pivoting strategy
from Section 2. The tridiagonal part of A is thus sufficiently dominant to perform a block LDLT

decomposition, with the exception of a few nearly singular 2×2 block pivots, whose corresponding
rows and columns are permuted into the Schur complement. This process eventually yields the
partial decomposition,

(7) ΠTAΠ =

(
B FT

F C

)
=

(
LB 0
LF I

)(
DB 0
0 SC

)(
LTB LTF
0 I

)
,

where DB is block-diagonal, LB is block-lower triangular, and Π is a permutation matrix that
moves the “bad” pivots into the Schur complement

(8) SC = C − LFDBL
T
F .

Recursive application of this approach to SC , including the graph–pivoting strategy from Section
2, eventually leads to our multilevel preconditioner.

Both the stability of the lower triangular factor in (7),

(9) L =

(
LB 0
LF I

)
,

and the accuracy of the preconditioner hinge upon the size of L−1. The pivoting strategy therefore
ought to control ‖L−1‖, at least approximately, during the (incomplete) factorization process. We
now describe in detail that crucial step which we refer to as inverse-based pivoting [10].

Ignoring the permutation Π in (7), we are faced with the partial decomposition

A =

 L11 0 0
L21 I 0
L31 0 I

 D11 0 0
0 S22 S23

0 S32 S33

 L11 0 0
L21 I 0
L31 0 I

T

,

at some intermediate stage of the factorization process. Here L11, L21, L31, and D11 refer to the
already computed part of the LDLT decomposition whereas S22, S23, S32, and S33 correspond to
the Schur complement; the block S22 is either 1× 1 or 2× 2, and we simply select the partitioning
that minimizes ‖S32S

−1
22 ‖∞.

For a given κ, we accept the pivot S22 if

(10) ‖

 L11 0 0
L21 I 0
L31 0 I

 I 0 0
0 I 0
0 S32S

−1
22 I

−1

‖ / κ.

Otherwise, we reject it and symmetrically permute the corresponding rows and columns to the
end of the linear system. In particular, whenever S22 is ill–conditioned or singular, the inverse
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bound (10) on S32S
−1
22 forces the factorization process to skip the corresponding rows and thus

represents a true pivoting strategy. Doing so step-by-step finally yields the partial decomposition
(7), with

(11) ‖L−1‖ / κ.

Clearly, we cannot strictly enforce the above upper bound as any exact computation of ‖L−1‖
would be far too expensive. Instead we estimate ‖L−1‖ by an inexpensive sparse forward substitu-
tion “on the fly”, which is essentially based on the classical approach from [15], for further details
see also [10]. In order to let the inverse-based pivoting strategy act as a coarsening strategy in
the sense of algebraic multigrid, we prescribe a fairly tight inverse bound κ, such as κ = 3, which
tends to postpone a significant portion of the linear system to coarser levels. Even smaller values
for κ, such as κ = 1, would result in a diagonal L.

To illustrate the effect of inverse-based pivoting when applied to (1) on the coarsening process,
we now consider the following simple but typical two-dimensional wave guide problem from [35]:

(12)

−∆u(x, y)− k2u(x, y) = 0 (x, y) ∈ [0, 1]2,

∂u(x, y)

∂n
= 0 y = 0 and y = 1,

∂u(x, y)

∂n
= e−

1
2 (y− 1

2 )2 x = 0,

∂u(x, y)

∂n
+ iku(x, y) = 0, x = 1.

Here a horizontal sinusoidal Gaussian beam enters the computational domain from the left at
x = 0 and propagates across the wave guide until it reaches the right boundary x = 1, where
we impose a Sommerfeld-like absorbing boundary condition for simplicity. We choose k = 80
and discretize (12) with second-order finite differences on an equidistant 128× 128 mesh, thereby
satisfying (2).

To give an impression of the number and distribution of the nodes postponed from one level to
the next, we identify in Figure 3 precisely those nodes inside the 20× 20 lower left portion of the
grid at two subsequent stages of the coarsening process. For κ = 3 we observe that inverse-based
pivoting excludes bad pivots from the fine grid, thereby postponing their treatment to coarser
levels, much like algebraic multigrid methods.

3.2 Inverse–based pivoting generalizes block-diagonal dominance

Diagonal dominance generally waives the need for pivoting in LDU decompositions and immedi-
ately leads to bounded matrices L−1 and U−1. Borrowing from [24], we now prove that block-
diagonal dominance indeed allows to predict the norm of the inverse triangular factors without
ever computing or estimating them. In contrast, the inverse-based pivoting strategy circumvents
the limited situation of diagonal dominance by directly controlling the inverse triangular factors.

Lemma 1 Let A ∈ Rn×n be partitioned as A = (Aij)i,j=1,...,m such that the diagonal blocks Aii
are square and nonsingular. Let | • | denote some fixed matrix norm with |I| = 1, and suppose
there exists κ > 1 such that

(13)
∑
j: j 6=i

|A−1
ii Aij | 6

κ− 1

κ
,

∑
i: i 6=j

|AijA−1
jj | 6

κ− 1

κ
, ∀i, j = 1, . . . ,m.

Then there exists a block triangular decomposition A = LDU with the same partitioning as induced
by A such that L and UT are unit lower triangular matrices and D is a block diagonal matrix.
Furthermore, with respect to this partitioning, the diagonal blocks of L and U are identity matrices.
The inverse triangular factors L−1 and U−1 satisfy

(14) ‖L−1‖1 6 κ, ‖U−1‖∞ 6 κ,
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Figure 3: Two-dimensional wave guide with inverse–based pivoting recursively applied over the
first two levels: dark nodes are postponed to the subsequent level and hence permuted into the
Schur complement SC .

where both ‖ • ‖1 and ‖ • ‖∞ are defined by blocks, i.e.,

‖ (Mij)ij ‖1 := max
j=1,...,n

n∑
i=1

|Mij |, ‖ (Mij)ij ‖∞ := max
i=1,...,n

n∑
j=1

|Mij |.

Proof:
Let γ = (κ− 1)/κ, 0 < γ < 1. One step of a block LU decomposition leads to

A =

(
I 0

L̂ I

)(
A11 0
0 S

)(
I Û
0 I

)
,

where
L̂ =

(
Ai1A

−1
11

)
i>2

, Û =
(
A−1

11 A1j

)
j>2

, S =
(
Aij −Ai1A−1

11 A1j

)
i,j>2

.

From (13) we obtain for i = 2, . . . ,m that∑
j 6∈{1,i}

∣∣(Aii −Ai1A−1
11 A1i)

−1
(
Aij −Ai1A−1

11 A1j

)∣∣ 6
∣∣(I −A−1

ii Ai1A
−1
11 A1i)

−1
∣∣ ∑
j 6∈{1,i}

(∣∣A−1
ii Aij

∣∣+
∣∣A−1

ii Ai1
∣∣ ∣∣A−1

11 A1j

∣∣) 6

∣∣(I −A−1
ii Ai1A

−1
11 A1i)

−1
∣∣ ∑

j 6∈{1,i}

∣∣A−1
ii Aij

∣∣+
∣∣A−1

ii Ai1
∣∣ ∑
j 6∈{1,i}

∣∣A−1
11 A1j

∣∣ 6

∣∣(I −A−1
ii Ai1A

−1
11 A1i)

−1
∣∣ (γ − ∣∣A−1

ii Ai1
∣∣+
∣∣A−1

ii Ai1
∣∣ (γ − ∣∣A−1

11 A1i

∣∣)) .(15)

Next, we use Neumann series [39] to bound the first term in (15) as∣∣(I −A−1
ii Ai1A

−1
11 A1i)

−1
∣∣ ≤ (1−

∣∣A−1
ii Ai1A

−1
11 A1i

∣∣)−1 ≤ (1−
∣∣A−1

ii Ai1
∣∣ ∣∣A−1

11 A1i

∣∣)−1.

By using twice the fact that 0 < γ < 1, the second term in (15) is bounded by

(γ − 1)
∣∣A−1

ii Ai1
∣∣+ γ −

∣∣A−1
ii Ai1

∣∣ ∣∣A−1
ii Ai1

∣∣ 6 γ
(
1−

∣∣A−1
ii Ai1

∣∣ ∣∣A−1
11 A1i

∣∣) .
This implies that ∑

j 6∈{1,i}

∣∣(Aii −Ai1A−1
11 A1i)

−1
(
Aij −Ai1A−1

11 A1j

)∣∣ 6 γ.
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k = 5

k = 200

Figure 4: Two-dimensional wave guide problem (12) with varying wave number k = k(x, y).

Similar arguments lead to∑
j 6∈{1,i}

∣∣(Aij −Ai1A−1
11 A1j

)
(Ajj −Aj1A−1

11 A1j)
−1
∣∣ 6 γ.

Therefore, the Schur complement S satisfies the diagonal dominance criterion (13) too, with the
same constant γ. Repeated use of the above argument to the Schur complement inductively implies
that the resulting factors L = (Lij) and U = (Uij) satisfy

(16)
∑
i: i>j

|Lij | 6 γ,
∑
j: j>i

|Uij | 6 γ.

To prove the upper bounds on L−1 and U−1 in (14), we first write

L = I − EL, U = I − EU ,

where EL and EU correspond to the strict lower and upper triangular parts of −L and −U ,
respectively. From (16), we then immediately find that ‖EL‖1 6 γ and ‖EU‖∞ 6 γ. Again we
apply Neumann series to obtain

‖L−1‖1 6
1− γn

1− γ
, ‖U−1‖∞ 6

1− γn

1− γ
.

Since
1− γn

1− γ
6 1 +

γ

1− γ
= κ,

this concludes the proof of Lemma 1. �

Lemma 1 shows that the partial block-diagonal dominance of A in (13) immediately implies
the upper bound (14) on the inverse triangular factors. For the linear system (3), however, the
diagonal dominance criterion (13) usually requires the removal of too many columns and rows
even for a small submatrix of A to fulfill (13). In contrast, if we directly impose (14), that is
‖L−1‖ / κ, we are no longer restricted to the rather limiting case of block-diagonal dominance
while still keeping ‖L−1‖ at least approximately under control. In this sense inverse-based pivoting
generalizes block diagonal dominance.

From its link to block-diagonal dominance, we expect inverse-based pivoting to select more
coarse grid nodes precisely where A is less diagonally dominant. To illustrate the effect of local
diagonal dominance, or lack thereof, on the coarsening process, we now consider again the example
in (12) but with varying k = k(x, y), as depicted in Figure 4. Indeed, Figure 5 shows how the
coarsening process resulting from inverse-based pivoting moves significantly more nodes to the
coarse grid precisely where k is large, that is where A displays little or no diagonal dominance.
Since the resulting coarse linear systems become increasingly indefinite – see also Theorem 2 below
– the graph–pivoting techniques using 2 × 2 block pivots from Section 2 are truly necessary for
numerical stability.
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Figure 5: Inverse–based pivoting recursively applied over four levels. Dark nodes refer to postponed
nodes that become part of SC . The upper two frames show only a subsection of the grid in the
lower left part of the domain.

3.3 Inverse-based pivoting returns sparse approximate inverses

For small κ, such as κ = 3, the constraint ‖L−1‖ / κ implies that

n∑
i=j+1

‖(L−1)ij‖ / 2.

In theory, any particular (block-) row of L−1 might have n− j blocks of equal magnitude but, in
practice, only a few blocks ‖(L−1)ij‖ are typically of order 1, while the remaining entries essentially
vanish; thus, we expect L−1 to be approximately sparse.

To illustrate the (approximate) sparsity of L−1, we consider again the two-dimensional wave
guide problem in (12) with varying k = k(x, y), see Figure 4, and concentrate on the lower left
part of

L−1 =

(
L−1
B 0

−LFL−1
B I

)
.

Figure 6 shows the sparsity structure of LFL
−1
B computed by an exact factorization using inverse–

based pivoting. Although the sub-block is as large as 29, 167×72, 594, we find only 614, 009 entries
larger than 10−2 in magnitude, i.e. as little as 8.5 nonzero entries per column, and 180, 780 entries
larger than 10−1 in magnitude, i.e. only about 2.5 nonzero entries per column.
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Figure 6: Approximate inverse as computed by inverse-based pivoting. The lower left part of L−1

is shown for the thresholds τ = 10−2 (left picture, 614,009 nonzeros) and τ = 10−1 (right picture,
180,780 nonzeros).

The two-level decomposition (7) allows us to rewrite A−1 as

(17) (ΠTAΠ)−1 =

(
(LBDBL

T
B)−1 0

0 0

)
+

(
−L−TB LTF

I

)
S−1
C

(
−LFL−1

B I
)
.

If we interpret (17) from the point of view of multigrid methods, we find that it formally yields
an interpolation operator

Ih =

(
−L−TB LTF

I

)
.

Therefore, the constraint ‖L−1‖ ≤ κ is essentially equivalent to ‖Ih‖ ≤ κ, and hence the coars-
ening process dictated by inverse-based pivoting constructs a bounded interpolation operator Ih.
Moreover, Ih is sparse because it essentially consists of the lower left block of L−1 – see Figure 6.
Hence, the coarse grid system given by SC in (8) satisfies

(18) SC = ITh AIh

and can be well approximated by a sparse matrix

(19) S̃C = ĨTh AĨh.

3.4 Inverse-based pivoting selects the right coarse grid

When applied to standard elliptic problems it is well-known that multigrid methods decompose the
solution space into a fine- and a coarse-grid space, associated with the high and low (smoother) fre-
quency components of the problem, respectively. From a purely algebraic point of view, multigrid
methods distinguish between large and small eigenvalues of the underlying (symmetric positive
definite) linear system. As long as the matrix is diagonalizable, the associated eigenvectors thereby
define two complementary spaces, the fine- and the coarse-grid space.

For general matrices, the singular value decomposition

A = [U1U2]

(
Σ1 0
0 Σ2

)
[V1V2]T

is more appropriate. Here we assume that the diagonal entries of Σ1 are of the order of ‖A‖ in
magnitude, whereas those of Σ2 contain all remaining smaller ones. As a consequence,

(20) A−1 = V1Σ−1
1 UT1︸ ︷︷ ︸

fine space

+V2Σ−1
2 UT2︸ ︷︷ ︸

coarse space

≡ AF +AC
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where the first term AF associated with the fine space is bounded by 1/‖A‖. Thus, it is the second
part AC which reveals ‖A−1‖. In fact, the inverse–based decomposition constructs the multilevel
factorization that can be split similar to (20), see also Theorem 2 below. I.e.,

(ΠTAΠ)−1 =

(
(LBDBL

T
B)−1 0

0 0

)
︸ ︷︷ ︸

AF

+ IhS
−1
C ITh︸ ︷︷ ︸
AC

,

where ‖AF ‖ is moderately bounded and ‖AC‖ ≈ O(‖A−1‖).
Since the original matrix has been scaled with the graph–pivoting strategy beforehand and

‖L−1‖ / κ, we expect from (17) that

(21) β = ‖D−1
B ‖

is small. For ε > 0 we now let

ΠTAΠv = εw, ‖v‖ = ‖w‖ = 1, v, w ∈ Cn,

for any pair of vectors v, w, such as eigenvectors or singular vectors, that satisfy ‖ΠTAΠv‖ � ‖v‖;
singular vectors in fact lead to the smallest possible ε. On the one hand we have ‖(ΠTAΠ)−1w‖ =
1/ε, and on the other hand by (17) we have

(22) IhS
−1
C ITh w =

1

ε
v −

(
(LBDBL

T
B)−1 0

0 0

)
w.

Neglecting the smaller right-most term in (22) of order κ2β, we find that

IhS
−1
C ITh w ≈

1

ε
v.

Since ‖Ih‖ ≤ κ, we conclude S−1
C ITh w must be at least of order ε−1. Thus, the graph-pivoting

strategy combined with the bound (14) on the inverse triangular factors in (7) tends to relegate
the smallest eigenvalues (or singular values) to the coarser space. In the following theorem we
rigorously establish this fact when A is real symmetric, for simplicity, as in a situation without
damping or absorbing boundary conditions.

Theorem 2 Let A ∈ Rn,n be a nonsingular real symmetric matrix. Consider the two-level fac-
torization (7) and suppose that ‖D−1

B ‖2 ≤ β and ‖L−1‖2 ≤ κ.

1. Let 1
λp

6 · · · 6 1
λ1

be the p largest positive eigenvalues of A−1 and

let 1
µp
6 · · · 6 1

µ1
be the p largest positive eigenvalues of S−1

C . Then

(23)
1

µj
6

1

λj
, ∀j = 1, . . . , p.

If in addition κ2β < 1
λp

, then

(24)
1

κ2

1

λj
− β 6 1

µj
, ∀j = 1, . . . , p.

2. Let 1
λ1

6 · · · 6 1
λp

be the p smallest negative eigenvalues of A−1 and

let 1
µ1
> · · · > 1

µp
be the p smallest negative eigenvalues of S−1

C . Then

(25)
1

λj
6

1

µj
, ∀j = 1, . . . , p.

If in addition 1
λp
< −κ2β, then

(26)
1

µj
6

1

κ2

1

λj
+ β, ∀j = 1, . . . , p.
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Proof. Let V ∈ Rn,j be a matrix of j eigenvectors, j ≤ p, such that

(ΠTAΠ) V = V diag (λ1, . . . , λj) ≡ V Λ, V TV = I.

Next we define VC := ITh V and let VC = QCRC denote its QR factorization, where QTCQC = I and
RC is j × j upper triangular. Therefore ‖RC‖2 6 κ, because ‖VC‖2 6 κ. By the Courant–Fischer
max-min principle, µj and λj can be characterized as

1

µj
= max

dim W=j
min

y∈W\{0}

yTS−1
C y

yT y
,

1

λj
= max

dim V=j
min

x∈V\{0}

xT (ΠTAΠ)−1x

xTx
.

Now, we first prove the lower bound (24). For any y = VCx 6= 0, we have

yTS−1
C y

yT y
=

xTRTCQ
T
CS
−1
C QCRCx

xTRTCRCx

>
1

κ2

xTRTCQ
T
CS
−1
C QCRCx

xTx
=

1

κ2

xTV T IhS
−1
C ITh V x

xTx

=
1

κ2

xTV T
(

Λ−1 −
[

(LBDBL
T
B)−1 0

0 0

])
V x

xTx

>
1

κ2

min
x 6=0

xTV TΛ−1V x

xTx
−max

x 6=0

xTV T
[

(LBDBL
T
B)−1 0

0 0

]
V x

xTx


>

1

κ2

(
1

λj
− κ2β

)
.

Hence the max-min property implies (24).
Suppose that SC ∈ Rm,m. To prove the upper bound (23), we note that by the Courant-Fischer

max-min principle we can always find an m× j matrix W such that

1

µj
= min

x 6=0

xTWTS−1
C Wx

xTx
, WTW = I.

Since S−1
C is a submatrix of (ΠTAΠ)−1, there exists a projection matrix Q such that S−1

C =
QT (ΠTAΠ)−1Q. Thus,

xTWTS−1
C Wx

xTx
=
xTWTQT (ΠTAΠ)−1QWx

xTx
,

and taking first the minimum and then the maximum on both sides yields (23). We remark that
for the proof of (23) the assumption λp < 1/κ2β is not required.

The proof of (25) and (26) is analogous and therefore omitted here. �

According to Theorem 2, the smallest eigenvalues in magnitude not only move away from
the origin but also get amplified at most by a factor κ2 when transferred to the coarse grid, as
illustrated in Figure 7. Since we assume |λp| � 1/κ2β in the proof of Theorem 2, κ ought not to
be too large for the the upper bound (24) to be useful.

Even when A in (3) is real, it is highly indefinite although most of its eigenvalues are positive.
Theorem 2 implies that those eigenvalues closest to the origin are revealed by the coarse-grid sys-
tem. Since the size of the linear system is greatly reduced by the inverse-based coarsening process,
we conclude that the majority of the remaining positive larger eigenvalues will not be captured by
the coarse system. As a consequence, the linear systems necessarily become increasingly indefinite
from one level to the next, until most of the large positive eigenvalues have disappeared.
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Figure 7: The eigenvalues λj and µj of A and SC , respectively.

To illustrate this effect, we consider again Example 12 and display in Figure 8 the 200 hundred
eigenvalues of A and SC closest to the origin – the eigenvalues were computed using Matlab’s
eigs function. In fact, Theorem 2 strictly does not apply, because A is complex symmetric here.
However, the Sommerfeld radiation condition induces only a low rank complex perturbation, as
corroborated by the imaginary parts of the eigenvalues in Figure 8, much smaller than their
respective real parts. Indeed as predicted by Theorem 2, we observe that the smallest eigenvalues
in modulus of SC remain between |λj | and κ2|λj |.

3.5 Approximate inverse–based factorization

In the previous sections we have discussed inverse–based pivoting when used as a direct method and
have concentrated on the selection of coarse-grid nodes during the elimination process. To turn this
approach into a true algebraic multilevel preconditioner, however, we further need to drop small
entries, while preserving key features for numerical stability. Thus we now examine the influence of
inverse–based coarsening when the LDLT factorization is only computed approximately. Instead
of (7), we then obtain

ΠTAΠ =

(
B FT

F C

)
=

(
LB 0
LF I

)(
DB 0
0 SC

)(
LTB LTF
0 I

)
+

(
EB
EF

)(
DB 0

)
+

(
DB

0

)(
ETB ETF

)
︸ ︷︷ ︸

=:E

(27)

as in [10], where EB , EF refer to those elements dropped from L and SC as in (8). We denote by
τ the drop tolerance used for the removal of the entries |lij | 6 τ from L.

Since the inverse-based pivoting startegy inherently excludes small pivots, DB is typically
well-conditioned and we can assume β in ‖D−1

B ‖ ≤ β to be quite small. Moreover, the bound
‖L−1‖ / κ, which we enforce during the incomplete LDLT decomposition, guarantees the numer-
ical stability of the inverse triangular factors. When A is preconditioned by (LDLT )−1, say using
right preconditioning, the remaining critical part therefore is the inversion of SC in

ΠTAΠL−T
(
DB 0
0 SC

)−1

L−1 = I + EL−T
(
DB 0
0 SC

)−1

L−1.

As Theorem 2 implies that
1

κ2
‖A−1‖ − β 6 ‖S−1

C ‖ 6 ‖A
−1‖,

the error of the preconditioned linear system is at worst on the order of

(28) τκ2‖A−1‖.
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Figure 8: Two-dimensional wave guide problem (12). The 200 eigenvalues closest to the origin are
shown for κ = 3. Left: A; right: the Schur complement SC .

From (28) we infer yet again that a small κ in (14) is essential to keep the condition number of
the preconditioned linear system reasonably small.

In addition to those entries of order τ dropped from L, we further drop entries in the Schur
complement SC thereby replacing it by the sparse approximation S̃C in (19). For the removal of
small entries from SC , we typically use a smaller drop tolerance, such as τ/10, which adds the
perturbation (

0 0
0 ES

)
to the right side of (27).

4 Numerical experiments

To evaluate the performance of our algebraic multilevel (Ml) preconditioner, we shall apply it
to a series of challenging test problems in two and three space dimensions, in particular from
geophysical seismic imaging. In all cases, the matrix A in (3) results from a second-order centered
finite-difference discretization of (1) on a regular grid.

The preconditioned linear system is solved with the Sqmr iterative method [25, 26], which
requires one matrix-vector multiply per iteration and little extra storage. The initial guess, x0, is
always zero, and we stop the iteration when the relative residual satisfies

‖rm‖
‖b‖

6 10−7, rm = b−Axm.

We compare our Ml preconditioner1 with the sparse direct solver Pardiso1. To do so, we
monitor the number of Sqmr iterations, the fill-in of the Ml perconditioner relative to that of
A, and both the set-up and the execution times. All numerical experiments were performed on a
Intel Xeon server (2.2 GHz) with 32 GB of memory.

The two parameters κ and τ , which control the norm of the inverse and the drop tolerance in
the incomplete factorization process (see Section 3), determine the fill-in and hence the work and
storage required for the Ml preconditioner. Larger values of τ or κ lead to a cheaper but maybe
ineffective preconditioner, whereas smaller values can lead to prohibitively high fill-in. We shall
refrain from optimizing τ and κ and fix their values in all numerical experiments to

κ = 3, τ = 3× 10−3.

1available at http://www.pardiso-project.org.



MULTILEVEL HELMHOLTZ PRECONDITIONING 16

Figure 9: Two-dimensional problems. Left: scattered field from a cylinder with k = 32×π. Right:
Marmousi problem for ν = 30 Hz and α = 0.

In general, the optimal parameter choice is problem dependent and could be adjusted for improved
performance within a particular class of problems.

The Ml preconditioner is computed either directly from A or from the matrix A+ iβk2I that
results from the discretization of (4). Recall that a small complex diagonal shift typically improves
on the spectrum of the preconditioned system [20, 21, 38]. Thus we shall also vary β to study its
effect on the Ml preconditioner; for β = 0, the Ml preconditioner is computed from the original
matrix A.

4.1 Two-dimensional examples

We first consider an exterior scattering problem where a plane wave exp(ikx) impinges upon a
“sound-soft” infinite cylinder aligned with the z-axis. As the scattered field, u, is then independent
of z, the computational domain Ω reduces to the two-dimensional annulus Ω = {(r, ϑ)| r0 < r <
R, 0 ≤ ϑ < 2π}, where (r, ϑ) denote polar coordinates. At the surface of the cylinder, r = r0,
we set u = − exp(ikx). At the outer (artificial) boundary, r = R, we impose the Sommerfeld
radiation condition

(29)
∂u

∂n
+ iku = 0,

where n denotes the outward normal. In Ω we discretize (1) with constant k on an equidistant
polar grid; here, the asymmetry in the discrete Laplacian induced by the r dependent first-order
term, r∂r, is removed by diagonal rescaling of A.

In Figure 9 the real part of the scattered field is shown for r0 = 1/2 and R = 2 in the vicinity
of the cylinder. Starting at k = 8π, we progressively increase k while refining the mesh to keep
the number of grid points per wavelength fixed, according to (2). Hence, when the wave number
k doubles, the mesh size h is halved whereas the problem size N quadruples. Here we compare
the Ml preconditioner also to the standard (nonsymmetric) Ilu(0) and Ilut preconditioners [45]
(Matlab) combined with the bicgstab [51] iterative method.

In Table 1 we compare the relative fill-in and set-up times for the Ml preconditioner to those
of the direct solver Pardiso and of the Ilu(0) , Ilut preconditioners. For zero or small complex
shift β, the fill-in tends to increase with k. However, with β ≥ 0.25 the fill-in remains quite low
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Table 1: Scattering from a cylinder. The fill-in and set-up time in seconds (in parentheses) for
the Ml preconditioner, with or without complex diagonal shift β, are compared to those of the
direct solver Pardiso and of the Ilu(0) , Ilut preconditioners. ’‡’ indicates that the time limit
(> 10, 000 sec.) has been reached.

k/ Matlab Sqmr
grid points Pardiso bicgstab bicgstab Ml

Ilu(0) Ilut (0.003) β = 0 β = 0.5 β = 0.25 β = 0.1

8× π 9.1 1 6.5 5.6 3.8 4.1 4.5
120× 960 (2) (446) (64) (6) (5) (5) (5)
16× π 11.1 1 ‡ 7.1 3.3 3.6 7.0

240× 1920 (15) (9128) ‡ (58) (24) (30) (56)
32× π 13.0 ‡ ‡ 9.1 3.1 3.7 10.1

480× 3840 (93) ‡ ‡ (286) (99) (123) (335)

Table 2: The multilevel grid hierarchy and fill-in on each level for the Ml preconditioner, with
or without complex diagonal shift β. The fill-in given below is taken relative to the number of
nonzeros of A.

k/ Ml multilevel grid hierarchy
grid points β = 0 β = 0.25

8× π Matrix A: 114’240 nnz: 341’760 Matrix A: 114’240 nnz: 341’760
120× 960 Level 0: 114’240 Fill-in: 0.8 Level 0: 114’240 Fill-in: 0.6

Level 1: 51’951 Fill-in: 1.1 Level 1: 51’951 Fill-in: 1.0
Level 2: 22’297 Fill-in: 0.7 Level 2: 22’244 Fill-in: 0.5
Level 3: 11’441 Fill-in: 0.4 Level 3: 11’347 Fill-in: 0.4
Level 4: 6’810 Fill-in: 0.2 Level 4: 6’655 Fill-in: 0.2
Level 5: 4’654 Fill-in: 2.2 Level 5: 4’317 Fill-in: 1.4

Total: 5.6 Total: 4.1
16× π Matrix A: 458’880 nnz: 1’374’720 Matrix A: 458’880 nnz: 1’374’720

240× 1920 Level 0: 458’880 Fill-in: 0.8 Level 0: 458’880 Fill-in: 0.8
Level 1: 209’449 Fill-in: 1.1 Level 1: 209’449 Fill-in: 1.0
Level 2: 89’972 Fill-in: 0.7 Level 2: 89’954 Fill-in: 0.5
Level 3: 46’310 Fill-in: 0.4 Level 3: 46’076 Fill-in: 0.3
Level 4: 28’065 Fill-in: 0.2 Level 4: 27’489 Fill-in: 0.2
Level 5: 19’438 Fill-in: 0.1 Level 5: 18’500 Fill-in: 0.2
Level 6: 15’185 Fill-in: 0.1 Level 6: 12’191 Fill-in: 0.3
Level 7: 12’897 Fill-in: 0.1 Level 7: 6’040 Fill-in: 0.2
Level 8: 11’273 Fill-in: 3.6 Level 8: 1’050 Fill-in: 0.1

Total: 7.1 Total: 3.6
32× π Matrix A: 1’839’360 nnz: 5’514’240 Matrix A: 1’839’360 nnz: 5’514’240

480× 3840 Level 0: 1’839’360 Fill-in: 0.7 Level 0: 1’839’360 Fill-in: 0.8
Level 1: 841’557 Fill-in: 1.0 Level 1: 841’557 Fill-in: 1.0
Level 2: 361’971 Fill-in: 0.5 Level 2: 186’207 Fill-in: 0.5
Level 3: 187’378 Fill-in: 0.3 Level 3: 112’543 Fill-in: 0.3
Level 4: 114’282 Fill-in: 0.2 Level 4: 76’619 Fill-in: 0.4
Level 5: 80’005 Fill-in: 0.2 Level 5: 51’145 Fill-in: 0.3
Level 6: 63’492 Fill-in: 0.1 Level 6: 25’734 Fill-in: 0.2
Level 7: 53’713 Fill-in: 0.2 Level 7: 4’974 Fill-in: 0.2
Level 8: 47’185 Fill-in: 0.1 Total: 3.7
Level 9: 41’934 Fill-in: 5.7

Total: 9.1

independently of k, while the set-up time increases only linearly with problem size. For β = 0.5
the set-up time at high wave numbers is comparable to that of Pardiso, yet the fill-in is four
times smaller. Both Ilu(0) and Ilut become prohibitively slow at higher wave numbers.

The multilevel grid hierarchy and fill-in on each level for the Ml preconditioner with or without
complex diagonal shift β is shown in Table 2. Table 3 displays the iteration counts and CPU times
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Table 3: Scattering from a cylinder. The total number of iterations and CPU time in seconds (in
parentheses) for the Ml preconditioner, with or without complex diagonal shift β, are compared
to those of the direct solver Pardiso and of the Ilu(0) , Ilut preconditioners. ’†’ indicates
divergence (> 5, 000 iterations) and ’‡’ that the time limit (> 10, 000 sec.) has been reached.

k/ Matlab Sqmr
grid points Pardiso bicgstab bicgstab Ml

Ilu(0) Ilut (0.003) β = 0 β = 0.5 β = 0.25 β = 0.1

8× π 1 1084 † 25 89 46 31
120× 960 (0.2) (467) † (5) (15) (8) (6)
16× π 1 2338 ‡ 54 197 96 63

240× 1920 (0.7) (7161) ‡ (48) (139) (71) (57)
32× π 1 ‡ ‡ 182 334 227 137

480× 3840 (3.1) ‡ ‡ (663) (602) (430) (548)

achieved by the different preconditioners, either with or without complex diagonal shift β. As
expected, the direct solver Pardiso outperforms all iterative solvers. The Ml preconditioner
leads to convergence with or without complex shift, while the number of iterations increases
linearly with k. A slight complex shift β = 0.25 has a positive impact both on the fill-in and the
number of iterations and thus yields the overall best performance of the Ml preconditioner.

Next, we consider a geophysical migration problem from seismic imaging which requires the
solution of

(30) −∆u− (1− iα)k2u = f in Ω.

Here the parameter α, 0 ≤ α� 1, represents a small fraction of physical damping in the medium;
for α = 0, (30) reduces to (1). The computational domain Ω corresponds to a 6000m × 1600m
vertical slice of the Earth’s subsurface, which we truncate by imposing the Sommerfeld radiation
condition (29) at its boundary. The point source f (“single shot”) is located in the center of the
upper boundary, which corresponds to the surface of the Earth. The highly heterogeneous velocity
profile c(x, y) stems from the Marmousi model [42] and varies irregularly between 1500 m/s and
4000 m/s throughout Ω.

We now progressively increase the frequency ν = ω/2π from 10 Hz to 30 Hz, while refining the
grid according to (2). In Figure 9 the real part of the wavefield is shown for ν = 30 Hz on the
finest 2001× 534 grid, which yields at least 17 grid points per wave length.

In Table 4 we observe that the fill-in in the Ml preconditioner slowly increases with ν without
complex shift. For a slightly positive value of β, however, the fill-in remains quite low, indepen-
dently of k and problem size. The inclusion of physical damping α has but little effect on the
fill-in, whereas the set-up times tend to decrease.

The total number of iterations and CPU times are shown in Table 5. The Ml preconditioner
always achieves convergence regardless of k, α, or problem size. Again a small complex shift
is beneficial to the preconditioned system, as the number of iterations then increases essentially
linearly with frequency ν. Yet any further increase in β typically leads to higher iteration counts,
as the preconditioned system moves even farther away from the original problem. Again, the
inclusion of physical damping greatly reduces the number of iterations, which corroborates previous
findings [33].

4.2 Three-dimensional examples

We first consider a 3D wedge model, where the velocity profile mimics a simple geophysical sit-
uation with three distinct layers. The computational domain, Ω = (0, 1)3, is divided into three
regions by the two tilted planes f1 and f2, as shown in Figure 10. We denote by kref the (constant)
wave number inside the intermediate layer; in the upper and lower layers the wave number equals
k = 1.2× kref and k = 1.5× kref, respectively. Again, we solve (30) with the Sommerfeld radiation
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Table 4: Fill-in and set-up time in seconds (in parentheses) of the multilevel preconditioner and
the direct solver Pardiso for the 2D Marmousi problem.

grid damping Ml
ν points α Pardiso β = 0 β = 0.5 β = 0.25 β = 0.1

0.0 10.0 (2) 3.9 (4) 2.9 (2) 3.8 (3) 4.3 (4)
10 751× 201 0.025 10.0 (2) 3.7 (2) 2.8 (2) 3.6 (4) 4.1 (4)

0.050 10.0 (2) 3.7 (5) 2.8 (2) 3.9 (3) 4.1 (4)
0.0 11.1 (15) 6.5 (70) 2.9 (9) 3.2 (10) 4.4 (38)

20 1501× 401 0.025 11.1 (14) 5.3 (46) 2.8 (8) 3.2 (10) 3.8 (26)
0.050 11.1 (15) 4.0 (23) 2.8 (8) 3.1 (15) 3.6 (14)
0.0 12.1 (32) 8.3 (523) 3.1 (28) 3.6 (25) 5.0 (71)

30 2001× 534 0.025 12.1 (32) 7.3 (251) 3.0 (26) 3.5 (23) 4.6 (47)
0.050 12.1 (32) 6.2 (106) 3.0 (24) 3.4 (54) 4.3 (38)

Table 5: Total number of Sqmr iterations and CPU time in seconds (in parentheses) for the 2D
Marmousi problem. The results are shown for the algebraic multilevel preconditioner Ml and for
the direct solver Pardiso.

grid damping Ml
ν points α Pardiso β = 0 β = 0.5 β = 0.25 β = 0.1

0.0 1 98 95 69 59
(0.1) (20) (18) (13) (12)

10 751× 201 0.025 1 51 63 46 39
(0.1) (10) (12) (9) (8)

0.050 1 37 43 32 29
(0.1) (7) (8) (6) (5)

0.0 1 595 248 212 210
(0.7) (867) (190) (169) (160)

20 1501× 401 0.025 1 189 99 89 85
(0.7) (171) (76) (70) (66)

0.050 1 85 62 52 53
(0.7) (72) (47) (40) (44)

0.0 1 853 342 331 385
(1.1) (2343) (483) (482) (656)

30 2001× 534 0.025 1 287 103 88 89
(1.1) (468) (145) (130) (159)

0.050 1 65 62 49 47
(1.1) (160) (87) (71) (75)

condition (29) imposed at the boundary of Ω; the point source, f , is located at (0.5, 0.5, 0). Now,
we progressively increase k from 20 up to 60, while refining the mesh according to (2), that is with
about ten grid points per wavelength.

In Figure 10, the relative amounts of fill-in needed by the sparse direct solver Pardiso and the
Ml preconditioner are shown. As expected, the fill-in required by Pardiso is now significantly
higher and exceeds 200 for kref = 60; this confirms the well-known fact that sparse direct solvers
are usually no longer competitive for three-dimensional problems. The fill-in required by the Ml
preconditioner is smaller, but for β = 0 still increases with k. In contrast, with β as little as
β = 0.1, the amout of fill-in is even smaller and remains essentially constant throughout the entire
range of kref.

Table 6 displays the iteration counts and CPU times for varying kref. Despite the size of this
three-dimensional problem, the Ml preconditioner performs well as the number of iterations only
increases linearly with kref. Nonetheless the larger fill-in observed in Figure 10 for β = 0 at higher
wave numbers results in a significant increase in CPU time with kref and problem size. For a
complex shift as small as β = 0.1, however, the fill-in is moderate independently of kref and, as a
consequence, the execution time reduced by one order of magnitude.
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Figure 10: Left: Wedge problem with f1 = 0.5x1 + 2.5x2 + 0.375x3 − 1 = 0, f2 = − 1
6x1 + 5

3x2 −
1
3x3− 1 = 0, Right: Relative fill-in in the algebraic multilevel preconditioner Ml, with or without
complex diagonal shift β, and the direct solver Pardiso for the 3D wedge problem.

Table 6: Total number of Sqmr iterations and CPU time in seconds (in parentheses) for the 3D
wedge problem, with or without complex diagonal shift β.

grid Ml
kref points damping α Pardiso β = 0 β = 0.5 β = 0.25 β = 0.1

0.0 1 (4) 35 (2) 29 (2) 19 (1) 12 (1)
20 323 0.025 1 (4) 35 (2) 30 (2) 19 (1) 12 (1)

0.050 1 (4) 36 (3) 30 (2) 20 (1) 12 (1)
0.0 1 (39) 51 (15) 42 (14) 26 (10) 16 (6)

30 483 0.025 1 (39) 63 (17) 42 (15) 26 (10) 16 (6)
0.050 1 (39) 74 (19) 43 (13) 27 (9) 16 (6)
0.0 1 (213) 87 (86) 54 (41) 33 (30) 18 (22)

40 643 0.025 1 (213) 99 (90) 55 (41) 33 (29) 19 (23)
0.050 1 (213) 120 (100) 56 (39) 34 (30) 19 (22)
0.0 1 (1’012) 134 (432) 67 (108) 40 (78) 21 (62)

50 803 0.025 1 (1’012) 150 (425) 67 (108) 41 (84) 21 (59)
0.050 1 (1’012) 192 (458) 68 (99) 41 (78) 22 (59)
0.0 1 (3’467) 175 (1’505) 79 (204) 46 (158) 24 (130)

60 953 0.025 1 (3’467) 228 (1’833) 80 (202) 47 (154) 24 (134)
0.050 1 (3’467) 220 (1’712) 81 (210) 48 (161) 25 (137)

Finally, we consider a large-scale seismic imaging problem from subsurface geology. The com-
putational domain Ω is 20 km wide, 20 km long, and 4 km deep. The highly heterogeneous
velocity profile c(x, y, z), shown in Figure 11, stems from the SEG/EAGE overthrust model [3]
and varies irregularly between 2179 m/s and 6000 m/s throughout Ω. Again, we solve (30) with
the Sommerfeld radiation condition (29) imposed at the boundary of Ω. The pressure source f is
located at the center of the upper boundary. In Figure 11 the real part of the pressure response
is shown for ν = 10 Hz on the finest 401× 401× 94 grid.

We now progressively increase the frequency ν, while refining the mesh size according to (2).
The iteration counts and CPU times are shown for varying ν, β, and α in Table 7. Without
complex diagonal shift, the Ml preconditioner fails for this choice of parameters κ and τ . A
complex diagonal shift, as little as β = 0.1, yet again leads to moderate fill-in and rapid convergence
in spite of the difficulty and sheer size of this problem with over 15,000,000 complex unknowns.
Although the number of iterations increases linearly with the frequency ν, it remains indeed
remarkably small and thus leads to an efficient and robust black-box solver for three-dimensional
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Figure 11: SEG/EAGA overthrust model. Left: the velocity profile c(x, y, z) in m/s; right: real
part of the pressure response for ν = 10 Hz and α = 0.

seismic imaging.

Table 7: Total number of Sqmr iterations and CPU time in seconds (in parentheses) for the
SEG/EAGA overthrust model. ’†’ denotes divergence of the problem (> 2, 000 iterations) or that
there was no residual reduction within 200 iterations.

grid Ml
ν points damping α β = 0 β = 0.5 β = 0.25 β = 0.1

0.0 20 (31) 53 (60) 31 (33) 17 (25)
2.5 101× 101× 24 0.025 17 (20) 40 (58) 24 (22) 14 (22)

0.050 17 (17) 32 (21) 20 (20) 12 (15)
0.0 † 137 (1200) 75 (798) 35 (410)

5 201× 201× 48 0.025 209 (4’151) 66 (501) 40 (402) 21 (321)
0.050 134 (1’522) 45 (322) 28 (301) 17 (268)
0.0 † 202 (8’403) 102 (5’452) 78 (4’243)

10 401× 401× 94 0.025 † 92 (4’062) 68 (3’534) 54 (3’188)
0.050 290 (28’090) 59 (2’851) 37 (1’958) 30 (1’602)

5 Concluding remarks

We have presented an algebraic multilevel preconditioner for the heterogeneous Helmholtz equa-
tion (1), where the wave number k may vary arbitrarily. Our Ml preconditioner is based on
an incomplete LDLT factorization and combines weighted matching reordering with an inverse–
based multilevel incomplete factorization. As it preserves the (complex) symmetry inherent to the
original problem, storage requirements are kept minimal.

We have applied the Ml preconditioner to a series of challenging two and three-dimensional
test problems, mainly from geophysical seismic imaging, where standard Ilu preconditioners fail.
The preconditioned system is solved with the Sqmr Krylov subspace iterative method. During
all numerical experiments we refrain from optimizing the two key parameters, τ and κ, which
control the fill-in and work of the Ml preconditioner, but instead use the Ml preconditioner as a
“black-box” solver. Our numerical results show that the number of iterations grows linearly with
k, if the mesh size h is refined simultaneously to ensure a constant number of grid points per wave
length. In addition, when a small complex shift is first applied to the linear system, the fill-in
becomes essentially independent of k.
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Since the preconditioner is fully algebraic, it immediately applies to high-order finite element
discretizations, unstructured grids, or more sophisticated absorbing boundary conditions or per-
fectly matched layers. Parallelization of the Ml preconditioner can be achieved by using parallel
incomplete factorizations [2] and parallel bipartite matchings [44]. Alternatively, one may consider
domain decomposition techniques, where the Ml solver can be used either as a local solver in every
subdomain or for the coarse grid solution.
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