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DEFINITION

ILUPACK is the abbreviation for Incomplete LU factorization PACKage. It is a software library for the
iterative solution of large sparse linear systems. It is written in FORTRAN 77 and C and available at
http://ilupack.tu-bs.de. The package implements a multilevel incomplete factorization approach
(multilevel ILU) based on a special permutation strategy called “inverse-based pivoting” combined
with Krylov subspace iteration methods. Its main use consists of application problems such as linear
systems arising from partial differential equations (PDEs). ILUPACK supports single and double
precision arithmetic for real and complex numbers. Among the structured matrix classes that are
supported by individual drivers are symmetric and/or Hermitian matrices that may or may not be
positive definite and general square matrices. An interface to MATLAB (via MEX) is available. The
main drivers can be called from C, C++ and FORTRAN.
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DISCUSSION

Introduction

Large sparse linear systems arise in many application areas such as partial differential equations,
quantum physics or problems from circuit and device simulation. They all share the same central task
which consists of efficiently solving large sparse systems of equations. For a large class of applica-
tion problems, sparse direct solvers have proven to be extremely efficient. However, the enormous
size of the underlying applications arising in 3-D PDEs or the large number of devices in integrated
circuits currently requires fast and efficient iterative solution techniques, and this need will be exacer-
bated as the dimension of these systems increases. This in turn demands for alternative approaches
and, often, approximate factorization techniques, combined with iterative methods based on Krylov
subspaces, reflect an attractive alternative for these kind of application problems. A comprehensive
overview over iterative methods can be found in [15].

The ILUPACK software is mainly built on incomplete factorization methods (ILUs) applied to the sys-
tem matrix in conjunction with Krylov subspace methods. The ILUPACK hallmark is the so-called
inverse-based approach. It was initially developed to connect the ILUs and their approximate inverse
factors. These relations are important since, in order to solve linear systems, the inverse triangular
factors resulting from the factorization are applied rather than the original incomplete factors them-
selves. Thus, information extracted from the inverse factors will in turn help to improve the robustness
for the incomplete factorization process. While this idea has been successfully used to improve ro-
bustness, its downside was initially that the norm of the inverse factors could become large such that
small entries could hardly be dropped during Gaussian elimination. To overcome this shortcoming,
a multilevel strategy was developed to limit the growth of the inverse factors. This has led to the
inverse-based approach and hence the incomplete factorization process that has eventually been im-
plemented in ILUPACK benefits from the information of bounded inverse factors while being efficient
at the same time [6].

A parallel version of ILUPACK on shared-memory multiprocessors, including current multicore archi-
tectures, is under development and expected to be released in the near future. The ongoing devel-
opment of the parallel code is inspired by a nested-dissection hierarchy of the initial system which
allows to map tasks concurrently to independent threads within each level.

The Multilevel Method

To solve a linear system Ax = b, the multilevel approach of ILUPACK performs the following steps:

1. The given system A is scaled by diagonal matrices Dl and Dr and reordered by permutation
matrices Πl,Πr as

A → DlADr → ΠT
l DlADrΠr = Â.

These operations can be considered as a preprocessing prior to the numerical factorization.
They typically include scaling strategies to equilibrate the system, scaling and permuting based
on maximum weight matchings [7] and, finally, fill-reducing orderings such as nested dissection
[14], (approximate) minimum degree [11, 4] and some more.
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2. An incomplete factorization A ≈ LDU is next computed for the system Â, where L,UT are unit
lower triangular factors and D is diagonal. Since the main objective of ILUPACK (inverse-based
approach) is to limit the norm of the inverse triangular factors, L−1 and U−1, the approximate
factorization process is interlaced with a pivoting strategy that cheaply estimates the norm of
these inverse factors. The pivoting process decides in each step to reject a factorization step if
an imposed bound κ is exceeded, or to accept a pivot and continue the approximate factorization
otherwise. The set of rejected rows and columns is permuted to the lower and right end of the
matrix. This process is illustrated in Figure 1.
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Figure 1: ILUPACK pivoting strategy.

The pivoting strategy computes a partial factorization

P T ÂP =
(

B E
F C

)
=
(

LB 0
LF I

)(
DBUB DBUE

0 SC

)
+ R,

where R is the error matrix which collects those entries of Â that were dropped during the
factorization and “SC” is the Schur complement consisting of all rows and columns associated
with the rejected pivots. By construction the inverse triangular factors satisfy∥∥∥∥∥

(
LB 0
LF I

)−1
∥∥∥∥∥ ,

∥∥∥∥∥
(

UB UE

0 I

)−1
∥∥∥∥∥ / κ.

3. Steps 1 and 2 are successively applied to Â = SC until SC is void or “sufficiently dense” to be
efficiently factorized by a level 3 BLAS-based direct factorization kernel.

When the multilevel method is applied over multiple levels a cascade of factors LB, DB, UB as well
as matrices E,F are usually obtained (cf. Figure 2). Solving linear systems via a multilevel ILU
requires a hierarchy of forward and backward substitutions, interlaced with reordering and scaling
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stages. ILUPACK employs Krylov subspace methods to incorporate the approximate factorization
into an iterative method.

The computed multilevel factorization is adapted to the structure of the underlying system. For real
symmetric positive definite (SPD) matrices, an incomplete Cholesky decomposition is used in con-
junction with the conjugate gradient method. For the symmetric and indefinite case, symmetric max-
imum weight matchings [8] allow to build 1 × 1 and 2 × 2 pivots. In this case ILUPACK constructs a
blocked symmetric multilevel ILU and relies on the simplified QMR [10] as iterative solver. The gen-
eral (unsymmetric) case typically uses GMRES [16] as default driver. All drivers in ILUPACK support
real/complex and single/double precision arithmetic.
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Figure 2: ILUPACK multilevel factorization.

Mathematical Background

The motivation for inverse-based approach of ILUPACK can be explained in two ways. First, when
the approximate factorization

A = LDU + R

is computed for some error matrix R, the inverse triangular factors L−1 and U−1 have to be applied to
solve a linear system Ax = b. From this point of view,

L−1AU−1 = D + L−1RU−1

ensures that the entries in the error matrix R are not amplified by some large inverse factors L−1 and
U−1. The second and more important aspect links ILUPACK’s multilevel ILU to algebraic multilevel
methods. The inverse Â−1 can be approximately written as

Â−1 ≈ P

((
(LBDBUB)−1 0

0 0

)
+
(
−U−1

B UE

I

)
S−1

C

(
−LF L−1

B I
))

P T .
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In this expression, all terms on the right hand side are constructed to be bounded except S−1
C . Since

in general Â−1 has a relatively large norm, so does S−1
C . In principle this justifies that eigenvalues of

small modulus are revealed by the approximate Schur complement SC (a precise explanation is given
in [5]). SC serves as some kind of coarse grid system in the sense of discretized partial differential
equations. This observation goes hand in hand with the observation that the inverse-based pivoting
approach selects pivots similar to coarsening strategies in algebraic multilevel methods, which is
demonstrated for the following simple model problem

−10−2uxx(x, y)− uyy(x, y) = f(x, y) for all (x, y) ∈ [0, 1]2, u(x, y) = 0 on ∂[0, 1]2.

This partial differential equation can be easily discretized on a square grid Ωh = {(kh, lh) : k, l =
0, . . . , N +1} , where h = 1

N+1 is the mesh size, using standard finite difference techniques. Algebraic
approaches to multilevel methods roughly treat the system as if the term −10−2uxx(x, y) is hardly
present, i.e., the coarsening process treats it as if it were a sequence of one-dimensional differential
equations in the y-direction. Thus, semi-coarsening in the y-direction is the usual approach to build
a coarse grid. ILUPACK inverse-based pivoting algebraically picks and rejects the pivots precisely in
the same way as in semi-coarsening. In Figure 3, this is illustrated for a portion of the grid Ωh using
κ = 3. In the y-direction, pivots are rejected after 3 to 5 steps while in the x-direction all pivots are
kept or rejected (in blue and red, resp.).
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Figure 3: ILUPACK pivoting for partial differential equations. Blue and red dots denote, respectively,
accepted and rejected pivots.

The number of rejected pivots in ILUPACK strongly depends on the underlying application problem.
As a rule of thumb, the more rows (and columns) of the coefficient matrix satisfy |aii| �

∑
j 6=i |aij |,

the less pivots tend to be rejected.

The Parallelization Approach

Parallelism in the computation of approximate factorizations can be exposed by means of graph-based
symmetric reordering algorithms, such as graph coloring or graph partitioning techniques. Among
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these classes of algorithms, nested dissection orderings enhance parallelism in the approximate fac-
torization of A by partitioning its associated adjacency graph G(A) into a hierarchy of vertex sepa-
rators and independent subgraphs. For example, in Figure 4, G(A) is partitioned after two levels of
recursion into four independent subgraphs, G(3,1), G(3,2), G(3,3) and G(3,4), first by separator S(1,1),
and then by separators S(2,1) and S(2,2). This hierarchy is constructed so that the size of vertex sepa-
rators is minimized while simultaneously balancing the size of the independent subgraphs. Therefore,
relabeling the nodes of G(A) according to the levels in the hierarchy, leads to a reordered matrix,
A → ΦT AΦ, with a structure amenable to efficient parallelization. In particular, the leading diagonal
blocks of ΦT AΦ associated with the independent subgraphs can be first eliminated independently;
after that, S(2,1) and S(2,2) can be eliminated in parallel, and finally separator S(1,1) is processed. This
type of parallelism can be expressed by a binary task dependency tree, where nodes represent con-
current tasks and arcs dependencies among them. State-of-the-art reordering software packages
as, e.g., METIS1 or SCOTCH2, provide fast and efficient multilevel variants [14] of nested dissection
orderings.

(1,1)

(2,1) (2,2)

(3,1) (3,2) (3,3) (3,4)

A G(A)

A → ΦT AΦ

Task dependency treeNested dissection hierarchy

S(1,1)

G(2,1) G(2,2)

G(3,1)

S(2,1)

G(3,2)

G(3,3)

S(2,2)

G(3,4)

G(3,1) G(3,2) G(3,3) G(3,4)

Figure 4: Nested dissection reordering.

The dependencies in the task tree are resolved while the computational data and results are gener-
ated and passed from the leaves towards the root. The leaves are responsible for approximating the
leading diagonal blocks of ΦT AΦ, while those blocks which will be later factorized by their ancestors
are updated. For example, in Figure 4, colors are used to illustrate the correspondence between the
blocks of ΦT AΦ to be factorized by tasks (3,2), (2,1) and (1,1). Besides, (3,2) only updates those
blocks that will be later factorized by tasks (2,1) and (1,1). Taking this into consideration, ΦT AΦ is
decomposed into the sum of several submatrices, one local block per each leaf of the tree, as shown
in Figure 5. Each local submatrix is composed of the blocks to be factorized by the corresponding
task, together with its local contributions to the blocks which are later factorized by its ancestors,
hereafter referred as contribution blocks. This strategy significantly increases the degree of paral-
lelism, because the updates from descendants nodes to an ancestor node can also be performed
locally/independently by its descendants.

The parallel multilevel method considers the following partition of the local submatrices into 2×2 block
1http://glaros.dtc.umn.edu/gkhome/views/metis
2http://www.labri.fr/perso/pelegrin/scotch
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+ + +=

(3,1) (3,3)

  

(2,1)

(3,2) (3,4)

(1,1)

ΦT AΦ

To be factorized by (3,2)

Local contributions from (3,2) to (2,1)

Local contributions from (3,2) to (1,1)

contribution
blocks

Local submatrix

Figure 5: Matrix decomposition and local submatrix associated to a single node of the task tree.

matrices

Apar =
(

AX AV

AW AZ

)
,

where the partitioning lines separate the blocks to be factorized by the task, i.e., AX , AW , and AV ,
and its contribution blocks, i.e., AZ . It then performs the following steps:

1. Scaling and permutation matrices are only applied to the blocks to be factorized

Apar →
(

ΠT
l 0
0 I

)(
Dl 0
0 I

)(
AX AV

AW AZ

)(
Dr 0
0 I

)(
Πr 0
0 I

)
=

(
ÂX ÂV

ÂW ÂZ

)
= Âpar.

2. These blocks are next approximately factorized using inverse-based pivoting, while ÂZ is only
updated. For this purpose, during the incomplete factorization of Âpar, rejected rows and
columns are permuted to the lower and right end of the leading block ÂX . This is illustrated
in Figure 6.

This step computes a partial factorization(
P T 0
0 I

)
Âpar

(
P 0
0 I

)
=

 BX EX EV

FX CX CV

FW CW CZ


=

 LBX
0 0

LFX
I 0

LFW
0 I

 DBX
UBX

DBX
UEX

DBX
UEV

0 SCX
SCV

0 SCW
SCZ

+ R,

where the inverse triangular factors approximately satisfy∥∥∥∥∥∥∥
 LBX

0 0
LFX

I 0
LFW

0 I

−1
∥∥∥∥∥∥∥ ,

∥∥∥∥∥∥∥
 UBX

UEX
UEV

0 I 0
0 0 I

−1
∥∥∥∥∥∥∥ / κ.
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approx.

factor.
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continue
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compute
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Figure 6: Local incomplete factorization computed by a single node of the task tree.

3. Steps 1 and 2 are successively applied to the Schur complement until SCX
is void or “sufficiently

small”, i.e., Apar and its 2× 2 block partition are redefined as

Apar =
(

AX AV

AW AZ

)
:=
(

SCX
SCV

SCW
SCZ

)
.

4. The task completes its local computations and the result Apar is sent to the parent node in the
task dependency tree. When a parent node receives the data from its children, it must first
construct its local submatrix Apar. To achieve this, it incorporates the pivots rejected from its
children and accumulates their contribution blocks, as shown in Figure 7. If the parent node is
the root of the task dependency tree, it applies the sequential multilevel algorithm to the new
constructed submatrix Apar. Otherwise, the parallel multilevel method is restarted on this matrix
at step 1.

To compare the cascade of approximations computed by the sequential multilevel method and its
parallel variant, it is helpful to consider the latter as an algorithmic variant which enforces a certain
order of elimination. Thus, the parallel variant interlaces the algebraic levels generated by the pivoting
strategy of ILUPACK with the nested dissection hierarchy levels in order to expose a high degree of
parallelism. The leading diagonal blocks associated with the last nested dissection hierarchy level
are first factorized using inverse-based pivoting, while those corresponding to previous hierarchy
levels are only updated, i.e., the nodes belonging to the separators are rejected by construction. The
multilevel algorithm is restarted on the rejected nodes, and only when it has eliminated the bulk of the
nodes of the last hierarchy level, it starts approximating the blocks belonging to previous hierarchy
levels. Figure 8 compares the distribution of accepted and rejected nodes (in blue and red, resp.)
by the sequential and parallel inverse-based incomplete factorizations when they are applied to the
Laplace PDE with discontinuous coefficients discretized with a standard 200 × 200 finite-difference
grid. In both cases, the grid was reordered using nested dissection. These diagrams confirm the
strong similarity between the sequential inverse-based incomplete factorization and its parallel variant
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Figure 7: Parent nodes construct their local submatrix from the data generated by their children.

for this particular example. The experimentation with this approach in the SPD case reveals that this
compromise has a negligible impact on the numerical properties of the inverse-based preconditioning
approach, in the sense that the convergence rate of the preconditioned iterative method is largely
independent on the number of processors involved in the parallel computation.
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Figure 8: ILUPACK pivoting strategy (left) and its parallel variant (right). Blue and red dots denote,
respectively, accepted and rejected nodes.

Numerical Example

The example illustrates the parallel and memory scalability of the parallel multilevel method on a
SGI Altix 350 CC-NUMA shared-memory multiprocessor with 16 Intel Itanium2@1.5 GHz processors

9



sharing 32 GBytes of RAM connected via a SGI NUMAlink network. The nine linear systems con-
sidered in this experiment are derived from the linear finite element discretization of the irregular 3-D
elliptic PDE [−div (A grad u) = f ] in a 3-D domain, where A(x, y, z) is chosen with positive random
coefficients. The size of the systems ranges from n = 1, 709 to 5, 413, 520 equations/unknowns.

The parallel execution of the task tree on shared-memory multiprocessors is orchestrated by a runtime
which dynamically maps tasks to threads (processors) in order to improve load balance requirements
during the computation of the multilevel preconditioner. Figure 9 displays two lines for each number
of processors: dashed lines are obtained for a perfect binary tree with the same number of leaves as
processors, while solid lines correspond to a binary tree with (potentially) more leaves than processors
(up to 2p leaves). The higher speed-ups revealed in the solid lines demonstrate the benefit of dynamic
scheduling on shared-memory multiprocessors.
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Figure 9: Parallel speed-up as a function of problem size (left) and ratio among the memory consumed
by the parallel multilevel method and that of the sequential method (right) for a discretized 3-D elliptic
PDE.

As shown in Figure 9 (left), the speed-up always increases with the number of processors for a fixed
problem size, and the parallel efficiency rapidly grows with problem size for a given number of pro-
cessors. Besides, as shown in Figure 9 (right), the memory overhead associated with parallelization
relatively decreases with the problem size for a fixed number of processors, and it is below 1.5 for the
two largest linear systems; this is very moderate taking into consideration that the amount of avail-
able physical memory typically increases linearly with the number of processors. These observations
confirm the excellent scalability of the parallelization approach up to 16 cores.

Future Research Directions

ILUPACK is currently parallelized for SPD matrices only. Further classes of matrices such as sym-
metric and indefinite matrices or unsymmetric, but symmetrically structured matrices are subject to
ongoing research. The parallelization of these cases shares many similarities with the SPD case.
However, maximum weight matching, or more generally, methods to rescale and reorder the sys-
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tem to improve the size of the diagonal entries (resp. diagonal blocks) are hard to parallelize [9].
Although the current implementation of ILUPACK is designed for shared-memory multiprocessors
using OpenMP, the basic principle is currently being transferred to distributed-memory parallel archi-
tectures via MPI. Future research will be devoted to block-structured algorithms to improve cache
performance. Block structures have been proven to be extremely efficient for direct methods, but their
integration into incomplete factorizations remains a challenge; on the other hand, recent research
indicates the high potential of block-structured algorithms also for ILUs [12, 13].

RELATED ENTRIES

Shared-Memory Multiprocessor, NUMA Shared-Memory Machines, Load Balancing, Parallel Algo-
rithms, Sparse Matrix Algorithms, Linear Algebra Software, Graph Partitioning.

BIBLIOGRAPHIC NOTES AND FURTHER READING

Around 1985 a first package also called ILUPACK was developed by H.D. Simon [18] which used
reorderings, incomplete factorizations and iterative methods in one package. Nowadays, as the
development of preconditioning methods has advanced significantly by novel approaches like im-
proved reorderings, multilevel methods, maximum weight matchings and inverse-based pivoting, in-
complete factorization methods have changed completely and gained wide acceptance among the
scientific community. Beside ILUPACK there exist several software packages based on incomplete
factorizations and on multilevel factorizations. E.g., Y. Saad3 et al. developed the software pack-
ages SPARSKIT, ITSOL and pARMS which also inspired the development of ILUPACK. In particular,
pARMS is a parallel code based on multilevel ILU interlaced with reorderings. J. Mayer4 developed
ILU++, also for multilevel ILU. MRILU, by F.W. Wubs5 et al., uses multilevel incomplete factorizations
and has successfully been applied to problems arising from partial differential equations. There are
many other scientific publications on multilevel ILU methods, most of them especially tailored for the
use in partial differential equations.

ILUPACK has been successfully applied to several large scale application problems in particular to
the Anderson model of localization [17] or the Helmholtz equation [5]. Its symmetric version is inte-
grated into the software package JADAMILU6, which is a Jacobi-Davidson-based eigenvalue solver
for symmetric eigenvalue problems.

More details on the design aspects of the parallel multilevel preconditioner (including dynamic schedul-
ing) and experimental data with a benchmark of irregular matrices from the UF sparse matrix collec-
tion7 can be found in [1, 2]. The computed parallel multilevel factorization is incorporated to a Krylov
subspace solver, and the underlying parallel structure of the former, expressed by the task depen-
dency tree, is exploited for the application of the preconditioner as well as other major operations in

3http://www-users.cs.umn.edu/∼saad/software/
4http://iamlasun8.mathematik.uni-karlsruhe.de/∼ae04/iluplusplus.html
5http://www.math.rug.nl/∼wubs/mrilu/
6http://homepages.ulb.ac.be/∼jadamilu/
7http://www.cise.ufl.edu/research/sparse/matrices/
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iterative solvers [2]. The experience with these parallel techniques has revealed that the sequential
computation of the nested dissection hierarchy (included in, e.g., METIS or SCOTCH) dominates the
execution time of the whole solution process when the number of processors is large. Therefore, ad-
ditional types of parallelism have to be exploited during this stage in order to develop scalable parallel
solutions; in [3], two parallel partitioning packages, ParMETIS8 and PT-SCOTCH9, are evaluated with
this purpose.
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[5] M. Bollhöfer, M. J. Grote, and O. Schenk. Algebraic Multilevel Preconditioner for the Helmholtz
Equation in Heterogeneous Media. SIAM J. Sci. Comput., 31(5):3781–3805, 2009.
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