
Combinatorial Aspects in Sparse Elimination

Methods

by Matthias Bollhöfer1, and Olaf Schenk2

Technical Report CS-2004-006

Department of Computer Science, University of Basel

Submitted.

1Dept. of Mathematics, TU Berlin, Germany, e-mail: bolle@math.tu-berlin.de

2Department of Computer Science, University of Basel, Klingelbergstrasse 50,

CH-4056 Basel, Switzerland email: olaf.schenk@unibas.ch

Technical Report is available at

http://www.computational.unibas.ch/cs/scicomp

gamm header will be provided by the publisher

Combinatorial Aspects in Sparse Elimination Methods

Matthias Bollhöfer∗1 and Olaf Schenk∗∗2

1 Dept. of Mathematics, TU Berlin
2 Dept. of Computer Science, University of Basel

Received 15 November 2004, revised 30 November 2004, accepted 2 December 2004
Published online 3 December 2004

Key words sparse direct methods, LU decomposition, sparse matrices, reordering tech-
niques, elimination tree, maximum weight matching, supernodes.
MSC (2000) 65F05, 65F50, 05C50, 05C85.

In this paper we will give an overview on combinatorial algorithms in sparse elimination
methods. Beside well established techniques that have been developed in the last twenty years
a modern viewpoint of LU decomposition is presented that illustrates how the evolution of
techniques in the last decade improved the performance of sparse direct solvers.

Copyright line will be provided by the publisher

1 Introduction

Sparse direct solvers are a core part of many problems in computational science and engi-
neering. While on one hand modern computer architectures provide larger and larger memory
resources and faster processors, on the other hand the need for solving large scale applica-
tion problems often compensates these developments. The request for large sparse fast and
memory efficient solvers has been a challenge for many years and remains an open field for
further developments. In particular modern computer architectures have influenced massively
the design of modern solvers similar to the BLAS–oriented concept of LAPACK [4]. In this
paper, we compare and review some important combinatorial aspects and main algorithmic
features for solving sparse systems and show that the algorithmic improvements of the past
twenty years have reduced the time required to factor general sparse matrices by almost three
orders of magnitudes. Combined with significant advances in the performance to cost ratio of
computing hardware during this period, current sparse solver technology makes it possible to
solve those problems quickly and easily that might have been considered by far too large until
recently. Therefore, this paper reviews the basic and the latest developments for sparse direct
solution methods that have lead to modern LU decomposition methods.

The paper is organized as follows. In Section 2 we will introduce basic combinatorial tools
like the elimination graph and moreover the elimination tree and its generalization, the column
elimination tree. The elimination tree plays a key role in understanding sparse direct solution
methods and we will review several important topic which are still used for the foundation of
modern fast solvers.

∗ M. Bollhöfer: e-mail: bolle@math.tu-berlin.de, Phone: +00 49 30 31429381, Fax: +00 49 30 31479706
∗∗ O. Schenk: e-mail: olaf.schenk@unibas.ch, Phone: +00 41 61 2671465 Fax: +00 41 61 2671461. The work

was supported by the Swiss Commission of Technology and Innovation under contract number 7036.1 ENS-ES.

Copyright line will be provided by the publisher

2 M. Bollhöfer and O. Schenk: Combinatorial Aspects in Sparse Direct Solvers

Section 3 introduces the practical computation of sparse LU decompositions. Beside com-
binatorial aspects that allow to compute the factorsL andU in time proportional to the number
of nonzeros, the elimination tree allows to predict dense submatrices in the factorization. In
this way several columns of the factors are collected in a one dense block. This is the basis for
the use of higher levels of BLAS and to exploit fast computation using the cache hierarchy.

One central keypoint to improve the factorization time remains the a priori ordering of the
system. Section 4 essentially reviews two reordering strategies that are based on the undi-
rected matrix pattern.

One recent technique based on maximum weight matching that improves the diagonal
dominance of the given system by scaling and unsymmetric reordering is presented in Section
5.

Finally we will demonstrate in Section 6 how the ongoing developments in sparse direct so-
lution methods from the past until today have accelerated state–of–the–art solution techniques
and still give a potential for further improvements in the future.

2 Combinatorial Aspects in Sparse LU Decompositions

We begin with some basic terminology. For a matrixA = (aij)i,j=1,...,n
∈ R

n,n we denote by
Ak:l,p:q the submatrix (aij)i=k,...,l,j=p,...,q

of A. Here we always assume that 1 6 k 6 l 6 n

and 1 6 p 6 q 6 n. Next we introduce some definitions from graph theory associated
with a given matrix A ∈ R

n,n. We assume that the reader is familiar with some elementary
knowledge from graph theory, see e.g. [12, 19] and some simple computational algorithms
based on graphs [1].

Definition 2.1 For a matrix A ∈ R
n,n we define the associated graph G(A) by the pair

(V,E), where V = {1, . . . , n} and the set of edges E = {(i, j) : aij 6= 0}.

Whenever we refer to an undirected graph we mean that (i, j) ∈ G(A) if and only if
(j, i) ∈ G(A). In this case we may also use {i, j} instead of (i, j).

Example 2.2 We will use Figure 1 to illustrate basic combinatorial properties in sparse
elimination methods. At this point we ignore the ’◦’ in Figure 1. Then the graph in the center
of Figure 1 represents the directed graphG(A).

0

B

B

B

B

B

B

B

B

B

@

• • •

• • ◦ •

• • ◦ •

• •

•

• •

• •

• • ◦ • • • ◦

• ◦ • • •

• • • • •

1

C

C

C

C

C

C

C

C

C

A

13

2

8 9

7

5 64

10

13

2

8 9

7

654

10

Fig. 1 Pattern and graph of a matrix before and after LU decomposition (’◦’ denotes fill-in)

As usual we will denote directed edges (i, j) by an arrow whereas if (i, j) and (j, i) exist
we omit the arrow and just draw a line (see Figure 1).

Copyright line will be provided by the publisher

gamm header will be provided by the publisher 3

Definition 2.3 Let A ∈ R
n,n. For an edge (i, j) in G(A) we will write i

G(A)
→ j or simply

i→j if the graph is clear from the context. Likewise we will write i
G(A)
⇒ j or simply i⇒j if

the exists a path from i to j in G(A).

2.1 The Elimination Graph

We assume that our matrixA possesses an LU decomposition (see e.g [25]). It is well–known
[19], if A = LU , where L and U> are lower triangular matrices, then in the generic case we
will haveG(L+U) ⊃ G(A), i. e., we will only get additional edges unless some entries cancel
by “accident” during the elimination. In the sequel we will ignore cancellations. Throughout
the paper we will always assume that the diagonal entries of A are nonzero. We also assume
that G(A) is connected and that A is nonsingular. The following Theorem (see [22] in the
references therin) shows how the factors L and U fill as by-product of the Gauss algorithm.

Theorem 2.4 Suppose that A = LU and assume that no cancellations occur in the elimi-

nation process. Then i
G(L+U)

→ j if and only if there exists a path

i
G(A)
→ x1 → · · ·

G(A)
→ xk

G(A)
→ j

such that x1 . . . , xk < min(i, j).

In other words, by Theorem 2.4 we get a (new) edge i→j for every path i ⇒ j through
vertices less than min(i, j).

Example 2.5 The effect of fill edges is illustrated by adding the fill–in entries (“◦”) to the
matrix in Figure 1 and the inserting the additional edges in the rightmost graph of Figure 1.
For example, we have a path 9 → 2 → 1 → 3 and a path 3 → 1 → 9. This introduces two fill
edges (9, 3) and (3, 9) or equivalently an undirected edge {3, 9}.

Definition 2.6 The graph G(L + U) that is derived from G(A) by applying Theorem 2.4
is called the filled graph and it will be denoted by G+(A).

A problem in general is to predict the filled graphG+(A) and the fastest known method to
compute it, is Gaussian elimination. The situation simplifies if the graph is undirected.

2.2 The Elimination Tree

We now assume that G(A) is undirected. In this case the “symmetrized” version of Figure
1 becomes an undirected graph (Figure 2). In the case of symmetrically structured matrices
one can drastically simplify the description of the LU decomposition. The key tool is called
the elimination tree which allows to easily predict fill–in in many ways, e. g. where are the
fill edges or how many edges occur and where will we have cliques. Note that cliques are
complete subgraphs, i. e., any two vertices are connected by an edge. This information can
be exploited to derive better orderings, to compute L and U more efficiently and it allows to
group suitable columns/rows of L and U into blocks (“supernodes”). Although elimination
trees essentlially deal with symmetric matrices and do not consider pivoting, these techniques
can be successfully transferred to the general case using the column elimination tree [20].

An undirected and connected graph is called a tree, if it does not contain any cycle and
there exists precisely one node which is labeled as root. As usual we call a node j parent of
i, if there exists an edge {i, j} in the tree and j is closer to the root. We refer to i as a child

Copyright line will be provided by the publisher

4 M. Bollhöfer and O. Schenk: Combinatorial Aspects in Sparse Direct Solvers

0

B

B

B

B

B

B

B

B

B

@

• • • •

• • •

• • • •

• • •

• • •

• •

• • •

• • • • • •

• • • • •

• • • • •

1

C

C

C

C

C

C

C

C

C

A

13

2

8 9

7

64

10

5

Fig. 2 Matrix with symmetric pattern and the associated undirected graph

of j. The nodes of the subtree rooted at j are called descendants of j whereas j is called their
ancestor.

Definition 2.7 Given the filled graph G+(A) of a symmetrically structured matrix we de-
fine its elimination tree by performing a depth–first–search inG+(A). I. e., starting from node
n, at any step we are faced with some nodem and its its unvisited neighbors i1, . . . , ik. From
those we first pick the index j with the largest number j = max{i1, . . . , ik} and continue the
search with j. A leaf of the tree is reached, when all neighbours have already been visited or
have a larger number than the node itself.

For those readers that are not familiar with the depth–first–search algorithm, we refer to
[1]. It is important to notice that the depth–first–search in G+(A) significantly differs from a
depth–first–search in general, i. e., in the filled graph we will never encounter the case that we
visit a node m such that one of its neighbours j > m has not been visited yet. This follows
from Theorem 2.4 for the case of undirected graphs. There are also other ways to define the
elimination tree, see e. g. [35].

Example 2.8 We illustrate the depth–first–search in Figure 3. By dashed lines in the left
graph of Figure 3 we denote the filled edges in G+(A). The right graph of Figure 3 is used to
trace the ongoing depth–first–search. Starting at vertex 10 this is done by using solid lines for
the depth–first search and dotted lines for the remaining edges. I. e. we visit the vertices in
the order 10, 9, 8, 7; 6, 5, 4; 3, 2, 1. Vertex 8 has three children 7, 6, 3 that have to be visited
and following the tie–break rule that the largest index is preferred, we first follow 7, then 6
and its descendants and finally 3 and its descendants.

The depth–first–search traverses G+(A) by first visiting a parent node followed by its
children. This induces a tree rooted at n which we will denote by T (A).

Example 2.9 The elimination tree T (A) with root 10 and its is illustrated in the leftmost
graph of Figure 4. To indicate the filled graph G+(A) we add in the middle graph of Figure 4
the remaining edges by dotted lines.

Remark 2.10 It follows immediately from the construction of T (A) that the additional
edges of G+(A) are only between vertices and their ancestors (so–called “back–edges”), but
there are never “cross–edges” between unrelated vertices.

The elimination tree can be used to derive several conclusions based on its structure. We
cite some of them in the following Theorem.

Copyright line will be provided by the publisher

gamm header will be provided by the publisher 5

13

2

8 9

7

654

10

13

2

8 9

654

10

7

Fig. 3 Filled graph and depth–first–search

9

8

7

10

6

5

4

3

2

1

9

8

7

10

6

5

4

3

2

1

Fig. 4 Elimination tree T (A) without and with remaining edges

9

8

7

10

6

5

4

3

1

2

Fig. 5 Fill–in detection
for column 3 of L

Theorem 2.11 Suppose that A ∈ R
n,n possesses an LU decomposition, i.e. A = LU ,

where L = (lij)i,j=1,...,n
and U = (uij)i,j=1,...,n

. Let G(A) denote its undirected graph and
T (A) the associated elimination tree.
Then for any j = 1, . . . , n the numerical values of Lj:n,j (resp. Uj,j:n) depend only on the
numerical values of Ls:n,s, Us,s:n such that s is a descendant of j in the elimination tree
T (A).

P r o o f. see e.g. [35]

Remark 2.12 One major consequence of Theorem 2.11 is that we can rearrange the order
of elimination and still get the same matrices L,U up to a symmetric permutation as long as
children precede their parent.

Definition 2.13 Given a tree T (A) = (V,E), where V = {1, . . . , n} we call an ordering
(i1, . . . , in) of the vertices a “topological ordering” if children always precede their parent.

Example 2.14 In Figure 4 beside the natural ordering 1, 2, . . . , 10 one could also use e. g.
1, 4, 2, 7, 5, 6, 3, 8, 9, 10. By Definition 2.13 this is also a topological ordering.

Further conclusions can be easily derived from the elimination tree using Theorem 2.4.
For example given only the information on the elimination tree T and the pattern ofA we can
detect all fill–in edges.

Copyright line will be provided by the publisher

6 M. Bollhöfer and O. Schenk: Combinatorial Aspects in Sparse Direct Solvers

Corollary 2.15 Using the assumptions of Theorem 2.11 we consider i, j such that i > j.

Then there exists a (fill–in) edge i
G+(A)
→ j if and only if there exists a common descendant k

of i, j in T (A) such that aik 6= 0.

Based on Corollary 2.15 we can predict the nonzero structure of any column Lj+1:n,j . To
do this we fix j and consider all descendants k 6 j of j in T (A). For any of these k we
examine aik 6= 0 such that i > j > k. Since by Remark 2.10 we never have cross–edges,
i > j must be an ancestor of j in T (A). Thus we will get a fill–in edge {i, j}. It follows that
we will have fill–in edges {i, j} for any vertex i that is adjacent with the subtree rooted at j.

Definition 2.16 Given a matrixA ∈ R
n,n that is structurally symmetric and its elimination

tree T (A) we consider a vertex j in T (A).
Define T [j] as the subtree of T (A) that is rooted at vertex j.
Given an undirected graph G = (V,E) and W ⊆ V , we denote the set of adjacent nodes by
adj G(W) = {i ∈ V \W : {i, k} ∈ E for some k ∈ W} .

It follows that adj (T [j]) ≡ adj G(A)(T [j]) is the set of all i such that i > j and aik 6= 0

for some vertex k in T [j].
We reformulate the nonzero pattern of Lj+1:n,j using the notion of adjacent nodes.

Lemma 2.17 We consider the assumptions of Theorem 2.11. For given i > j we have that
lij 6= 0 if and only if i ∈ adj (T [j]).

Example 2.18 We illustrate the nonzero pattern for column 3 of L using the elimination
tree from Figure 4. We first consider the subtree rooted at 3. Then for any descendant k of 3
in T [3] we check whether there are nonzero entries of type aik 6= 0 such that i > j. Here k
corresponds to 1, 2, 3 and the nonzero entries are a91, a92, a83 and a10,3 (see Figure 5).
From this it follows that adj (T [3]) = {8, 9, 10}. Thus the nonzero structure below the diag-
onal in column 3 of consists of l83, l93 and l10,3. This already covers fill–in edges.

2.3 Computing the elimination tree

We have seen that many properties of the symmetrically structured LU decomposition can
be derived from the elimination tree. The elimination tree itself can be easily described by
a vector p of length n such that for any i < n, p[i] denotes the parent node while p[n] =
0 corresponds to the root. For a given ordering of the unknowns the computation of the
elimination tree is based on growing the tree step by step from the leafs up to the root. Suppose
that at some step k, all i < k belong to certain subtrees of T (A). Let j1, . . . , jr denote the
children of k, then at step k we merge the subtrees T [j1], . . . , T [jr] to one new subtree T [k]
rooted at k. The problem is how to find the children of k. The answer is given by Corollary
2.15. Vertex k is an ancestor of certain nodes from some subtree T [ji], if aki 6= 0 for a
member i of T [ji]. In other words, for all i < k such that aki 6= 0 we traverse the subtree
that covers i up towards to its current root ji. Then k is the parent node of ji. Finally all these
subtrees T [ji] are rooted at children ji of k and thus merged together at vertex k.

Example 2.19 Consider the elimination tree T (A) from Figure 4. and suppose that we
have already performed step k = 1, 2, . . . , 7. It is easy to verify that three subtrees T [3], T [6]
and T [7] have grown until step k = 7. At step k = 8, we have a83 6= 0, a84 6= 0 and a87 6= 0.
So we have to start from i = 3, 4, 7 and traverse their trees up towards to their roots using the
parent vector p[i]. This situation is illustrated in Figure 6.

Copyright line will be provided by the publisher

gamm header will be provided by the publisher 7

For an algorithmic description see e.g. [35]. We note that the most expensive part of the
construction of T (A) is the search from a member i of subtree T [ji] towards its current root
ji. One simple way to accelerate the search consists of path compression [45].

2.4 The column elimination tree

The concept of the elimination tree so far is reduced to the case that the given matrix has an
undirected graph and even more, at most diagonal pivoting is required, if any. The situation
totally changes in the general case. One concept that can be read as the generalization of the
elimination tree is the so called column elimination tree [20, 23].

Definition 2.20 Given a matrix A ∈ R
m,n we define

G∩(A) := G(A>A), G+
∩ (A) := G+(A>A), T∩(A) := T (A>A)

as the column intersection graph, the filled graph of the column intersection graph and the
column elimination tree of A.
Denote further by T∩[k] the subtree of T∩(A) rooted at node k.

The most important property of the column elimination tree is that even using partial piv-
oting by rows, the nonzero pattern of U can be described in term of G+

∩ (A), as stated in the
following theorem by [20].

Theorem 2.21 Suppose that A ∈ R
n,n is nonsingular and let PA = LU , where P is a

permutation matrix and L,U> are lower triangular matrices. Then the columns of L can be
rearranged to a lower triangular matrix L̂ such that G(L̂+ U) ⊂ G+

∩ (A).

Note that for L one can derive tighter bounds using a sparse symbolic QR decomposition
[17]. In [21] it is shown that one can form G(A>A) and thus T∩(A) without explicitly
computing the matrix product.

We have seen in Theorem 2.11 that the dependencies of the numerical values can be de-
scribed by the hierarchy induced by the elimination tree. A similar, also weaker result can be
shown in the general case using the column elimination tree [23, 9].

Theorem 2.22 Suppose that A ∈ R
n,n is nonsingular and that PA = LU represents the

LU decomposition with some partial pivoting strategy.
If Ujk 6= 0, then j already belongs to T∩[k]. If Lik 6= 0, then k already belongs to T∩[i].

We can thus conclude from the hierarchy in the column elimination tree that at most chil-
dren modify their ancestors.

Example 2.23 For the unsymmetric matrix A from Figure 1 we illustrate in Figure 7 the
associated matrices A>A as well as its fill ’◦’ in the Cholesky decomposition.

In Figure 7 we see that the column elimination tree reduces to the simple chain 1, 2, . . . , 10.
This is the reduction to the trivial case.

3 Efficient computation of the LU decomposition

We have already seen that the compact representation of the elimination tree can be used to
derive all information concerning fill–in and numerical dependencies. We now illustrate how
the elimination tree can be used to improve the numerical computation of L and U . Here we

Copyright line will be provided by the publisher

8 M. Bollhöfer and O. Schenk: Combinatorial Aspects in Sparse Direct Solvers

7

10

T[6] T[7] T[3]

8

9

6

5

4

3

2

1

Fig. 6 T [6], T [7] and T [3] are merged into T [8]

0

B

B

B

B

B

B

B

B

B

@

• • • • •

• • ◦ • • •

• ◦ • • • • • •

• • • • • • ◦

• • • ◦ ◦ ◦ ◦

• • ◦ ◦ ◦ ◦

• • ◦ ◦ • • • •

• • • ◦ ◦ • • • •

• • • • ◦ ◦ • • • •

• • • ◦ ◦ ◦ • • • •

1

C

C

C

C

C

C

C

C

C

A

Fig. 7 Pattern of A>A and its Cholesky factor

concentrate on the general unsymmetric case that is more challenging and more difficult than
the symmetric case, since in any step pivoting is required to guarantee numerical stability. In
particular the fact that pivoting and the factorization must be interlaced requires a completely
different treatment than in the case without pivoting. Consider the situation when computing
the LU decomposition column by column.

Algorithm 1
for k = 1, . . . , n

update column k of L and U via the equationA1:n,k = L1:n,1:k−1U1:k−1,k − L1:n,kukk

1. step. solve L1:k−1,1:k−1U1:k−1,k = A1:k−1,k

2. step. Lk:n,k := Ak:n,k

for i < k such that uik 6= 0
Lk:n,k := Lk:n,k − Lk:n,iuik

3. step. ukk = lkk

Lk:n,k = Lk:n,k/ukk

Note that it is easy to add pivoting to Algorithm 1 after step 2 by interchanging lkk with
some sufficiently large |lmk|, where m > k before ukk is defined. This does not change the
character of Algorithm 1. The art of efficiently computing column k of L and U consists
of how the sparse forward solve L1:k−1,1:k−1U1:k−1,k = A1:k−1,k in step 1 is efficiently
implemented and, a fast update of Lk:n,k in step 2.

We will now present three techniques that address these problems and help significantly
speeding up the computation of L and U .

3.1 Fast sparse forward solve based on depth–first–search

In order to solve

L1:k−1,1:k−1U1:k−1,k = A1:k−1,k (1)

efficiently, we have to predict the pattern ofU1:k−1,k. Suppose that ajk 6= 0. Then the forward
solve (1) involves L1:k−1,j and the nonzero pattern of U1:k−1,k covers that of L1:k−1,j . Con-
sequently for all i < k such that lij 6= 0, we also need L1:k−1,i to solve (1). These columns
can be determined by a backtracking strategy [24]. Initially we start with all j < k such that
ajk 6= 0 and search backwards in L by a depth–first–search. This means that we have to visit
column j of L1:k−1,1:k−1 and as next index we select i such that lij 6= 0 and i has not been
visited yet. The final order is taken in reverse post–order, i. e., whenever the search comes

Copyright line will be provided by the publisher

gamm header will be provided by the publisher 9

to an end at some node j and we start backtracking, j is added to the list. Finally the list is
reverted.

Example 3.1 We illustrate this depth-first search by computing U1:8,9 in Example 1. The
result is sketched in Figure 8. We start with j = 1, 2, 8 one after another and backtrack until
there is no node left over that has not been visited yet. In Figure 8 we sketch L1:8,1:8 and
A1:8,9 and the arrows indicate the trace of the depth–first search.

The search starting from vertex 1 already yields the whole data structure for U1:8,9. The
search starting from node 3 or 8 does not give any new information since these vertices have
already been visited. The backtracking algorithm returns the nodes 2, 8, 3, 1 in post–order,
where 2 and 8 are the nodes where one has to backtrack. So columns 1, 3, 8 and 2 of L1:8,1:8

are needed to compute u19, u39, u89 and u29.

As indicated by Figure 8 the order of elimination returned by the depth-first-search is not
necessarily the natural order where all vertices are sorted in increasing order. However, no
sorting is necessary since this ordering is topological equivalent to the natural order of elimi-
nation as pointed out in [24]. The equivalent orderings depend on the tie–breaking strategy in
the depth-first-search. E. g. if in Figure 8 one would have chosen l31 before l21 then precisely
the natural ordering 1, 2, 3, 8 would have been computed.

3.2 Accelerated depth–first–search using pruning

While the backtracking strategy itself an be applied to any sparse triangular solve (even if
L did not arise from the LU decomposition), a further improvement can be made using the
specific properties of the LU decomposition. The strategy called symmetric pruning [15]
allows to significantly reduce the cost of the depth–first search. After elimination step k the
update of the reduced matrix requires an operation like

Ak+1:n,k+1:n → Ak+1:n,k+1:n − Lk+1:n,kUk,k+1:n.

For all columns j such that ukj 6= 0, the nonzero pattern of Lk+1:n,k is stamped into the
nonzero pattern of column j. Likewise the nonzero pattern of Uk,k+1:n is stamped into any
row i of the reduced matrix whenever lik 6= 0. Here it is necessary to ignore numerical
cancellations and only to refer to the index structure. Otherwise the pattern were not inherited.
This observation can be used to truncate the depth-first-search on an earlier stage. Suppose
that ljk 6= 0 and ukj 6= 0 for some j > k. Then for any i > j, such lik 6= 0 we will also have
that lij 6= 0. Thus after performing step j of the LU decomposition we can prune Lk+1:n,k

and ignoreLj+1:n,k for the depth first search. ljk remains as a link to refer to columnLj+1:n,j .
Note further that any column need to be pruned at most once.

Example 3.2 We illustrate in Figure 9 the original factor L and the pruned factor L. En-
tries that are not considered anymore are labeled using a ’×’. According to Figure 1, at step
j = 3, l31, u13 6= 0 and thus column k = 1 is pruned. But since there are no further nonzeros,
no ’×’ occurs. Similarly at step j = 9, column k = 2, 3, 8 are pruned resulting in one visual
entry that is skipped. At step j = 10 one could in theory prune column k = 7, 9 if this were
not the last step.

Although pruning is stated here for LU decomposition without pivoting, it is still applica-
ble when being combined with partial pivoting. I. e., at step k of the LU decomposition row

Copyright line will be provided by the publisher

10 M. Bollhöfer and O. Schenk: Combinatorial Aspects in Sparse Direct Solvers

•
• •
• •

•
•
• •

•
• • ◦ • •

•
•
◦

•

�
?-��

@@R -

?XXXX����:

�

�

Fig. 8 Depth-first-search in L1:8,1:8 to compute the
nonzero pattern of u1:8,9

0

B

B

B

B

B

B

B

B

B

B

@

•

• •

• •

•

•

• •

•

• • ◦ • •

• ◦ • •

× • × • •

1

C

C

C

C

C

C

C

C

C

C

A

Fig. 9 Pruned lower trian-
gular factor L

k may be interchanged with some row m > k. After that, pruning is applied to the permuted
matrix.

3.3 The supernodal approach

The sparse LU decomposition as it is described so far deals with combinatorial support. One
aspect which allows to raise efficiency and to speed up the numerical factorization will be
discussed now. It is the recognition of an underlying block structure with dense submatrices,
caused by the factorization and the fill. The block structure allows to collect parts of the matrix
in dense blocks and to treat them commonly using higher levels of BLAS [10, 11].

As a consequence of theLU decomposition we will encounter parts of the triangular factors
that are dense or become dense by the factorization. Fortunately, in the symmetric case this
situation can be read off from the elimination tree. Suppose that A is structurally symmetric.
By Lemma 2.17 the nonzero pattern of Lk+1:n,k is given by adj (T [k]). I. e., the neighbours
in the elimination tree rooted at k describe the fill–in pattern of Lk+1:n,k. In order to have
a sequence k, k + 1, . . . , k + s − 1 of s subsequent columns in L that form a dense lower
triangular matrix, we must have

adj (T [k + i]) ∪ {k + i} = adj (T [k + i− 1]), for all i = 1, . . . , s. (2)

Definition 3.3 A sequence k, k + 1, . . . , k + s− 1 satisfying (2) in the elimination tree is
called a supernode.

Let I = adj (T [k])∪ {k}. It follows that if k, k+ 1, . . . , k+ s− 1 form a supernode, then
the submatrix

LI,k:k+s−1 ≡ (lij)i∈I,j=k,...,k+s−1

forms a dense lower triangular matrix.
Given a fixed elimination tree T (A), by Remark 2.12 any topological ordering of T (A)

could be used for the elimination process without changing the fill of the factors. To obtain
supernodes, whenever they occur, parent nodes should immediately follow their children in
the order of elimination, i. e. the vertices should be renumbered in post–order.

Example 3.4 To illustrate the use of supernodes, Figure 10 illustrates the underlying dense
block structure. Note that the numbering of the vertices in T (A) in Figure 4 already represents
a post–ordering.

Copyright line will be provided by the publisher

gamm header will be provided by the publisher 11

0

B

B

B

B

B

B

B

B

B

@

•

• •

• ◦ •

•

• •

• •

•

• • ◦ ◦ • •

• • ◦ • •

• • • • •

1

C

C

C

C

C

C

C

C

C

A

Fig. 10 Supernodes in L, symmetric case

0

B

B

B

B

B

B

B

B

B

@

• • •

• • ◦ •

• • ◦ •

• •

•

• •

• •

• • ◦ • • • ◦

• ◦ • • •

• • • • •

1

C

C

C

C

C

C

C

C

C

A

Fig. 11 Supernodes in L + U , general case

Supernodes allow several improvements. Certainly one can reduce the elimination tree to
the block case. A supernode can be stored as one or two dense matrices. Beside the storage
scheme as dense matrices, the nonzero row indices for these blocks need only be stored once.
Next the use of dense submatrices allows the usage of BLAS routines [10, 11]. To see this,
one can easily verify that the update process

Lk:n,k := Lk:n,k − Lk:n,iuik

that computes Lk:n,k in Algorithm 1 can easily be extended to the block case. To do this
suppose that columns 1, . . . , k + s − 1 are collected in p supernodes with column indices
K1, . . . ,Kp. Apparently we have Kp = {k, . . . , k + s − 1}. Then updating Lk:n,Kp

can be
rewritten as

Lk:n,Kp
:= Lk:n,Kp

− Lk:n,Ki
UKi,Kp

,

where the sum has to be taken over all i in the block version of the elimination tree. De-
pending on whether one would like to compute the diagonal block LKp,Kp

as full or as lower
triangular matrix one is able to use BLAS–2 or even BLAS–3 subroutines. This allows to
exploit machine–specific properties like cache and to accelerate the computation.

While the construction of supernodes is fairly easy in the symmetric case, its generalization
to the general case is significantly harder. In contrast to the symmetric case we have to perform
pivoting in each step of the Gaussian elimination. If we consider Algorithm 1 then we can
certainly reorder the columns and maybe the rows in advance. But at each step k of the
factorization, row k may be permuted with some row m > k. As stated by Theorem 2.22
the natural analogy consists of the column elimination tree T∩(A). Like in the symmetric
case a symmetric permutation P>AP with respect to the postorder numbering of the column
elimination tree T∩(A) would reflect the analogous approach. Based on T∩(A) we could
decide which columns to group together into supernodes. However the prediction by T∩(A)
only gives a hull in which a dense block may occur. But this prediction includes all variations
of row pivoting.

Example 3.5 In Figure 11, columns 7, 8, 9 form a supernode if we only consider the
columns of the lower triangular part. Note also that based on the prediction of the column
elimination tree, column 5 and 6 would also be added to the supernode.

As sketched by Figure 11, in the unsymmetric case due to the usage of Algorithm 1 or a
block variant of it, only the lower triangular part is assembled into complete supernodes while
for the upper triangular part only the associated diagonal block is moved to the supernodal
block of L. The remaining entries of U are kept as sparse columns.

Copyright line will be provided by the publisher

12 M. Bollhöfer and O. Schenk: Combinatorial Aspects in Sparse Direct Solvers

4 Symbolic symmetric reordering techniques

So far we have only discussed techniques that describe the process of Gaussian elimination.
The elimination tree and other combinatorial approaches are used to efficiently compute the
factorization. Now we will discuss how reordering the system before hand will reduce the fill–
in and therefore speed up the factorization. At the same time less memory may be needed. We
will start with a review of the classical minimum degree approach [40, 18] that tries to reduce
the fill–in by selecting vertices in G+(A) first that locally produce fewer fill–in. Later on we
will comment on some related methods. Globally speaking, avoiding fill-in might lead to a
wider elimination tree of less depth. The second algorithm directly addresses this problem
using a nested dissection strategy set up in a multilevel framework.

4.1 The minimum degree algorithm

We start with the basic idea of the minimum degree algorithm (MMD). At step k of the LU
factorization, the reduced matrix is updated via

Ak+1:n,k+1:n → Ak+1:n,k+1:n − Lk+1:n,kUk,k+1:n.

Fill–in is at most introduced by the rank–1 update Lk+1:n,kUk,k+1:n (if we ignore cancella-
tions). For any pair of edges (i, k) and (k, j) such that i, j > k we obtain a fill–in edge (i, j).
Starting with the initial graph G(A) we obtain e sequence of graphs

G(A) = G1(A) → · · ·Gk(A) → · · ·Gn−1(A) = G+(A)

that finally lead to to the filled graph and, Gk+1 is obtained from Gk(A) via

Gk+1(A) = Gk(A) ∪ {(i, j) : i, j > k, (i, k) and (k, j) ∈ Gk(A)}.

In the case of structurally symmetric matrices the situation simplifies. Here we obtainGk+1(A)
from Gk(A) by replacing the set of all remaining neighbours adj Gk(A)(k) \ {1, . . . , k} of k
in Gk(A) by its clique. I. e., any two neighbours i, j > k of k in Gk(A) are connected by an
edge.

Definition 4.1 Given an undirected graph G = (V,E) and k ∈ V we call

dk(k) = #adj G(k) \ {1, . . . , k}

the degree of k.

To avoid too many new fill–in edges it is advantageous if k has a small degree. This is the
basis of the minimum degree algorithm (MMD) that successively chooses at step k a vertex ik
such that ik has minimum degree dk(ik) = #adj G(ik) \ {i1, . . . , ik} in Gk(A). This leads
to sequence of vertices (i1, . . . , in). The graph that is obtained by this strategy is exactly the
filled graph G+(P>AP), where P is the permutation matrix associated with (i1, . . . , in).

Example 4.2 We will use the symmetric matrix and its undirected graph from Figure 2.
First we will illustrate the change of G(A) when eliminating vertex k = 1. Its neighbours
are i = 2, 3, 9. The associated subgraph is replaced by a clique resulting in two fill-in edges
{2, 3} and {3, 9} (see Figure 12).

Copyright line will be provided by the publisher

gamm header will be provided by the publisher 13

Next we illustrate the minimum degree algorithm applied to G(A). In Figure 13 this is done
by relabelling the nodes in the circles. Initially i1 = 6, since d1(6) = 1. After that i2 = 5,
since again d2(5) = 1. The same argument applies to i3 = 4. After that, vertex 2 and 7
both have degree 2 and we choose i4 = 2. Since the degree of 7 did not change, we may
use i5 = 7. Next i6 = 1 has degree d6(1) = 2 which is the smallest possible value. Note
that in step k = 1, 2, . . . , 5 no fill–in edges occurred. This changes at step k = 6, since the
remaining neighbours of i6 = 1 are 3 and 9. These nodes are not connected by an edge at this
step. So for the first time we get a fill-in edge {3, 9} (see Figure 13). It is easy to verify that
the last 4 steps do not introduce further fill-in.
It is remarkable to see that the MMD ordering only produces 1 fill–in edge while the original
ordering lead to 4 additional edges.

2

8 9

7

64

10

5

13

Fig. 12 Fill–in in the first step of LU

1.2.3.

654

9

13

8
7

10

2

5.

4.

6.7.

8. 9.

10.

Fig. 13 Minimum degree ordering and fill–in

Here we have sketched the basic approach of the MMD algorithm. To raise efficiency
additional techniques are added. One technique is called mass elimination which refers to
collectively removing ik and the set Ik of its neighbours j that do not lead to additional
fill–in when ik is selected. Since one can treat these nodes together the degree dk(ik) could
be replaced by the external degree dk(ik) − #Ik as measure for selecting nodes. Further
techniques like incomplete degree update, element absorption and multiple elimination as
well as data structures based on cliques are used to improve the MMD algorithm. For an
overview see [18].

One of the most costly parts in the MMD algorithm is update of the degrees. Instead
of computing the exact external degree, in [2] an approximate external degree is computed
that significantly saves time while producing comparable fill in the LU decomposition. The
resulting algorithm is called approximate minimum degree (AMD).

The algorithms MMD as well as AMD only discuss the reduction of the fill–in for matrices
with nearly symmetric pattern and when almost no pivoting is required to compute the LU
factorization. In the general case this is an unrealistic scenario and different reordering strate-
gies are required. According to Theorem 2.21 the column elimination tree provides at least a
hull for the factors L and U . Moreover this even applies that partial pivoting with respect to
the rows is used. A direct consequence is that reducing the fill in G+

∩ (A) can also reduce the
fill in L and U independent on P . To do this one could simply compute a column permutation
Q ofA such thatG+

∩ (AQ) = G+(Q>A>AQ) has less fill–in. The most simple way to do that
is to apply MMD algorithm of the AMD algorithm to A>A or A> +A and use the associated
permutation matrix Q to reorder the columns of A in advance. Since in general A>A could

Copyright line will be provided by the publisher

14 M. Bollhöfer and O. Schenk: Combinatorial Aspects in Sparse Direct Solvers

be significantly more dense thanA, a different approach is chosen in the column approximate
minimum degree approach (COLAMD). Here one starts with the pattern of A and each step k
a symbolic analysis is used to compute the pattern of the reduced matrix. For details we refer
to [8].

4.2 Multilevel nested dissection

Recursive multilevel nested dissection methods for direct decomposition methods were firstly
introduced in the context of multiprocessing. If parallel direct methods are used to solve a
sparse systems of equations, then a graph partitioning algorithm can be used to compute a fill
reducing ordering that lead to a high degree of concurrency in the factorization phase. The
(approximate) minimum degree (MMD) or reverse Cuthill–McKee (RCM) methods used al-
most exclusively in serial methods ten years ago are not suitable for parallel direct methods,
as they provide very little concurrency in the parallel factorization phase. The research on
graph-partitioning methods in the mid-nineteens has resulted in high-quality software pack-
ages, e.g. METIS [32], and when they are used to compute fill reorderings for sparse matrices,
they produce orderings that provide more concurrency and can have substantially smaller fill
than the widely uses degree-based methods such as RCM or MMD.

Since multilevel nested dissection is so closely related to graph-partitioning we will review
some combinatorial aspects of it.

Definition 4.3 A k-way graph partitioning is defined as follows: Given a graph G(A) =
(V,E), with |V | = n, partition V into k subsets , V1, V2, . . . , Vk such that Vi ∩ Vj = ∅ for
i 6= j, |Vi| = n/k and ∪iVi = V .

Definition 4.4 A vertex separator of a graph G(A) = (V,E), with |V | = n, is a set
of vertices Vs that partitions V \ Vs into k subsets V1, V2, . . . , Vk, such that Vi ∩ Vj = ∅,
Vi ∩ Vs = ∅, |Vi| ≈ n/k for i 6= j. Moreover, it is assumed that ∪iVi ∪ Vs = V and that the
numbers of edges ∪k

i=1|{eis ∈ Vi, s ∈ Vs}| is minimized.

Definition 4.5 An edge separator Es ∈ E of a graph G = (V,E) is a set of edges whose
removal partitions V into k subsets , V1, V2, . . . , Vk, with Vi ∩ Vj = ∅, |Vi| = n/k for i 6= j.
The edges eij that connects the vertex set Vi with Vj are defined as edge separators.

Nested dissection recursively splits a graph G(A) = (V,E) into almost equal halves by
selection a vertex separator until the desired numbers of partitionings are obtained. One way
of obtaining a vertex separator is to first obtain a 2-way partitioning of the graph, a so called
graph bisection, and then to compute a vertex separator from the edge separator. The vertices
of the graph are numbered such that at each level of recursion, the separator vertices are
numbered after the vertices in the partitions. In general, small vertex separators results in low
fill-in.

Example 4.6 To illustrate vertex separators, Figure 14 shows a 2-way partitioning with
V1 = {1, 2, 3} and V2 = {4, 5, 6} and a vertex separator Vs = {7, 8, 9, 10}. The vertices in
the partition are ordered before the vertices in the separator. The ’0’ elements indicate that no
fill will occur in these zero blocks of the system.

Since recursive graph bisection is typically computational expensive, combinatorial multi-
level graph bisections has been used to accelerate the process. The basic structure is simple.

Copyright line will be provided by the publisher

gamm header will be provided by the publisher 15

0

B

B

B

B

B

B

B

B

B

@

• • • 0 0 0 •

• • 0 0 0 •

• • 0 0 0 • •

0 0 0 • • •

0 0 0 • • •

0 0 0 • •

• • •

• • • • • •

• • • • •

• • • • •

1

C

C

C

C

C

C

C

C

C

A

13

2

8 9

7

64

10

5

Fig. 14 A 2-way partition with vertex separators. Fill between the two partitions can only occur in the
separator vertices.

During a coarsening phase, the size of the graph is successively decreased down to a few hun-
dreds vertices, a bisection of the much smaller graph is computed; and during a uncoarsening
phase, the bisection is successively refined as it is projected towards the original graph.

Coarsening Phase. The original graphG = (V,E) is transformed in the coarsening phase
into a sequence of smaller graphsG1, G2, . . . , Gm such that |V0| > |V1| > |V2| > ... > |Vm|.
Given the graphGi = (Vi, Ei), the coarser graphGi+1 can be obtained by collapsing adjacent
vertices. Thus, the edge between two vertices is collapsed and a multinode consisting of
these two vertices is created. This edge collapsing idea can be formally defined in terms of
matchings.

Definition 4.7 A matching of a given graph G(A) = (V,E) is a subset of edges eij such
that no two of which share the same vertex. IfM is a matching ofG, then each edge eij ∈M
corresponding to vertices vi and vj and there exists no other edge e ∈ M that has the same
vertex endpoints vi or vj . A matching M is called maximal, if no other edge from E can be
added.

Thus, the next level coarser graph Gi+1 is constructed from Gi by finding a maximal
matching of Gi and collapsing the vertices being matched into multinodes. Since the goal
of collapsing vertices using matchings is to decrease the size of the graph Gi , the matching
should be as large as possible. The main difference between the various ordering packages is
the construction of the maximal matching. One of the most popular and efficient methods is
heavy edge matching [32].

Partitioning Phase. A 2-way partition Pm of the graphGm = (Vm, Em) is computed that
partitions Vm into two parts, each containing half the vertices of Gm. The partition of Gm

can be obtained by using various algorithms such as spectral bisection [16] or combinatorial
methods based on Kernighan-Lin variants [33]. It is shown in [32] that combinatorial methods
find in general smaller edge-cut separators compared with spectral bisection for partitioning
the coarse graph. However, since the size of the coarsest graphGm is small (i.e. |Vm| < 100),
this step takes a small amount of time.

Uncoarsening Phase. The partition Pm of Gm is projected back to G0 by going through
intermediate partitions Pm−1, Pm−2, ..., P1, P0. Each vertex v of Gi+1 contains a distinct

Copyright line will be provided by the publisher

16 M. Bollhöfer and O. Schenk: Combinatorial Aspects in Sparse Direct Solvers

Original Matrix A

1 3 0 2 0 0

3 0 0 4 0 1
0 0 0 0 3 0

2 4 0 0 1 0

0 0 3 1 0 0

0 1 0 0 0 2

G :

1

2

3

4

5

6

1

3

4

5

6

2

M :

1

2

3

4

5

6

1

3

4

5

6

2

Reordered Matrix PMA

2 4 0 1 0 0

1 3 0 2 0 0

0 0 3 1 0 0

3 0 0 4 0 1
0 0 0 0 3 0

0 1 0 0 0 2

Fig. 15 Illustration of a perfect matching. Left side: original matrix A, Middle: bipartite representation
G = (Vr, Vc, E) of the matrix A and perfect matching M . Right side: matrix after row permutation
(PMA) with permutation matrix PM .

subset of vertices V v
i of Gi. Obtaining Pi from Pi+1 is done by simply assigning the set of

vertices V v
i collapsed to v ∈ Gi+1 to the appropriate partition in Gi. Although Pi+1 is a

local minimum partition ofGi+1, the projected partition Pi may not be a local minimum with
respect to Gi. Since Gi is finer, it has more degrees of freedom that can be used to improve
Pi, and decrease the edge-cut of the partition. Hence, it may still be possible to improve the
projected partition of Gi by local refinement heuristics. The refinement is usually done by
using one of the variants of the Kernighan-Lin partition algorithm [33].

5 Maximum weight matching

Numerical stability in the decomposition is typically maintained through partial pivoting,
which can have a significant impact on the factorization speed. Row interchanges due to
partial pivoting can also unpredictably affect the nonzero structure of the factor, thus making
it impossible to statically allocate data structures. Using nonsymmetric row or the column
permutations to ensure a non-zero diagonal or to maximize the product of the absolute diag-
onal values are among the techniques often used as preprocessing steps for LU factorizations
in order to reduce the number of dynamic pivoting steps. The original idea on which these
nonsymmetric permutations are based is to find a maximum weighted matching of a bipar-
tite graphs. Finding a maximum weighted matching is a well known assignment problem in
operation research and combinatorial analysis.

One fundamental concept in the finding of maximal matchings is a bipartite graph G =
(Vr , Vc, E) of a matrix A. The two vertex sets, Vr and Vc, of the bipartite graph correspond
to the rows and columns of the matrix, respectively. If there is a nonzero value in location
aij , then vertex vi ∈ Vr from the row set is connected by an edge ei,j ∈ E to the column set
vj ∈ Vc. If, for an n×n matrix a matchingM with maximum cardinality n is found, then we
have established that the matrix is structurally nonsingular and we can use a nonsymmetric
row or column permutation PM to place a nonzero entry on each diagonal location.

Definition 5.1 A perfect matching is a maximal matching with cardinality n.

Copyright line will be provided by the publisher

gamm header will be provided by the publisher 17

Theorem 5.2 When A is structurally nonsingular, there always exists a perfect matching
for G = (Vr, Vc, E). The perfect matching M defines an n× n permutation matrix with

PM = (pij) =

{

pij = 1 eij ∈M
pij = 0 eij 6∈M

Example 5.3 In Figure 15, the set of edgesM = {(1, 2), (2, 4), (3, 5), (4, 1), (5, 3), (6, 6)}
represents a perfect maximum matching of the bipartite graph G.

The most efficient combinatorial methods for finding maximum matchings in bipartite
graphs make use of an augmenting path. We will introduce some graph terminology for
the construction of perfect matchings. If an edge euv joins a vertex u and v, we denote it
as uv. If a path consists of edges u1u2, u2u3, . . . , uk−1uk, where ui all distinct, we denote
it as u1u2u3 . . . uk−1uk. A vertex is called free if it is not incident to any other edge in a
matchingM . An alternating path relative to a matchingM is a path P = u1u2, u2u3, . . . , us

where its edges are alternatively inE \M andM . An augmenting path relative to a matching
M is an alternating path of odd length and both of it vertex endpoints are free. If a graph
G = (Vr, Vc, E) is bipartite, one vertex endpoint of any other augmenting path must be in Vr

and Vr. The symmetric difference,A⊕B of two edge sets is defined to be (A\B)∪ (B \A).
These definitions and the following theorem [7] gives an constructive algorithm for finding

perfect matchings on bipartite graphs.

Theorem 5.4 If M is not a maximum matching of a bipartite graphG = (Vr, Vc, E), then
there exists an augmenting path P relative to M and P ⊕M is a matching with size |M |+1.

According to this theorem, a combinatorial method of finding perfect matching in a bipar-
tite graph is to seek augmenting paths. The perfect matching as discussed so far only takes
the nonzero structure of the matrix into account.

There are other approaches which maximize the diagonal values in some sense and com-
pute a maximum weighted matching. One possibility is e.g. to look for a matrix Pr such that
the product of the diagonal values of PrA is maximal. In other words, a permutation σ has to
be found, which maximizes:

n
∏

i=1

|aσ(i)i|. (3)

This maximization problem is solved indirectly. We first reformulate it by defining a matrix
C = (cij) with

cij =

{

log ai − log |aij | aij 6= 0

∞ otherwise,

where ai = maxj |aij | is the maximum element in row i of matrixA. A permutation σ which
minimizes the sum

n
∑

i=1

cσ(i)i

also maximizes the product (3). The minimization problem is known as linear-sum assignment
problem or bipartite weighted matching problem in combinatorial optimization. The problem

Copyright line will be provided by the publisher

18 M. Bollhöfer and O. Schenk: Combinatorial Aspects in Sparse Direct Solvers

is solved by a sparse variant of the Kuhn-Munkres algorithm. The complexity is O(n3) for
full n × n matrices and O(nτ logn) for sparse matrices with τ entries. For matrices, whose
associated graph fulfill special requirements, this bound can be reduced further to O(nα(τ +
n logn) with α < 1. All graphs arising from finite-difference or finite element discretizations
meet the conditions [30]. As before, we finally get a perfect matching which in turn defines a
nonsymmetric permutation.

In the solution of the assignment problem, two vectors u = (ui) and v = (vi) are gener-
ated, which can be used to scale the matrix. These vectors have the property that they fulfill
the following equations:

ui + vj = cij (i, j) ∈ M, (4)

ui + vj ≤ cij otherwise. (5)

Two diagonal matrices Dr and Dc are defined through

Dr = diag(dr
1, d

r
2, . . . , d

r
n), dr

i = exp(ui), (6)

Dc = diag(dc
1, d

c
2, . . . , d

c
n), dc

j = exp(vj)/aj . (7)

With the equations (4) and (5), it can be shown that the scaled and permuted matrix A1 =
PrDrADc is an I-matrix, for which holds:

|a1
ii| = 1, (8)

|a1
ij | ≤ 1. (9)

The permuted system can have better numerical properties, see e.g. [6, 13, 44]. Olschowka
and Neumaier [38] introduced these scalings and permutation for reducing pivoting in Gaus-
sian elimination of full matrices. The first implementation for sparse matrix problems was
introduced by Duff and Koster [13]. Recent developments indicate that these nonsymmetric
techniques can be transferred to the symmetric case [14, 41].

6 Numerical experiments

During the past twenty years, the algorithmic improvements discussed in the previous sections
have significantly reduced the time required for the direct solution of sparse systems of linear
equations. This section compares the performance of these algorithmic methods for solving
general nonsymmetric and symmetric indefinite sparse systems. In particular, we demonstrate
that consistently high level of performance is achieved by PARDISO [42, 43], one of the most
recent of sparse direct solvers. We compare the influence of various combinatorial methods
and discusses their impact on the solver performance.

In particular, we will discuss two application areas, namely semiconductor device simu-
lation and interior-point nonlinear programming, in which the solution of large sparse linear
systems represents a highly critical component.

6.1 Semiconductor Device Simulation

In 1950, Van Roosbroeck [39] introduced the drift-diffusion equations which are the com-
monly used model in semiconductor device simulation. The drift-diffusion equations are a

Copyright line will be provided by the publisher

gamm header will be provided by the publisher 19

Fig. 16 3D discretization of a MOS transistor with nearly 52’000 grid points. The resulting nonsym-
metric sparse linear systems of size 152’000 unknowns is shown in Figure 17.

system of three coupled, nonlinear partial differential equations (PDEs), which describe the
relation between the electrostatic potential and the densities of the charge carriers in a semi-
conductor device. The equations of the drift-diffusion model are:

−∇ · (ε∇ψ) = q (p− n+ C) , (10)

q
∂n

∂t
−∇ · jn = −q R, (11)

q
∂p

∂t
+ ∇ · jp = −q R, (12)

where ψ is the electrostatic potential, n and p are the electron and hole densities. These are
the unknown variables. The other quantities are given: ε is the dielectrical permittivity, C the
doping concentration,R the total recombination rate and q the elementary charge. The carrier
current densities jc in equations (11) - (12) are substituted with the equations

jn = q (Dn∇n− µnn∇ψ) , (13)

jp = −q (Dp∇p+ µpp∇ψ) . (14)

Here, µc are the carrier mobilities and Dc are the carrier diffusivities. Typical challenges in
solving the drift-diffusion equations include a large range of n and p, the steep gradients of the
solution variables, and the necessity to ensure that n, p > 0 in the numerical computations.

Different discretizations are used to solve the drift-diffusion equations numerically and the
Scharfetter-Gummel box method is typically used in modern semiconductor device simula-
tors [31]. Regardless of the discretization a set of nonlinear equations must be solved. Often,
the only possible way is to solve the nonlinear equations with the Newton method. The re-
sulting linear systems Ax = b, where A is a nonsymmetric sparse 3n × 3n matrix, highly
ill-conditioned and significantly demanding.

Figure 16 shows a three-dimensional discretization of a semiconductor MOS transisor with
52’000 grid points and Figure 17 shows the distribution of the magnitude of elements in the
resulting matrix from this semiconductor device simulation. The first picture in Figure 17
shows the 3 × 3 sparse block structure of a matrix resulting from the Newton linearization
and discretization of the drift-diffusion equations. The diagonal blocks of A are related to
the electrostatic potential ψ and the charge carrier densities n, p in a semiconductor device,
respectively. The values in the off-diagonal blocks ofA represent the coupling of the variables
ψ, n and p. The first matrix shows all the elements, the second one only shows the largest

Copyright line will be provided by the publisher

20 M. Bollhöfer and O. Schenk: Combinatorial Aspects in Sparse Direct Solvers

0 5 10 15

x 10
4

0

5

10

15

x 10
4

nz = 401060
0 5 10 15

x 10
4

0

5

10

15

x 10
4

nz = 53880

Fig. 17 Pictorial depiction of the magnitude of the elements in a matrix from semiconductor device
simulation. The first picture shows the original coefficient matrix. The second picture shows only 50%
of the largest absolute values, the last picture the largest 10%.

0 5 10 15

x 10
4

0

5

10

15

x 10
4

nz = 308214
0 5 10 15

x 10
4

0

5

10

15

x 10
4

nz = 219706

Fig. 18 Influence of nonsymmetric permutations on the matrix from semiconductor device simulation
shown in Figure 17. The first picture shows the original coefficient matrix that has been permuted row-
wise using a nonsymmetric weighted matching algorithm. The second picture only shows 50% of the
largest absolute values, the last picture the largest 10%. Note that a majority of the largest values have
migrated to the block diagonal.

50% elements in absolute value, and the last one shows the largest 10% elements. Due to the
numerical properties of the carrier densities, the largest 10% elements, which are in the off-
diagonal blocks, can be several orders of magnitude larger than the elements in the diagonal
blocks. These extremely large entries in the off-diagonal blocks are one main reason for the
difficulties in applying preconditioned iterative methods in semiconductor device simulation.

There are two main approaches to solving the nonsymmetric sparse linear systems from
Newton’s method using sparse direct solver technology. The first approach uses partial pivot-
ing during elimination which dynamically applies expensive pivot searches during the Gaus-
sian process. The second approach, which is now commonly used in nearly all state–of–the
art direct solvers, uses nonsymmetric graph weighted matchings from Section 5 as a kind of
static pivoting before applying the elimination process. This category of reorderings consist of
permuting only the columns or the rows of the matrix in order to address the issue of avoiding
poor pivots in Gaussian elimination.

Figure 18 shows the effect of applying the weighted nonsymmetric matching on the dis-
tribution of the magnitude of elements in the transistor matrix from semiconductor device
simulation shown in Figure 17. The matrices in Figure 18 corresponds to those in Figure 17,

Copyright line will be provided by the publisher

gamm header will be provided by the publisher 21

Fig. 19 The influence of various orderings algorithms applied to a semiconductor device simulation
matrix from Figure 18. The pictures show the structure after a symmetric permutation with bandwidth
reduction using reverse Cuthill-McKee (left), or using minimum-degree (middle) and multi-level nested
dissection with METIS (right).

but scaled and permuted with nonsymmetric weighted matchings. Compared with the orig-
inal matrix, the largest elements of the matrix now lie on the diagonal which has a primary
advantage that less pivoting search might be necessary during the elimination process.

Fill-in preserving methods are equally important and the goal of symmetric reorderings is
to reduce the fill-in during Gaussian elimination. Several approaches such as graph-degree
based methods (RCM, MMD, AMD) or recursive nested dissections methods (METIS) can be
used. Figure 19 shows the distribution of the non-zeros using a symmetric permutation of both
columns and rows of the original device simulation matrix from Figure 18 based on the struc-
ture of A + AT . The reverse Cuthill-McKee (RCM) is among the most common techniques
used to enhance the effectiveness of sparse Gaussian elimination. This reordering is designed
to reduce the envelope of the matrix as shown in the first picture of Figure 19 and has been
widely used in finite-element structural analysis 10 years ago. One other reordering geared
specifically toward reducing fill-in is the minimum-degree method MMD [18] described in
Section 4. The second picture shows a structural distribution of the system after applying the
MMD permutation. Finally, the last picture represents the semiconductor device simulation
system that is symmetrically permuted with recursive multi-level nested dissection from the
METIS package [32]. Is is clearly visible that the overall quality of the fill-in that will occur
during Gaussian elimination is best in terms of fill for the METIS reordering. Furthermore, the
elimination tree produced by METIS exhibits more concurrency so that a process to subtree
mapping lead to good load balancing while additionally minimizing interprocess communica-
tion during a parallel factorization. The fill-in produced by METIS is one order of magnitude
better compared to RCM as shown in Table 1.

We have used a recent eight processor Itanium Intel Server with a processor frequency of
2.6 GHz for the numerical experiments in this paper. Furthermore, we used the PARDISO

solver package1, a suite of publicly available parallel sparse linear solvers. The code was
compiled by g77 and gcc with the -O3 optimization option and linked with the Automatically
Tuned Linear Algebra Software ATLAS library2 for the basic linear algebra subprograms op-
timized for Intel architectures. The basic components of the solver were changed in such a
way that the specific changes emulate the typical behaviour of a sparse direct solver using the

1 http://www.computational.unibas.ch/cs/scicomp/software/pardiso
2 https://sourceforge.net/projects/math-atlas

Copyright line will be provided by the publisher

22 M. Bollhöfer and O. Schenk: Combinatorial Aspects in Sparse Direct Solvers

Factorization Method Col — Col Sup — Sup Sup — Sup Sup — Sup
BLAS Level-1 Level-3 Level-3 Level-3
Ordering RCM RCM METIS METIS + MATCH

Processors 1 CPU 1 CPU 1 CPU 8 CPUs
Year ≈ 1990 1993 1998 2003
Memory in GB for LU 11.5 11.5 1.2 1.3
Time in sec. for LU 17527 1’527 107 17

Table 1 Influence for various algorithmic choices on the factor memory requirement and factoriza-
tion time for the semiconductor device simulation matrix from Figure 17. The Table show the year of
invention as well as the ordering and factorization method.

algorithmic components displayed in Table 1. A common practice fifteen years ago was to
apply reverse Cuthill McKee (RCM) and a sparse factorization method based e.g. on a Level-
1 BLAS left-looking column-by-column update. The second column of Table 1 shows the
performance of such as direct solver on a modern Intel Itanium processor. The method com-
pensates 11.5 GB main memory for the LU factors resulting in a factorization time of 17’527
seconds on one processor. Replacing the column-by-column factorization with a Level-3 Blas
supernode-by-supernode algorithm [5, 37] increases the performance of the solver by over one
order of magnitude due to efficient memory hierarchy utilization of the method as shown in
the third column of Table 1. The next column displays the influence of the recursive multilevel
nested dissection from METIS [32] to the three-dimensional semiconductor device simulation
matrix. We see that the METIS ordering is of high quality and produces a factor with only
10% of nonzeros compared to RCM. As a result, the new factorization method needs only 1.5
GB and compute the factor in about 107 seconds. Another level of accuracy and parallel scal-
ability has been added by combining the METIS reordering with a nonsymmetric weighted
matching ordering on shared–memory multiprocessing architectures [42]. The last column
shows the default option of PARDISO and it indicates that the algorithmic improvements of
the past few years have reduced the time required to factor general sparse matrices by almost
three order of magnitude.

6.2 Interior-Point Optimizations

Our second example will show the progress that has been made in the direct solution of sparse
symmetric indefinite systems. We present a symmetric indefinite augmented system from a
interior point filter line-search algorithm for large scale nonlinear programming. The growing
interest in efficient optimization methods has led to interior point optimization or barrier meth-
ods in which the solution of a highly indefinite system plays one central rule. We consider a
primal dual barrier method to solve nonlinear optimization problems of the form

min
x∈Rn

f(x) (15)

s.t. c(x) = 0 (16)

x ≥ 0 (17)

where the variable x ∈ R
n, and the objective function f : R

n → R and the equality constraints
c : R

n → R
m with m ≤ n, are assumed to be twice continuously differentiable. In barrier

Copyright line will be provided by the publisher

gamm header will be provided by the publisher 23

Factorization Method Col — Col Sup — Sup Sup — Sup Sup — Sup
BLAS Level-1 Level-3 Level-3 Level-3
Ordering RCM RCM METIS METIS + MATCH

Pivoting BK BK BK SBK
Processors 1 CPU 1 CPU 1 CPU 1 CPU
Year ≈ 1990 1993 1998 2004
Memory in B for LU 1.52 1.52 0.22 0.20
Time for LU 3496.1 315. 21.3 3.41

Table 2 Influence for various algorithmic choices on the factor memory requirement and factoriza-
tion time for a interior point optimization matrix with 74’000 unknowns. The table shows the year of
invention as well as the ordering and factorization method.

methods [46], the algorithms typically compute in interior point algorithms [46], the following
sparse symmetric augmented systems has to be solved for the search directions

[

Wk ∇c(xk)
∇c(xk)T 0

](

∆xk

∆λk

)

= −

(

∇ϕµ(xk) + ∇c(xk)λk

c(xk)

)

(18)

where Wk denotes the Hessian ∇2
xxLµ(xk , λk) of the Lagrangian function

Lµ(x, λ) = ϕµ(x) + c(x)Tλ.

In Table 2 we compare the factorization times using the same notation as in Table 1. The
abbreviation BK represents a factorization method based on (1 × 1) or (2 × 2) Bunch and
Kaufman pivoting, which is necessary for solving symmetric indefinite systems. SKB in the
last column represents a method that uses symmetric weighted graph matchings combined
with supernode Bunch and Kaufman pivoting [41]. The progress that has been made due to
new algorithmic improvements in the area of symmetric indefinite systems is again visible.

6.3 On recent numerical evaluations of sparse direct solvers

In recent years a number of solvers for the direct solution of large sparse linear systems of
equations have been developed. This includes sequential solvers that are primarily designed
for only nonsymmetric systems as well as solvers that offer a family of different decomposi-
tions methods on modern architectures ranging from shared–memory to distributed–memory
multiprocessing computers. The available choice can make it difficult to users to know which
solver is the most appropriate for their applications. Since a numerical evaluation of all these
different solvers is by far beyond the scope of this paper, we therefore refer to recent inves-
tigations. The interesting reader can find some evaluation results for nonsymmetric linear
systems in [29, 42]. In addition, [26] presents direct solver performance evaluations for sym-
metric positive and indefinite linear systems.

Copyright line will be provided by the publisher

24 M. Bollhöfer and O. Schenk: Combinatorial Aspects in Sparse Direct Solvers

The solver packages PARDISO3 [42, 41], TAUCS4 [36], and WSMP5 [28, 29] represent freely
available, reliable and efficient high-performance implementations of sparse direct solver
technology ranging from the desktop to high-end multiprocessing architectures. Furthermore,
[26] lists a large number of other options that might be considered.

7 Conclusions

In this paper, we reviewed important combinatorial aspects in sparse LU decompositions
and demonstrated that these combinatorial methods alone have significantly improved the
state–of–the–art of the direct solution of sparse linear systems of equations. Our numeri-
cal examples reveal that recent sparse direct solvers can be up to three order of magnitude
faster than the best factorization solver fifteen years ago. Furthermore, these solvers offer sig-
nificant scalability on multiprocessing architectures that can be utilized to solve large–scale
problems even faster [3, 27, 34, 42]. Therefore, it can be concluded that there has been a
significant progress in sparse direct solver algorithms and software recently. Combinatorial
methods in all phases of the sparse direct solution process have contributed to these perfor-
mance gains. These include the use of (non-)symmetric maximum weighted matching to
permute large magnitude elements close to the matrix diagonal, symmetric pruning strategies,
nested-dissection based fill-reducing permutation applied symmetrically to rows and columns,
and Level-3 BLAS static pivoting techniques. Combined with a significant progress in the per-
formance to cost ratio of computing hardware during this period, current sparse solver tech-
nology makes it it now possible to solve those large-scale problems quickly and easily that
might have been considered by far too large for direct solver until recently.

References

[1] A. Aho, J. Hopcroft, and J. Ullman. Data structures and algorithms. Addison-Wesley, 1983.
[2] P. Amestoy, T. A. Davis, and I. S. Duff. An approximate minimum degree ordering algorithm.

SIAM J. Matrix Anal. Appl., 17(4):886–905, 1996.
[3] P. R. Amestoy, I. S. Duff, and J.-Y. L’Excellent. Multifrontal parallel distributed symmetric and

unsymmetric solvers. Comput. Methods in Appl. Mech. Engrg., 184:501–520, 2000.
[4] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. D. Croz, A. Greenbaum, S. Ham-

marling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide, Second Edition.
SIAM Publications, 1995.

[5] C. Ashcraft, R. Grimes, J. Lewis, B. Peyton, and H. Simon. Progress in sparse matrix methods
for large sparse linear systems on vector supercomputers. Internat. J. Supercomputing Applic.,
1:10–30, 1987.

[6] M. Benzi, J. Haws, and M. Tuma. Preconditioning highly indefinite and nonsymmetric matrices.
SIAM J. Sci. Comput., 22(4):1333–1353, 2000.

[7] C. Berge. Two theorems in graph theory. In Proceedings of National Academy of Science, pages
842–844, USA, 1957.

3 The solver has been developed at the Computer Science Department of the University of Basel. It is available at
http://www.computational.unibas.ch/cs/scicomp/software/pardiso and it is also included
into Intel’s Math Kernel Library Version 7.0.

4 The solver has been developed at the Computer Science Department of Tel-Aviv University and offers out-of
core solutions capabilities. It is available at http://www.tau.ac.il/˜stoledo/taucs

5 The solver has been developed at the Mathematical Department of the IBM Thomas Watson Research Center
and is available at http://www-users.cs.umn.edu/˜agupta/wsmp.html.

Copyright line will be provided by the publisher

gamm header will be provided by the publisher 25

[8] T. A. Davis, J. R. Gilbert, S. I. Larimore, and E. G. Ng. A column approximate minimum degree
ordering algorithm. Technical Report TR-00-015, Univ. of Florida, 2000.

[9] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu. A supernodal approach to
sparse partial pivoting. SIAM J. Matrix Anal. Appl., 20(3):720–755, 1999.

[10] D. Dodson and J. G. Lewis. Issues relating to extension of the basic linear algebra subprograms.
ACM SIGNUM Newslett., 20:2–18, 1985.

[11] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. Issues relating to extension of the
basic linear algebra subprograms. ACM SIGNUM Newslett., 20:2–18, 1985.

[12] I. S. Duff, A. Erisman, and J. Reid. Direct Methods for Sparse Matrices. Oxford University Press,
1986.

[13] I. S. Duff and J. Koster. The design and use of algorithms for permuting large entries to the diagonal
of sparse matrices. SIAM J. Matrix Anal. Appl., 20:889–901, 1999.

[14] I. S. Duff and S. Pralet. Strategies for scaling and pivoting for sparse symmetric indefinite prob-
lems. Technical Report TR/PA/04/59, CERFACS, Toulouse, France, 2004.

[15] S. Eisenstat and J. W. H. Liu. Exploiting structural symmetry in a sparse partial pivoting code.
SIAM J. Sci. Comput., 14:253–257, 1993.

[16] M. Fiedler. A property of eigenvectors of nonnegative symmetric matrices and its application to
graph theory. Czecheslovak Mathematical Journal, 25(100):619–633, 1975.

[17] A. George and M. T. Heath. Solution of sparse linear least squares problems using Givens rotations.
Linear Algebra Appl., 34:69–83, 1980.

[18] A. George and J. W. H. Liu. The evolution of the minimum degree ordering algorithm. SIAM
Review, 31:1–19, 1989.

[19] J. A. George and J. W. Liu. Computer Solution of Large Sparse Positive Definite Systems. Prentice-
Hall, Englewood Cliffs, NJ, USA, 1981.

[20] J. A. George and E. Ng. An implementation of Gaussian elimination with partial pivoting for
sparse systems. SIAM J. Sci. Statist. Comput., 6(2):390–409, 1985.

[21] J. A. George and E. Ng. Symbolic factorization for sparse Gaussian elimination with partial pivot-
ing. SIAM J. Sci. Statist. Comput., 8(6):877–898, 1987.

[22] J. R. Gilbert. Predicting structure in sparse matrix computations. SIAM J. Matrix Anal. Appl.,
15(1):162–79, 1994.

[23] J. R. Gilbert and E. Ng. Predicting structure in nonsymmetric sparse matrix factorizations. In J. A.
George, J. R. Gilbert, and J. W. H. Liu, editors, Graph Theory and Sparse Matrix Computation.
Springer-Verlag, 1993.

[24] J. R. Gilbert and T. Peierls. Sparse partial pivoting in time proportional to arithmetic operations.
SIAM J. Sci. Statist. Comput., 8:862–874, 1988.

[25] G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins University Press, third
edition, 1996.

[26] N. Gould, Y. Hu, and J. Scott. A numerical evaluation of sparse direct solvers for the solution
of large sparse, symmetric linear systems of equations. Technical report, Rutherford Appleton
Laboratory, 2004. to appear.

[27] A. Gupta. A shared- and distributed-memory parallel sparse direct solver. J. of Future Generation
Computer Systems. Submited.

[28] A. Gupta. WSMP: Watson sparse matrix package (Part-II: direct solution of general sparse sys-
tems. Technical Report RC 21888 (98472), IBM T. J. Watson Research Center, Yorktown Heights,
NY, November 20, 2000.

[29] A. Gupta. Recent advances in direct methods for solving unsymmetric sparse systems of linear
equations. ACM Trans. Math. Softw., 28(3):301–324, September 2002.

[30] A. Gupta and L. Ying. On algorithms for finding maximum matchings in bipartite graphs. Techni-
cal Report RC 21576 (97320), IBM T. J. Watson Research Center, Yorktown Heights, NY, October
25, 1999.

[31] Integrated Systems Engineering AG. DESSIS−ISE Reference Manual. ISE Integrated Systems
Engineering AG, 2004.

Copyright line will be provided by the publisher

26 M. Bollhöfer and O. Schenk: Combinatorial Aspects in Sparse Direct Solvers

[32] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM Journal on Scientific Computing, 20(1):359–392, 1998.

[33] B. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. The Bell System
Technical Journal, 29(2):291–307, 1970.

[34] X. S. Li and J. W. Demmel. SuperLU DIST: A scalable distributed-memory sparse direct solver
for unsymmetric linear systems. ACM Trans. Math. Softw. Accepted, in press.

[35] J. W. Liu. The role of elimination trees in sparse factorization. SIAM J. Matrix Anal. Appl.,
11(1):134–172, 1990.

[36] O. Meshar and S. Toledo. An out-of-core sparse symmetric indefinite factorization method. ACM
Trans. Math. Softw. Submitted. Under revision.

[37] E. Ng and B. Peyton. Block sparse Cholesky algorithms on advanced uniprocessor computers.
SIAM Journal on Scientific Computing, 14:1034–1056, 1993.

[38] M. Olschowka and A. Neumaier. A new pivoting strategy for gaussian elimination. Linear Algebra
and its Applications, 240:131–151, 1996.

[39] W. V. Roosbroeck. Theory of flow of electrons and holes in germanium and other semiconductors.
Bell Syst. Tech. J., 29:560–607, 1950.

[40] D. J. Rose. A graph-theoretic study of the numerical solution of sparse positive definite systems of
linear equations. In R. C. Read, editor, Graph Theory and Computing. Academic Press, 1972.

[41] O. Schenk and K. Gärtner. On fast factorization pivoting methods for sparse symmetric indefinite
systems. Technical Report CS-2004-005, Department of Computer Science, University of Basel,
2004. Submitted.

[42] O. Schenk and K. Gärtner. Solving unsymmetric sparse systems of linear equations with pardiso.
J. of Future Generation Computer Systems, 20(3):475–487, 2004.

[43] O. Schenk, K. Gärtner, and W. Fichtner. Efficient sparse LU factorization with left-right looking
strategy on shared memory multiprocessors. BIT, 40(1):158–176, 2000.

[44] O. Schenk, S. Röllin, and A. Gupta. The effects of unsymmetric matrix permutations and scalings
in semiconductor device and circuit simulation. IEEE Transactions On Computer-Aided Design
Of Integrated Circuits And Systems, 23(3), 2004.

[45] R. E. Tarjan. Data structures and network algorithms. In CBMS–NSF Regional Conference Series
in Applied Mathematics, volume 44, 1983.

[46] A. Wächter and L. T. Biegler. On the implementation of a primal-dual interior point filter line
search algorithm for large-scale nonlinear programming. Technical report, IBM T. J. Watson Re-
search Center, Yorktown, NY, March 2004.

Copyright line will be provided by the publisher

