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Abstract

In this paper we introduce a new approach to algebraic multilevel methods and their
use as preconditioners in iterative methods for the solution of symmetric positive definite
linear systems. The multilevel process and in particular the coarsening process is based on
the construction of sparse approximate inverses and their augmentation with corrections
of smaller size. We present comparisons of the effectiveness of the resulting multilevel
technique and numerical results.
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1 Introduction

For the solution of large sparse linear systems of the form

Ax = b, A ∈ Rn,n, b ∈ Rn,(1)

sparse approximate inverses, i.e., sparse matrices that are good approximations of the inverse
of a sparse matrix, [26, 25, 12, 18, 7] have become popular as preconditioners for Krylov–
subspace [15, 33, 17] techniques. There are several techniques to construct such sparse ap-
proximate inverses. One may for example minimize the norm of ‖AB − I‖ subject to some
prescribed pattern [25, 12, 18]. Another technique is to construct upper triangular matrices
Z,W> such that for a diagonal matrix D, W>AZ is a good approximation to D, [7]. More-
over success has been made over the years in using approximate inverses in combination with
multilevel methods [13, 28, 27, 35, 36]. Especially in [36] it has been shown that by adjusting
the quality of the approximate inverse, the smoothing property can be improved significantly.

We assume in the following that A is symmetric positive definite and that the approximate
inverse B is factored as B = LL>. We set M = L>AL and assume for simplicity that
‖M‖2 6 1. This can always be achieved by an appropriate scaling. We will concentrate on
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sparse approximate inverses for which M is still sparse. This is for example the case if the
approximate inverse is diagonal or block diagonal. Even factored sparse approximate inverses
from [25, 26] can be used as long as the pattern of L is moderate. For example if the pattern
of L is the same as the pattern of A (or the same pattern as the lower triangular part of A).
There also exist sparse approximate inverse approaches that cannot be applied here, because
they are only sparse with respect to certain basis transformations like wavelet–based sparse
approximate inverses [11]. For large classes of matrices, sparse approximate inverses have
proved very effective as preconditioners. But there are problems where the sparse approximate
inverse needs a large number of nonzero entries to become a suitable approximation to the
inverse of A. When using sparse approximate inverses based on norm–minimizing techniques,
one often observes that many eigenvalues [16] of the residual matrix E = I −M are quite
small, while a small number of eigenvalues stay big. And allowing more fill–in in the sparse
approximate inverse B does not cure this. For an example, see [8].

The observation that many eigenvalues are small but some stay large means that B ap-
proximates A−1 well on a subspace of large size, while there is almost no approximation on
the complementary subspace. In the context of multigrid methods for the numerical solu-
tion of partial differential equations this effect is typically called smoothing property [19].
Algebraically this means that the residual E = I −M can be written as

E = Ep + F,(2)

where Ep ∈ Rn,n has rank p < n and ‖F‖ ≤ η � 1, i.e., the residual can be approximated well
by a matrix of lower rank p. Typically one cannot expect that the size p of Ep is independent
of the dimension n of A. More realistic is the assumption, that p ≈ cn, where for example
c = 1

2 or c = 1
4 .

If one is solving a symmetric positive definite linear system Ax = b and one has already
determined some sparse approximate inverse B, it is therefore desirable (and our primary
goal) to improve the preconditioner LL>. Our goal is to construct an updated preconditioner
of the form

L(I + PZ−1P>)L>(3)

with sparse matrices P,Z, where Z is another symmetric positive definite matrix of smaller
size. Since A and the augmented preconditioner are positive definite, this means that we are
interested in the small eigenvalues (since ‖M‖2 6 1) of the preconditioned system

AL(I + PZ−1P>)L>.(4)

In other words we have to achieve that

‖I −M1/2(I + PZ−1P>)M1/2‖2 = ‖E −M1/2PZ−1P>M1/2‖2(5)

is small, while at the same time P and Z are sparse.

Since the matrix E is symmetric positive semidefinite by assumption, it is well known [16],
that the best approximation of E by a matrix of rank p is given by the matrix

Êp = UpΣpU
>
p =

[
u1, . . . , up

]  σ1

. . .

σp

 [ u1 . . . up
]>
,(6)

where σ1 > · · ·σn > 0 are the eigenvalues of E and ui, i = 1, . . . , n are the eigenvectors.
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But in general, this best approximation will be a full matrix, since Up is full even if E is
sparse, and hence we cannot directly use Êp in the construction of sparse preconditioners.

Since we have assumed that the given approximate inverse B has the property that E =
I−L>AL is approximated well by Êp in the sense of (2), we have that the entries of Êp differ
only slightly from the entries of E. So we may expect that taking an appropriate selection of
columns of E as V will be a good choice for U and the approximation of E by a lower rank
matrix. This expectation is justified by the following Lemma.

Lemma 1 Let E ∈ Rn,n be symmetric positive semidefinite and let

E = UΣU> = [U1, U2]

[
Σ1

Σ2

]
[U1, U2]>

be the spectral decomposition of E, where U is orthogonal, U1 ∈ Rn,p and the diagonal entries
of Σ are ordered in decreasing order. If E satisfies (2) (i.e. E = Ep+F for a rank–p matrix Ep
and ‖F‖2 6 η) then there exists a permutation matrix Π = [Π1,Π2], partitioned analogously,
such that

inf
X∈Rp,p

‖U1X −M1/2 (EΠ1)‖2 6 η.(7)

Proof. Applying the QR decomposition with column pivoting [16] to M1/2Êp = U1(I −
Σ1)1/2Σ1U

>
1 , we obtain Q,R> ∈ Rn,p, where Q is orthogonal, R = [R1, R2], with R1 ∈ Rp,p,

is upper triangular and Π = [Π1,Π2] is a permutation matrix with Π1 having p columns such
that

M1/2ÊpΠ = QR.

It immediately follows that M1/2ÊpΠ1 = QR1 and thus there exists a nonsingular p×p matrix
X such that M1/2ÊpΠ1 = QR1 = U1X and we have

‖M1/2EΠ1−U1X‖2 = ‖M1/2(E−Êp)Π1‖2 6 ‖(E−Êp)Π1‖2 = min
Ep

rankEp=p

‖E−Ep‖2 6 ‖F‖2 = η.

2

Lemma 1 gives us subspaces that consist of suitably chosen columns of E, which are close to
the subspace U1 of E associated with the large eigenvalues of E in the sense of (7).

Using such subspaces in the construction of appropriate sparse representations of the updates
PZ−1P> as in (3) is the topic of this paper, which is organized as follows.

We first discuss the theoretical background for this problem, i.e., to construct optimal precon-
ditioners of this form, and show that they are closely related to algebraic multilevel methods.
We derive two types (multiplicative and additive) of algebraic multilevel preconditioners in
Section 2.

The approximation properties of the multiplicative correction term I + PZ−1P> in (3) for
the two multilevel schemes are studied in detail in Section 3.

In view of Lemma 1, we may in principle use a QR–like decomposition of M1/2E to construct
the desired updated preconditioners. The key in this construction is the appropriate pivoting
strategy in theQR decomposition with column pivoting. We will present two heuristic pivoting
strategies and interpret them as coarsening process of the multilevel scheme in Section 4.

Finally in Section 5 we present numerical examples that demonstrate the properties of this
new approach and also indicate the effectiveness of the heuristics that have been used.
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In the sequel, for symmetric matrices A,B we will use the notation A � B, if A − B has
nonnegative eigenvalues. We also identify a matrix with the space spanned by its columns.

2 Multilevel Preconditioners

In this section we present two multilevel preconditioners for symmetric positive definite sys-
tems. Algebraic multilevel preconditioners have become popular in recent years. Several
algebraic multigrid approaches focus on incomplete LU or Schur–complement approaches
[4, 5, 14, 6, 30, 31] while others are based on the analogy to geometric multigrid methods
[10, 32, 24, 21, 29, 23]. Here we will concentrate on the second class of approaches.

Let A ∈ Rn,n be symmetric positive definite and let L ∈ Rn,n be a given sparse matrix such
that LL> is a symmetric positive definite matrix in factored form that approximates A−1.

Suppose that the approximation of A−1 by LL> is not satisfactory, e.g., the condition number
of L>AL is not small enough to get good convergence in the conjugate gradient method, and
we wish to improve the preconditioning properties. To do this we like to determine a matrix
of the form

M (1) = LL> + PZ−1P>,(8)

with P ∈ Rn,p, Z ∈ Rp,p nonsingular, P,Z sparse and furthermore, p 6 cn with 0 < c < 1, so
that M (1) is a better approximation to A−1 than LL>.
The particular form (8) is chosen close to the form of an algebraic two–level method, where
multiplication with P, P> corresponds to the mapping between fine and coarse grid and Z
represents the coarse grid system. Note further, that using the representation LL>+PZ−1P>

as a preconditioner for A, only a system with Z has to be solved. As shown in Lemma 1, skil-
fully chosen columns/rows of the residual matrix E = I −L>AL can be used to approximate
the invariant subspace of E associated with its large eigenvalues. As we will see, precisely this
invariant subspace has to be approximated by P . In the sense of the underlying undirected
graph of E we refer to the nodes associated with the columns/rows of E that will be used to
approximate the invariant subspace of E associated with the largest eigenvalues as coarse grid
nodes while the remaining nodes are called fine grid nodes. The process of detecting a suitable
set of coarse grid nodes will be called coarsening process. Once we have selected certain nodes
as coarse grid nodes, they are in a natural way embedded in the initial graph. In addition the
graph of W = P>AP is a natural graph associated with the coarse grid nodes. We will call
it coarse grid in analogy to the notation arising in discretized partial differential equations.

Recalling the well-known techniques of constructing preconditioners for the conjugate gradient
method applied to symmetric positive definite systems, e.g. [16, 20, 33], we should choose P
and Z such that

µA−1 �M (1) � µκ(1)A−1,(9)

with κ(1) as small as possible and µ > 0. Clearly κ(1) > 1 is the condition number of M (1)A,
i.e., the ratio of the largest by the smallest eigenvalue of M (1)A and thus κ(1) = 1 would be
optimal. The importance of the condition number is justified from the well–known results on
the performance of the conjugate gradient method with preconditioner M (1), see e.g. [16]. We
discuss the construction of P,Z with minimal κ(1) below.

For discretized elliptic partial differential equations often, but not always, one can construct
optimal preconditioners using multigrid methods [19]. In order to obtain a similar precondi-
tioner augmented with a suitably chosen coarse grid correction, consider the use of LL> in a
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linear iteration scheme [37] for the solution of Ax = b with initial guess x(0) ∈ Rn. Such an
iteration is given by

x(k+1) = x(k) + LL>(b−Ax(k)), k = 0, 1, 2, . . .

The error propagation matrix I − LL>A satisfies x − x(k+1) = (I − LL>A)(x − x(k)). In
multilevel techniques [19] one uses such an iteration for pre- and post-smoothing and in
addition one has to add a coarse grid correction. In terms of the error propagation matrix
this means that instead of I − LL>A we have (I − LL>A)(I − PZ−1P>A)(I − LL>A)> as
error propagation matrix. A simple calculation shows that this product can be rewritten as
I −M (2)A with

M (2) = 2LL> − LL>ALL> + (I − LL>A)PZ−1P>(I −ALL>).(10)

Again we are interested in choosing P,Z such that

µA−1 �M (2) � µκ(2)A−1,(11)

with κ(2) as small as possible.

In the following we discuss the approximation properties of M (1),M (2). The first step will be
the construction of optimal P,Z for given A,L based on the spectral decomposition

E ≡ I − L>AL = ΨΛΨ>,(12)

where Λ = diag (λ1 . . . , λn), λ1 > · · · > λn and Ψ = [ψ1, . . . , ψn] is orthogonal. We use the
notation Ψp = [ψ1, . . . , ψp], Λp = diag (λ1 . . . , λp).

Lemma 2 Let A,L ∈ Rn,n with A symmetric positive definite, L nonsingular, E = I −
L>AL positive semidefinite and let p < n.

1. The minimal κ(1) in (9) is obtained with P ∈ Rn,p, Z ∈ Rp,p defined via

P = L [v1, . . . , vp] ∈ Rn,p, Z = P>AP
(
I − P>AP

)−1
∈ Rp,p.(13)

In this case we have µ = 1− λp+1, κ
(1) = 1−λn

1−λp+1
.

2. For P from (13) and
Ẑ = P>AP(14)

we have
γM (1) � LL> + PẐ−1P> � ΓM (1),(15)

where γ = 2− λ1 > 1,Γ = 2− λp 6 2.

3. The matrices P from (13) and Ẑ from (14) yield the minimal κ(2) in (11) with µ =

1− λ2
p+1, κ

(2) = 1−λ2n
1−λ2p+1

.

Proof. 1. For P,Z as in (13) we have

Z = (I − E)E−1 = (I − Λp)Λ
−1
p
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and condition (9) is equivalent to

µ(I − E)−1 � I + ΨpΛp(I − Λp)
−1Ψ>p � µκ(1)(I − E)−1.(16)

Multiplying with V > from the left and V from the right we obtain an inequality for diagonal
matrices as

µ


1

1−λ1
. . .

1
1−λn

 �


1
1−λ1

. . .
1

1−λp
1

. . .

1


� µκ(1)


1

1−λ1
. . .

1
1−λn



and for µ = 1− λp+1, κ
(1) = 1−λn

1−λp+1
these inequalities are satisfied. The optimality of κ(1) in

(16) follows directly from the Courant–Fischer min–max characterization [16], which implies
that µ 6 1 − λp+1 and µκ(1) > 1 − λn. Thus the choice of κ(1) is optimal and with P,Z we
obtain the optimal κ(1).

2. For Ẑ as in (14), we note that we have λi ∈ [0, 1) and therefore inequalities (15) immediately
follow.

3. For M (2) we proceed analogously. The desired inequality has the form

µ(I − E)−1 � I + E + EΨp(I − Λp)
−1Ψ>p E � µκ(2)(I − E)−1.(17)

Multiplying with Ψ from the right and its transpose from the left, we obtain that

Ψ(I + E + EΨp(I − Λp)
−1Ψ>p E)Ψ> = diag

(
1

1− λ1
, . . . ,

1

1− λp
, 1 + λp+1, . . . , 1 + λn

)
and the optimal choices are clearly µ = 1− λ2

p+1 and µκ(2) = 1− λ2
n. 2

A similar result for M (1) was obtained in [29]. Note that the optimal choice M (1) can be
viewed as approximation to A−1 of first order, since κ(1) ≈ 1/(1 − λ1

p+1), while M (2) is an

approximation of second order, since κ(2) ≈ 1/(1− λ2
p+1).

Lemma 2 shows how the optimal choices for P,Z may be computed. But in practice we usually
cannot determine these optimal choices, since the spectral decomposition is not available and
even if it were available, then it would be very expensive to apply, since the matrix P would be
a full matrix. Instead we would like to determine P,Z (or P, Ẑ) that are inexpensive to apply
and still produce good approximation properties in M (1) (M (2)). By the results of Lemma 2
it seems natural to set Z = P>AP or to choose Z such that

γZ � P>AP � ΓZ.

An inequality of this form is also useful if we intend to recursively repeat the technique in a
multilevel way. To do this we replace in

LL> + P (P>AP )−1P>(18)

the term (P>AP )−1 by an additive approximation L1L
>
1 + P1(P>1 P

>APP1)−1P>1 . For the
construction of M (2) the procedure is analogous. Recursively applied, this idea leads to the
following algebraic multilevel scheme.
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Let A ∈ Rn,n be symmetric positive definite and let n = nl > nl−1 > · · · > n0 > 0 be integers.
For chosen full rank matrices Pk ∈ Rnk,nk−1 , k = l, l − 1, . . . , 1, define Ak via

Ak =

{
A k = l,

P>k+1Ak+1Pk+1 k = l − 1, l − 2, . . . , 1.

Choosing a nonsingular matrix Lk ∈ Rnk,nk such that LkL
>
k ≈ A−1

k , k = 0, . . . , l then multi-

level sparse approximate inverse preconditioners M
(1)
l ,M

(2)
l are recursively defined via

M
(1)
k =

{
A−1

0 k = 0,

LkL
>
k + PkM

(1)
k−1P

>
k k = 1, . . . , l,

(19)

and

M
(2)
k =

{
A−1

0 k = 0,

Lk(2I − L>k AkLk)L>k + (I − LkL>k Ak)PkM
(2)
k−1P

>
k (I −AkLkL>k ) k = 1, 2, . . . , l,

(20)
respectively.

For l = 1 we obviously obtain the operators M (1) and M (2) in (8) and (10), respectively.

If we exactly decompose the matrix on the coarsest level, i.e., A−1
0 = L0L

>
0 , for example by

the Cholesky decomposition and set Πk = PlPl−1 · · ·Pk+1, then we can rewrite M
(1)
l as

M
(1)
l =

l∑
k=0

ΠkLkL
>
k Π>k .(21)

For M
(2)
l one obtains that

I −M (2)
l A = (I −ΠlLlL

>
l Π>l A) · · · (I −Π0L0L

>
0 Π>0 A) · · · (I −ΠlLlL

>
l Π>l A).(22)

We see from (21), (22) that M
(1)
l can be viewed as additive multilevel method, since all the

projections Πk are formally performed simultaneously, while M
(2)
l can be viewed as multiplica-

tive multilevel method, since the projections Πk are performed successively. In the sequel we

also refer to M
(1)
l as additive algebraic multilevel preconditioner and to M

(2)
l as multiplicative

algebraic multilevel preconditioner.

The operator M
(2)
l is immediately derived from V –cycle multigrid methods in the numerical

solution of partial differential equations. A special case for the operator M
(1)
l is that LkL

>
k =

1
αk
I is a multiple of the identity. In this case for E = I−αkAk, the choice of some columns of

E can be expressed as applying a permutation Φk ∈ Rnk,nk−1 to E, i.e. Pk = (I − αkAk)Φk.

In this case M
(1)
l reduces to

M
(1)
l =

1

αl
(I + αlPlMl−1P

>
l ) =

1

αl

(
I +

αl
αl−1

Pl

(
I + αl−1Pl−1Ml−2P

>
l−1

)
P>l

)
= · · · ,

where the dots indicate that Ml−2 has to successively substituted in a similar way. For op-
erators of this form in [22] optimal choices for αk have been discussed according to a wisely
a priori chosen permutation matrix Φk. Such operators have also been studied in detail in
[2, 3].
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3 Approximation Properties

In this section we discuss the approximation properties of M (1),M (2) from (8),(10) for the
case l = 1 and later for arbitrary l > 1.

For given Z,P we compare the approximation properties of M (1),M (2) in (9), (11) with the
optimal choices in Lemma 2. For this we use the following theorem.

Theorem 3 ( [20]) Consider a symmetric positive definite matrix M ∈ Rn,n and matri-
ces Pk ∈ Rn,nk with rankPk = nk for k = 1, . . . , l and rank [P1, . . . , Pl] = n. Consider,
furthermore, positive definite matrices Bk ∈ Rnk,nk and

M−1
S :=

l∑
k=1

PkB
−1
k P>k .(23)

If K > 0 is a constant, such that for every x ∈ Rn there exists a decomposition x =
∑l

k=1 Pkxk
satisfying

l∑
k=1

x>k Bkxk � Kx>Mx,(24)

then MS � KM .

Applying this Theorem we can prove the following result.

Theorem 4 Let A ∈ Rn,n be symmetric positive definite and let L ∈ Rn,n be nonsingular
such that M = L>AL � I. Set E = I −M and P = LV , where V ∈ Rn,p has rankV = p
and let W ∈ Rn,n−p be such that rankW = n − p and W>MV = 0. Finally let Z ∈ Rp,p be
symmetric positive definite such that

γP>AP � Z � ΓP>AP(25)

with positive constants γ,Γ.

1. If
W>W � ∆ W>MW,(26)

for some positive constant ∆, then for the matrix M (1) in (8) we have

γ

γ + 1
A �

(
M (1)

)−1
� max{Γ,∆}A.(27)

2. If in (25) γ > 1 and[
0 0
0 W>MW

]
� ∆ [V,W ]> (M − EME) [V,W ] ,(28)

for some positive constant ∆, then for the matrix M (2) in (10) we have

A �
(
M (2)

)−1
� max{Γ,∆}A.(29)
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Proof. 1. We apply Theorem 3 to the matrices M , B1 = I, B2 = Z, P1 = I, P2 =
L−1P = V . Set Π = P2(P>2 MP2)−1P>2 M and Ω = I − Π. Since Π>M(I − Π) = 0, we have
Ω = W (W>MW )−1W>M . It follows that every x ∈ Rn can be written as

x = (I −Π)x︸ ︷︷ ︸
P1x1

+ Πx︸︷︷︸
P2x2

= P1x1 + P2x2,

where x2 = (P>2 P2)−1P>2 x and x1 = Ωx. By Theorem 3 it suffices to find a constant K > 0
such that

x>1 x1 + x>2 Zx2 6 Kx>Mx.

From (25) it follows that
Ω>Ω � ∆ Ω>MΩ.

Substituting the representations of x1, x2 we obtain

x>1 x1 + x>2 Zx2 = x>Ω>Ωx+ x>2 Zx2

6 max{Γ,∆}(x>Ω>MΩx+ x>2 (P>2 MP2)x2)

= max{Γ,∆}(x>Ω>MΩx+ x>Π>MΠx)

= max{Γ,∆}x>(Ω + Π)>M(Ω + Π)x

= max{Γ,∆}x>Mx.

Thus we have K = max{Γ,∆} in Theorem 3.

For the other inequality we obtain from

M +M1/2P2Z
−1P2M

1/2 �M +
1

γ
M1/2P2(P>2 MP2)−1P>2 M

1/2 �M +
1

γ
I

that

I + P2Z
−1P2 � I +

1

γ
M−1 � (1 +

1

γ
)M−1.

Hence we get

M (1) = LL> + PZ−1P> � (1 +
1

γ
)A−1.

2. To derive the inequalities for M (2) we multiply M (2) by M1/2L−1 from the left and its
transpose from the right. We obtain

M1/2L−1M (2)L−>M1/2 = 2M −M2 + EM1/2V Z−1(M1/2V )>E

= I − E
(
I − (M1/2V )Z−1(M1/2V )>

)
E.

Setting V̂ = M1/2V , T = I − V̂ (V̂ >V̂ )−1V̂ > and T̃ = I − V̂ Z−1V̂ >, it follows that P>AP =
V̂ >V̂ and

M1/2L−1M (2)L−>M1/2 = I − ET̃E

� I − E
(

(1− 1

γ
)I +

1

γ
T

)
E

� I −
(

1− 1

γ

)
E2.
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If γ ≥ 1, then the last term is bounded by I, otherwise the bound will be 1
γ and hence it

follows that
(M (2))−1 � min{γ, 1}A.

For the other direction we can adapt the proof of Theorem 3.1 in [32]. We have to estimate
ET̃E by a multiple of the identity from above. Note that since W>M1/2V̂ = W>MV = 0,
inequality (28) is equivalent to

M1/2TM1/2 � ∆ (M − EME)

or

E2 � I − 1

∆
T.

Observe that ET̃E � βI if and only if T̃ 1/2E2T̃ 1/2 � βI and hence, since γ > 1, we have
that T̃ 1/2 exists and it follows that

T̃ = T + V̂
(

(V̂ >V̂ )−1 − Z−1
)
V̂ > � T +

(
1− 1

Γ

)
V̂ (V̂ >V̂ )−1V̂ >.

Since T̃ T = T = T T̃ we obtain

T̃ 1/2E2T̃ 1/2 � T̃ − 1

∆
T̃ 1/2T T̃ 1/2

= T̃ − 1

∆
T

� (1− 1

∆
)T +

(
1− 1

Γ

)
V̂ (V̂ >V̂ )−1V̂ >

� max{1− 1

∆
, 1− 1

Γ
}
(
T + V̂ (V̂ >V̂ )−1V̂ >

)
= max{1− 1

∆
, 1− 1

Γ
}I.

From this we finally obtain that

(M (2))−1 = L−>M1/2(I − ET̃E)−1M1/2L−1 � max{∆,Γ}L−>ML−1 = max{∆,Γ}A.

2

For the operator M (1) the condition number of M (1)A may also be estimated in terms of
the angle between the invariant subspaces associated with the p smallest eigenvalues of M
and V . We refer to [29] for this approach. Note that in (26), (28) we always have ∆ > 1,
since M � I. Thus if we set Z = P>AP in Theorem 4, then γ = Γ = 1 and the bounds for
M (1) are determined by ∆ only. Via (26) we see that the inequality for M is only needed on
the subspace W which is the M–orthogonal complement of spanV . Especially for the choice
P in Lemma 2 it is easy to verify that ∆ = 1

1−λp+1
. Thus we obtain a condition number

κ(1) = 2
1−λp+1

in Theorem 4, which is only slightly worse than the optimal condition number

obtained via Lemma 2, which would give κ(1) =
(1−λn)(2−λp)

(1−λp+1)(2−λ1) . In a similar way we can

compare the bound for M (2) obtained by Theorem 4 with the result of Lemma 2. In this case
we obtain ∆ = 1

1−λ2p+1
and thus κ(2) = 1

1−λ2p+1
. Again this is almost the bound of Lemma 2,

which would give κ(2) = 1−λ2n
1−λ2p+1

. In this respect, the bounds in Theorem 4 are (almost) as

sharp as the optimal bounds in Lemma 2. In contrast to Lemma 2 , Theorem 4 can be applied
to any prescribed choice of P that has full rank!

Our next theorem extends Theorem 4 to the case l > 1.
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Theorem 5 Let A ∈ Rn,n be symmetric positive definite and consider the algebraic mul-

tilevel operators M
(1)
l ,M

(2)
l in (19) and (20), respectively. Suppose that the matrices Lk are

chosen such that Mk = L>k ALk � I for all k = 1, . . . , l. Set Ek = I −Mk, Pk = LkVk and let
Wk ∈ Rnk,nk−nk−1 be such that rankWk = nk − nk−1 and W>k MkVk = 0, for all k = 1, . . . , l.

1. If ∆ is a constant such that

W>k Wk � ∆ W>k MkWk,(30)

for all k = 1, . . . , l, then we have

1

l + 1
A �

(
M

(1)
l

)−1
� ∆A.(31)

2. If ∆ is a constant such that[
0 0
0 W>k MkWk

]
� ∆ [Vk,Wk]

> (Mk − EkMkEk) [Vk,Wk] ,(32)

for all k = 1, . . . , l, then we have

A �
(
M

(2)
l

)−1
� ∆ A.(33)

Proof. We proceed by induction on l. For l = 1 the assertion follows by Theorem 4 applied

to Z = P>AP . If we apply Theorem 4 to Al−1,M
(1)
l−1, i.e., let ∆ be a constant such that

1

l
Al−1 � (M

(1)
l−1)−1 � ∆ Al−1,

then, with Z = (M
(1)
l−1)−1, we obtain γ = 1

l ,Γ = ∆. But γ
1+γ = 1

l+1 and hence (31) follows.

Inequality (33) follows analogously. 2

By Theorem 5 we only loose a factor 1
l+1 in the condition number by using l+1 levels compared

with the case l = 1 (exact 2–level method). If the reduction in size of Ak in every step is
sufficient, i.e., for example if the size of Ak−1 is half the size of Ak or less, then we need at
most l 6 log2(n) levels. In this case the factor 1/(l + 1) ≈ 1/ log2(n) is (almost) neglectible.

For the multilevel method we still need a method for the construction of a well–suited matrix
Pk in each step. This will be the topic of the next section.

4 The Coarsening Process

So far we have not discussed the construction of the coarse grid projection matrix P for given
L,A. As before we set L>AL = M , E = I −M and assume that E � 0.

4.1 Construction of P via the QR–Decomposition

We have already seen in Lemma 2, that in terms of conditioning an invariant subspace V
of E associated with the large eigenvalues of E yields the optimal choice for P = LV . But
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in practice we neither have this invariant subspace available nor is this a favorable choice,
since in this case P would typically be full and a further coarsening of P>AP will be almost
impossible, since this matrix is no longer sparse. So we need a different choice for P = LV .
By Lemma 1 we may use a suitably chosen set of columns of E as V to approximate the
space spanned by the eigenvectors associated with the large eigenvalues. But Lemma 1 does
not give bounds on the preconditioning property of the resulting preconditioner.
On the other hand the approximation results from Section 3 and especially (28) show that
choosing a suitable space V will give the desired approximation properties.
To find this suitable space V , we need to establish the connection between the approxima-
tion results and Lemmas 1 and 2. According to the proof of Lemma 1 we need a QR–like
decomposition M1/2E = QR (or more precisely of M1/2Êp = QR) if we want to approx-
imate the eigenvectors associated with the large eigenvalues. Equivalently we can compute
E = QR, where Q>MQ = I. So if V , satisfying (28), arises from a QR decomposition of E
with Q>MQ = I, then Lemma 1 is applicable. In other words this choice of V should ensure
that E is well approximated by a rank–p matrix up to a small error. Lemma 6 gives precisely
this connection.

Lemma 6 Let M ∈ Rn,n be symmetric positive definite and let E = I −M . Suppose that
we have a decomposition

E [Π1,Π2]︸ ︷︷ ︸
Π

= [V,W ]︸ ︷︷ ︸
Q

[
R11 R12

0 R22

]
︸ ︷︷ ︸

R

,(34)

where Π is a permutation matrix, Q = [V,W ] is nonsingular and V >MW = 0. Then there
exist matrices R,F such that

E = M1/2(EΠ1)R+ F.(35)

If there exists a constant ∆ that satisfies (28), then ‖F‖22 6 1− 1
∆ .

Proof. Since [V,W ] is nonsingular and W>MV = 0, we have

I = M1/2V (V >MV )−1V >M1/2 +M1/2W (W>MW )−1W>M1/2.

With R = R−1
11 (V >MV )−1V >M1/2E we have

F ≡ E −M1/2(EΠ1)R

= E −M1/2V R11R

= E −M1/2V (V >MV )−1V >M1/2E

= M1/2W (W>MW )−1W>M1/2E

and it follows that

‖F‖22 = ‖(W>MW )−1/2W>M1/2E‖22

= sup
x6=0

x>W>EMEWx

x>W>MWx

= 1− sup
x 6=0

x>W>(M − EME)Wx

x>W>MWx

6 1− 1

∆
.
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2

Lemma 6 shows that if V satisfies (28) with a small ∆, then by Lemma 1 the spaces spanned
by the columns of M1/2V and those of M1/2EΠ1 are good approximations to the invariant
subspace of E associated with the p largest eigenvalues.

As a consequence of Lemma 6 we may use a QR–decomposition with column pivoting of E,

E[Π1,Π2] = [V,W ]R, V >MW = 0(36)

to obtain a projection matrix P = LEΠ1 = LV R−1
11 such that the remaining error matrix F

has small norm. Clearly there is no restriction in replacing V by EΠ1, since by V = EΠ1R
−1
11

both sets of columns span the same space. But the preconditioners M (1),M (2) do not change
when replacing V by V R11. In contrast to V , EΠ1 is typically sparse. Moreover, we can
determine P = LEΠ1 as coarse grid projection matrix from the QR–decomposition (36)
for which the bounds of Lemma 4 hold. Here the columns of V,W are not required to be
orthogonal in the standard inner product as one typically requires in a QR–decomposition,
see e.g. [16, 34], but they are orthogonal with respect to the inner product defined by M . We
will not discuss in detail how to compute an approximate QR–decomposition. One possibility
is to adapt a QR–like decomposition as in [34] but other constructions are possible as well.
See [8] for a detailed description of this quite technical construction.

4.2 Selection of Coarse Grid Nodes

The next issue that has to be discussed is the pivoting strategy in the QR-decomposition.
Clearly the best we can do is to locally maximize ∆ in the inequalities (26), (28) to obtain
a feasible coarse grid matrix P = LEΠ1 for the preconditioners M (1) in (8) and M (2) in (9).
Since we only have the freedom to choose the permutation Π1 in each step, we could choose
p columns of E to locally optimize (26), (28). It is clear that for a fixed number of columns p
there exist

(
n
p

)
permutations which have to be checked and for any of these choices one has to

compute a QR decomposition of an n × p matrix EΠ1 to get the corresponding ∆. Already
for small p the costs are prohibitively expensive, e.g., for p = 2, n(n − 1)/2 possibilities
have to be checked. So in practice not more than p = 1 can be used in one step. Using the
M -orthogonality of V , i.e., that V >MV = I, we set

T = I − V V >M.(37)

Then it is easy to see that the M–orthogonal complement W of V is given by

W = TEΠ2.(38)

Using T from (37), identity (26) can be written as

1

∆
= min

y 6=0

y>W>MWy

y>W>Wy
(39)

or equivalently as
1

∆
= min

Tx6=0

x>T>MTx

x>T>Tx
.(40)

Likewise we can reformulate (28) as

1

∆
= min

Tx6=0

x>(M − EME)x

x>T>MTx
.(41)
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The minimal quotient (40) is obtained if Tx is the eigenvector associated with the smallest
eigenvalue of M .

After a certain pivot index has been chosen in step p, we can compute the best pivot index
from the remaining matrix using (40), (41) and get the next pivot column.

Expressions (40), (41) require the solution of an eigenvalue problem in every step. Since even
for small matrices it is almost impossible to solve all the eigenvalue problems completely for
any possible choice in step p+1, the eigenvector of M associated with the smallest eigenvalue
can serve as test vector. Initially the minimum is achieved for the eigenvector associated with
the smallest eigenvalue λ. Suppose that x with x>x = 1 is a normalized eigenvector of M
associated to the smallest eigenvalue, say λ. Then we have

λ̂ :=
x>T>MTx

x>T>Tx

=
x>(M −MV V >M)x

x>(I − 2V V >M +MV V >V V >M)x

= λ
1− λ‖V >x‖22

1− 2λ‖V >x‖22 + λ2(x>V )V >V (V >x)
.(42)

If V >V is not too big then, once a projection operator T is applied, the change in λ̂ is
essentially determined by the norm of V >x. Examining equation (42) we see that if ‖V >x‖2
is large, then λ̂ will still be close to λ, while if ‖V >x‖2 is small then λ and λ̂ will be even
much closer.

We can do similar calculations for (41) and obtain

λ̂ =
x>(M − EME)x

x>T>MTx
=

1− (1− λ)2

1− λ‖V >x‖22
.

Here the changes are precisely driven by the angle ‖V >x‖2 independently of V >V .

This analysis justifies to replace both (40), (41) by ‖V >x‖2. In [8] approximations to x were
computed using a simple heuristic approach but clearly there exist many other strategies. Let
us postpone the concrete choice of a test vector that approximates the eigenvector x for a
moment and let us discuss pivoting strategies based on a given angle ‖V >x‖2. A first strategy
would be that, after p coarse grid nodes have been chosen, we choose the next coarse grid
node such that ‖V >x‖2 is maximized for all possible T of the form

T = I − V V >M, V = [Vp, vp+1].

Here Vp corresponds to the already chosen first p coarse grid nodes in the QR decomposition
(34) while vp+1 represents column p+ 1 and we want that [Vp, vp+1]>M [Vp, vp+1] = I.

A second and better approach is the following block strategy. Since V spans the same space
as suitably chosen columns of E, we have that two columns i, j of V or E are M–orthogonal,
if their distance is larger than 3 in the graph of M . This can be seen from the fact that E,M
have the same graph and E>ME may have nonzeros elements only for pairs (i, j) that have
a distance less than or equal to 3. For this reason for k = 1, . . . , n we introduce the sets

N t(k) = {l : e>k |E|tel 6= 0}.(43)

that contain the nodes of distance t from k in the undirected graph associated with E. Since
any two possible choices for vp+1 commute if their distance in the undirected graph of M is
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larger than 3, we can choose as many new nodes in step p+1 as there are nodes with distance
4 or more between each other. Hence, after p coarse grid nodes have been chosen, we may
choose the next coarse grid node such that V >x is maximized for all T of the form

T = I − V V >M,V = [Vp, v
(1)
p+1].

Then we can continue this procedure for every node of distance larger than 3 from node p+ 1
and obtain

T = I − [Vp, v
(1)
p+1, v

(2)
p+1][Vp, v

(1)
p+1, v

(2)
p+1]>M

We can repeat this strategy until there exists no new nodes outside N 3(k) for any selected
coarse grid node k. Since all these new nodes are independent of each other, eigenvalue
problems (40), (41) need not be updated during this step and likewise V >x is maximized
independently.

Numerical experiments with these two strategies have shown that in practice the second
strategy is preferable, since it does not run into a local but non–global optimum as often as
the first strategy.

We will also introduce a locking mode. Suppose that one pass of the block strategy has
determined a certain set of coarse grid nodes, while the remaining nodes so far are not
considered, since they are within a distance of 3 to one of the members of the set. Let us
omit indices for a moment and set T = I − V V >M . Suppose that in step p + 1, the index
l is chosen as coarse grid node in the second strategy. For all neighbouring nodes k we can
compute the arithmetic mean of (v>k x)2. Then we lock all those nodes m for which the value
(v>k x)2 is smaller than the arithmetic mean, i.e. we do not consider m as coarse grid node
anymore. In our experience this strategy is save when being applied a–posteriori after a set of
coarse grid nodes has been determined such that all remaining nodes are within a distance of
3 to at least one coarse grid node or more. We also apply this strategy during the detection
of the coarse grid nodes to all nodes within distance 3 of the recently detected coarse grid
node. But in contrast to the strategy that locks nodes a–posteriori we need to be much more
careful when locking nodes during the construction of coarse grid nodes. In other words we
add some constraint before we lock nodes in order to make sure that we do not lock nodes
that might become potential coarse grid nodes later on. For this reason we only lock those
nodes which are within a distance of 3 to the coarse grid node that is currently determined
and require that for any of these nodes there exists a neighbour node belonging to the coarse
grid. This is much more restrictive but accelerates the process, since during the construction
the number of nodes that need to be updated or that are considered as coarse grid nodes
decreases significantly.

The basic form of the coarsening process then looks as follows.

Set x>E = α, νi = (Eei)
>MEei and p = 0.

while nodes available
Choose node p+ 1 subject to maximize α2

p+1/νp+1 among all available nodes.

Exclude nodes within distance 3 or less.
Perform one step of the QR–decomposition (34).
Replace α by Tα and νi by (TEei)

>MTEei.
p = p+ 1

Lock nodes.
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To perform this procedure, we have to sort the list of angles
(
‖v>j x‖22

)
j
. This could for

example be done initially and then the list can be updated whenever angles change. Our
experiments have shown that after a step of the QR–decomposition (full or approximate)
was performed, the angles often drastically change. Although this is a local effect for the
case of an approximate QR–decomposition, to update a sorted list of angles was very costly.
So instead of the first step in the described procedure we take the maximum only among the
nodes of N t(i), where i is the coarse grid node that has been just chosen in the previous step.
Since the nodes of N t(i) are locked from the previous step, they cannot serve as coarse grid
nodes. But what one could do is to use one node j ∈ N t(i), that maximizes ‖v>j x‖2. Instead
of taking this node j as coarse grid node, we only simulate one step of the approximate QR
decomposition and take a related unlocked node from N t(j) as next coarse grid node that

maximizes
(
‖v>j x‖22

)
j
. Only if N t(j) consists of nothing but locked nodes or coarse grid

nodes, then the step of maximizing ‖V >x‖2 is carried out. In general there are typically
much more than only one node that might serve as next coarse grid node. Therefore the set
of candidates is stored in a list and candidates from this list can serve as coarse grid nodes in
a later steps (following the first–in first–out principle). This simplifies the detection of coarse
grid nodes massively and steps that require a simulation of an additional QR step become
relatively rare.
At the end of the procedure we will end up in a situation, where every node is either locked
or it belongs to the coarse grid. Then we keep those nodes j locked for which ‖v>j x‖2
was below the arithmetic mean taken over N t(j). After that new unlocked nodes appear
and the process to detect coarse grid nodes is repeated. We also unlock nodes j if there is
either no coarse grid node inN 1(j) or if there is no unlocked node with a larger angle inN 1(j).

In every step of the procedure that determines the new coarse grid we need a step of the QR
decomposition. To do this exactly would again be too expensive. In the next subsection we
therefore discuss an approximate QR decomposition.

4.3 A simple approximate QR decomposition

To derive an approximate QR decomposition we have to discuss which problems occur. One
problem is that a full QR decomposition will typically end up in a full matrix Q even if
the original matrix is sparse. But there is a simple way to work around this large memory
requirement. If a partitioned matrix A =

[
A1 A2

]
is factored as

A =
[
Q1 Q2

] [ R11 R12

O R22

]
,

then Q1 can be obtained from A1 by solving a linear system with R11. As long as only the
last column, say column k, of Q1 is required, then we can compute Q1ek := A1r via the
solution of the linear system R11r=ek and e>k R12 from e>k Q

>
1 MA2, see [34] for an application

of this approach. Clearly Q1ek will still be full and the costs are increasing as k increases,
since one has to solve a linear system with a k × k matrix R11, but solving a linear system
with R11 corresponds to a reorthogonalization of A1ek against the leading k − 1 columns
of Q1 in the modified Gram–Schmidt process. So a natural simplification is to restrict the
reorthogonalization procedure to a neighbourhood of k in the sense of the graph of A. Here
the matrix for which a QR decomposition is performed is the residual matrix E and the inner
product is given by the preconditioned matrix M . So a natural way to define a neighbourhood
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of k is given by sparsity pattern of E>ME, i.e., we consider the nodes of N 3(k) and reduce
R11 to the diagonal block associated with N 3(k).

Now suppose that we have generated a test vector (see subsection 4.4). Even if we can detect
a reasonable set of coarse grid nodes from the approximate QR decomposition, we loose our
test vector x0 from the initial grid. Also we need a new test vector, when the coarsening
process is repeated on the next coarser grid. Of coarse one can use those components of x or
x0 that are associated with the coarse grid nodes. More sensible is to modify the coarsening
process such that recycling of components of the test vector is supported. In principle we
should have Mx ≈ 0, i.e. Ex ≈ x. Suppose that C is the set of coarse grid nodes. We
should try to modify the selection of coarse grid nodes subject to Ex ≈

∑
k∈C Eekxk. In

this case we can recycle the test vector and use
(
xk

)
k∈C

as test vector for the repeated

coarsening process applied to the second grid. Since E � I we can add a post–processing
step to the algorithm in which the condition of maximizing the angle ‖V >x‖2 by taking
all nodes j such that ‖v>j x‖2 > cmaxl ‖v>l x‖2 is supplemented with additional nodes k

that maximize ‖
∑

k∈C Eekxk + Eejxj‖2. In practice we use c = 3
4 . To complete this post

processing step the final set C is supplemented with additional nodes j subject to minimize
‖Ex− ρ(

∑
k∈C Eekxk +Eejxj)‖1. Here ρ is chosen to minimize ‖Ex− ρ

∑
k∈C Eekxk‖1, since

we typically do not obtain ρ = 1.

4.4 Construction of a test vector

We cannot afford to compute the exact smallest eigenvector, since this would typically be
more expensive than solving the linear system. We need to find a test vector that can be
easily generated. Throughout the computations we use x0 = (1, . . . , 1)> for the initial matrix
A and start with x = L−1x0 for the preconditioned system M . This test vector is known to
satisfy Ax0 ≈ 0 in many applications which arise from partial differential equations but other
choices for x0 may also be used. To use x as test vector some more work is necessary. Small
components of x may be important but they do not contribute to the measure ‖V >x‖2. This
is even more serious, if x is only an approximate eigenvector and if V >MV 6= I, which is the
case for an approximate QR factorization.

To make sure that the information on x is not overlayed by the approximation errors we split
the approximate test vector x as

x = x(1) + x(2),

where ‖x(1)‖ � ‖x(2)‖ and then instead of one test vector x we use the pair of normalized
vectors

[x(1)/‖x(1)‖, x(2)/‖x(2)‖]

together as test vectors. This means that for a potential coarse grid node k, the measure
|v>k x|2 which reflects the angle, is replaced by∥∥∥v>k [x(1)/‖x(1)‖, x(2)/‖x(2)‖

]∥∥∥2

2

which is the angle between vk and the space spanned by x(1), x(2).

The same strategy is recursively applied to x(2). For the small contribution x(2) it is no longer
clear, whether ‖Mx(2)‖ � ‖M‖ · ‖x(2)‖. For this reason we check for each component of x(2)

if its sign should be changed. In principle we could simply take the large components of x as
x(1) and the small components as x(2). But one has to examine the situation in more detail.

17



There are simple cases where small components xj of x most likely do not contribute to Mx.
This is the case if ‖Mx‖ ≈ ‖M(x−ejxj)‖. To detect these cases we compare ‖Mejxj‖∞ with
all ‖Mekxk‖∞, k ∈ N 1(j). If

‖Mejxj‖∞ 6 c max
k∈N 1(j)

‖Mekxk‖∞, c� 1,(44)

then xj is considered to be a component of x(2) but not a component of x(1). In practice we
used c = 1/4. Condition (44) can be viewed as small local contribution with respect to j’s
neighbours N 1(j).

Another case when we should take xj as part of x(2) is when (44) is not fulfilled but

‖Mejxj‖∞ 6 (1 + c)
∑

k∈N 1(j)

‖Mekxk‖∞/|N 1(j)|.

(Here |N 1(j)| denotes the cardinality of N 1(j)). This means that with respect to the average
over the neighbours of j, ‖Mejxj‖∞ is relatively large. If in this case

‖Mejxj‖∞ 6 c max
k=1,...,n

‖Mekxk‖∞,

then ‖Mejxj‖∞ can be viewed as globally small contribution, but not necessarily as noise,
since the neighbours k of j do not have significantly larger ‖Mekxk‖∞ in the average.

This strategy is repeated with x replaced by x(2).

The strategies that we have presented so far, to split and modify the test vector x are based on
examining contributions of x that may be small but become big once the parts are rescaled.
The final modification of x is based on contributions that do no not immediately show up
because they (almost) cancel each other. I.e. we might find proper subsets J ⊂ {1, . . . , n}
such that (mij)i,j∈J(xj)j∈J ≈ 0. To detect these sets we check for any i = 1, . . . , n row i of

Mx. We try to detect a subset J0 ⊂ N 1(i) such that∑
j∈J0

mijxj ≈ 0.

J0 is constructed starting with J0 = {i} and adding additional nodes step by step. Additional
nodes j are added if mijxj has a different sign than miixi. This is done until |

∑
j∈J0 mijxj |

has reached its minimal value or at most a tolerance (we used 0.05 |mii| ‖ (xj)j∈N 1(i) ‖∞).

Additional nodes j with same sign as miixi are added, if |
∑

j∈J0 mijxj | can be reduced
further. After J0 has been detected, we repeat this strategy for all remaining i ∈ J0. If new i
are found with an analogous property, then J0 is enlarged to obtain a new set J1. It is clear
that nodes which were excluded when J0 was constructed will not be added in a later step.
This limits the nodes i which might be considered in the next step. Finally this strategy yields
one or more sets J .

4.5 Final Comments

Finally note that in order to approximately satisfy M � I, we use four steps of the Lanczos
method to compute an approximation to the largest eigenvalue of M .
Since the use of approximate inverses introduces entries that are small in absolute value
compared with the other entries in the row, we used diagonal compensation for M for any
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entry |mij | that was less than 10−4 ·maxk |mik|. For E we also used diagonal compensation
but with 5 · 10−2 instead of 10−4. The reason to use different tolerances is due to the fact
that M with diagonal compensation should well approximate the original M , while E is only
used for the coarse grid projection.
As iterative solver, cg with initial solution x0 was used. As stopping criterion we used
‖Axk − b‖2 6

√
eps ‖Ax0 − b‖2, where eps = 2.2203 · 10−16 denotes the machine precision.

We have described several heuristic ideas to generate the updating procedure for a given
preconditioner. We have seen that this updating can be viewed as an algebraic multigrid
process. In the next section we give several numerical examples and compare with other
multigrid techniques.

5 Numerical results

In this section we illustrate the effectiveness of the new procedures and, in particular, our cho-
sen heuristic approximations. Our computations were done in MATLAB 5.3 [1] on a LINUX
PC with a PENTIUM III/400 processor.

In all our examples we start with a given sparse approximate inverse for the initial matrix.
There are several choices that we discuss. These are (depending on the example) the clas-
sical Jacobi preconditioner, i.e., the diagonal of the matrix, a factored approximate inverse
using the graph of the initial matrix (again from [26, 25]) and finally factored block Jacobi
preconditioners. For this latter type of preconditioner a diagonal block is factored using the
eigenvalue decomposition of the block.

We updated the preconditioner recursively and at each level we stopped the coarsening process
if there were no more nodes available (because of the locking strategy). In the multigrid process
we always used diagonal preconditioning on the coarser levels. We terminated the coarsening
process, when at some level the reduction of the system size was not significant any more,
i.e., more than 75% of the previous system. In this case the coarse grid system was solved via
the Cholesky factorization.

The algebraic multilevel method based on the approximate QR–decomposition will be denoted
by AMG–QR. We will denote the geometric multigrid by GMG and the algebraic multigrid
from [32] will be denoted by AMG–RS.

Example 7 Our first example is the matrix LANPRO/NOS2 from the Harwell–Boeing col-
lection. Table 1 shows the results for the QR–based AMG compared with AMG from [32]. The
original system has size n = 957 and an average number of 4.3 nonzero entries per row. The
condition number of the initial system is 5.1 · 109. The matrix has large positive off–diagonal
entries.

Table 2 gives the results for the number of iteration steps. From Table 2 we can see that the
coarse grids generated by the QR–based AMG perform very well, while in contrast to this
AMG–RS constructs an unsatisfactory coarse grid hierarchy.

For a tridiagonal preconditioner obtained from a factored sparse approximate inverses in
[25, 26], the results for the coarsening process as well as for the iterative process are essentially
identical for all three methods.
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Table 1: NOS2, diagonal preconditioner, coarsening

Levels: system size and number of
nonzeros (average per row)

flops 2 3 4 5 6 7

size 477 237 117 19
AMG–RS

nonzeros
3.9 · 105

4.3 4.3 4.3 2.9

size 477 238 114 55 22 11
AMG–QR

nonzeros
1.4 · 106

4.3 4.3 4.2 4.2 3.2 3.4

Table 2: NOS2, diagonal preconditioning, iteration

type of no AMG–RS AMG–QR

precond. prec. dgl. M
(1)
l M

(2)
l M

(1)
l M

(2)
l

cg steps 59765 6920 4632 2103 92 39

flops 1.1·109 1.5·108 1.7·108 1.7·108 4.0·106 3.5·106

For the factored sparse approximate inverse from [25, 26] with the same sparsity pattern as
the initial matrix the results for the coarsening process can be found in Table 3.

Table 3: NOS2, pattern of A for preconditioning, coarsening

Levels: system size and number
of nonzeros (average per row)

flops 2 3 4 5

size 426 212 79 13
AMG–RS

nonzeros
5.7 · 105

5.5 4.5 2.9 2.8

size 449 152 19
AMG–QR

nonzeros
2.0 · 106

8.3 5.3 2.8

Here the use of a sparse approximate inverse does not improve the coarsening process. The
results are significantly worse than for the case where diagonal preconditioning is used. How-
ever, the QR–based AMG still performs much better than AMG–RS. This is no surprise,
since this example has large positive off–diagonal entries which is known to cause problems
for AMG-RS. The numerical results for the iterative solution are given in Table 4.

Finally we will consider a block–diagonal preconditioner. The matrix NOS2 is block tridiag-
onal with blocks of size 3 × 3. So natural block diagonal preconditioners should have block
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Table 4: NOS2, pattern of A for preconditioning, iteration

type of no pattern AMG–RS AMG–QR

precond. prec. of A M
(1)
l M

(2)
l M

(1)
l M

(2)
l

cg steps 59765 3360 4518 2087 1340 714

flops 1.1·109 9.4·107 1.9·108 1.9·108 7.3·107 7.7·107

size 3, 6, 9, . . .. We will use a block–Jacobi preconditioner of block size 6. Table 5 shows the
results for the generation of the coarse grid hierarchy and Table 6 the numerical results.

Table 5: NOS2, block diagonal (6× 6) preconditioning, coarsening

Levels: system size and number
of nonzeros (average per row)

flops 2 3 4 5

size 476 158 39 19
AMG–RS

nonzeros
5.2 · 105

4.6 3.0 2.9 2.9

size 323 99 36
AMG–QR

nonzeros
1.7 · 106

7.0 5.6 4.5

Again the numerical results are not as good for the diagonal case but still one can observe
a smaller coarse grid hierarchy and a significantly smaller number of iteration steps for the
QR–based AMG.

Table 6: NOS2, block diagonal (6× 6) preconditioning, iteration

type of no block AMG–RS AMG–QR

precond. prec. dgl. M
(1)
l M

(2)
l M

(1)
l M

(2)
l

cg steps 59765 5037 3517 1675 657 299

flops 1.1·109 1.5·108 1.5·108 1.6·108 3.3·107 2.9·107

The last two preconditioners, i.e., the block diagonal preconditioner and the factored sparse
approximate inverse preconditioner with same sparsity pattern as A illustrate that even the
QR–based AMG does not always construct a satisfactory grid, but it is still better than that
of AMG–RS.

Example 8 Consider the problem

−div (a gradu) = f in [0, 1]2

u = g on ∂[0, 1]2
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where a : [0, 1]2 → R has different weights in parts of the domain. In detail we consider in
each quarter the weights

100 1
1 100

The discretization is done using a uniform grid and a five point star difference discretization.
With local weights βN , βW , βE , βS , then the discretization is described by Figure 1.

Figure 1: Dirichlet, 5–point difference star

−βW −βE

−βS

−βN

βW + βE + βN + βS

In every subdomain the value of β is identical to the weights and for nodes on the interface
between the subdomain the arithmetic mean is used.

In this case we will also compare the results with those of geometric multigrid, for which

the compact 7–point stencil 1/2

 0 1 1
1 2 1
1 1 0

 is used. Since for this problem the vector x =

(1, . . . , 1)> represents the constant function, it makes sense to modify the QR–based AMG
slightly. In general we have adapted the AMG such that the coarse grid projection matrix
E(:, C) with the set of coarse grid nodes C roughly satisfies Ev ≈ E(:, C)x(C). In this specific
problem we may satisfy this constraint exactly by replacing E(:, C) with DE(:, C), where D
is a diagonal scaling such that Ev = DE(:, C)x(C).

We use n = 65025 and the initial system has on average 5 entries per row. Table 7 shows
the results of the coarsening process, i.e., the size of the coarser systems and also the average
amount of nonzero elements per row. Table 8 gives the number of iteration steps and flops
using multigrid (geometric/algebraic) as preconditioner for cg.

In order to see how the new method scales we compare the flops for the generation of the
coarsening process for n = 961, 3969, 16129, 65025, see Table 9.

The results so far demonstrate that AMG–QR performs well, even better than classical AMG–
RS. It is better with respect to the coarsening process as well as with respect to the iterative
process. One problem that can be seen from Table 9, however, is that the QR–based AMG is
more expensive (a factor 3) than AMG–RS. This is no surprise, since its construction involves
an approximate QR–factorization. Despite of this construction it also scales linearly.

For a sparse approximate inverse as in [26, 25] with the same sparsity pattern as the initial
matrix the preconditioned system is still an M–matrix, which has been observed to be helpful
for the application of the classical AMG. Table 10 shows that both methods use a much coarser
grid than in the case of diagonal preconditioning. But still AMG–QR needs fewer and smaller
levels. The iterative process is also faster for the QR–based AMG as shown in Table 11.

Scalability is shown in Table 12. It is interesting that for this approximate inverse the QR–
based AMG performs better (less flops ) than in the diagonal case, while the classical AMG
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Table 7: Dirichlet, diagonal preconditioning, coarsening

Levels: system size and number of nonzeros (average per row)

level 2 3 4 5 6 7 8 9

size 32509 8756 2547 822 280 102 37 10
AMG–RS

nonzeros 8.9 9.7 11.2 13.9 15.9 17.2 15.5 8.2

size 32509 7313 1534 463 84 12
AMG–QR

nonzeros 8.9 9.7 10.6 15.6 12.5 5.5

size 16129 3969 961 225 49 9 1
GMG

nonzeros 5.0 4.9 4.9 4.7 4.4 3.7 1.0

Table 8: Dirichlet, diagonal preconditioning, iteration

type of no AMG–RS AMG–QR GMG

precond. prec. dgl. M
(1)
l M

(2)
l M

(1)
l M

(2)
l M

(1)
l M

(2)
l

cg steps 5129 862 84 26 61 24 42 16

flops 6.7·109 1.3·109 2.4·108 1.8·108 1.7·108 1.6·108 1.3·108 1.0·108

Table 9: Dirichlet, diagonal preconditioning, scalability

size 961 3969 16129 65025

flops for the coarse grid generation

AMG–RS 6.0·105 2.6·106 1.0·107 4.2·107

AMG–QR 1.6·106 7.1·106 3.0·107 1.3·108

flops for the iteration (using prec. M (2))

AMG–RS 1.9·106 8.8·106 3.9·107 1.8·108

AMG–QR 1.1·106 5.9·106 3.1·107 1.6·108
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Table 10: Dirichlet, sparsity of A for preconditioning, coarsening

Levels: system size and number of nonz. (average per row)

level 2 3 4 5 6 7

size 14386 7249 2241 466 98 10
AMG–RS

nonzeros 13.4 20.8 22.0 15.1 9.4 2.6

size 9010 1737 338 72 13
AMG–QR

nonzeros 13.6 12.7 11.2 10.7 6.4

Table 11: Dirichlet, sparsity of A for preconditioning, iteration

type of no pattern AMG–RS AMG–QR

precond. prec. of A M
(1)
l M

(2)
l M

(1)
l M

(2)
l

cg steps 5129 436 210 66 64 25

flops 6.7·109 9.1·108 6.6·108 4.8·108 2.0·108 1.6·108

becomes slower. The overhead in the construction is now more than compensated by the
accelerated iterative part. Again both methods scale linearly with respect to the coarsening
process, but AMG–QR is much faster and scales much better in the iterative part.

Finally we use a block diagonal preconditioner with small blocks. For a block diagonal matrix
where each diagonal block has size 4 × 4 we see in Table 13 that the coarse grid generation
for the QR–based AMG is much superior to AMG–RS. Here it is important to note that
due to the use of block diagonal approximate inverses, the preconditioned system has many
positive off–diagonal entries which causes problem for the classical AMG. But the QR–based
AMGs can exploit the benefits of the sparse approximate inverses to construct only a few
small coarser grids. The number of iteration steps here is not so much different between both
AMG methods as shown in Table 14. The construction of much smaller grids for AMG–QR is
reflected by a much faster coarse grid generation and a significant acceleration when applying
the preconditioner in the iteration process. For the coarse grid generation this can be seen
from the surprisingly small difference between the number of flops needed by both AMGs.
For the iterative part one can observe that AMG–QR needs less flops although it requires
more iteration steps.

The numerical results for this problem show that the QR–based AMG better adapts to the
given initial sparse approximate inverse. This should be the case because they have been
constructed to do so. The drawback is that this approach consumes more time for its con-
struction because of using an approximate QR factorization. However AMG–QR scales as
good as AMG–RS.

Example 9 Finally consider the problem

−ε2uxx − uyy = f in [0, 1]2
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Table 12: Dirichlet, sparsity of A for preconditioning, scalability

size 961 3969 16129 65025

flops for the coarse grid generation

AMG–RS 1.2·106 4.6·106 1.8·107 7.2·107

AMG–QR 3.0·106 1.4·107 5.9·107 2.4·108

flops for the iteration (using prec. M (2))

AMG–RS 1.8·106 9.4·106 6.3·107 4.8·108

AMG–QR 1.1·106 6.0·106 2.9·107 1.6·108

Table 13: Dirichlet, block diagonal (4× 4) preconditioning, coarsening

Levels: system size and number of nonzeros (average per row)

level 2 3 4 5 6 7 8 9

size 32592 16251 5773 2185 763 274 106 33
AMG–RS

nonzeros 13.8 17.7 20.7 27.7 25.8 24.7 24.7 16.8

size 8142 1824 382 75 17
AMG–QR

nonzeros 9.1 9.7 9.4 8.2 5.6

Table 14: Dirichlet, block diagonal (4× 4) preconditioning, iteration

type of no pattern AMG–RS AMG–QR

precond. prec. of A M
(1)
l M

(2)
l M

(1)
l M

(2)
l

cg steps 5129 640 76 23 83 32

flops 6.7·109 1.5·109 3.1·108 2.5·108 2.6·108 2.0·108
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Table 15: Dirichlet, block diagonal (4× 4) preconditioning, scalability

size 961 3969 16129 65025

flops for the coarse grid generation

AMG–RS 1.1·106 5.0·106 2.1·107 8.4·107

AMG–QR 1.6·106 6.7·106 2.8·107 1.1·108

flops for the iteration (using prec. M (2))

AMG–RS 2.7·106 1.3·107 5.6·107 2.5·108

AMG–QR 1.7·106 8.0·106 4.2·107 2.0·108

u = g on ∂[0, 1]2

where ε strongly varies from 100 to 10−4. For this problem we use the variational formulation
and piecewise quadratic finite elements, cf. e.g. [9]. The discretization is done using a uniform
triangulation with two additional boundary layers of size ε

4 ×1 near the left and also near the
right boundary (see picture below). Within these boundary layers the triangles are condensed
by an additional factor ε/4 in x–direction.
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We examine the aspect of scalability (with respect to the system size) and robustness (with
respect to ε).

Table 16 shows the number of cg iteration steps for both AMGs for the case of a diagonal
approximation using M (2) as preconditioner. The same comparison is made in Table 17 for
the case of the sparse approximate inverse with the same pattern as A.

Next we examine the computational amount of work in flops .
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Table 16: Anisotropic Dirichlet, diagonal precond., cg steps using M (2)

ε versus scalability

ε 961 3969 16129 65025

100 31 47 89 170
AMG–RS 10−2 42 84 174 268

10−4 38 65 135 264

100 23 33 56 109
AMG–QR 10−2 23 33 60 98

10−4 23 31 49 85

Table 17: Anisotropic Dirichlet, pattern of A for precond., cg steps using M (2)

ε versus scalability

ε 961 3969 16129 65025

100 24 56 103 232
AMG–RS 10−2 47 90 196 318

10−4 48 91 177 336

100 19 24 47 61
AMG–QR 10−2 22 38 49 84

10−4 16 31 43 60

Table 18: Anisotropic Dirichlet, diagonal precond., flops (coarsening + cg)

ε versus scalability

ε 3969 16129 65025

100 3.5·106+2.5·107 1.4·107+2.0·108 5.9·107+1.5·109

AMG–RS 10−2 2.9·106+4.1·107 1.2·107+3.5·108 5.0·107+2.2·109

10−4 2.9·106+3.2·107 1.2·107+2.7·108 5.0·107+2.2·109

100 1.4·107+1.5·107 7.1·107+1.1·108 4.3·108+8.4·108

AMG–QR 10−2 9.8·106+1.4·107 5.1·107+1.0·108 3.3·108+7.0·108

10−4 9.4·106+1.3·107 4.9·107+8.5·107 3.3·108+6.2·108
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Table 19: Anisotropic Dirichlet, pattern of A for precond., flops (coarsening + cg)

ε versus scalability

ε 3969 16129 65025

100 6.1·106+3.0·107 2.5·107+2.2·108 1.0·108+2.0·109

AMG–RS 10−2 5.4·106+4.3·107 2.2·107+3.8·108 9.0·107+2.5·109

10−4 5.5·106+4.4·107 2.2·107+3.5·108 9.0·107+2.6·109

100 2.8·107+9.0·106 1.2·108+7.2·107 5.2·108+3.8·108

AMG–QR 10−2 2.5·107+2.0·107 1.3·108+1.1·108 6.7·108+7.3·108

10−4 2.2·107+1.5·107 1.1·108+8.7·107 6.5·108+5.0·108

As the number of iteration steps in Table 16 and Table 17 have indicated, the scalability of
AMG–RS performs poorer with increasing system size than AMG–QR which roughly needs
only half as many flops (see Table 18 and Table 19). One additional observation can be made.
AMG–QR is designed as a supplement for a given sparse approximate inverse. This does not
mean that it will always be able to compensate a poor smoothing property of the initial sparse
approximate inverse. This can be seen when looking at the scalability of the coarse grid gen-
eration. Although AMG–QR needs more flops for the coarse grid generation when a sparse
approximate inverse with same pattern as A is used compared with the diagonal approximate
inverse, it scales better than in the diagonal case. Apparently the sparse approximate inverse
with same pattern as A compensates the anisotropy much better than the diagonal approx-
imate inverse and this property is detected by AMG–QR. Although this is not part of this
kind of AMG, we expect an improvement if the initial sparse approximate inverse is more
adapted to the anisotropic behaviour than those simple two sparse approximate inverses that
were chosen in these examples.

6 Conclusions

We have derived new approaches for the construction of algebraic multilevel methods that
automatically detect the coarse grid by suitably chosen columns of the residual matrix. We
have presented the mathematical theory to develop optimal preconditioners. The key feature
of the new approach is the choice of an effective pivoting strategy to detect the correct set
of columns. The numerical examples indicate that to obtain a good choice is a challenging
problem. Simple techniques like locking of some nodes or taking several nodes in one step
seem to be useful. Clearly none of these strategies is successful if the sparse approximate
preconditioner does not have a smoothing property, i.e., if most of the eigenvalues of the
preconditioned system clustered at the large end of the spectrum. A more detailed analysis
of methods to construct good pivoting strategies needs further research.
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