
A new approach to algebraic multilevel methods based
on sparse approximate inverses

Matthias Bollhöfer, Volker Mehrmann ∗

Fakultät für Mathematik
Technische Universität Chemnitz
D–09107 Chemnitz, Germany

Abstract

In this paper we introduce a new approach to algebraic multilevel methods and
their use as preconditioners in iterative methods for the solution of symmetric posi-
tive definite linear systems. The multilevel process and in particular the coarsening
process is based on the construction of sparse approximate inverses and their augmen-
tation with corrections of smaller size. We present comparisons of condition estimates
and numerical results.

Keywords: sparse approximate inverse, large sparse matrices, algebraic multi-
level method.

AMS subject classification: 65F05, 65F10, 65F50, 65Y05, 93B40.

1 Introduction

For the solution of large sparse linear systems of the form

Ax = b, A ∈ GL (n,R), b ∈ Rn(1)

sparse approximate inverse approximations [19, 18, 6, 14, 4, 20] have become popular as
preconditioners for Krylov–subspace [9, 24, 13] techniques. The main idea is to construct
a matrix B that approximates A−1 but B is still sparse. Several techniques have been
developed, for example minimizing the norm of ‖AB − I‖ subject to some prescribed
pattern [18, 6, 14] or biconjugate techniques ZAW ≈ D, where Z,W> are lower triangular
matrices and D is diagonal [4].

∗Supported by SFB 393 “Numerische Simulation auf massiv parallelen Rechnern”. email:
bolle@mathematik.tu-chemnitz.de, mehrmann@mathematik.tu-chemnitz.de. URL: http://www.tu-
chemnitz.de/∼bolle/, http://www.tu-chemnitz.de/∼mehrmann/.

1

1.1 Sparse approximate inverses are smoothing

While sparse approximate inverse matrices are quite powerful as preconditioners for a large
class of matrices, there are cases when the sparse approximate inverse needs a large number
of nonzero entries to become a suitable approximation to the inverse of A. An observation,
which one can make quite often when using sparse approximate inverses based on norm–
minimizing techniques, is that many singular values [12] of the residual matrix E = I−AB
are quite small while a small number of singular values stay big. This effect also occurs,
when allowing more fill–in for B.

Example 1 Consider the symmetric positive definite matrix LANPRO/NOS2 from the
Harwell–Boeing collection [8] and apply the sparse approximate inverse suggested in [19,
18] with sparsity pattern as Ak, k = 0, 1, 2, 3. Since this approach explicitly constructs
approximate inverses L to the Cholesky factors U>U = A of A we set E = I −ωL>AL for
a suitably chosen ω. Again E is our residual, adapted to the symmetric positive case. The
parameter ω is chosen such that as many eigenvalues of L>AL as possible are in a vicinity
of 1. In Figure 1 we display the singular values of E in decreasing order. We observe that
most of the singular values tend to 0 while a few singular values stay close to 1 even when
increasing the number of nonzeros for L.

Figure 1: Singular values of the residual matrix E

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

− I, ω=0.625

−− A, ω=0.625

−. A
2
, ω=1

: A
3
, ω=1

si
n
gu

la
r

va
lu

es

components

The observation that many singular values are small but some stay large can be interpreted
that B approximates A on a subspace of large size while there is almost no approximation

2

on the complementary subspace. In the numerical treatment of partial differential equations
this effect is typically referred as smoothing property [15].

Under the hypothesis that many singular values are small and some stay close to 1 it follows
that E = I − AB = UV > + F for matrices U, V > ∈ Rn,p with p � n and ‖F‖ � 1, i.e.,
the residual can be approximated by a low rank matrix. Figure 1 also shows that one can
not expect that p is independent of the dimension n of A. More realistic is the assumption,
that p 6 cn with c < 1, e.g. c = 0.5. But in this case it is important to have a sparse
representation of the low rank part. From this point of view to take the singular vectors
of E with respect to its large singular values may not be efficient. This does not necessary
mean that U, V have to be sparse. E.g. UV > = PZ−1Q for sparse matrices P,Q, Z may
also be a sparse representation while their product need not to be sparse at all.

1.2 Sparse approximation of the invariant subspace of E associ-
ated with the large singular values

The assumption that B is a good approximation to A−1 on a sufficiently large subspace of
E = I − AB implies that we will have a clustering of most of the small singular values.
Only few of the singular values will stay close to 1. In this sense B has the properties of a
good smoother in the sense of multigrid methods for elliptic partial differential equations.
Since only few of the singular values are close to one, we may write E as

E = UV > + F ≡ E0 + F,(2)

with E0 of rank p and ‖F‖ 6 η < 1 and we have that the entries of E0 only slightly differ
from those of E. So we may expect that taking an appropriate selection of columns of E
will be a good choice for augmenting AB by UV >. This is underscored by the following
lemma.

Lemma 2 Let E ∈ Rn,n and let E = [U1, U2] diag (Σ1,Σ2)[V1, V2]> be the singular value
decomposition of E with U1, V1 having k columns and ‖Σ2‖2 6 ε. Then there exist a per-
mutation matrix Π = [Π1,Π2] with analogous partitioning such that

inf
Z∈Rk,k

‖U1Z − EΠ1‖ 6 ε.(3)

Proof:
Introduce

E0 := U1Σ1V
>

1 .

Using the QR decomposition with column pivoting we can construct a QRΠ decomposition
[12] of E0 such that

E0Π = QR,

where Q,R> ∈ Rn,k Q>Q = I, R = [R1, R2]. Here R1 ∈ Rk,k is upper triangular and
Π = [Π1,Π2] is a permutation matrix with Π1 having k columns. It immediately follows

3

that E0Π1 = QR1 and thus there exists a nonsingular k × k matrix Z such that E0Π1 =
QR1 = U1Z. But then we have

‖EΠ1 − U1Z‖2 = ‖(E − E0)Π1‖2 6 ε.

2

Note that Lemma 2 applied to E> instead of E we can analogously approximate V1 by
suitably chosen rows of E. Using Lemma 2 we can determine subspaces that consist of
suitably chosen columns or rows of E, which are close to the subspaces U1, V1 of E associated
with the large singular values of E. But even if the distance between the exact invariant
subspaces associated with the large singular values of E and the set of columns/rows of
E is small, this does not mean that the updated preconditioner is improved. We have to
update in a particular way. Recall that we wish to solve a linear system Ax = b with
A or with its preconditioned variant AB. We cannot just add UV > from (2) to AB like
AB + UV > but we have to modify AB by AB(I + (AB)−1UV >). A small error between
the exact subspace U and a set of columns of E may blow up the norm of UV >. Instead of
simply using a QR–decomposition of E like it was essentially done in the proof of Lemma
2 we need a decomposition of the form E = (AB)QR+ F with ‖F‖ 6 η to keep the error
AB(I + UV >)− I small. But if E = I − AB has a decomposition of the form

E = (AB)QR + F,(4)

where Q,R> ∈ Rn,p, then
AB(I +QR) = I − F(5)

In this paper we discuss the theoretical background for this problem i.e., preconditioners of
this form, and show that they are closely related to algebraic multilevel methods. We derive
two types (multiplicative and addtive) algebraic multilevel preconditioners in Section 2.

The approximation properties of the correction term I +QR in (5) for the two multilevel
schemes are studied in detail in Section 3.

In order to generate from this idea an efficient linear system solver, in (4) we have to find
a sparse representation QR = PZ−1P̂> with sparse matrices P, P̂ , Z and we also have to
find an efficient method to determine the desired columns of E.
For these two problems we describe several (partially heuristic) procedures. In principle,
by Lemma 2 and (4), we could use a QR–like decomposition of E. But this has to be done
in an efficient way and at the same time the memory needed for the decomposition has to
be kept small. The key point in such a QR–like decomposition will be the corresponding
pivoting strategy, since we do not want to select too many columns. This can be viewed
as the coarsening process of the multilevel scheme and is discussed in Section 4. Finally in
Section 5 we present several numerical examples that demonstrate the properties of this
new approach and also indicate the effectiveness of the heuristics that have been used.

In the sequel for symmetric matrices A,B we will use the notation A > B, if A − B has
nonnegative eigenvalues. We also identify for a matrix V ∈ Rn,p the matrix V with the
space {V x : x ∈ Rp} that is spanned by its columns.

4

2 Two Multilevel Preconditioners

In this section we present two approaches of multilevel methods for symmetric positive
definite systems. Let L,A ∈ Rn,n be nonsingular, where A is symmetric positive definite.
Suppose that LL> is a symmetric positive definite matrix in factored from that is an
approximation to A−1. Here it is understood that L is a sparse matrix for which linear
systems are solved with low complexity on the available computer architecture. Suppose
now that the approximation of A−1 by LL> is not satisfactory, e.g., the condition number
of L>AL is not small enough to get good convergence in the conjugate gradient method,
and we wish to improve the approximation (i.e., the preconditioning properties). To do
this we like to determine a matrix of the form

M (1) = LL> + PZ−1P>(6)

with P ∈ Rn,p, Z ∈ Rp,p nonsingular and sparse and furthermore, p 6 cn, c � 1 so that
M (1) is a better approximation to A−1 than LL>. In (6) the sparse approximate inverse
LL> is augmented as

LL> −→ LL>+
n
×
p

p× n

Note that we do not assume that P has low rank, since we do not assume that p� n but
only that p 6 cn with c < 1, e.g. c = 0.5 as already pointed out in the introduction. It is
very important, however, that P,Z are sparse. But observe, that since Z−1 is used in (6),
PZ−1P> need not to be sparse at all!
The particular form (6) is chosen close to the form of an algebraic two–level method, where
multiplication with P, P> corresponds to the mapping between fine and coarse grid and
Z represents the coarse grid system. Note further that using the representation LL> +
PZ−1P> as a preconditioner for A, only a system with Z has to be solved. This is a
good point to introduce the terminology coarse and fine grid as well as coarse grid nodes
and fine grid nodes. As shown in Lemma 2, skilfully chosen columns/rows of the residual
matrix E = I −L>AL can be used to approximate the invariant subspace of E associated
with its large eigenvalues. As we will see below, precisely this invariant subspace has to
be approximated by P . In the sense of the underlying undirected graph of E we refer to
those nodes as coarse grid nodes whose columns/rows of E will be used to approximate the
invariant subspace of E associated with its largest eigenvalues while the remaining nodes
are called fine grid nodes. The process of detecting a suitable set of coarse grid nodes will
be called coarsening process. Once we have selected certain nodes as coarse grid nodes
they are in a natural way embedded in the initial graph. In addition the subset of coarse
grid nodes has its own related graph. As we will show below, Z = P>AP will be (almost)
optimal. But in this case the graph of Z gives us a natural graph associated with the coarse
grid nodes. We will call it coarse grid as an analogy to partial differential equations.

5

Recalling the well-known techniques of constructing good preconditioners for the conjugate
gradient method applied to symmetric positive definite systems, e.g. [12, 16, 25], we should
choose P and Z such that

µA−1 6M (1) 6 µκ(1)A−1(7)

with κ as small as possible and µ > 0. Clearly κ > 1 is the condition number of M (1)A,
i.e., the ratio of the largest by the smallest eigenvalue of M (1)A and thus κ(1) = 1 would be
optimal. The importance of the condition number is justified from the well–known error
bounds for the conjugate gradient method [12] with preconditioner M (1). The iterate x(k)

in the k–th step of the unpreconditioned cg–method satisfies [12]√
(x(k) − x)>A(x(k) − x) 6 2

(√
κ(1) − 1√
κ(1) + 1

)k√
(x(0) − x)>A(x(0) − x).

Clearly in the preconditioned case one has to replace A by (M (1))1/2A(M (1))1/2. We will
discuss the construction of P,Z with minimal κ(1) in the next subsection.

For discretized elliptic partial differential equation one can construct optimal precondition-
ers using multigrid methods [16]. In order to obtain a similar preconditioner augmented
with a suitably chosen coarse grid correction, consider the use of LL> in a linear iteration
scheme with initial guess x(0) ∈ Rn. The iteration scheme [29] for the solution of Ax = b
has the form

x(k+1) = x(k) + LL>(b− Ax(k)), k = 0, 1, 2, . . .

The error propagation matrix I − LL>A satisfies x − x(k+1) = (I − LL>A)(x − x(k)). In
multilevel techniques [15] one could use this iteration for pre and post smoothing and in
addition one has to add a coarse grid correction. In terms of the error propagation matrix
this means that instead of I − LL>A we have (I − LL>A)(I − PZ−1P>A)(I − LL>A) as
error propagation matrix. Clearly this product can be rewritten as I −M (2)A with

M (2) = 2LL> − LL>ALL> + (I − LL>A)PZ−1P>(I − ALL>).(8)

Note that when applying M (2) to a vector x, A and LL> have only to be applied twice. So
the application of this operator is less expensive than it looks. Again we are interested in
choosing P,Z such that .

µA−1 6M (2) 6 µκ(2)A−1(9)

with κ(2) as small as possible.

Now we discuss elementary approximation properties of M (1),M (2). The first step will be
the construction of optimal P,Z for given A,L. The construction and analysis will be based
on the spectral decomposition

E := I − L>AL = V ΛV >,(10)

where Λ = diag (λ1 . . . , λn) with diagonal elements in decreasing order and V = [v1, . . . , vn]
is orthogonal.

Lemma 3 Let A,L ∈ Rn,n with A symmetric positive definite, L nonsingular, E =
I − L>AL positive semidefinite and let p < n.

6

1. For P ∈ Rn,p, Ẑ ∈ Rp,p defined via

P := L [q1, . . . , qp] , Z := P>AP
(
I − P>AP

)−1
,(11)

we obtain the minimal κ(1) in (7).
In this case we have µ = 1− λp+1, κ

(1) = 1−λn
1−λp+1

.

2. For P from (11) and Ẑ ∈ Rp,p defined via

Ẑ = P>AP(12)

we have
γM (1) 6 LL> + PẐ−1P> 6 ΓM (1),(13)

where γ = 2− λ1 > 1,Γ = 2− λp 6 2.

3. Matrices P from (11) and Ẑ from (12) yield the minimal κ(2) in (9) with µ = 1 −
λ2
p+1, κ

(2) = 1−λ2n
1−λ2p+1

.

Proof:

1. For P,Z as in (11) we have

Z = (I − E)E−1 = (I − diag (λ1, . . . , λp)) diag (λ1, . . . , λp)
−1 ≡ (I − Λp)Λ

−1
p .

Setting Vp = [v1, . . . , vp], (7) is equivalent to

µ(I − E)−1 6 I + VpΛp(I − Λp)
−1V >p 6 µκ(1)(I − E)−1.(14)

By transforming with V > from the left and V from the right we obtain an inequality
for diagonal matrices as

µ


1

1−λ1
. . .

1
1−λn

 6


1
1−λ1

. . .
1

1−λp
1

. . .

1


6 µκ(1)


1

1−λ1
. . .

1
1−λn



and for µ = 1 − λp+1, κ
(1) = 1−λn

1−λp+1
the inequalities hold. The optimality of κ(1) in

(14) follows directly from the Courant–Fischer min–max characterization [12] which
implies that µ 6 1 − λp+1 and µκ > 1 − λn. Thus the choice of κ(1) is optimal and
with P,Z we obtain the optimal κ(1).

2. For Ẑ as in (12), we note that we have λi ∈ [0, 1) and therefore inequalities (13)
immediately follow.

7

3. For M (2) we proceed analogously. The desired inequality has the form

µ(I − E)−1 6 I + E + EVp(I − Λp)
−1V >p E 6 µκ(2)(I − E)−1.(15)

Transforming with V from the right and its transpose from the left, I +E+EVp(I−
Λp)

−1V >p E changes to

1
1−λ1

. . .
1

1−λp
1 + λp+1

. . .

1 + λn


and the optimal choices are clearly µ = 1− λ2

p+1 and µκ = 1− λ2
n.

2

A similar result for M (1) was obtained in [2]. Note that with the optimal choice M (1) can
be read as approximation to A−1 of first order, since κ(1) ≈ 1/(1− λ1

p+1), while M (2) is an

approximation of second order, since κ(2) ≈ 1/(1− λ2
p+1).

Lemma 3 shows how the optimal choices for P,Z may be computed. But in practice we
usually cannot determine these optimal choices, since the spectral decomposition is not
available and even if it were available, then it would be very expensive to apply, since the
matrix P would be a full matrix. Instead we would like to determine P,Z (or P, Ẑ) that
are inexpensive to apply and still produce good approximation properties in M (1) (M (2)).
By the results of Lemma 3 it seems natural to set Z = P>AP or to choose Z such that

γZ 6 P>AP 6 ΓZ.

An inequality of this form is also useful if we intend to recursively repeat the technique in
a multilevel way. To do this we replace in

LL> + P (P>AP)−1P>(16)

the term (P>AP)−1 by an additive approximation L1L
>
1 + P1(P>1 P

>APP1)−1P>1 . For the
construction of M (2) the procedure is analogous. Recursively applied this idea leads to the
following algebraic multilevel schemes.

Definition 4 Let A ∈ Rn,n be symmetric positive definite and n = nl > nl−1 > · · · > n0 >
0. For chosen full rank matrices Pk ∈ Rnk,nk−1, k = l, l − 1, . . . , 1. define Ak via

Ak =

{
A k = l

P>k+1Ak+1Pk+1 k = l − 1, l − 2, . . . , 1

8

Choose nonsingular Lk ∈ Rnk,nk such that LkL
>
k ≈ A−1

k , k = 0, . . . , l. Then the multilevel

sparse approximate preconditioners M
(1)
l ,M

(2)
l are recursively defined via

M
(1)
k =

{
A−1

0 k = 0

LkL
>
k + PkM

(1)
k−1P

>
k k = 1, . . . , l

M
(2)
k =

{
A−1

0 k = 0

Lk(2I − L>k AkLk)L>k + (I − LkL>k Ak)PkM
(2)
k−1P

>
k (I − AkLkL>k) k = 1, 2, . . . , l

For l = 1 we obviously obtain the operators M (1) and M (2) from the previous subsection.

If we exactly decompose A−1
0 = L0L

>
0 , e.g. by Cholesky decomposition and set Πk =

PlPl−1 · · ·Pk+1 then we can obviously rewrite M
(1)
l as

M
(1)
l =

l∑
k=0

ΠkLkL
>
k Π>k .(17)

For M
(2)
l one obtains that

I −M (2)
l A = (I − ΠlLlL

>
l Π>l A) · · · (I − Π0L0L

>
0 Π>0 A) · · · (I − ΠlLlL

>
l Π>l A).(18)

We conclude from (17),(18) that M
(1)
l can be read as additive multilevel method, since

all the projections Πk are formally performed simultaneously while M
(2)
l can be read as

multiplicative multilevel method, since the projections Πk are performed successively. In
the sequel we also refer to M

(1)
l as the additive algebraic multilevel scheme and refer to

M
(2)
l as the multiplicative algebraic multilevel scheme.

Operator M
(2)
l is immediately derived from V –cycle methods in partial differential equa-

tions. For operator M
(1)
l a special case will be the case when LkL

>
k = 1

αk
I is a multiple of

the identity. In this case Ek = I−αkAk and choosing some columns of Ek can be expressed
as applying a permutation Φk ∈ Rnk,nk−1 to Ek, i.e. Pk = (I − αkAk)Φk. In this case M

(1)
l

reduces to

M
(1)
l =

1

αl
(I + αlPlMl−1P

>
l)

=
1

αl

(
I +

αl
αl−1

Pl
(
I + αl−1Pl−1Ml−2P

>
l−1

)
P>l

)
= · · ·

For this type of operator in [17] optimal choices for αk have been discussed according to a
wisely a priori chosen permutation matrix Φk. This kind of operator has also been studied
in [1, 2]. We refer to [2] for a detailed analysis for this kind of operator.

9

3 Approximation Properties

In this subsection we discuss the approximation properties of M (1),M (2) for the case l = 1
from (6),(8) and later for arbitrary l > 1 as in Definition 4.

The question is, for given Z, P , what can be said about the approximation properties of
M (1),M (2) in (7),(9) compared with the optimal choice from Lemma 3. To get comparison
theorems to the optimal P and Z from Lemma 3 we use of the following theorem.

Theorem 5 ([16]) Given M ∈ Rn,n symmetric positive definite, Pk ∈ Rn,nk with
rankPk = nk for k = 1, . . . , l and rank [P1, . . . , Pl] = n. Let Bk ∈ Rnk,nk be symmet-
ric positive definite. Let

M−1
S :=

l∑
k=1

PkB
−1
k P>k .(19)

If c > 0 is a constant, such that for any x ∈ Rn there exists a decomposition x =
∑l

k=1 Pkxk
satisfying

l∑
k=1

x>k Bkxk 6 cx>Mx,(20)

then MS 6 cM .

Applying this result in our situation yields the following corollary.

Corollary 6 Let L,A ∈ Rn,n with A symmetric positive definite and L nonsingular such
that M = L>AL 6 I. Set E = I −M and P = LV , where V ∈ Rn,p with rankV = p.
Furthermore, let W ∈ Rn,n−p be such that rankW = n − p and W>MV = O and let
Z ∈ Rp,p be symmetric positive definite such that

γP>AP 6 Z 6 ΓP>AP(21)

with positive constants γ,Γ.

1. If
W>W 6 ∆W>MW,(22)

then for the matrix M (1) in (6) we have

γ

γ + 1
A 6

(
M (1)

)−1
6 max{Γ,∆}A.(23)

2. If in (21) γ > 1 and[
O O
O W>MW

]
6 ∆ [V,W]> (M − EME) [V,W] ,(24)

then for the matrix M (2) in (8) we have

A 6
(
M (2)

)−1
6 max{Γ,∆}A.(25)

10

Proof:

1. We apply Theorem 5 to the matrices M , B1 = I, B2 = Z, P1 = I, P2 =
L−1P = V . Set Π = P2(P>2 MP2)−1P>2 M . Since Π>M(I − Π) = O we have
I − Π = W (W>MW)−1W>M ≡ Ω. It follows that any x ∈ Rn can be written
as

x = (I − Π)x︸ ︷︷ ︸
x1

+ Πx︸︷︷︸
P2x2

= P1x1 + P2x2,

where x2 = (P>2 P2)−1P>2 x and x1 = Ωx. By Theorem 5 it suffices to find a constant
c > 0 such that

x>1 x1 + x>2 Zx2 6 cx>Mx.

From (21) it follows that
Ω>Ω 6 ∆Ω>MΩ.

Substituting the representation of x1, x2 we obtain

x>1 x1 + x>2 Zx2 = x>Ω>Ωx+ x>2 Zx2

6 max{Γ,∆}(x>Ω>MΩx+ x>2 (P>2 MP2)x2)

= max{Γ,∆}(x>Ω>MΩx+ x>Π>MΠx)

= max{Γ,∆}x>(Ω + Π)>M(Ω + Π)x

= max{Γ,∆}x>Mx.

Thus we have c = max{Γ,∆} in Theorem 5.

For the other inequality we obtain from

M +M1/2P2Z
−1P2M

1/2 6M +
1

γ
M1/2P2(P>2 MP2)−1P>2 M

1/2 6M +
1

γ
I

that

I + P2Z
−1P2 6 I +

1

γ
M−1 6 (1 +

1

γ
)M−1.

Hence we get

LL> + PZ−1P> 6 (1 +
1

γ
)A−1.

2. To derive the inequalities for M (2) we multiply M (2) by M1/2L−1 from the left and
its transpose from the right and obtain

M1/2L−1M (2)L−>M1/2 = 2M −M2 + EM1/2V Z−1(M1/2V)>E

= I − E
(
I − (M1/2V)Z−1(M1/2V)>

)
E.

Setting V̂ = M1/2V we have P>AP = V̂ >V̂ . We set T = I − V̂ (V̂ >V̂)−1V̂ >, T̃ =
I − V̂ Z−1V̂ >. It follows that

M1/2L−1M (2)L−>M1/2 = I − ET̃E

6 I − E
(

(1− 1

γ
)I +

1

γ
T

)
E

6 I −
(

1− 1

γ

)
E2.

11

If γ is equal to 1 or greater than 1, then the last term is bounded by I. Otherwise
the bound will be 1

γ
. It follows that

(M (2))−1 > min{γ, 1}A.

For the other direction we can adapt a proof from Theorem 3.1 in [23] to our situation.
We have to estimate ET̃E by a multiple of the identity from above. Note that since
W>M1/2V̂ = W>MV = O, (24) is equivalent to

M1/2TM1/2 6 ∆(M − EME)

or

E2 6 I − 1

∆
T.

Since γ > 1, T̃ 1/2 exists and we have that ET̃E 6 βI if and only if T̃ 1/2E2T̃ 1/2 6 βI,
it follows that

T̃ = T + V̂
(

(V̂ >V̂)−1 − Z−1
)
V̂ >

6 T +

(
1− 1

Γ

)
V̂ (V̂ >V̂)−1V̂ >

and since T̃ T = T = T T̃ we obtain

T̃ 1/2E2T̃ 1/2 6 T̃ − 1

∆
T̃ 1/2T T̃ 1/2

= T̃ − 1

∆
T

6 (1− 1

∆
)T +

(
1− 1

Γ

)
V̂ (V̂ >V̂)−1V̂ >

6 max{1− 1

∆
, 1− 1

Γ
}
(
T + V̂ (V̂ >V̂)−1V̂ >

)
= max{1− 1

∆
, 1− 1

Γ
}I.

From this it follows that

(M (2))−1 = L−>M1/2(I −ET̃E)−1M1/2L−1 6 max{∆,Γ}L−>ML−1 = max{∆,Γ}A.

2

For the operator M (1) one can also estimate the condition number of M (1)A in terms of
the angle between the invariant subspace associated with the p smallest eigenvalues of M
and V . We refer to [2] for this approach. Note that in (22),(24) we always have ∆ > 1,
since M 6 I. Thus if we set Z = P>AP in Corollary 6, then γ = Γ = 1 and the bounds
for M (1) are determined by ∆ only. Via (22) we see that the inequality for M is only
needed on the subspace W which is the M–orthogonal complement of spanV . Especially
for the choice P in Lemma 3 it is easy to verify that ∆ = 1

1−λp+1
. Thus we obtain a condition

12

number κ(1) = 2
1−λp+1

in Corollary 6, which is only slightly worse than the optimal condition

number obtained via Lemma 3, which would give κ(1) = (1−λn)(2−λp)

(1−λp+1)(2−λ1)
. In a similar way we

can compare the bound for M (2) obtained by Corollary 6 with the result of Lemma 3. In
this case we obtain ∆ = 1

1−λ2p+1
and thus κ(2) = 1

1−λ2p+1
. Again this is almost the bound of

Lemma 3, which would give κ(2) = 1−λ2n
1−λ2p+1

. In this respect, the bounds in Corollary 6 are

(almost) as sharp as the optimal bounds in Lemma 3. But the bounds in Corollary 6 can
be obtained for any choice of P that has full rank!

Our next result will even sharpen the bounds for M (1),M (2) in Corollary 6.

Corollary 7 Let L,A ∈ Rn,n with A symmetric positive definite and L nonsingular such
that M = L>AL 6 I. Set E = I −M and P = LV , where V ∈ Rn,p with rankV = p Let
W ∈ Rn,n−p with rankW = n−p and W>MV = O and let Z ∈ Rp,p be symmetric positive
definite such that

γP>AP 6 Z 6 ΓP>AP(26)

for positive constants γ,Γ.

1. If ∆, ∆̂ are constants satisfying

W>W 6 ∆W>MW, W>MW 6 ∆̂W>M2W,(27)

then for the matrix M (1) in (6) we have

γ

γ + 1
A 6 (M (1))−1 6 max{Γ, 2(Γ + 1)∆∆̂

∆ + Γ∆̂
}A.(28)

2. If in (26) γ > 1 and ∆̂ is a constant satisfying

W>MW 6 ∆̂W>(M − EME)W,(29)

then for the matrix M (2) in (8) we have

A 6 (M (2))−1 6 Γ∆̂A.(30)

Proof:

1. We set ∆ = max{Γ, 2 (Γ+1)∆∆̂

∆+Γ∆̂
}. In view of the proof of Corollary 6 it suffices to show

that (
M2 +MP2Z

−1P>2 M
)−1
6 ∆M−1.

Multiplying with [W,P2]−1 from the left and its transpose from the right and using
the fact that W>MP2 = O we obtain(
W>M2W W>M2P2

P>2 M
2W P>2 M

2P2 + P>2 MP2Z
−1P>2 MP2

)−1

6 ∆

(
(W>MW)−1 O

O (P>2 MP2)−1

)
.

13

The diagonal blocks of the left hand side matrix are the inverses M−1
11 ,M

−1
22 of the

Schur–complements M11,M22, where

M22 = P>2 MP2Z
−1P>2 MP2 + P>2 M

(
I −MW (W>M2W)−1W>M

)
MP2

>
1

Γ
P>2 MP2,

M11 = W>M2W −W>M2P2

(
P>2 M

2P2 + P>2 MP2Z
−1P>2 MP2

)−1
P>2 M

2W

> W>M2W −W>M2P2

(
P>2 M

2P2 +
1

Γ
P>2 MP2

)−1

P>2 M
2W

> W>M2W − Γ

Γ + 1
W>M2P2

(
P>2 M

2P2

)−1
P>2 M

2W

=
1

Γ + 1
W>M2W +

Γ

Γ + 1
W>M

(
I −MP2

(
P>2 M

2P2

)−1
P>2 M

)
MW

=
1

Γ + 1
W>M2W +

Γ

Γ + 1
W>M

(
W
(
W>W

)−1
W>

)
MW

>

(
1

(Γ + 1)∆̂
+

Γ

(Γ + 1)∆

)
W>MW.

Since for all symmetric positive definite matrices we have(
A11 A12

A>12 A22

)
6 2

(
A11 O
O A22

)
inequality (28) follows.

2. To show (30) now we set ∆ = Γ∆̂. Again using the notation of Corollary 6 we have
to find ∆ > 0 such that

∆(I − ET̃E) = ∆M1/2L−1M (2)L−>M1/2 >M1/2L−1A−1L−>M1/2 = I

or equivalently

ET̃E 6 (1− 1

∆
)I.

Note that (29) is equivalent to

TE2T 6 (1− 1

∆̂
)I

This can be seen by multiplying with M1/2 from both sides and with [V,W] from the
right and its transpose from the left:

TE2T 6 (1− 1

∆̂
)I ⇔ [V,W]>M1/2TE2TM1/2[V,W] 6 (1− 1

∆̂
)[V,W]>M [V,W]

⇔
[

O O
O W>EMEW

]
6 (1− 1

∆̂
)

[
V >MV O

O W>MW

]
.

14

It follows that

ETE = ET 2E 6 (1− 1

∆̂
)I.

Since T̃ 6 (1− 1
Γ
)I + 1

Γ
T it suffices to choose ∆ > 0 such that

(1− 1

Γ
)EME +

1

Γ
EM1/2TM1/2E 6

(
1− 1

Γ
+

1

Γ
(1− 1

∆̂
)

)
M

!

6 (1− 1

∆
)M.

2

Note that if W>W 6 ∆W>MW , then we already have W>MW 6 ∆W>M2W . Thus
∆̂ 6 ∆ and

(Γ + 1)∆∆̂

∆ + Γ∆̂
6 ∆.

In this sense the bounds of Corollary 6 are sharper than the bounds of Corollary 6 by a
constant factor 2. But if ∆2 � ∆1 then we have

(Γ + 1)∆̂

1 + Γ∆̂
∆

6 (Γ + 1)∆̂

and this is almost an equality. So if Z is scaled such that Γ = 1, then we obtain the sharper
bound

(M (1))−1 6 4∆̂A.

In other words, the inequality W>MW 6 ∆̂W>M2W gives much better information on
the approximation properties than the inequality W>W 6 ∆W>MW .

A similar result holds for M (2). Clearly ∆̂ 6 ∆, but ∆̂� ∆ is possible.

In our next theorem we show that we can extend Corollary 6 to the case l > 1.

Theorem 8 Let A ∈ Rn,n be symmetric positive definite and consider the algebraic
multilevel operators M

(1)
l ,M

(2)
l from Definition 4 for some l > 1. Suppose that the matrices

Lk are chosen such that Mk = L>k ALk 6 I for all k = 1, . . . , l. Set Ek := I−Mk, Pk = LkVk
and let Wk ∈ Rnk,nk−nk−1 with rankWk = nk−nk−1 and W>

k MVk = O, for all k = 1, . . . , l.

1. If ∆ is a constant such that

W>
k Wk 6 ∆W>

k MkWk,(31)

for all k = 1, . . . , l, then we have

1

l + 1
A 6

(
M

(1)
l

)−1

6 ∆A.(32)

15

2. If ∆ is a constant such that[
O O
O W>

k MkWk

]
6 ∆ [Vk,Wk]

> (Mk − EkMkEk) [Vk,Wk] ,(33)

for all k = 1, . . . , l, then we have

A 6
(
M

(2)
l

)−1

6 ∆A.(34)

Proof:
We use induction on l. For l = 1 the result is given by Corollary 6 applied to Z = P>1,0AP1,0.

Next we apply Corollary 6 to Al−1,M
(1)
l−1, i.e., let ∆ be a constant such that

1

l
Al−1 6 (M

(1)
l−1)−1 6 ∆Al−1.

Then with Z = (M
(1)
l−1)−1 we obtain γ = 1

l
,Γ = ∆. But γ

1+γ
= 1

l+1
and hence (32) follows.

Inequality (34) is proved analogously. 2

In a similar way we can derive bounds based on Corollary 7. But this is a lot more technical,
since Γ is not as well isolated in (28) as in (23), so we omit this construction here.

By Theorem 8 we only loose a factor 1
l+1

compared with the case l = 1. If the reduction
of the size in Ak in any step is sufficient, i.e., for example if the size of Ak−1 is half the
size of Ak or less, then this corresponds to a logarithmic factor in n. In this case the factor
1/(l + 1) is neglectible.

For the construction of the multilevel method we still need an algorithm for the construction
of a well–suited matrix Pk in each step. This will be the topic of the next section.

4 The Coarsening Process

So far we have not discussed the concrete construction of P for given L,A. As before we
set L>AL = M , E = I −M and assume that E > O.

We have already seen in Lemma 3, that an invariant subspace V of E associated with the
large eigenvalues of E is a good candidate for P = LV . But in practice we neither have
such an invariant subspace nor is this a favourable choice, since this choice of P will be
typically full and a further coarsening of P>AP will be almost impossible since this matrix
is no longer sparse. So we need a different choice of P = LV .

4.1 Coarsening via QRΠ decomposition

By Lemma 2 we can use a suitably chosen set of columns of E to approximate its singular
vectors associated with the large singular values. According to (4) this can be achieved

16

via a QR–like decomposition of the form E = MQR + F with a matrix F of small norm.
To illustrate that E or more precisely selected columns of E may be a good candidate for
constructing P we have the following lemma.

Lemma 9 Let M,E ∈ Rn,n nonsingular. Suppose we have a decomposition

E [Π1,Π2]︸ ︷︷ ︸
Π

= [V,W]︸ ︷︷ ︸
Q

[
R11 R12

O R22

]
︸ ︷︷ ︸

R

,(35)

where Π is a permutation matrix [V,W] is nonsingular and V >MW = O. Suppose that ∆̂
satisfies (29). Then there exist R,F such that

E = M(EΠ1)R + F(36)

with ‖F‖2
2 6 1− 1

∆̂
.

Proof:
Since [V,W] is nonsingular and W>MV = O we have

I = M1/2V (V >MV)−1V >M1/2 +M1/2W (W>MW)−1W>M1/2.

We set R = R−1
11 (V >MV)−1V >E. With this choice of R we have

F ≡ E −M(EΠ1)R

= E −MVR11R

= E −MV (V >MV)−1V >E

= E −M1/2V (V >MV)−1V >M1/2E

= M1/2W (W>MW)−1W>M1/2E.

From this it follows that

‖F‖2
2 = ‖(W>MW)−1/2W>M1/2E‖2

2 = sup
x 6=0

x>W>EMEWx

x>W>MWx
.

2

As a consequence of Lemma 9, from a QR–decomposition of E

E[Π1,Π2] = [V,W]R, V >MW = O(37)

we obtain a projection matrix P = LEΠ1 = LV R−1
11 such that the remaining error matrix F

has small norm. Clearly there is no restriction in replacing V by EΠ1, since by V = EΠ1R
−1
11

both sets of columns span the same space. But M (1),M (2) do not change if we replace V by
V R11. In contrast to V , EΠ1 is typically sparse. Moreover, we obtain P ≡ LEΠ1 as coarse
grid projection matrix from the QR–decomposition (37) for which the bounds of Lemma

17

7 hold. Here the columns of V,W are not required to be orthogonal in the standard inner
product as one typically requires in a QR–decomposition, but they are orthogonal with
respect to the inner product defined by M .

It remains to discuss the pivoting strategy. Clearly the best we can do is to locally maximize
∆ or ∆̂ in the inequalities (22),(24) or (27),(29) to obtain a feasible coarse grid matrix
P = LEΠ1 for M (1) in (6) and for M (2) in (7).

We still have to derive a method to succesively adapt the pivoting strategy to the QR–
decomposition. For fixed p there exist

(
n
p

)
permutations that have to be checked and for

any of these choices one has to compute a QR decomposition of an n× p matrix EΠ1 and
the corresponding ∆ or ∆̂. Already for small p this is expensive, so in practice not more
than p = 1 can be achieved in one step. To this end in step k of a QR–decomposition we
have a decomposition

EΠ(k) =
[
V (k),W (k)

]
R(k),(38)

where V (k) is an n×k matrix, W (k) is an n×(n−k) matrix such that (V (k))>MW (k) = O. To
find the optimal next pivot column, i.e., Π(k+1), we would have to calculate for example ∆
from (W (k+1))>W (k+1) 6 ∆(W (k+1))>MW (k+1) for any choice W (k+1) depending on all n−k
possible permutations. This is expensive and cannot be done efficiently in practice. But let
us for a while delay this problem and simply formulate an abstract algorithm that computes
this decomposition. We use MATLAB notation [28], i.e., for A = (aij)i=1,...,m,j=1,...,n ∈
Rm,n and 1 6 i1, i2 6 m, 1 6 j1, j2 6 n we set A(i1:i2, j1:j2) = (aij)i16i6i2,j16j6j2 . The :
denotes every column/row.

An adapted modified Gram–Schmidt process [12] then has the following form.

Algorithm 10 (Modified Gram–Schmidt with column pivoting)
Let E ∈ Rn,n and set R = O ∈ Rn,n.
Set π = (1, . . . , n).
for p = 1, 2, . . . , n

Choose k ∈ {p, . . . , n} according to some strategy from (27), (24), (29).
Interchange π(p) and π(k).
q = ME(:, π(p))

R(p, π(p)) =
√
q>E(:, π(p))

E(:, π(p)) = E(:, π(p))/R(p, π(p)), q = q/R(p, π(p))

R(p, π(p+ 1:n)) = q>E(:, π(p+ 1:n))
E(:, π(p+ 1:n)) = E(:, π(p+ 1:n))− E(:, π(p))R(p, π(p+ 1:n))

end

Note that for M = I this is the standard modified Gram–Schmidt procedure with column
pivoting. It is easy to see that successively we construct a decomposition of the form

E[Π1,Π2] = [V,W]

[
R11 R12

O I

]
,(39)

where V >MV = I,W>MV = O and increasing number of columns in V . Using V >MV =
I we set

T = I − V V >M(40)

18

and it is easy to see that
W = TEΠ2.(41)

In Algorithm 10 the columns of V are stored in the leading columns 1, . . . , p of E, that
are overwritten in the algorithm. Likewise W is stored in the remaining columns of the
overwritten E.

Two major items still need to be discussed. We have to fix a column pivoting strategy that
is computable with a moderate amount of computing time and we have to approximate
the “full” QR–decomposition by an incomplete, sparse QR–decomposition, since otherwise
this computation obviously dominates our construction of a preconditioner in an infeasible
way. For the choice of the pivoting strategy there are many possibilities. We will describe
here only briefly one partially heuristic technique. Optimal strategies are currently not
known.

4.2 The Incomplete QR Decomposition

Let us first study the approximation of the QR decomposition by an approximate incom-
plete, sparse QR decomposition. Here use an idea of Stewart [27] for a truncated QR
approximation.

Suppose we have a QR decomposition of the form

E ≡ [E1, E2] = [V,W]︸ ︷︷ ︸
Q

[
R11 R12

O R22

]
︸ ︷︷ ︸

R

,(42)

where Q is orthogonal, R11 ∈ Rp,p is nonsingular and the remaining matrices have corre-
sponding sizes.

Obviously we have
E1 = V R11, R12 = V >E2.(43)

The main observation of Stewart is that we do not have to compute V explicitly. It suffices
to locally recompute the p–th column vp of V from (43) by

vp = E1R
−1
11 ep

and the last row p of R12 can be obtained from v>p E2. We can also discard the part R12

for further computations. It will only be required to update the norm of any column of the
projected (I − V V >)E. Since it is necessary to have R11 available when going from step
p to p + 1 one column of R12 is required. Parts of R12 that have been discarded can be
recomputed from the relation

R11(1 : p, p+ 1) = V >E(:, p+ 1) = R−>11 (E>1 E2(:, 1)).(44)

For details see [27]. What is remarkable in this approach is that we can compute the QR
decomposition of E without storing the Q–part. This saves a lot of memory since even in
large sparse calculations Q is typically not sparse. Clearly this method can be generalized
to the case when column pivoting is used. And for our problem here, where V >MV = I
instead of V >V = I, the changes are obvious.

19

Algorithm 11 (MGS with implicit Q)
Let E ∈ Rn,n and set R = O ∈ Rn,n.
Set π = (1, . . . , n) and ν =

(
E(:, 1)>ME(:, 1), . . . , E(:, n)>ME(:, n)

)
.

for p = 1, 2, . . . , n
Choose k ∈ {p, . . . , n} according to some strategy from (27), (24), (29).
Interchange π(p) and π(k)

if p > 1, solve R(1 : p− 1, π(1 : p− 1))>v = E(:, π(1 : p− 1))>ME(:, π(p))
R(1 : p− 1, π(p)) = v

R(p, π(p)) =
√
ν(π(p))

Solve R(1 : p, π(1 : p))z =
[

0 · · · 0 1
]>

q = ME(:, π(1 : p))z/R(p, π(p))

S(1, π(p+ 1:n)) = q>E(:, π(p+ 1:n))
ν(π(p+ 1:n)) = ν(π(p+ 1:n))− S(1, π(p+ 1:n))2

end

In this algorithm S(1, π(p+ 1:n))2 has to be performed component wise. S temporarily
stores R(p, π(p+ 1:n)). Note that since we are working with M–orthogonal projections ,
like (I −M−1qq>), the square of the M–norm of the projected matrix (I −M−1qq>)E can
be obtained by taking the squares of the initial M–norm (initial value of ν) and subtracting
the squares of the angles between the columns of E and q. But these values are stored in
S(1, π(p+ 1:n))2. From Algorithm 11 as well as from Algorithm 10 we see that in the QR–
decomposition we never need the first p M–orthonormal columns explicitely, but only M
times these columns. For this reason, if we have enough memory available, q need not be
recomputed from E via z, but if we store

Φ(:, π(p)) = q,(45)

then obviously Φ(:, π(1 : p)) from (45) corresponds to the updated value of ME(:, π(1; p))
in Algorithm 10. Thus clearly q can be recomputed via

q = [ME(:, π(p))− Φ(:, π(1 : p− 1))R(1 : p− 1, π(p))] /
√
ν(π(p)).(46)

As long as we have full matrices, to save memory when omitting Φ from (45) and the
R part of the QR decomposition is advantageous. In practice, we have to sparsify this
algorithm using some strategy, e.g. a drop tolerance for the entries of Φ, R. But in this
case we may have only a few number of nonzero entries in R(1 : p − 1, π(p)). So (46)
reduces to a selective reorthogonalization. If in addition Φ is not too full, (46) may turn

out to be quite cheap. Conversely, computing z via R(1 : p, π(1 : p))z =
[

0 · · · 0 1
]>

may still be relatively cheap if R is sparse. But even if R(1 : p, π(1 : p)) is sparse, then
all entries of z have to be computed. We do not know in advance whether some entries
of z are small in magnitude. This reduces the efficiency of computing z. Also z may be
full in this computation, since typically the inverse of R(1 : p, π(1 : p)) will be full even
if R is sparse. Thus computing q from q = ME(:, π(1 : p))z/R(p, π(p)) may turn out to
be more expensive in this case, more expensive than computing q from (46). In contrast
to this, computing v from R(1 : p − 1, π(1 : p − 1))>v = E(:, π(1 : p − 1))>ME(:, π(p))
will typically be cheap, since E(:, π(1 : p − 1))>ME(:, π(p)) only has nonzeros at most in

20

those positions corresponding to the nodes with distance less than or equal to 3 from π(p)
in the graph theoretical sense. This essentially follows from the fact that M and E have
the same graph and the nonzeros of E3 correspond to the paths with length 6 3. If these
neighbours of π(p) have been recently used as pivots in the QR decomposition, then only
the last few entries of E(:, π(1 : p− 1))>ME(:, π(p)) will be different from 0. Thus solving
a system with the lower triangular matrix R(1 : p− 1, π(1 : p− 1))> will be very cheap.

According to these (of course heuristic) arguments, the most natural strategy seems to
combine Algorithm 11 with Algorithm 10. Instead of dropping parts of Φ, R we may only
drop certain entries, if the memory is exceeded. In this case we can drop several columns
of Φ, R to release parts of the memory. If it turns out that these column of Φ, R are needed
in a later step, then we can recompute them using Stewart’s method. The only question
is, which columns should be dropped. A simple and natural measure seems to be to take
into account how many steps ago a column of Φ, R has been touched, i.e. used to compute
q, S(1, π(p + 1 : n)). Since we will sparsify this QR decomposition later on, only a few
entries will be touched in each step. In addition we should take into account how many
nodes in a neighbourhood of a node belong to the coarse grid. If there are many nodes
in the neighbourhood belonging to the coarse grid, then possibly the actual node will no
longer be needed to detect further coarse grid nodes.
As a consequence a good measure or cost functional to select columns of Φ to be dropped
is the number of coarse grid nodes in the neighbourhood of the already selected columns
π(1 : p) combined with the number of steps that have been passed when this column has
been touched last time in the Algorithm. For the columns of the upper triangular matrix
R, especially for those entries not belonging to the coarse grid, i.e. those entries, which do
not have a column stored in Φ, an analogous strategy will be applicable.

Algorithm 12 (MGS with partially implicit Q)
Let E ∈ Rn,n and set R = O ∈ Rn,n.
Set π = (1, . . . , n).
Set ν =

(
E(:, 1)>ME(:, 1), . . . , E(:, n)>ME(:, n)

)
.

for p = 1, 2, . . . , n
Choose k ∈ {p, . . . , n} according to some strategy from (27), (24), (29).
Interchange π(p) and π(k)
if p > 1 and column π(k) of R is dropped

Solve R(1 : p− 1, π(1 : p− 1))>v = E(:, π(1 : p− 1))>ME(:, π(p))
R(1 : p− 1, π(p)) = v

end

R(p, π(p)) =
√
ν(π(p))

if any column of Φ associated with the nonzero entries of R(1 : p− 1, π(p)) is dropped

Solve R(1 : p, π(1 : p))z =
[

0 · · · 0 1
]>

q = ME(:, π(1 : p))z
else

q = [ME(:, π(p))− Φ(:, π(1 : p− 1))R(1 : p− 1, π(p))] /R(p, π(p)).
end
Φ(:, π(p)) = q

21

R(p, π(p+ 1:n)) = q>E(:, π(p+ 1:n))
ν(π(p+ 1:n)) = ν(π(p+ 1:n))−R(p, π(p+ 1:n))2

if necessary, drop some columns of Φ, R(:, π(p+ 1 : n))
end

In this form the algorithm still requires a lot of computational work In addition, neither Φ
nor R will be sparse even if ME is sparse. What we can do to is to reduce the computational
costs as well as the storage requirements by introducing a drop tolerance for Φ, R. We
suggest the following strategy. Suppose that a tolerance tol is given. Then the following
entries of q are kept in Algorithm 12

• any entry greater than tolmax |q|

• any entry greater than tol2 max |q| for components i such that their distance to p is
less or equal to 2 (i.e. a neighbourhood of p)

To use a smaller tolerance in the neighbourhood of p is only justified by a heuristic argument
that typically q is essentially reorthogonalized with respect to nodes from a neighbourhood
of p since already in the initial matrix ME these entries are not orthogonal.

For R we can compare for any i > p the entry R(p, π(i)) with ν(π(i)). If in the next step
i would become a pivot column, then ν(π(i)) would become the diagonal entry in R. This
gives a natural dropping criterion.

• Keep R(p, π(i)), if R(p, π(i))2 > tol2ν(π(i))

In this subsection we have discussed (partially heuristic) strategies for the computation
of an efficient sparse, incomplete QR-factorization and it remains to discuss the pivoting
strategy.

4.3 Approximate Solutions to the Eigenvalue Problems

The final step is the construction of the pivoting strategy. Basically this strategy can be
based on the approximation of eigenvectors associated with the smallest eigenvalues of
M = L>AL, leading to the inequalities (22) and (24), i.e.,

1

∆
= min

y 6=0

y>W>MWy

y>W>Wy
,

1

∆̂
= min

y 6=0

y>W>M2Wy

y>W>MWy
(47)

or analogous eigenvalue problems from (24), (29).

A simple observation is that using the matrix T from (40) we can rewrite these eigenvalue
problems (47) as

1

∆
= min

Tx6=0

x>T>MTx

x>T>Tx
,

1

∆̂
= min

Tx6=0

x>T>M2Tx

x>T>MTx
.(48)

22

Likewise we can reformulate (24),(29) as

1

∆
= min

Tx6=0

x>(M − EME)x

x>T>MTx
,

1

∆̂
= min

Tx6=0

x>T>(M − EME)Tx

x>T>MTx
.(49)

Suppose that we have a good approximation to the eigenvector x of M associated with the
smallest eigenvalue. Initially we have T = I and clearly x in (49) is the eigenvector of M
with respect to its smallest eigenvalue. We could proceed in the next steps by replacing x
by the projection x̂ = Tx which is the orthogonal projection with respect to M and use
this fixed vector x̂ instead of solving the whole eigenvalue problem (48), (49). The question
is, whether x̂ = Tx is a good approximate solution of the eigenvalue problem. Clearly, even
if x is the exact eigenvector of M with respect to its smallest eigenvalue, x need not to be
an eigenvector of the projected eigenvalue problems (48), (49). But we may expect that x
may still serve as a good estimate for the projected eigenvalue problems as the following
Lemma will show.

Lemma 13 Let M ∈ Rn,n be symmetric positive definite and let V ∈ Rn,p be such that
V >MV = I. Suppose, furthermore, that x is an eigenvector of M associated with its
smallest eigenvalue λ. Let T = I − V V >M and define τ via

τ = sup
y 6=0

|y>V >Mx|
‖V y‖M1/2‖x‖M1/2

=

√
λ

‖x‖2

‖V >x‖2(50)

Then

τ
√
λ 6

‖Tx− x‖2

‖x‖2

6 ‖V ‖2τ
√
λ,
‖Tx− x‖M1/2

‖x‖M1/2

= τ.(51)

Proof:
We have Tx− x = V V >Mx = V V >Mx. Since I = V >MV 6 V >V it follows that

‖V >Mx‖2 6 ‖Tx− x‖2 6 ‖V ‖2‖V >Mx‖2

But
‖V >Mx‖2 = τ‖V ‖M1/2‖x‖M1/2 = τ

√
λ‖x‖2.

Analogously we can prove the inequality with respect to the M1/2–norm. 2

Note that τ can be viewed as cosine of the angle between x and V in the M–inner product.

From Lemma 13 we conclude that as long as the smallest eigenvalue of M is small and the
angle between x and V is large, x and Tx are almost identical. But clearly this is the only
interesting case if we want to add an additional coarse grid correction to M . As long as
the coarsening process has not constructed a coarse grid matrix V which covers x, x will
be an ideal candidate to approximately solve the eigenvalue problems (48), (49).

Based on Lemma 13 we can also conclude that as long as x ≈ Tx, we will have x>Mx
x>x

≈
x>T>MTx
x>T>Tx

. From this point of view it is advisable to to examine this ratio more precisely.
We will see that successively maximizing ‖V >x‖2 will be almost equivalent. This confirms
the observation made by Lemma 13 that the angle between V and x is a measure that we
have to look for.

23

Lemma 14 Under the assumptions of Lemma 13 we have

λ
1− τ 2

1− (2− λ‖V ‖2)τ 2
6
x>T>MTx

x>T>Tx
6 λ

1− τ 2

1− (2− τ 2)τ 2
(52)

and

λ 6
x>T>M2Tx

x>T>MTx
6
λ+ (1− 2λ)τ 2

1− τ 2
.(53)

Proof:
For simplicity we may assume that ‖x‖2 = 1. Since Mx = xλ we have

x>T>Tx = x>(I −MV V > − V V >M +MV V >V V >M)x

= 1− 2λ‖V >x‖2
2 + λ2x>(V V >)2x

= 1− 2τ 2 + λ2x>(V V >)2x

Using the Cauchy–Schwarz inequality we get ‖V >x‖4
2 = (x>V V >x)2 6 x>(V V >)2x. From

this it follows that

x>T>Tx

{
6 1− (2− λ‖V ‖2

2)τ 2

> (1− τ)2

Finally we consider x>T>MTx. We immediately obtain

x>T>MTx = x>(M −MV V >M)x = λ(1− τ 2).

Next estimating x>T>M2Tx gives

x>T>M2Tx = λ2 − 2λ3‖V >x‖2
2 + x>(MV V >M)2x = λ2 − 2λ2τ 2 + x>(MV V >M)2x.

Using M 6 I we obtain

x>T>M2Tx

{
6 λ2 − 2λ2τ 2 + λτ 2

> λ2 − λ2τ 2

Combining the inequalities yields the assertion of the lemma. 2

It follows that successively maximizing ‖V >x‖2
2 is almost equivalent to successively max-

imizing the smallest eigenvalue of eigenvalue problem (48). It is clear that one can easily
derive analogous bounds for (49).

We know that the eigenvector x associated with the smallest eigenvalue of M can serve
as an estimate for the approximate solution of eigenvalue problems (49), (13). It will be
a reliable estimate if the initial matrix M is not ill–conditioned and as long as the angle
between the coarse grid space V and x is large. Minimizing the angle, i.e. maximizing
‖V >x‖ will be essentially equivalent to maximizing the smallest eigenvalue in (49), (13).
It remains to find a good estimate for x. There are many ways to do this. For example
we could approximate x via a few steps of a Lanczos procedure [22]. We will also present
a graph based heuristic in subsection 4.5 But before we discuss this heuristic eigenvector
approximation, in the next subsection we describe an indicator for the pivoting strategy
which is not based on the eigenvector x.

24

4.4 An Eigenvector Independent Indicator

We now discuss how to find an indicator that is (essentially) independent on the choice of x.
To this end we note that if we want to successively maximize ‖V >x‖2, then in principle we
have to replace x by x̂, where x̂ is the exact eigenvector of one of the projected eigenvalue
problems in (48), (49). Although we know that x may serve as an estimate for x̂, we can
measure how far x is away from x̂ in terms of the residual.

Lemma 15 Let M ∈ Rn,n be symmetric positive definite, V ∈ Rn,p with V >MV = I. Set
T = I − V V >M . If Mx = xλ, then we have

T>MTx− T>Txλ = (V −MV V >V)V >xλ2.(54)

Let V = [V̂ , v], v ∈ Rn and let T̂ = I − V̂ V̂ >M . If T̂>MT̂y = T̂>T̂ yµ, then we have

T>MTy − T>Tyµ = (v −MV V >v) v>Myµ.(55)

Proof:
Identity (54) is clear. Since V̂ >Mv = 0 we have

T>MTy = (M −M [V̂ , v][V̂ , v]>M)y

= T̂>MT̂y −Mvv>My

and

T>Tyµ = (T̂>T̂ −Mvv>T̂>T̂ − T̂>T̂ vv>M +Mvv>T̂>T̂ vv>M)yµ

= T̂>MT̂y −Mvv>T̂>MT̂y − T̂>vv>Myµ+Mvv>vv>Myµ

= T̂>MT̂y −Mvv>My − T̂>vv>Myµ+Mvv>vv>Myµ.

It follows that

T>MTy − T>Tyµ = T̂>vv>Myµ−Mvv>vv>Myµ

= (v −MV V >v)v>Myµ.

2

Now we want to successively maximize ‖V >x‖. In this case the components of V >x will
typically significantly increase. But if this is the case, then V >x will be almost a multiple
of ep, which is the p–th unit vector. In this case the residual will be approximately

T>MTx− T>Txλ ≈ α(v −MV V >v)(56)

for some α ∈ R. Analogously if we replace in step p−1 the initial exact eigenvector x of M
by y, where y is the exact eigenvector of the projected eigenvalue problem T̂>MT̂y−T̂>T̂ yµ
the relation

T>MTy − T>Tyµ = β(v −MV V >v)(57)

25

holds for some β ∈ R. Both relations show that the residual is essentially independent on x,
respectively y, i.e. we can compute v−MV V >v without ever knowing x, y! We could carry
out similar computations with respect to the eigenvalue problem T>M2Ty− T>MTyµ. It
is easy to verify that analogous relations hold and the corresponding residuals in this case
are

(M2V −MV V >M2V)V >xλ, (M2v −MV V >M2v)v>My.(58)

For the eigenvalue problem (M − EME)y − T>MTyµ(2− µ) we obtain the residual

MV V >xλ2(2− λ), Mvv>Myµ(2− µ).(59)

and finally for the eigenvalue problem T>EMETy−T>MTyµ(2−µ) we obtain the residual

(E2MV −MV V >EMEV)V >xλ, (E2Mv −MV V >EMEv)v>My.(60)

Knowing that we can compute the residual without explicit knowledge of x, y, the residual
will give us information on the direction in which the previous exact eigenvector looses its
accuracy once we change over to the projected eigenvalue problem. To get a good coarse
grid matrix it would be nice if Tx 6≈ x or V >x has a large new component. In terms of
the residual this would mean that a large residual indicates that the eigenvector y of the
projected eigenvalue strongly differs from the eigenvector x of the unprojected eigenvalue
problem. If we have chosen one column of W to become v in the sense of Lemma 15 at
some step p of the QR–Algorithm 10, then the residual tells us a posteriori the direction
where x has lost its accuracy compared with y from the projected eigenvalue problem. So
instead of directly maximizing V >x in the next step we can use the large components of
the residual to predict the next pivot column and validate this choice by evaluating the
approximate eigenvalue problem with x.

The question is how to find a good approximation to the eigenvector with respect to
smallest eigenvalue. Many strategies are possible for this, we could for example use a few
steps of a Lanczos procedure [22]. Here we present a different heuristic which is based on
the graph of the matrix.

4.5 A Graph Based Heuristic for Computing an Approximate
Eigenvector

Suppose that we choose x such that Mx = ei, where ei is the i-th unit vector and i is
suitably chosen. Clearly with this choice we would typically have ‖Mx‖ � ‖x‖ and we
could use x as an approximate eigenvector. The question is how to choose i and how to
find a good initial guess for x. Here we make use of a heuristic that works in many but
clearly not in all applications of symmetric positive definite matrices.

Since we have a sparse matrix and therefore also the graph of the matrix has only few
edges, we make use of the undirected graph of the matrix to determine an approximate
eigenvector of M with respect to the smallest eigenvalue.

26

Definition 16 An undirected graph G = (V,E) is given by a set of nodes V = {1, . . . , n},
n ∈ N \ {0}, and a set of edges E ⊆ {{i, j} : i 6= j, 1 6 i, j 6 n}.
For A = (aij)i,j ∈ Rn,n the associated undirected graph G = (V,E) is given by V =
{1, . . . , n} and E = {{i, j} : i 6= j, 1 6 i, j 6 n, aij 6= 0}.

The heuristic that we are using is based on the observation that in many applications
in elliptic partial differential equations the entries of the eigenvector associated with the
smallest eigenvalue increase the more the corresponding node is lying in the center of the
graph, that is a node which minimizes the distance to all other nodes in the graph (in
Definition 17 we will precisely define center and distance). Picking i to be the index of
such a central node may be a good choice. This can be viewed as algebraic justification
of the importance of a node in the graph. So to pick a vector for which its components
decrease with its distance growing when leaving the center seems to be a good candidate.
In what follows we briefly introduce an algorithm that computes a center of a graph and
a corresponding initial guess.

Definition 17 Let G = (V,E) be an undirected graph.
A path from node i to j is a sequence of edges {k0, k1}, {k1, k2}, . . . , {kl−1, kl} such that
i = k0, j = kl and l is the length of the path, for i = j we set l = 0.
The distance dist(i, j) is the smallest length of any path between node i and j and for
C ⊆ V we set dist(i, C) = minj∈C dist(i, j).

A central node c of the graph is a node such that
∑

i∈V dist(i, c)
!

= min.

We also say that a central node is in the center of the graph.

Example 18 Consider the following graph

�
�
�

�
�
�

�
�
�

�
��

�
�
�

�
�
�

�
�
�

�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�r

r
r
r
r

r
r
r
r
r

r
r
r
r
r

r
r
r
r
r

r
r
r
r
r

u
u

u
u

u

z

The five nodes on the diagonal from the lower left corner to the upper right corner all satisfy

maxi∈V dist(i, c)
!

= min but only the node in the middle satisfies
∑

i∈V dist(i, c)
!

= min.

The question is now how to find a node in the center of a graph or how to find a node
that is almost in the center of the graph. A technique which is well–known [10, 7] in sparse
matrix computation for direct solution methods helps us to find a central node.

27

Definition 19 Let G = (V,E) be an undirected graph and i be a node. The
level structure of L0 ⊆ V is a collection of level sets L0, . . . ,Lk such that L0∪· · ·∪Lk = V
and dist(L0, j) = l for any j ∈ Ll.

For L0 = {i} we identify the level structure of i with that of {i}. We will not present
an algorithm for computing the level structure of a given node, since this is a well-known
technique, see e.g. [10, 5, 7]. We only note that this can be done in O(#E) steps. Why do
we calculate this level set? It is easy to see that if L0, . . . ,Lk is the level structure of node
i, then for any j ∈ Ll we have

max
q∈V

dist(q, j) > max{l, k − l},(61)

since any node j ∈ Ll satisfies dist(i, j) = l and in addition we have that dist(r, j) = k − l
for any node r ∈ Lk. From this it follows that the level structure of a node i gives us
an upper bound for the measure maxq∈V dist(q, j) for any node j ∈ V and thus indicates
where central nodes may be. To calculate a suitable estimate for maxq∈V dist(q, j), we
should choose a node which is as far away as possible from the center of the graph. Thus
after taking an arbitrary initial node i for calculating the level structure of i the next test
node should be one of Lk, since these nodes are at least far away from i. This technique is
also well–known [11] and such nodes are called pseudoperiphal nodes. As consequence we
obtain the following algorithm for calculating an estimate for maxq∈V dist(q, j). For later
purposes we restrict the collection of test nodes to a certain subset C which we will later
specify more precisely. Initially we may assume that C = V .

Algorithm 20 Let G = (V,E) be an undirected graph and let C ⊆ V . Let d be a vector
of same size as #C and suppose that initially we have d(j) = 0 for any j ∈ C.
Choose a test node i ∈ C.
do

Compute the level structure L0, . . . ,Lk of node i.
For any j ∈ C ∩ Ll update d(j) by max{d(j), l, k − l}.
qold = q, choose i ∈ C ∩ Lq with q > qold (if i does not exist, leave i unchanged).

while node i has not yet been used as test node.

Using C = V , this algorithm computes an upper bound for maxq∈V dist(q, j). The algorithm
in theory may need #C steps but it stops when q does not increase any more. q is the
maximal distance from node i ∈ C to any other node j ∈ C. So if q does not increase any
more, then i is an almost pseudoperiphal node, i.e., a node in C which is as far away as
possible from all the other nodes in C.

Example 21 Consider the graph from Example 18 and use as first test node the node in
the lower left corner. Starting with C = V , Algorithm 20 calculates the following values for
d

28

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�

�
�
�

�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�

�
�
�r

r
r
r
r

r
r
r
r
r

r
r
r
r
r

r
r
r
r
r

r
r
r
r
r

u
i,4 3

33

2

2

22 2

3

3

3

33 3 3

4,next

4

4

4

44 4 4 4

�
�
�
�
�

�
�
�

�
�
��

�
�
�
�
�

�
�
�
�

�
�

�
�

�
�
�

�
�

�
�
�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�r

r
r
r
r

r
r
r
r
r

r
r
r
r
r

r
r
r
r
r

r
r
r
r
r

u
4 5

45

6

5

46 5

7

6

5

47 6 5

8,i

7

6

5

4next,8 7 6 5

�
�
�

�
�
�

�
�
�

�
��

�
�
�

�
�
�

�
�
�

�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�r

r
r
r
r

r
r
r
r
r

r
r
r
r
r

r
r
r
r
r

r
r
r
r
ru

4 5

45

6

5

46 5

7

6

5

47 6 5

8,end

7

6

5

4i,8 7 6 5

The nodes on the diagonal from the lower left corner to the upper right corner have minimal
d.

The example shows that possibly more than one node may stay after the algorithm is
completed. Clearly Algorithm 20 only computes an estimate for maxq∈V dist(q, j). Although
in this example the chosen nodes are correct with respect to this measure we would like
to have a node that almost minimizes

∑
q∈V dist(q, j). To achieve this we replace C by the

set of nodes with minimal positive d and repeat Algorithm 20.

Algorithm 22 Let G = (V,E) be an undirected graph and set C = V .
do

Apply Algorithm 20.
Replace C by the set of nodes with minimal positive d.

while C has changed

Again we illustrate this by an example

Example 23 Consider the graph from Example 18. We illustrate the set C.

�
�

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�

�
�
�v

v
v
v
v

v
v
v
v
v

v
v
v
v
v

v
v
v
v
v

v
v
v
v
v

�
�
�

�
�
�

�
�
�

�
��

�
�
�

�
�
�

�
�
�

�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�r

r
r
r
r

r
r
r
r
r

r
r
r
r
r

r
r
r
r
r

r
r
r
r
r

v
v

v
v

v

�
�

�
�
�

�
�

�
�
�

��

�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�

�
�
�
�

�
�

�
�
�
�

�
�
�

�
�
�r

r
r
r
r

r
r
r
r
r

r
r
r
r
r

r
r
r
r
r

r
r
r
r
r

v

By successively repeating Algorithm 20 with a shrinking set C we obtain a node j which not
only has a small value for maxq∈V dist(q, j) but recursively we obtain that maxq∈C dist(q, j)
for any new choice of C. Even if

∑
q∈V dist(q, j) is not minimized we have calculated a node

or possibly some nodes for which
∑

q∈V dist(q, j) must be small.

Using Algorithm 22 we usually select a very small amount of nodes (possibly only one)
which are located in the center of the graph. Recall that the center of the graph and an

29

algorithm to compute this center has been introduced in order to compute an approximate
eigenvector x for eigenvalue problem (47). The main heuristic argument is that typically
the importance of the nodes in the graph increases the closer they are located near the
center. And computing x such that Mx = ei, where ei is zero outside the center of the
graph typically ends up in a vector x such that ‖Mx‖ � x. Based on these central nodes
we define an initial guess x(0) for an approximate eigenvector x for the eigenvalue problem
(47) by computing the level structure of our set of central nodes. If, say L0, . . . ,Lk is the
corresponding level structure with L0 denoting the central nodes and Ll the nodes with
distance l from L0 we define our initial guess x(0) for the computation of an approximate
eigenvector x via

x
(0)
j = (k − l)/k,∀j ∈ Ll.(62)

Example 24 Consider the graph from Example 18. We illustrate the values of 4 · x.

�
�
�

�
�
�

�
�
�

�
��

�
�
�

�
�
�

�
�
�

�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�r

r
r
r
r

r
r
r
r
r

r
r
r
r
r

r
r
r
r
r

r
r
r
r
r

4

3

3

33

3

3

2 2 2

2

2

2

222

2

2

2

2 1

1

1

1

0

0

Now with this initial guess x(0) for x we may start then an iterative method for the solution
of Mx = ei. In principle we could try to solve Mx = ei with the cg–algorithm [12, 3]. Here
we use a block version of the cg–algorithm.

Algorithm 25 Let A ∈ Rn,n be symmetric positive definite, X,B ∈ Rn,l, R = B − AX,
ρ = 0.
for i = 1, 2, . . .

ρold = ρ, ρ = R>R
if i ≡ 1

P = R
else

β = ρ−1
oldρ, P = R + Pβ

end

σ = P>AP , α = σ−1ρ
X = X + Pα, R = R− APα

end

Algorithm 25 is a ‘block’–cg algorithm and for l = 1 it reduces to the well–known standard
cg method. See e.g. [26] for the block version and [21] for an analysis of this kind of method.

In principle we could try to solve Mx = ei with our initial guess x(0). An ill–conditioned
matrix M will slow down this method. But what we need is not x itself but any multiple of

30

x suffices too, since later we may scale our solution such that ‖x‖ = 1. The corresponding
Krylov subspace Kl(A, r) = span{r, Ar, . . . , Alr}, where r = b − Ax(0 which essentially
determines the solution computed by the cg–algorithm [12] does not detect whether we
use x(0) or a multiple λx(0) as initial guess. For example if we would use x(0) = 2x as
initial guess or x(0) = 0 then the Krylov space Kl(A, r) will be the same and the number
of iterations will typically not essentially change. But this may be bad for our problem
here, since we only expect that several components of our initial choice x(0) for x in (62)
give the correct direction. For this reason we employ a block version of the cg–method. For
the solution of Mx = λei where λ is some nonzero parameter which we do not know in
advance, we have

Kl(A, λei − Ax(0)) ⊆ Kl(A,
[
ei − Ax(0), ei

]
).(63)

The latter does not depend on λ and Kl(A,
[
ei − Ax(0), ei

]
) is the corresponding Krylov

subspace for the block cg–algorithm where l = 2, B = [ei, ei] and initial guess X =
[
x(0), 0

]
.

It immediately follows that the block cg–algorithm with these values for B and X is
independent on the scaling applied to x and therefore we may expect that convergence is
much faster. We confirm this in our numerical examples.

Note that the analysis in [21] essentially shows that some isolated eigenvalues at the bound-
ary of the spectrum do not effect the convergence behaviour if the block size l of the block
cg–method is adapted to the number of isolated extremal eigenvalues. In our experiments
we do not have one or two isolated eigenvalues but nevertheless already after a few number
of steps the computed solution often gives a good approximate eigenvector. Possibly an
explanation for this effect may be that our initial guess was already close enough to a small
invariant subspace containing the solution and so most of the eigenvalues from the spec-
trum where not visible any more. To obtain the desired solution from the block cg–process
we have to replace the n × 2 matrix X by Xv, where v ∈ R2 has to be suitably chosen.

In principle we could choose v such that ‖Xv − x‖ !
= min in some norm. In our case the

energy norm induced by A1/2 seems appropriate, since the minimization of

f(v) = ‖A1/2(Xv − x)‖2
2 = v>X>AXv − 2v>X>b+ x>b︸︷︷︸

constant

(64)

does not explicitly require knowledge of the solution x. From (64) we can easily calculate
v ∈ R2 by solving a 2× 2 linear system. More elegant than (64) would be to choose v such
that

g(v) =
v>X>AXv

v>X>Xv
!

= min,(65)

since we are interested in computing an approximate eigenvector of A associated with the
smallest eigenvalue. Again one can immediately compute v from (65) by solving a 2 × 2
eigenvalue problem.

Example 26 Consider the block matrix

A =


D B O

B> D
. . .

. B
O B> D

 , D =

[
786432 0

0 256

]
, B =

[
−393216 6144
−6144 64

]
,

31

where A has size 50 is scaled to D1/2AD1/2 which has unit diagonal. This matrix is essen-
tially the matrix LANPRO/NOS1 from the Harwell–Boeing collection [8]. The center
of the underlying graph is in this case {25, 26}. Using MATLAB [28] the exact eigenvec-
tor associated with the smallest eigenvalue is given in Figure 2. We can compare the two

Figure 2: exact eigenvector

0 5 10 15 20 25 30 35 40 45 50
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
va

lu
e

components

columns of X with the solution obtained via (65). The first column of X is depicted in the
left diagram of Figures 3, 4, 5 with a solid line while the second column of X is depicted
in the same figures with a dotted line. For comparison the solution obtained from (65) is
plotted on the right side of these figures. Figures 3, 4, 5 correspond to the iteration steps
1, 10 and 20, respectively. We observe in Figures 3, 4, 5 that the two different solutions
strongly differ from each other and also strongly differ from the exact solution which is
in this case almost the eigenvector in Figure 2. In contrast to this behaviour the approxi-
mate eigenvector with respect to (65) almost does not change anymore after the first step.
Clearly this approximate eigenvector still differs from the exact eigenvector in Figure 2 but
the difference is small and the trend is already correct after the first step.

4.6 The Pivoting Process

It remains to describe in detail the pivoting based on the approximate eigenvector or the
eigenvector independent criterion.

Clearly the best we can do is to locally maximize ∆ or ∆̂ in the inequalities (48), (48)
to obtain a feasible coarse grid matrix P = LV for M (1) in (6) or M (2) in (7). Since by
(37) EΠ1 = V R11 clearly one does not choose the full matrix V but instead one chooses
EΠ1 instead, since the columns of this matrix span the same space, but they are sparse. So
P = LEΠ1 will be the equivalent coarse grid matrix. As shown in Lemma 13 maximizing ∆,

32

Figure 3: Step 1, approximate solutions/approximate eigenvector

0 5 10 15 20 25 30 35 40 45 50
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

va
lu

e

components
0 5 10 15 20 25 30 35 40 45 50

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

va
lu

e
components

∆̂ can be simplified to using the eigenvector x of M associated with the smallest eigenvalue
and in this case successively maximizing τ = ‖V >x‖2

2 is equivalent to maximizing (48), (49)
as shown by Lemma 14. Since we cannot expect to precisely compute x in general, we have
introduced an eigenvector independent indicator by using the residual in Lemma 15. The
interesting observation is that even if one does not know the exact eigenvector, the residual
in (55) for the eigenvalue problem (54) is independent of the eigenvector up to a scalar!
Analogous properties hold for the other eigenvalue problems. Instead of choosing the next
pivot such that V >x is locally maximized we can choose the pivot with respect to largest
component of the residual. Only to validate this choice we use V >x. This extremely reduces
the dependence of an inaccurately computed approximate eigenvector x.

To summarize this double key choice for finding the next coarse grid node we describe an
abstract algorithm that defines the pivoting strategy for Algorithm 12. Note that clearly
to increase V >x in the 2–norm we have to consider the normalized components of W>x
with W from (37) and consider its components or equivalently, since TEΠ2 = W , where
T = I − V V >M we have to consider x>(EΠ2 − V V >MEΠ2). Note that the computation
of x> can be extremely simplified if one initially computes x>E and then updates from
step to step this expression by x>TE. This is only a rank–1 correction. If x>TE is given
at step p − 1, then the updated vector will be x>(I − v̂v̂>M)TE. In the Gram–Schmidt
process v̂ will just be TE(:, π(p− 1)) divided by R(p− 1, π(p− 1)). It follows that

x>(I − v̂v̂>M)TE(:, π(p:n)) = x>TE(:, π(p:n))− x>v̂v̂>MTE(:, π(p:n))

= x>TE(:, π(p:n))− x>v̂v̂>ME(:, π(p:n))

= x>TE(:, π(p:n))− x>TE(:, π(p− 1))

R(p− 1, π(p− 1))
R(p− 1, π(p:n)).

For the indicator we simply take q from Algorithm 12 since in Lemma 15 the vector
v −MV V >v is dominated by MV V >v. This is a consequence of I = V >MV � V >V

33

Figure 4: Step 10, approximate solutions/approximate eigenvector

0 5 10 15 20 25 30 35 40 45 50
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

va
lu

e

components
0 5 10 15 20 25 30 35 40 45 50

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

va
lu

e
components

for ill–conditioned problems. Since we try to improve our operator step by step using the
coarsening process V >v itself will be characterized by its last component and this gives
(up to a scalar) our choice q.

Algorithm 27 (Pivoting Strategy for the Gram–Schmidt Algorithm)
Let x ∈ Rn be an approximate eigenvector of M associated with its smallest eigenvalue.
Let tol ∈ (0, 1), e.g. tol = 0.1 and suppose that initially α = x>E is computed.
if p ≡ 1

Choose p
else

Update α(π(p− 1:n)) by
α(π(p− 1)) = α(π(p− 1))/R(p− 1, π(p− 1))
α(π(p:n)) = α(π(p:n))− α(π(p− 1))R(p− 1, π(p:n))
Compute τ(π(p:n)) = α(π(p:n))2/ν(π(p:n)) for any k = p, . . . , n.
Find those k, for which |qk| and τk are big.
Among those k take the one for which τk is maximal.
If such k does not exist take a node for which at least τk is big and the number of
coarse grid points in its neighbourhood is minimal.

end
Interchange π(p) and π(k).

The strategy to define k is left quite abstract in Algorithm 27. In principle one could
check whether those k with large |qk| also have large τk or not. As long as both criteria
agree in their choice of k, it is only natural to continue the coarsening process close to the
node where it stopped in the step before. But once the criteria disagree, we have to find
a new node. In this case it seems to be sensible not to be too close to the current coarse

34

Figure 5: Step 20, approximate solutions/approximate eigenvector

0 5 10 15 20 25 30 35 40 45 50
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

va
lu

e

components
0 5 10 15 20 25 30 35 40 45 50

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

va
lu

e
components

grid nodes. In principle |q| only gives a direction where to find coarse grid nodes, since it
demonstrates the difference between x and Tx. But if |q| only indicates a change in x it
will not necessarily give large values for τ . In this case the coarsening process should move
into another direction. This is the main idea behind the choice for k.

Finally one additional restriction is necessary among those nodes which are selected to
become coarse grid nodes. Since the best we can do is to work ideally with the accurately
computed eigenvector x, for problems which are almost block diagonal τ as well as q
can fail as estimates for the solution of eigenvalue problems (47),(48). Due to rounding
and approximation errors it may happen that both criteria suggest only coarse grid nodes
which are related to one (almost) diagonal block. To prevent this coarsening into the wrong
direction some of the fine grid nodes which have been selected not to become coarse grid
nodes have to be taken away from the set of remaining nodes. In this case they obviously
cannot be chosen as coarse grid nodes. A simple criterion to deactivate several nodes is
the hypothesis that if we once have locally defined coarse grid nodes, then the remaining
nodes in the neighbourhood are no longer needed as coarse grid nodes. To end up in a
deterministic strategy, we disable those nodes k for which k and all its neighbours are
connected to coarse grid nodes.

5 Numerical results

In this section we illustrate the effectiveness of the algorithm. Our computations are done
in MATLAB 5.2 [28] on a LINUX PC with a PENTIUM 2/350 processor. Here we restrict
ourselves to the coarsening process generated by the algorithm and show the condition
number and sparsity of the generated QR decomposition.

We consider three types of approximate inverses for the initial matrix. These are a) the diag-

35

onal of the matrix as preconditioner, b) the factored sparse approximate inverse suggested
by [18, 19] with the same sparsity pattern as the initial matrix and c) a preconditioner
that we call Jacobi–squared Preconditioner. For this latter preconditioner we combined
Jacobi’s eigenvalue algorithm and Jacobi preconditioning. For a set of n/2 disjoint pairs

{i, j} ⊂ {1, . . . , n} we apply a Jacobi rotation to diagonalize

(
aii aij
aji ajj

)
i.e., aij, aji are

annihilated. For this transformed system we then use diagonal preconditioning.

In the multigrid process we always use diagonal preconditioning on the coarser levels.

Example 28 Consider the matrix

A =

 T −en O
−e>n 1 + α −αe>1
O −αe1 αT

 , where T =


2 −1

−1
.
. −1

−1 2

 ∈ Rn,n.

for α = 1, 100. This example can be read as discretization of the problem −au′′ = f in [0, 1]
with a(x) = 1 for x ∈ [0, .5] and a(x) = α for x ∈ [.5, 1].

First we demonstrate some simple techniques of discarding and recovering columns of Φ
from (45). The graph of the preconditioned matrix corresponds to a chain and we will
illustrate those nodes which have been selected to be discarded if necessary. There are two
classes of nodes to be discarded. The first class consists of those computed columns of
Φ, which have not been touched for the last five steps of the QR factorization and their
neighbours are disabled. The second class of nodes only consist of those nodes which have
not been touched for the last five steps but have more than average disabled nodes and more
thena average coarse grid nodes in their neighbourhood. In figure 6 the ratio of fill–in of
Φ with respect to the fill–in of E. Recall that columns of Φ are discarded once this ratio
is bigger than 1. Note that without discarding some columns of Φ the memory requirement
for Φ will be approximately three times the memory required for E.

In Figure 7 we will give some snapshots of the graph for n = 255 and starting node
π(1) = 128 during the coarsening process. By ◦ we denote the regular coarse grid nodes
and by � those nodes for which the corresponding columns of Φ have been discarded. Here
the nodes are placed on a circle with a gap at the extremal right point. Since the graph of
A is a chain, thisgives a compact representation of the graph. So the starting point p = 128
will be at the extremal left point of the circle. The nodes that will be automatically detected
in this case are the even nodes. This confirms studies in [17], where this was suggested a
priori. In this example α = 1 was used, but for the other values of α the algorithm behaves
similar.

In Figure 8 we consider the same problem but this time with a tridiagonal sparse approx-
imate inverse, starting with the sparsity of Q. In Figure 9) we again depict the discarded
columns of Φ and we see that this time blocks consisting of two neighbouring nodes are used
as coarse grid nodes and the next two node are left out.

To study the automatic coarsening process we begin with diagonal preconditioning for two
kinds of coefficient jumps. We show some snapshots of the coarsening process, i.e., we show

36

Figure 6: Memory requirement for Φ

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ra
ti

o
of

n
on

ze
ro

s
n
n
z

(Φ
)/

n
n
z

(E
)

number of steps

the graph of the reduced linear systems Ak from Definition 4 for n = 511. For level 1,2 the
graph is too dense, the initial system is a chain and the first level essentially consists of
every second node up to some noise. In Figure 10 we show the grids for levels 3–6.

Next we consider the same system with tridiagonal preconditioning. In Figure 11 the coars-
ening snapshots of the graph are given for level 3 and 4. Finally we consider Jacobi–squared
preconditioning. In Figure 24 we illustrate the levels 2–5. On level 1 only every fourth nodes
has been taken as coarse grid node!

All figures show that an effective reduction of the number of nodes is achieved by the
coarsening algorithm. Clearly depending on the quality of the initial preconditioner as a
smoother more or less nodes will be required on coarser levels. More interesting then the
graphical visualization of the coarser grids is the size of the system and the related fill–in
for the different levels. This gives information on how much the system is reduced in each
step of the coarsening process.

37

Figure 7: Coarse grid nodes, active and discarded

−100 −50 0 50 100

−100

−50

0

50

100

−100 −50 0 50 100

−100

−50

0

50

100

−100 −50 0 50 100

−100

−50

0

50

100

−100 −50 0 50 100

−100

−50

0

50

100

Step 34 Step 54

Step 74 Step 95

38

Figure 8: Memory requirement for Φ

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ra
ti

o
of

n
on

ze
ro

s
n
n
z

(Φ
)/

n
n
z

(E
)

number of steps

Figure 9: Coarse grid nodes, active and discarded

−100 −50 0 50 100

−100

−50

0

50

100

−100 −50 0 50 100

−100

−50

0

50

100

Step 54 Step 93

39

Figure 10: Coarsening Snapshots α = 1, diagonal preconditioning, level 3–6

−250 −200 −150 −100 −50 0 50 100 150 200 250

−250

−200

−150

−100

−50

0

50

100

150

200

250

level 5, N=32, nnz=96 (9%)

−250 −200 −150 −100 −50 0 50 100 150 200 250

−250

−200

−150

−100

−50

0

50

100

150

200

250

level 6, N=16, nnz=48 (19%)

−250 −200 −150 −100 −50 0 50 100 150 200 250

−250

−200

−150

−100

−50

0

50

100

150

200

250

level 3, N=128, nnz=384 (2%)

−250 −200 −150 −100 −50 0 50 100 150 200 250

−250

−200

−150

−100

−50

0

50

100

150

200

250

level 4, N=64, nnz=192 (5%)

40

Figure 11: Coarsening Snapshots α = 1, tridiagonal preconditioning, level 3–4

−250 −200 −150 −100 −50 0 50 100 150 200 250

−250

−200

−150

−100

−50

0

50

100

150

200

250

level 3, N=171, nnz=1831 (6%)

−250 −200 −150 −100 −50 0 50 100 150 200 250

−250

−200

−150

−100

−50

0

50

100

150

200

250

level 4, N=153, nnz=3501 (15%)

Diagonal Preconditioning, α = 1
initial Levels, size and fill–in (%)
size 1 2 3 4 5 6 7 8 9 10

2047 2047, < 1 1025, < 1 513, 1 257, 1 130, 2 66, 5 39, 11 28, 23 — —
1023 1023, < 1 512, < 1 256, 1 128, 2 64, 5 32, 9 16, 19 — — —
511 511, 1 256, 1 128, 2 64, 5 32, 9 16, 19 — — — —

Tridiagonal Preconditioning, α = 1
2047 2047, < 1 1028, 1 512, 1 198, 3 84, 6 72, 14 — — — —
1023 1023, < 1 525, 2 329, 3 281, 7 — — — — — —
511 511, 1 267, 2 171, 6 153, 15 — — — — — —

Jacobi–squared Preconditioning, α = 1
2047 2047, < 1 586, 1 282, 1 129, 2 65, 5 34, 9 18, 18 — — —
1023 1023, < 1 383, 1 184, 3 86, 5 33, 9 16, 20 — — — —
511 511, 1 191, 3 90, 5 33, 10 17, 19 — — — — —

An interesting observations is that in the case of diagonal preconditioning precisely the
grid which is used for geometric multigrid method is obtained by the coarsening process.
But the other two choices of coarsening also give a moderate reduction of the system size.
In particular the Jacobi–squared preconditioning shows an extreme reduction on the initial
level. Note that Jacobi–squared is only used on the initial grid, on all other grids diagonal
preconditioning is used.

We are also interested in the condition number of the preconditioned system M
(1)
l A,M

(2)
l A

compared with the initial system A and the initial system M . Since the condition number
only partially reflects the improvement we also present the number of cg iteration for the

41

Figure 12: Coarsening Snapshots α = 1, Jacobi–squared preconditioning, level
2–5

−250 −200 −150 −100 −50 0 50 100 150 200 250

−250

−200

−150

−100

−50

0

50

100

150

200

250

level 4, N=33, nnz=101 (9%)

−250 −200 −150 −100 −50 0 50 100 150 200 250

−250

−200

−150

−100

−50

0

50

100

150

200

250

level 5, N=17, nnz=53 (18%)

−250 −200 −150 −100 −50 0 50 100 150 200 250

−250

−200

−150

−100

−50

0

50

100

150

200

250

level 2, N=191, nnz=817 (2%)

−250 −200 −150 −100 −50 0 50 100 150 200 250

−250

−200

−150

−100

−50

0

50

100

150

200

250

level 3, N=90, nnz=366 (5%)

42

system preconditioned with the multilevel preconditioner.

Diagonal Preconditioning, α = 1
size condition number CG steps

A M M
(1)
l A M

(2)
l A A M M

(1)
l A M

(2)
l A

2047 — — — — 2047 2047 80 37
1023 5.2·105 5.2·105 3.2·101 2.2·100 1023 1023 24 9
511 1.3·105 1.3·105 1.4·101 2.2·100 511 511 22 9

Tridiagonal Preconditioning, α = 1
2047 — — — — 2047 1094 218 94
1023 5.2·105 1.7·105 9.8·103 1.8·102 1023 551 122 55
511 1.3·105 4.4·104 1.3·103 2.7·102 511 280 66 30

Jacobi–squared Preconditioning, α = 1
2047 — — — — 2047 1400 42 17
1023 5.2·105 3.4·105 5.9·101 9.8·100 1023 711 39 16
511 1.3·105 1.0·105 4.6·101 7.9·100 511 364 34 15

The results show that the automatic coarsening process has generated a coarse grid hier-
archy that is as multilevel method much superior to the initial sparse approximate inverse
preconditioner.

Our next set of tests are for the case of a coefficient jump with α = 100

In Figure 13 coarsening snapshots for levels 3–6 and diagonal preconditioning are presented.
For the sparse approximate inverse with the same sparsity as the initial matrix the results
are shown in Figure 14 and for Jacobi–squared in Figure 15. Figures13, 14, 15 look similar
to the situation of α = 1, except that there are more nodes taken in some parts of the graph,
i.e., the coarse grid looks less regular then in the case α = 1.

Figure 14 shows the tridiagonal case for level 3,4. Figure 15 considers the case of Jacobi–
squared. Like in the case α = 1 on the initial level only every fourth node is taken. In
Figures 13, 14 and 15 the reduction in the matrix size and the fill–in during the coarsening

43

Figure 13: Coarsening Snapshots α = 100, diagonal preconditioning, level 3–6

−250 −200 −150 −100 −50 0 50 100 150 200 250

−250

−200

−150

−100

−50

0

50

100

150

200

250

level 5, N=36, nnz=144 (11%)

−250 −200 −150 −100 −50 0 50 100 150 200 250

−250

−200

−150

−100

−50

0

50

100

150

200

250

level 6, N=31, nnz=233 (24%)

−250 −200 −150 −100 −50 0 50 100 150 200 250

−250

−200

−150

−100

−50

0

50

100

150

200

250

level 3, N=132, nnz=442 (3%)

−250 −200 −150 −100 −50 0 50 100 150 200 250

−250

−200

−150

−100

−50

0

50

100

150

200

250

level 4, N=64, nnz=208 (5%)

44

Figure 14: Coarsening Snapshots α = 100, tridiagonal preconditioning, level 3–4

−250 −200 −150 −100 −50 0 50 100 150 200 250

−250

−200

−150

−100

−50

0

50

100

150

200

250

level 3, N=129, nnz=809 (5%)

−250 −200 −150 −100 −50 0 50 100 150 200 250

−250

−200

−150

−100

−50

0

50

100

150

200

250

level 4, N=109, nnz=1443 (12%)

process is depicted. The situation is still comparable to the case α = 1.

Diagonal Preconditioning, α = 100
initial Levels, size and fill–in (%)
size 1 2 3 4 5 6 7 8 9 10

2047 2047, < 1 1190, < 1 854, 1 335, 2 164, 5 134, 12 — — — —
1023 1023, < 1 525, 1 262, 1 131, 3 66, 5 42, 11 33, 23 — — —
511 511, 1 269, 1 132, 3 64, 5 36, 11 31, 24 — — — —

Tridiagonal Preconditioning, α = 100
2047 2047, < 1 1026, 1 514, 1 489, 3 — — — — — —
1023 1023, < 1 514, 1 259, 2 231, 6 — — — — — —
511 511, 1 258, 2 129, 5 109, 12 — — — — — —

Jacobi–squared Preconditioning, α = 100
2047 2047, < 1 529, 1 273, 1 188, 3 85, 8 49, 20 30, 41 — — —
1023 1023, < 1 283, 1 154, 3 73, 6 39, 13 24, 31 — — — —
511 511, 1 135, 2 66, 5 34, 10 17, 19 — — — — —

Finally we compare the condition number and the number of CG steps.

45

Figure 15: Coarsening Snapshots α = 100, Jacobi–squared preconditioning, level
2–5

−250 −200 −150 −100 −50 0 50 100 150 200 250

−250

−200

−150

−100

−50

0

50

100

150

200

250

level 4, N=34, nnz=112 (10%)

−250 −200 −150 −100 −50 0 50 100 150 200 250

−250

−200

−150

−100

−50

0

50

100

150

200

250

level 5, N=17, nnz=55 (19%)

−250 −200 −150 −100 −50 0 50 100 150 200 250

−250

−200

−150

−100

−50

0

50

100

150

200

250

level 2, N=135, nnz=417 (2%)

−250 −200 −150 −100 −50 0 50 100 150 200 250

−250

−200

−150

−100

−50

0

50

100

150

200

250

level 3, N=66, nnz=204 (5%)

46

Diagonal Preconditioning, α = 100
size condition number CG steps

A M M
(1)
l A M

(2)
l A A M M

(1)
l A M

(2)
l A

2047 — — — — 10632 2047 381 158
1023 1.4·107 6.3·105 1.4·104 2.6·103 5037 1023 157 70
511 3.4·106 1.6·105 5.8·103 1.1·103 2293 511 109 50

Tridiagonal Preconditioning, α = 100
2047 — — — — 10632 1097 164 72
1023 1.4·107 2.2·105 6.3·103 1.2·103 5037 552 104 45
511 3.4·106 5.5·104 1.7·103 3.2·102 2293 281 68 30

Jacobi–squared Preconditioning, α = 100
2047 — — — — 10632 1403 135 54
1023 1.4·107 3.7·105 3.1·103 5.0·102 5037 711 104 44
511 3.4·106 9.3·104 9.4·101 2.2·101 2293 364 37 16

The results show that using the algebraic coarsening process a reduction of the number
of cg iterations is obtained. Although the improvement is not as strong as for geometric
multigrid method the the number of iterations is still much less than using only the sparse
approximate inverse preconditioner. For a purely algebraic coarsening process which does
neither make use of any geometric information nor of the underlying analytic problem this
reduction is remarkable.

Example 29 The second example is the two dimensional version of example 28. We con-
sider the problem

−∆u = f in [0, 1]2

u = g on ∂[0, 1]2

We allow different weights in parts of the domain.

1
α11 α12

α21 α22

0 1

In detail we consider the weights

1 1
1 1

100 10000
1 100

100 1
1 100

The discretization is done via a uniform grid and a five point star difference discretization.
If we locally have weights βN , βW , βE, βS, then the discretization is described by

47

−βW −βE

−βS

−βN

βW + βE + βN + βS

In any of the subdomains the value of β is identical to the weights. For nodes on the
interface between the subdomain the arithmetic mean is used.

Again we use same preconditioners as in the previous example. Figures 16, 17 and 18 depict
the grids obtained by the coarsening process.

Figure 16: Coarsening Snapshots αij = 1, diagonal preconditioning, level 2–3

0 5 10 15 20 25 30
0

5

10

15

20

25

30

level 2, N=475, nnz=4039 (2%)

0 5 10 15 20 25 30
0

5

10

15

20

25

30

level 3, N=120, nnz=1118 (8%)

We see that for the sparse approximate inverse preconditioner, the automatic coarsening
process produces a very dense grid. The main reason for this is that the condition number
is overestimated and too many nodes are taken. Note that the condition number of the pre-
conditioned matrix is not very large, so we do not expect a large improvement by including
a coarse grid. However, on the third level the coarsening process stops after taking the first
node. This is due to the fact the coarse grid system is already well–conditioned so no further
grid is needed. We again also depict the reduction in the matrix size and the fill–in during

48

Figure 17: Coarsening Snapshots αij = 1, sparsity as initial matrix used for ap-
prox. inverse, level 2–3

0 5 10 15 20 25 30
0

5

10

15

20

25

30

level 2, N=380, nnz=16788 (12%)

Figure 18: Coarsening Snapshots αij = 1, Jacobi–squared, level 2–3

0 5 10 15 20 25 30
0

5

10

15

20

25

30

level 2, N=261, nnz=2349 (3%)

0 5 10 15 20 25 30
0

5

10

15

20

25

30

level 3, N=23, nnz=239 (45%)

49

the coarsening process.

Diagonal Preconditioning, αij = 1
initial Levels, size and fill–in (%)
size 1 2 3 4

961 961, 1 475, 2 120, 8 1, 100
Sparse approx. inv. with same pattern as the initial matrix, αij = 1

961 961, 2 380, 12 1, 100 —

Jacobi–squared Preconditioning, αij = 1
961 961, 1 261, 4 23, 45 —

The reduction of the system size confirms the observation that not too many coarse grids
are necessary.

Finally we compare the condition numbers and the number of CG steps.

Diagonal Preconditioning, αij = 1
size condition number CG steps

A M M
(1)
l A M

(2)
l A A M M

(1)
l A M

(2)
l A

961 6.0·102 6.0·102 2.2·102 3.6·101 97 97 42 22

sparse appr. inv. with same pattern as the initial matrix, αij = 1
961 6.0·102 2.3·102 2.3·102 5.1·101 97 56 42 24

Jacobi–squared Preconditioning, αij = 1
961 6.0·102 5.5·102 2.5·102 5.8·101 97 95 56 27

Since already the initial preconditioned system shows a quite moderate condition number
and a small number of iterations, the improvement using the algebraic multilevel method
is not as impressive as in Example 28.

For the coefficients (αij) =

(
100 104

1 10

)
we depict the graphs of the coarse grid systems

in Figures 19, 20, 21. We see that the main number of coarse grid nodes are taken in the
subdomain with the largest coefficient, while in the other subdomains only a few nodes are
needed.

Again we examine the reduction of the system size by the coarsening process. As motivated
by the graphical illustration less nodes are used for the coarse grid system.

Diagonal Preconditioning, (αij) =

(
100 104

1 10

)
initial Levels, size and fill–in (%)
size 1 2 3 4

961 961, 1 474, 2 76, 32 1, 38

Sparse approx. inv. with same pattern as the initial matrix, (αij) =

(
100 104

1 10

)
961 961, 2 70, 53 1, 100

Jacobi–squared Preconditioning, (αij) =

(
100 104

1 10

)
961 961, 1 43, 20 1, 100 —

50

Figure 19: Coarsening Snapshots (α11, α12, α21, α22) = (100, 104, 1, 100), diagonal pre-
conditioning, level 2–3

0 5 10 15 20 25 30
0

5

10

15

20

25

30

level 2, N=474, nnz=4384 (2%)

14 16 18 20 22 24 26 28 30 32

14

16

18

20

22

24

26

28

30

32
level 3, N=76, nnz=1862 (32%)

Figure 20: Coarsening Snapshots (α11, α12, α21, α22) = (100, 104, 1, 100), sparsity as
initial matrix used for approx. inverse, level 2–3

16 18 20 22 24 26 28

16

18

20

22

24

26

28

level 2, N=70, nnz=2580 (53%)

51

Figure 21: Coarsening Snapshots (α11, α12, α21, α22) = (100, 104, 1, 100), Jacobi–
squared, level 2

15 16 17 18 19 20 21 22 23 24 25 26

16

18

20

22

24

26

28

30

32
level 2, N=43, nnz=371 (20%)

While for diagonal preconditioning case still about 50% of the nodes are used on the second
level, the situation is better for the other two preconditioners. Here mainly the coarsening
process is restricted to the domain with the largest coefficient.

Diagonal Preconditioning, (αij) =

(
100 104

1 10

)
size condition number CG steps

A M M
(1)
l A M

(2)
l A A M M

(1)
l A M

(2)
l A

961 1.5·106 8.0·102 3.0·102 7.0·101 3168 103 67 34

sparse appr. inv. with same pattern as the initial matrix, (αij) =

(
100 104

1 10

)
961 1.5·106 3.2·102 3.3·102 7.5·101 3168 58 68 37

Jacobi–squared Preconditioning, (αij) =

(
100 104

1 10

)
961 1.5·106 8.4·102 7.4·102 2.0·102 3168 101 110 64

In contrast to Example 28 using an algebraic multilevel method does not greatly improve
the number of iterations, even more so for the sparse approximate inverse with the same
pattern as the initial matrix as well as for Jacobi–squared preconditioning, where the number
of iteration slightly increases. Since one step of the multigrid scheme is more expensive,
in this case the multilevel method slows down the process. As mentioned above this is
essentially due to the fact that the system is not very ill–conditioned and from this point
of view we cannot expect a great improvement by the multilevel scheme.

52

Finally we choose (αij) =

(
100 1
1 100

)
. The coarsening process is illustrated in Figure

22, 23, 24.

Figure 22: Coarsening Snapshots (α11, α12, α21, α22) = (100, 1, 100, 1), diagonal pre-
conditioning, level 2-3

0 5 10 15 20 25 30
0

5

10

15

20

25

30

level 2, N=480, nnz=4422 (2%)

0 5 10 15 20 25 30

5

10

15

20

25

30

level 3, N=167, nnz=4777 (17%)

The main problem using the automatic coarsening process is that the matrix is approxi-
mately block diagonal which causes the coarsening process to take too many nodes in the
subdomains with the large coefficients.

Diagonal Preconditioning, (αij) =

(
1 100

100 1

)
initial Levels, size and fill–in (%)
size 1 2 3 4

961 961, 1 480, 2 167, 17 1, 100

Sparse approx. inv. with same pattern as the initial matrix, (αij) =

(
1 100

100 1

)
961 961, 2 238, 23 14, 100 —

Jacobi–squared Preconditioning, (αij) =

(
1 100

100 1

)
961 961, 1 388, 5 1, 100 —

¿From the reduction of the system size we can see that essentially not more then 2 grids
are required. The third level only consists of a very few number of nodes. Only in the case

53

Figure 23: Coarsening Snapshots (α11, α12, α21, α22) = (100, 1, 100, 1), sparsity as ini-
tial matrix used for approx. inverse, level 2

5 10 15 20 25 30

5

10

15

20

25

30

level 2, N=238, nnz=12966 (23%)

Figure 24: Coarsening Snapshots (α11, α12, α21, α22) = (100, 1, 100, 1), Jacobi–
squared, level 2

0 5 10 15 20 25 30
0

5

10

15

20

25

30

level 2, N=388, nnz=7994 (5%)

54

of diagonal preconditioning more nodes are used.

Diagonal Preconditioning, (αij) =

(
1 100

100 1

)
size condition number CG steps

A M M
(1)
l A M

(2)
l A A M M

(1)
l A M

(2)
l A

961 1.5·104 7.4·102 3.3·102 6.6·101 516 113 58 28

sparse appr. inv. with same pattern as the initial matrix, (αij) =

(
1 100

100 1

)
961 1.5·104 2.8·102 2.7·102 6.1·101 516 59 60 30

Jacobi–squared Preconditioning, (αij) =

(
1 100

100 1

)
961 1.5·104 7.2·102 5.2·102 1.8·102 516 110 57 33

The condition number as well as the number of iterations show a slight improvement using
the multilevel scheme.

Example 30 The matrix in this example is that of Example 26 and essentially corresponds
to the matrix LANPRO/NOS2 from the Harwell–Boeing collection [8] with n = 190. Al-
though this matrix is not very big, its condition number is already huge. Applying the coars-
ening process to this matrix using diagonal preconditioning we obtain the graphs shown in
Figure 25.

The analogous situation when using the sparse approximate inverse with same sparsity as
the initial matrix is given in Figure 26.

At last the coarsening snapshots for the Jacobi–squared preconditioner are given in Figure
27.

We have the following reduction in the size of the system and the related fill–in.

Diagonal Preconditioning,
initial Levels, size and fill–in (%)
size 1 2 3 4

190 190, 3 94, 6 56, 15 30, 40

Preconditioning with pattern as the initial matrix
190 190, 3 90, 14 40, 42 19, 81

Jacobi–squared preconditioning
190 190, 5 66, 20 26, 40 —

Here the comparison of the condition numbers and the number of cg steps is quite interest-

55

Figure 25: Coarsening Snapshots diagonal preconditioning, level 1–4

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3
level 3, N=56, nnz=434 (14%)

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3
level 4, N=30, nnz=358 (40%)

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3
level 1, N=190, nnz=942 (3%)

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3
level 2, N=94, nnz=462 (5%)

56

Figure 26: Coarsening Snapshots, preconditioning with same sparsity pattern as
the initial matrix, level 1–4

10 20 30 40 50 60 70 80
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3
level 3, N=40, nnz=604 (38%)

10 20 30 40 50 60 70 80
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3
level 4, N=19, nnz=293 (81%)

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3
level 1, N=190, nnz=1866 (5%)

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3
level 2, N=90, nnz=1124 (14%)

57

Figure 27: Coarsening Snapshots, preconditioning with same sparsity pattern as
the initial matrix, level 2–3

10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3
level 2, N=66, nnz=812 (19%)

10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3
level 3, N=26, nnz=270 (40%)

ing.
Diagonal Preconditioning

size condition number CG steps

A M M
(1)
l A M

(2)
l A A M M

(1)
l A M

(2)
l A

190 2.6·107 1.6·107 8.8·103 1.8·103 1062 540 82 38

Preconditioning with same sparsity as the init. matrix
190 2.6·107 4.3·106 1.1·104 2.2·103 1062 325 72 33

Jacobi–squared preconditioning
190 2.6·107 1.3·107 7.2·106 1.6·106 1062 571 352 188

Although the condition number of the preconditioned system is still large, the number of
iteration is small. Here almost all eigenvalues are clustered near 1. Only a few exceptional
eigenvalues are small, which lead to a large condition number but fortunately only have a
minor impact on the iterative process.

In this case no great improvement was obtained by the Jacobi–squared preconditioner. It
has turned out in this example that there was no clustering of the eigenvalues at the upper
bound of the spectrum of the preconditioned matrix. Obviously the coarsening cannot end
up in an efficient multilevel scheme.

58

6 Conclusions

We have derived new approaches for the construction of algebraic multilevel methods that
automatically detects the coarse grid by choosing suitably chosen columns of the residual
matrix. The basic feature is a combination of ideas from sparse approximate inverses and
spares QR-factorizations. We have presented the mathematical theory to develop optimal
preconditioners. The key feature of the new approach is the choice of an efficient piv-
oting strategy for the needed sparse QR-factorization and it turns out that an heuristic
approach based on approximation of eigenvectors associated with the smallest eigenvalues
of the preconditioned system combined with an eigenvector independent criterion yields
very convincing numerical results. A more detailed analysis of methods to construct good
pivoting strategies needs further research.

References

[1] O. Axelsson, M. Neytcheva, and B. Polman. An application of the bordering method to
solve nearly singular systems. Vestnik Moskovskogo Universiteta, Seria 15, Vychisl. Math.
Cybern., 1:3–25, 1996.

[2] O. Axelsson, A. Padiy, and B. Polman. Generalized augmented matrix preconditioning ap-
proach and its application to iterative solution of ill-conditioned algebraic systems. Technical
report, Katholieke Universiteit Nijmegen, Fakulteit der Wiskunde en Informatica, 1999.

[3] R. Barret, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkout, R. Pozo,
C. Romine, and H. van der Vorst. Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods. SIAM Publications, 1995.

[4] M. Benzi, C. D. Meyer, and M. Tůma. A sparse approximate inverse preconditioner for the
conjugate gradient method. SIAM J. Sci. Comput., 17:1135–1149, 1996.

[5] W. Bunse and A. Bunse-Gerstner. Numerische lineare Algebra. B.G. Teubner Stuttgart,
1985.

[6] E. Chow and Y. Saad. Approximate inverse preconditioners via sparse-sparse iterations.
SIAM J. Sci. Comput., 19(3):995–1023, 1998.

[7] I. S. Duff, A. Erisman, and J. Reid. Direct Methods for Sparse Matrices. Oxford University
Press, 1986.

[8] I. S. Duff, R. G. Grimes, and J. G. Lewis. Sparse matrix test problems. ACM Trans. Math.
Software, 15:1–14, 1989.

[9] R. W. Freund, G. H. Golub, and N. M. Nachtigal. Iterative solution of linear systems. Acta
Numerica, pages 1–44, 1992.

[10] J. A. George and J. W. Liu. Computer Solution of Large Sparse Positive Definite Systems.
Prentice-Hall, Englewood Cliffs, NJ, USA, 1981.

[11] N. Gibbs, W. Poole, and P. Stockmeyer. An algorithm for reducing the bandwidth and
profile of a sparse matrix. SIAM J. Numer. Anal., 13:236–250, 1976.

59

[12] G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins University
Press, third edition, 1996.

[13] A. Greenbaum. Iterative Methods for Solving Linear Systems. Frontiers in Applied Mathe-
matics. SIAM Publications, 1997.

[14] M. J. Grote and T. Huckle. Parallel preconditioning with sparse approximate inverses. SIAM
J. Sci. Comput., 18(3):838–853, 1997.

[15] W. Hackbusch. Multigrid Methods and Applications. Springer-Verlag, 1985.

[16] W. Hackbusch. Iterative Lösung großer schwachbesetzter Gleichungssysteme. B.G. Teubner
Stuttgart, second edition, 1993.

[17] T. Huckle. Matrix multilevel methods and preconditioning. Technical report SFB–Bericht
Nr. 342/11/98 A, Technische Universität München, Fakulktät für Informatik, 1998.

[18] I. E. Kaporin. New convergence results and preconditioning strategies for the conjugate
gradient method. Numer. Lin. Alg. w. Appl., 1(2):179–210, 1994.

[19] L. Kolotilina and A. Yeremin. Factorized sparse approximate inverse preconditionings. I.
Theory. SIAM J. Matrix Anal. Appl., 14:45–58, 1993.

[20] Y. Notay. Using approximate inverses in algebraic multigrid methods. Numer. Math., 80:397–
417, 1998.

[21] D. P. O’Leary. The block conjugate gradient algorithm and related methods. Linear Algebra
Appl., 29:293–322, 1980.

[22] B. Parlett. The Symmetric Eigenvalue Problem. Prentice-Hall, 1980.

[23] J. Ruge and K. Stüben. Algebraic multigrid. In S. McCormick, editor, Multigrid Methods,
pages 73–130. SIAM Publications, 1987.

[24] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing, Boston, 1996.

[25] Y. Saad and M. Schultz. GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 7:856–869, 1986.

[26] G. Stewart. Conjugate direction methods for solving systems of linear equations. Numer.
Math., 21:285–297, 1973.

[27] G. Stewart. Four algorithms for the efficient computation of truncated pivoted QR approxi-
mations to a sparse matrix. Technical report UMIACS TR-98-12 CMSC TR-3875, University
of Maryland, Department of Computer Science, 1998. to appear in Numerische Mathematik.

[28] The MathWorks Inc. MATLAB version 6.1 release 12, 2001. a software program.

[29] R. S. Varga. Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, New Jersey, 1962.

60

