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Abstract We study block preconditioning strategies for the solution of large sparse
complex coefficients linear systems resulting from the discretization of the time-
harmonic Maxwell equations by a high order discontinuous finite element method
formulated on unstructured simplicial meshes. The proposed strategies are based
on principles from incomplete factorization methods. Moreover, a complex shift
is applied to the diagonal entries of the underlying matrices, a technique that has
recently been exploited successfully in similar contexts and in particular for the
multigrid solution of the scalar Helmholtz equation. Numerical results are presented
for 2D and 3D electromagnetic wave propagation problems in homogeneous and
heterogeneous media.

1 Introduction

The present study is concerned with the development of a high-performance numer-
ical methodology for the computer simulation of time-harmonic electromagnetic
wave propagation problems in irregularly shaped domains and heterogeneous me-
dia. In this context, we are naturally led to consider volume discretization methods
(i.e. finite difference, finite volume or finite element methods) as opposed to surface
discretization methods (i.e. boundary element method). Most of the related existing
works deal with the second-order form of the time-harmonic Maxwell equations dis-
cretized by a conforming finite element method [13]. More recently, discontinuous
Galerkin (DG) methods have also been considered for this purpose. Here, we con-
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centrate on the first-order form of the time-harmonic Maxwell equations discretized
by a high order discontinuous Galerkin method formulated on unstructured simpli-
cial meshes. While it keeps almost all the advantages of the finite element method
(large spectrum of applications, complex geometries, etc.), the DG method has other
nice properties which explain the renewed interest it gains in various domains in sci-
entific computing (as witnessed by books or special issues of journals dedicated to
this method [4–6]): easy extension to higher order interpolation (one may increase
the degree of the polynomials in the whole mesh as easily as for spectral methods
and moreover this can be done very locally), no global mass matrix to invert (when
solving time-domain systems of partial differential equations using an explicit time
scheme), easy handling of complex meshes (the grid may be a classical conforming
finite element mesh, a non-conforming one or even a hybrid mesh made of various
types of element), natural treatment of discontinuous solutions and coefficient het-
erogeneities, nice parallelization properties (the compact nature of a discontinuous
Galerkin scheme is in favor of high computation to communication ratio especially
for high order interpolation methods).

The DG discretization of the first order form of the time-harmonic Maxwell equa-
tions leads to a large sparse complex system of equations that exhibits a block struc-
ture which is linked to the use of a polynomial interpolation method for the approx-
imation of the electromagnetic field within a mesh element. For moderately large
2D problems, this system can be efficiently solved by an optimized sparse solver
such as MUMPS [1]. However, for large 2D problems or for 3D problems, such a
solution strategy is simply not feasible. In [8], a hybrid iterative-direct solver is pro-
posed for the solution of the linear system resulting from the DG discretization of
the 3D time-harmonic Maxwell equations. The starting-point is a Schwarz type do-
main decomposition algorithm which is defined for the continuous time-harmonic
Maxwell equations and which is based on appropriate transmission conditions be-
tween neighboring subdomains. At the discrete level, this domain decomposition
solver combines an iterative solver acting on a reduced linear system of equations
involving interface unknowns, with a sparse direct solver within each subdomain.
For moderately large 3D problems and for the lowest interpolation degrees (i.e. 0-th
and 1-st order) in the DG method, the resulting hybrid iterative-direct solver is a
viable solution strategy. However, for very large problems and for high interpola-
tion degrees, the size of the subdomain problems prohibits the use of a sparse direct
solver. Besides, increasing the number of subdomains to reduce the size of the local
problems is generally not a proper approach since this incurs numerical scalability
issues which have not been investigated so far for optimized Schwarz methods.

In this paper we will discuss an alternative way of solving the discretized time-
harmonic Maxwell equations. Our approach is mainly based on the relations be-
tween the second-order Maxwell equations and Helmholtz equations. For Helmholtz
equations, recently numerical methods have been presented that are based on the
shifted Laplacian [2, 9, 12, 14]. I.e., first an artificial damping is introduced into
the equations which results in an additional imaginary shift. Then the numerical
approximation is computed for the shifted system instead of the original system.
Finally, the approximation is applied to the original equations. For the first order
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time-harmonic Maxwell equations an analogous perturbation is performed that im-
plicitly shifts the second order systems. The numerical approximation we apply
to the shifted system is based on a multilevel block incomplete factorization that
uses a pivoting strategy to deal with small pivots. Furthermore, our block factoriza-
tion approach is designed to deal with large blocks in order to preserve the natural
block structure which is obtained from the discontinuous Galerkin discretization.
Numerical experiments confirm that this approach is able to efficiently solve the
time-harmonic Maxwell equations.

2 The continuous problem

We consider solving the normalized time-harmonic Maxwell equations in the first
order form:

iωεrE− curlH =−JE , iωµrH+ curlE = 0, (1)

where E and H are the unknown electric and magnetic fields and J is a known cur-
rent source; εr and µr respectively denote the relative electric permittivity and the
relative magnetic permeability and we assume here the case of a linear isotropic
non-magnetic (i.e. µr = 1) media. The relative electric permittivity is linked to its
absolute value through ε = εrε0 where ε0 is the permittivity of the vacuum. The an-
gular frequency of the problem is given by ω . Equations (1) are solved in a bounded
domain Ω . On the boundary ∂Ω = Γa ∪Γm, the following boundary conditions are
imposed:

- a perfect electric conductor (PEC) condition on Γm : n×E = 0,

- a Silver-Müller absorbing condition on Γa : L (E,H) = L (Einc,Hinc),
(2)

where L (E,H) = n×E−Zn× (H×n) with Z =
√

µr/εr. The vectors Einc and
Hinc represent the components of an incident electromagnetic wave and n denotes
the unit outward normal. Equations (1) and (2) can be further rewritten in the form:

iωG0W+Gx∂xW+Gy∂yW+Gz∂zW =−J in Ω ,

(MΓm −Gn)W = 0 on Γm,

(MΓa −Gn)(W−Winc) = 0 on Γa,

(3)

where W = (E,H)T is the new unknown vector, J = (JE,0)T and:

G0 =
(

εr I3 03
03 µr I3

)
, Gl =

(
03 Nel

NT
el 03

)
, Nv =

 0 vz −vy
−vz 0 vx
vy −vx 0

 ,

with the index set l ∈ {x,y,z} for Gl and where (ex,ey,ez) is the canonical basis of
R3 and v = (vx,vy,vz)T . The term I3 denotes the identity matrix, and 03 the null ma-
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trix, both of dimension 3×3. The real part of G0 is symmetric positive definite and
its imaginary part, which appears for instance in the case of conductive materials, is
symmetric negative. In the following we denote by Gn the sum Gxnx +Gyny +Gznz
and by G+

n and G−n its positive and negative parts1. We also define |Gn|= G+
n −G−n .

In order to take into account the boundary conditions, the matrices MΓm and MΓa are
given:

MΓm =
(

03 Nn
−NT

n 03

)
and MΓa = |Gn|.

3 Discretization by a discontinuous Galerkin method

Let Ωh denote a discretization of the domain Ω into a union of conforming simpli-
cial elements K. We look for the approximate solution Wh of (3) in Vh×Vh where the
functional space Vh is defined by Vh =

{
U ∈ [L2(Ω)]3 / ∀K ∈Ωh, U|K ∈ Pp(K)

}
,

where Pp(K) denotes a space of vectors with polynomial components of degree at
most p over the element K. The DG discretization of system (3) yields the formula-
tion of the discrete problem which aims at finding Wh in Vh×Vh such that:

∫
Ωh

(iωG0Wh)
T Vdv+ ∑

K∈Ωh

∫
K

(
∑

l∈{x,y,z}
Gl∂l(Wh)

)T

Vdv

+ ∑
F∈Γ m∪Γ a

∫
F

(
1
2
(MF,K− IFKGnF )Wh

)T

Vds

− ∑
F∈Γ 0

∫
F

(GnF [[Wh]])
T {V}ds+ ∑

F∈Γ 0

∫
F

(SF [[Wh]])
T [[V]]ds

= ∑
F∈Γ a

∫
F

(
1
2
(MF,K− IFKGnF )Winc

)T

Vds, ∀V ∈Vh×Vh,

(4)

where Γ 0, Γ a and Γ m respectively denote the set of interior (triangular) faces, the
set of faces on Γa and the set of faces on Γm. The unitary normal associated with the
oriented face F is nF and IFK stands for the incidence matrix between oriented faces
and elements whose entries are equal to 0 if the face F does not belong to element
K, 1 if F ∈ K and their orientations match, and -1 if F ∈ K and their orientations do
not match. For F = ∂K∩∂ K̃, we also define [[V]] = IFKV|K + IFK̃V|K̃ and {V}=
1
2

(
V|K +V|K̃

)
. Finally, the matrix SF , which is hermitian positive semi-definite,

permits to penalize the jump of a field or of some components of this field on the
face F , and the matrix MF,K insures the asymptotic consistency with the boundary
conditions of the continuous problem. Problem (4) is often interpreted in terms of
local problems in each element K of Ωh coupled by the introduction of an element

1 If TΛT−1 is the eigendecomposition of Gn, then G±n = TΛ±T−1 where Λ+ (respectively Λ−)
only gathers the positive (respectively negative) eigenvalues.
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boundary term called numerical flux (see also [11]). We refer to [7] for all the details
on the various terms involved in this DG formualtion. Within each mesh element K
the electromagnetic field (E,H)T is approximated as:

(Eh)|K =
dK

∑
i=1

EK
i ϕ

K
i and (Hh)|K =

dK

∑
i=1

HK
i ϕ

K
i (5)

where EK
i and HK

i are the vectors of local degrees of freedom corresponding to the
basis expansion {ϕK

i }i=1,··· ,dK of Pp(K). In the present study, we adopt the classical
Lagrange nodal basis functions defined on a simplexand we assume that the inter-
polation degree is uniform (i.e. the same for all the elements of the mesh). Then the
resulting method is denoted as DG-Pp.

4 Block preconditioning

The discretization of the system of time-harmonic Maxwell equations (3) using the
DG formulation (4) leads to a large sparse complex linear system of equations of
the form A Wh ≡ (iωM +C )Wh = b, where ωM refers to the discretization of
the term: ∫

Ωh

(ωG0Wh)
T Vdv

in (4), while C represents the discretization of the curl operators and the boundary
conditions for the remaining integrals on the left hand side of (4). For the numerical
treatment we assume that the sign of the first equation of the time-hamonic Maxwell
equations is flipped to −iωεrE + curlH = +βEωεrE + J and consistently changed
in G0,Gβ ,Gx,Gy,Gz. In this case the matrices M and C become symmetric, thus
A is complex symmetric.

The matrix of this system exhibits a block structure which is linked to the use
of a polynomial interpolation method for the approximation of the electromagnetic
field within a mesh element (5). Up to a permutation which is induced by first taking
the contributions with respect to E and then the H part we find that:

M =
(
−Mεr 0

0 Mµr

)
, C =

(
−CEE CT

HE

CHE CHH

)
,

where Mεr and Mµr are real symmetric positive definite block diagonal matrices
whose block elements are the local mass matrices computed in each element K.
Computing a preconditioner based on an incomplete factorization of A happens to
be prohibitively expensive. Therefore we shift the initial system by:

ω

(
−βEMεr 0

0 βHMµr

)
,
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where βE,βH are chosen appropriately. This precisely refers to adding artificially
−βEωεrE and −βHωµrH to the right-hand side of (1). With respect to E this can
be interpreted as artificial conductivity. We propose three different variants of block
preconditioning. The first version consists of choosing βE = βH = β and applying
our preconditioner to the shifted system:

P1 = βωM +A .

The second and third variant are best understood as a discrete analogy of eliminating
the magnetic field H from the second equation of the perturbed form of (1) and
inserting it into the first equation of (1). The resulting equation thus reduces to:

1
ω(i+βH)

(
−(1−βEi)(1−βHi)ω2

εrE+ curl(
1
µr

curlE)
)

=−J.

This is essentially a vector-valued Helmholtz equation, where the operator is shifted
by a multiple of the mass matrix. The discrete analogy can be described by elimi-
nating the H part from βωM +A by one block elimination step:(

−ω(i+βE)Mεr −CEE CT
HE

CHE ω(i+βH)Mµr +CHH

)
→

S =−ω(i+βE)Mεr −CEE−CT
HE

(
ω(i+βH)Mµr +CHH

)−1 CHE.

For the second variant block preconditioning we use β = βE = βH to obtain the re-
duced system P2. This can be read as first shifting and then eliminating. Finally for
the third variant we proceed analogously to the second one except that we first elimi-
nate H from the unshifted system A and then shift the reduced system by−βωMεr ,
i.e., we choose β = βE and βH = 0 in order to obtain the reduced system P3. Ac-
cording to the work by Magolu [12], Erlangga et al [10], shifting the operator with a
real-valued β significantly improves incomplete LU preconditioning and multilevel
preconditioning.

For preconditioning we apply the inverse-based multilevel block ILU [3], as im-
plemented in ILUPACK2. Its hallmark is the strategy of keeping the inverse triangu-
lar factors below a given bound κ . In order to deal with indefinite systems, a block
factorization approach is used based on a symmetrized maximum weight matching
(see [2] for details of this approach when being applied to Helmholtz equation).

5 Numerical results

We now present the impact of shifting the initial system by a multiple of the mass
matrix for a 3D problem discretized by a DG-P1 method. The problem under consid-
eration is the scattering of a plane wave by a perfectly conducting unit sphere. The

2 http://ilupack.tu-bs.de
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frequency of the incident plane wave of frequency F=900 MHz and thus, we have
ω = 18.84 (after renormalization of the Maxwell equations). The computational
domain is defined as the free space between the perfectly conducting sphere and an
outer sphere on which the Silver-Müller absorbing condition is applied. We have
used an unstructured tetrahedral mesh consisting of 46,704 tetrahedral elements.
This yields a complex symmetric system of size n = 1,120,896. The computations
were performed on a workstation equipped with an Intel Xeon E7440 CPU with
frequency 2.4 GHz and 64 GB of memory. For the ILU we use a drop tolerance of
10−2 but limit the maximum amount of fill per row by 10× the number of nonze-
ros per row in A . We use an inverse bound of κ = 5 for inverse-based pivoting.
As iterative solver we use the simplified QMR method which allows for the use of
(complex) symmetric systems and preconditioners. The iteration is stopped, when-
ever the backward error satisfies ‖Ax−b‖ ≤ 10−6(‖A‖ ‖x‖+‖b‖). As comparison
we also add numerical results of the direct solver PARDISO3 (see Tab. 4). The nu-
merical results in Tab. 1-3 confirm the efficiency of our shifted multilevel block ILU
approach. They illustrate that shifting the initial system is essential for the ILU. If
the shift is too small then the fill would increase drastically if there were no limit
imposed. On the other hand, shifting the system too much turns the preconditioned
system away from the original system.

Table 1 Multilevel block ILU applied to P1 = A+βωM

β ILU[sec] nz(ILU)
nz(A) levels SQMR[sec] steps

1.5 8.8 ·102 11.7 5 3.2 ·103 620
3.0 1.7 ·102 5.4 4 1.7 ·103 387
5.0 1.0 ·102 6.2 2 2.4 ·103 574

10.0 4.6 ·101 3.3 1 1.9 ·103 1035

Table 2 Multilevel block ILU for the reduced system P2 of A+βωM after eliminating the E part
first.

β ILU[sec] nz(ILU)
nz(A) levels SQMR[sec] steps

1.5 3.6 ·102 9.9 6 1.7 ·103 398
3.0 1.4 ·102 5.2 2 9.8 ·102 302
5.0 8.5 ·101 4.3 2 1.9 ·103 613

10.0 3.9 ·101 1.9 1 1.0 ·103 842

3 http://www.pardiso-project.org
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Table 3 Multilevel block ILU for the reduced system P3 of A after eliminating the E part first and
then shifting by βωMµr .

β ILU[sec] nz(ILU)
nz(A) levels SQMR[sec] steps

1.5 4.9 ·102 15.2 8 9.7 ·103 1773
3.0 3.5 ·102 9.2 5 1.9 ·103 452
5.0 2.6 ·102 6.7 4 1.3 ·103 337

10.0 1.6 ·102 6.0 3 1.2 ·103 325

Table 4 Direct solver PARDISO applied to A

computation time nz(LU)
nz(A)

5.2 ·103 90.4
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