
A Factored Approximate Inverse Preconditioner With

Pivoting

Matthias Bollhöfer∗ Yousef Saad†

Abstract

In this paper we develop new techniques for stabilizing factored approximate inverse pre-
conditioners (AINV) using pivoting. This method yields stable preconditioners in many cases
and can provide successful preconditioners in many situations when the underlying system is
highly indefinite. Numerical examples illustrate the effectiveness of this approach.

Keywords. sparse matrices, ILU, sparse approximate inverse, AINV, pivoting.
AMS specification. 65F05, 65F10, 65F50.

1 Introduction

Many applications lead to solving large sparse linear systems of the form

Ax = b, (1)

with A ∈ Rn,n and b ∈ Rn. In many cases, such systems are not only very large but also
exceedingly difficult to solve by iterative techniques because A is ill-conditioned or highly indefinite
or both. In some instances these equations arise from special applications and solvers tailored to
the underlying physical problem may give the best results. However, there are situations in
which ‘general purpose’ solvers are desirable. Such is the case when building general purpose
software, or when the linear system has very little inherent structure. General purpose solvers
have many other advantages, the most significant being that changes in the physics or model do not
require the development of new methods. For these situations, preconditioned Krylov–subspace
solvers, see, e.g., [16, 25, 13] are often seen as promising alternatives to ‘black-box’ direct solution
methods. Among all preconditioning techniques, those based on incomplete LU–factorizations,
see e.g. [20, 21, 22] are known to give excellent results for many important classes of problems,
such as those arising from the discretization of elliptic partial differential equations.

Motivated by the emergence of parallel computing platforms, a number of new techniques
have been developed in recent years, which approximate directly the inverse of A. A few of these
approaches are based on minimizing the norm ‖I −AM‖ in some appropriate norm [19, 17, 15, 9]
while others approximately solve the equation W>AZ = D, where the unknown matrices Z,W
are unit upper triangular and D is a diagonal matrix, see e.g. [24, 4, 5, 1, 18]. In particular, the
algebraic behavior of the latter class of methods bears strong similarities to that of incomplete
LU–decompositions, e.g. they are stable for M– and H–matrices. See [6] for a detailed analysis
between factored approximate inverses and incomplete LU–decompositions. Without describing
the details of these relations we briefly sketch both methods to describe these links.

∗Institute of Mathematics, MA 4–5, Berlin University of Technology, D–10623 Berlin, Germany. Supported
by grants of the DFG BO 1680/1-1 and by the University of Minnesota. This research was performed while
visiting the University of Minnesota at Minneapolis. email: bolle@math.tu-berlin.de, URL: http://www.math.tu-
berlin.de/∼bolle/.
†Dep. of Computer Science and Engineering, University of Minnesota, 4–192 EE/CSci Building, 200 Union

St., SE, Minneapolis, MN 55455–0154. Work supported by NSF and by the Minnesota Supercomputing Institute.
email: saad@cs.umn.edu, URL: http://www.cs.umn.edu/∼saad/

1



A Factored Approximate Inverse Preconditioner With Pivoting 2

For solving the linear system (1), incomplete LU techniques begin by approximately construct-
ing a factorization

A ≈ LDU,

where L,U> are lower triangular matrices, with unit diagonal, and D is diagonal. One way to
construct these decompositions is to partition A as

A =

[
B F
E C

]
∈ Rn,n

with B ∈ R and the other blocks have corresponding size. Then A is factored as[
B F
E C

]
=

[
1 0
LE I

]
︸ ︷︷ ︸

L

[
DB 0
0 S

]
︸ ︷︷ ︸

D

[
1 UF

0 I

]
︸ ︷︷ ︸

U

, (2)

where
S = C − LEDBUF ∈ Rn−k,n−k (3)

denotes the so–called Schur–complement. The exact LU–decomposition of A (if it exists) can
be obtained by successively applying (2) to the Schur–complement S. Even if there exists a
decomposition (2) for A and for S, there is no need to compute LE and UF , S exactly when
constructing a preconditioner. A common approach for reducing fill-in consists of discarding
entries of LE and UF of small size and defining the approximate Schur–complement only with
these sparsified vectors L̃E and ŨF . We will use

S̃ = B − L̃EDBŨF (4)

as one possible definition of an approximate Schur–complement. The associated ILU algorithm
is roughly given by Algorithm 1.

Algorithm 1 (Incomplete LU factorization (ILU))
Let A = (aij)ij ∈ Rn,n and let τ ∈ (0, 1) be a drop tolerance. Compute A ≈ LDU .

Set L = U = I, S = A

for i = 1, . . . , n
dii = sii
for j = i+ 1, . . . , n

pj = sji/dii, qj = sij/dii
drop entries |pj |, |qj | if they are less than τ
lji = pj, uij = qj
for k = i+ 1, . . . , n

skj = skj − lkidiiuij
end

end
end

Practical versions of incomplete LU decompositions are typically implemented in a slightly
different way. It is usually not advisable to update the whole matrix Ŝ = (skl)k,l>i by a rank–1

modification. Instead, the leading row of Ŝ is typically computed, and the transformations on the
other rows are post–poned. In essence this means that the so–called I,K,J version of Gaussian
elimination is used. For details, see [24]. In addition to saving memory, this has the advantage
that all updates and modifications are performed only once for each row, thus making it possible
to use very simple sparse row storage schemes such as the Compressed Sparse Row (CSR) format.



A Factored Approximate Inverse Preconditioner With Pivoting 3

In [4, 5] algorithms have been presented that directly compute upper unit triangular matrices
W and Z such that W>AZ ≈ D is approximately diagonal. Here we choose to outline a version
(Algorithm 2) that has already been used for the symmetric positive definite case [1, 18]. In short,
at any given step i the algorithm performs a Gram–Schmidt step to A–orthogonalize the columns
wj , j = i + 1, . . . , n against zi and then the columns zj , j = i + 1, . . . , n against wi. Dropping is
then applied to the resulting columns. Clearly, A–orthogogonality is only achieved approximately.

Algorithm 2 (Factored Approximate Inverse (AINV))
Let A = (aij)ij ∈ Rn,n and let τ ∈ (0, 1) be a drop tolerance. Compute A−1 ≈ ZD−1W>.

Set p = q = (0, . . . , 0) ∈ Rn, Z = [z1, . . . , zn] = In, W = [w1, . . . , wn] = In.

for i = 1, . . . , n
dii = w>i Azi
for j = i+ 1, . . . , n

pj =
(
w>j Azi

)
/dii, qj =

(
w>i Azj

)
/dii

wj = wj − wi pj, zj = zj − zi qj
for all l 6 i: drop entries wlj, zlj if their absolute values are less than τ .

end
end

Suppose that Algorithm 1 and Algorithm 2 do not break down. In step i of Algorithm 1, entries
in the i–th row and i–th column of the Schur–complement (skl)k,l>i are eliminated. Analogously

Algorithm 2 eliminates the off–diagonal entries in row i and column i of
(
w>k Azl

)
k,l>i

. If no

dropping is applied, then we would obtain

(skl)k,l>i =
(
w>k Azl

)
k,l>i

. (5)

This can been seen, e.g., from (2) using L−1 = W> and U−1 = Z. This means that pj and qj
(resp. dii) play similar roles in both algorithms.

The main advantage of this observation is the possibility of exploiting these connections to
adapt pivoting techniques used in (incomplete) Gaussian elimination, and to carry them over to
sparse–approximate inverse techniques, with the goal of improving the performance of factored
approximate inverses.

2 Approximate Inverses with Pivoting

One way to exploit the connection between approximate inverses and incomplete LU factorizations
is to introduce pivoting to approximate inverses. This can be done by first adding pivoting to
Algorithm 1 and then using relation (5) to transfer pivoting strategies to Algorithm 2. The main
reason for introducing pivoting to Algorithm 1 and Algorithm 2 is the fact that the algorithms
might encounter a zero or small pivot during the computation. At some step i of either algorithm
it may turn out that dii ≈ 0, in which case the algorithms break down. It is possible to shift
the zero pivots away by adding an artificial small perturbation (e.g., 10−8) to dii but this will
rarely solve the problem. Instead, we could ensure that zero pivots do not occur and this is
traditionally achieved by pivoting in direct Gaussian elimination. This technique was implemented
in incomplete factorizations as well [22]. Although this makes the underlying data structure more
complex, it often stabilizes the processes and even ensures that the growth in the element size
of L,U will remain fairly moderate. However unlike complete Gaussian elimination, ILU with
pivoting might still break down.

We first discuss how column and row pivoting could be added to Algorithm 1. We will in-
troduce column and row interchanges that keep the algorithm consistent when τ = 0 is used. In
other words, the algorithm without dropping will compute Π>AΣ = LDU , where Π and Σ are
permutation matrices that will be determined throughout the process. If π and σ are permutation



A Factored Approximate Inverse Preconditioner With Pivoting 4

vectors associated with permutation matrices Π and Σ, then we will sometimes write A(π, σ) for
the permuted matrix Π>AΣ.
Suppose that a diagonal pivot sii is not satisfactory. The property to be satisfied by, say, a column
pivot k ≥ i at step i, could be a criterion such as

|sik| ≥ α |sij | for j ≥ i,

for a prescribed constant 0 < α 6 1. After the column interchange takes place, one could consider
in addition the analogous row criterion

|sii| ≥ α |sji| for j ≥ i.

If this inequality is no longer satisfied, a row interchange will be performed. This process can
alternate between both criteria and usually takes a few steps to complete, in many cases requiring
just one step. It allows a better selection by iterating on the choice of the pivots, if necessary,
without entailing substantial additional cost in most cases. With pivoting, (2) locally changes to[

I O

O Π̂

]>
︸ ︷︷ ︸

Π>

[
B F
E C

] [
I O

O Σ̂

]
︸ ︷︷ ︸

Σ

≈
[

I O

Π̂>LE I

] [
DB O

O Π̂>SΣ̂

] [
I UF Σ̂
O I

]
, (6)

where equality holds, if no dropping is applied. The approximate identity (6) shows that the
columns of U − I also need to be interchanged with respect to the column pivoting step. The rows
of L − I need to be processed similarly if row pivoting is applied. The additional row pivoting
step is not so common in practice.

This may be more expensive due to the additional overhead for computing not only the leading
row of the Schur–complement, but also its leading column. In particular, we note that this
version of pivoting is hard to implement with the common IKJ variant of Gaussian elimination,
since columns of the Schur complement are not available and their corresponding data structure
expensive to obtain.

After showing how pivoting affects Algorithm 1 it is now easy to extend naturally the idea of
pivoting to Algorithm 2. To do so we only have to keep in mind that W = L−> and Z = U−1 if
τ = 0 is used. Clearly the columns of W − I and Z − I have to be permuted analogously to the
rows of L− I and columns of U − I. If no dropping is applied then equation (5) now reads

(skl)k,l>i =
(
w>k A(π, σ)zl

)
k,l>i

. (7)

This restricts the application of π and σ to the initial matrix A, if we reorder columns of Z − I
and W − I. This leads to Algorithm 3.

Note that the while–loop in Algorithm 3 is optional and has been included for the purpose
of greater generality. If no dropping is applied, we obtain W>A(π, σ)Z = D, by construction.
Pivoting for a related direct projection method can already be found in [3]. Instead of using W>AZ
to compute p and q only W>A is used, which is equivalent in this case because no dropping is
applied. In a sense Algorithm 3 generalizes the pivoting approach of [3] in that it is applied to an
incomplete factorization and both row and column interchanges are performed.

As it is described, Algorithm 3 does not specify any rule on how to select the pivots k and l.
A reasonable strategy could be to choose k such that |pk| is maximal and this obviously requires
p to be computed before pivoting is applied. We observe that in Algorithm 3 now the p and q
columns are inside the while loop which searches for adequate pivots. Indeed, p and q must be
recomputed whenever q (resp. p) requires an interchange. In the situation when one pivoting step
is applied for any i, then there is no need to recompute p and q. However, when more than one
pivoting step is required, one of p or q at least must be recomputed. In this case the algorithm
incurs some additional overhead. Clearly, any pivoting strategy should try to keep this additional
overhead small. For better stability in Algorithm 3 the pivot pk should satisfy:

|pk| > α max
m
|pm|



A Factored Approximate Inverse Preconditioner With Pivoting 5

Algorithm 3 (Factored Approximate Inverse With Pivoting (AINVP))
Let A = (Aij)ij ∈ Rn,n and let τ be drop tolerance. Compute A−1 ≈ ZD−1W>.

Set p = q = (0, . . . , 0) ∈ Rn, Z = [z1, . . . , zn] = In, W = [w1, . . . , wn] = In
and π = σ = (1, . . . , n).

for i = 1, . . . , n
while pivots not satisfactory

for all j > i: pj = w>j A(π, σ)zi.
Find a column pivot k > i.
Interchange columns i, k of Z − I and components i, k of p and σ.
for all j > i : qj = w>i A(π, σ)zj.
Find a row pivot l > i.
Interchange columns i, l of W − I and components i, l of q and π.

end
dii = pi.
for j = i+ 1, . . . , n

pj = pj/dii, qj = qj/dii.
wj = wj − wipj, zj = zj − ziqj.
for all l 6 i: drop entries wlj, zlj, if their absolute values are less than τ .

end
end

for some constant 0 < α 6 1, e.g. α = 0.1. However, since Algorithm 3 is a biorthogonaliza-
tion technique, i.e. the outcome is to compute Z and W , we should ensure that |pk| = |qk| >
αmaxm |qm| is also fulfilled to guarantee that the entries of both factors, Z and W are sufficiently
bounded. Algorithm 4 gives us a simple and relatively inexpensive strategy for controlling the
growth of the entries in Z and W and to stabilize Algorithm 3.

An additional improvement to prevent too many pivoting steps might be to pre–scale the
rows and/or columns of A. As a rule, more than one pivoting step, say column pivoting, is
performed in any given step of Algorithm 3. However, in order for |pi| > αmaxm |pm| to imply
that |pi| = |qi| > αmaxm |qm| it is necessary that entries of q have magnitudes that are comparable
with those of p. By (7), p and q are the first column/row of(

w>k A(π, σ)zl
)
k,l>i

before a further step of pivoting is applied. If W and Z are moderately bounded, which is more
or less achieved by pivoting, then A(π, σ) having rows of comparable absolute row sums might be
a good start to prevent too many pivoting steps.

One might of course think of other pivoting strategies, especially in the context of parallel
computations. Pivoting is undoubtedly harder to implement in parallel. As is often done however,
it is possible to exploit relaxed pivoting to search for satisfactory pivots locally, i.e., in each
processor. This means that k and l are restricted to a certain subset to maintain distributed
storage schemes. Other strategies could be for example to restrict k and l in order to keep the
lower right (n− i)× (n− i) part of W>A(π, σ)Z as sparse as possible.

3 Numerical Results

This section presents numerical experiments to validate the algorithms. Additional details and
comments on the implementations of the algorithms will also be provided.

• All input matrices are assumed to be given in the CSR format [24].



A Factored Approximate Inverse Preconditioner With Pivoting 6

Algorithm 4 (Controlled Pivoting)
Prescribe a tolerance α ∈ (0, 1], e.g. α = 0.1

satisfied p=false, satisfied q=false
while not satisfied p

for all j > i: pj = w>j A(π, σ)zi
if |pi| < αmaxm |pm|

satisfied q=false, choose k such that |pk| = maxm |pm|.
Interchange column i and k of Z − I and components i and k of σ.

end
satisfied p=true
if not satisfied q

for all j > i: qj = w>i A(π, σ)zj
end
if |qi| < αmaxm |qm|.

satisfied p=false, choose l such that |ql| = maxm |qm|
Interchange column i and l of W − I and components i and l of π.

end
satisfied q=true

end

• The matrices are initially scaled such that they have unit 1–norm for any row. As mentioned
in Section 2 this is done to reduce the number of necessary column/row interchanges.

• W> and Z> are stored in CSR format.

• Interchanges of columns of W (resp. Z) are performed by only interchanging the references
(pointers) instead of the whole data array.

• The computation of p and q in Algorithm 3 requires a multiplication A(π, σ)zi, A(π, σ)>wi.
To be efficient, this operation must be done in sparse–sparse mode. If A is given in CSR
format only A(π, σ)>wi is easy to access, while A(π, σ)zi requires A> to be stored in CSR
format. For this purpose we initially compute the pattern of A> in CSR format but we
omit the numerical values. The nonzero components of the computed vectors A(π, σ)zi,
A(π, σ)>wi are stored as a full vector but with an additional index list of the nonzeros. The
index list is important to inherit the sparse nature of this vector, when the computations
are performed. Otherwise dense computations would slow down the algorithm. See e.g.
[24], p.291 for this kind of technique. Finally to compute for all j > i, w>j (A(π, σ)zi)

and z>j (A(π, σ)>wi) we use a list which contains the non–trivial columns of W and Z, i.e.,
those columns which contain more than the diagonal entry only. The use of permutation
vectors π and σ requires to have the inverse permutations π−1, σ−1 which are computed
simultaneously.

• Two values were used for the parameter α which controls the pivoting process: α = 0.1 and
α = 1.0.

• Two different values were used for the drop tolerance τ = 0.1, and τ = 0.01.

For the numerical experiments several collections were chosen from the Harwell–Boeing Col-
lection [11], the SPARSKIT Collection [23], and finally from the Davis collection [10].
Throughout the computations the matrices were initially reordered using the symmetric minimum
degree ordering [14]. But clearly for specific problems other orderings can be more beneficial
(cf. [2]). Note that for unsymmetric matrices other orderings might be used. See e.g. [7] for a
reordering (MIP) for approximate inverses.



A Factored Approximate Inverse Preconditioner With Pivoting 7

The computations were performed on an IBM RS6000 (44P model 270) under AIX 4.3 and
4GB memory. The approximate inverse algorithms were implemented in C. Dynamic memory
allocation in C is a flexible and convenient tool to use relative to a ‘manual’ memory management
that would be required under standard FORTRAN 77. However, the overhead is sometimes non–
negligible, since the memory manager cannot take advantage of the underlying structure of the
problem, leading to non–optimal layout of data in memory.

As iterative solvers we used GMRES(30) and QMR. The iteration was stopped after the residual
norm was less than

√
eps times the initial residual norm, where eps ≈ 2.2204 · 10−16 denotes the

machine precision. For some matrices a smaller tolerance was necessary, since the exact solution
(1, . . . , 1)> was not sufficiently well approximated. In this case eps was used. The iteration was
stopped after 500 steps. Every iterative solution which broke down or did not converge within
this number of steps was noted as a failure. The approximate inverse algorithms were compared
with the SPARSKIT algorithms ILUT and ILUTP [24] using the same settings.

We briefly describe the results for several matrices and then give detailed numerical results for
several selected examples. We focus on examples where we observed major differences for AINV
with and without pivoting.

To give a rough idea on how the method performed on the selected collections, Table 1 sum-
marizes which method successfully solved how many problems with respect to the parameters τ
and α. The tests were done on 94 matrices from the Harwell-Boeing collection, 26 matrices from
the Davis–collection and 58 matrices from the SPARSKIT–collection.

From Table 1 one gets the impression, that Algorithm 3 (AINVP) behaves slightly better than
ILUTP. This might have the following reasons.

1. AINVP uses column and row pivoting to ensure that W and Z are well–bounded. Pivoting
only applied to the columns, for example, would locally only bound one factor. But this is
essentially what ILUTP does. For reasons of efficiency pivoting with respect to the rows is
not done.

2. Dropping in AINVP seems to be less harmful than in ILUTP. Approximation errors caused
by dropping in AINVP behave somehow between linear and quadratic with respect to the
values that are dropped when regarding the off–diagonal part of W>AZ. For ILUTP the
analogous effect is rational which means that small perturbation in L,U may cause huge
approximation errors in the off–diagonal entries of L−1AU−1.

3. AINVP sometimes ends up with more fill–in. In the numerical examples dropping was only
performed with respect to a fixed drop tolerance but not with respect to the number of
nonzeros. The results show that sometimes AINVP needs significantly more fill–in than
ILUTP (e.g. Table 7). The higher amount of fill–in then slows down AINVP. But the
fill–in could be reduced using more suitable symbolic factorization techniques as well as a
reformulation of the algorithm to exploit more zeros [8].

We now comment briefly on some matrix families from the three collections (Harwell–Boeing,
Sparskit, Davis). We use tables that indicate on which matrix family pivoting showed improve-
ments. We use the following symbols to indicate how strongly the treatment of the matrix family
changed when pivoting was used.

++ + ◦ − −−
much improved improved no great changes worse much worse

In general a + is used whenever the choice of parameters moderately improved either the fill–in or
the time for the iterative solution (or both) for several matrices of a matrix family. If any of these
two criteria were not improved it had essentially to stay constant. In a similar way − is used. ++
is used if the fill–in or the iterative process were significantly improved for most of the matrices of
a matrix family. This includes the case when the iterative process changed from no convergence
to convergence within min{n, 500} steps. Again, any criteria had to stay at least constant.



A Factored Approximate Inverse Preconditioner With Pivoting 8

For some matrix families the behavior was not uniform. In these cases we used two symbols.
If for example, for some matrices the behavior was better, but for others it was worse, then we
used the symbol +/−.

Table 2 gives an overview on the matrix families of the Harwell–Boeing collection. As one
can see from Table 2 the most significant improvements using pivoting were achieved for the
CHEMWEST (chemical engineering), ECONAUS families (economic models) and the shl*,str*
matrices (linear programming) . The opposite behavior was observed when pivoting was applied
to the FACSIMILE matrices (chemical kinetics). As representative examples see Table 5 (chemical
engineering) and Table 6 (thermal simulation, steam injection).

Next are some comments on matrices from the Davis–Collection. The improvements using
pivoting are summarized in Table 3. Pivoting was especially successful for the strongly off–diagonal
dominant ZITNEY matrices (chemical process separation). Similarly, pivoting resulted in some
improvements on the SHYY (Navier–Stokes equations) and MALLYA matrices (light hydrocarbon
recovery) which are also extremely strong off–diagonal dominant. As representative example see
Table 7 (chemical process separation). Here only the algorithms with pivoting worked at all.

Finally, we comment on our experiments with sample matrices from the SPARSKIT–Collection.
Results are summarized in Table 4. Pivoting improved the solution significantly for the DRIVCAV
(CFD, driven cavity problems) and FIDAP (fully–coupled Navier-Stokes eq.) matrices. For the
TOKAMAK matrices (nuclear physics, plasmas) the algorithms with pivoting were superior. See
Table 8 for example.

In most cases the codes for ILUT/ILUTP are much faster than those for the approximate
inverses. In fact the implementation of the approximate inverse algorithm with or without pivoting
is much more technical and the codes used for the experiments are research codes which have not
been profiled and optimized yet. A much improved implementation is still possible, see, e.g., the
numerical results in [5, 8].

After illustrating the benefits of using pivoting in the approximate inverse preconditioner with
several examples, we now examine the combination of pivoting with an a priori permutation and
scaling suggested in [12, 2]. At first glance the use of pivoting and especially the use of strict
pivoting seems to be a complementary approach to gain more stability. However, it is clear
that combining two different approaches in an appropriate way can be a good compromise. We
illustrate this on some matrices which have been reordered and scaled using the method from [12, 2]
together with relaxed pivoting (α = 0.1). We compare these results with strict pivoting (α = 1)
and no a priori permutation and with only a priori permutation but no pivoting. We applied
these algorithms to some strongly indefinite problems as well as some ill–conditioned problems.
For a summary of the results see Table 9. For some problems from partial differential equations
(LNS, NNC, DRIVCAV, FIDAP) the factors of either AINV–version were quite dense. These
systems from partial differential equations have dense inverses even if entries of small magnitude
are skipped. Therefore plain approximate inverse techniques (without any additional techniques
like multigrid) might not be suitable to solve these specific systems. The TOKAMAK matrices
(nuclear physics) were again easier to solve without dynamic pivoting, just as was the case when
no preprocessing is applied. Conversely several of the FIDAP matrices were only solvable with
dynamic pivoting, even if preprocessing was used.
As some examples see Tables 10 (linear programming), 11 (chemical engineering), 12 (chemical
process separation), 13 (light hydrocarbon recovery). These tables show that for several problems
the a priori permutation in combination with the factored approximate inverse with dynamic
pivoting result in significantly better results compared with those cases where only one technique,
either pivoting or a priori-permutation, is used.

4 Conclusions

We have presented a version of a factored approximate inverse with enhanced stability properties.
The algorithm is obtained by carrying over pivoting strategies from LU–decomposition techniques
to approximate inverse, exploiting a strong connection between ILU-type methods and factored



A Factored Approximate Inverse Preconditioner With Pivoting 9

approximate inverse type methods. A test with a fairly large collection of test matrices estab-
lished clearly the advantages of using pivoting. Pivoting in AINV increases robustness in the
harder cases and is unlikely to hamper performance too much in the easier cases. Combining
approximate inverse with pivoting, row scaling, and a technique of nonsymmetric permutation
developed elsewhere [2, 12], shows excellent improvements in robustness of AINV, and opens the
possibility of developing reliable preconditioners for very poorly structured matrices.

Acknowledgment. We wish to thank Michele Benzi for providing us with some of the sample
matrices that have been preprocessed using the technique from [2]. This helped us obtain some
of the results at the end of Section 3. We are also thankful to the reviewers for their valuable
comments.

References

[1] M. Benzi, J. K. Cullum, and M. Tůma. Robust approximate inverse preconditioning for the conjugate
gradient method. SIAM J. Sci. Comput., 22:1318–1332, 2000.

[2] M. Benzi, J. C. Haws, and M. Tůma. Preconditioning highly indefinite and nonsymmetric matrices.
SIAM J. Sci. Comput., 22:1333–1352, 2000.

[3] M. Benzi and C. D. Meyer. A direct projection method for sparse linear systems. SIAM J. Sci.
Comput., 16(5):1159–1176, 1995.

[4] M. Benzi, C. D. Meyer, and M. Tůma. A sparse approximate inverse preconditioner for the conjugate
gradient method. SIAM J. Sci. Comput., 17:1135–1149, 1996.

[5] M. Benzi and M. Tůma. A sparse approximate inverse preconditioner for nonsymmetric linear sys-
tems. SIAM J. Sci. Comput., 19(3):968–994, 1998.

[6] M. Bollhöfer and Y. Saad. ILUs and factorized approximate inverses are strongly related. Part I:
Overview of results. Technical Report umsi–2000-39, Minnesota Supercomputer Institue, University
of Minnesota, 2000. Submitted to SIAM Matrix. Anal. App.

[7] R. Bridson and W.-P. Tang. Ordering, anisotropy and factored sparse approximate inverse. SIAM J.
Sci. Comput., 21(3):867–882, 1999.

[8] R. Bridson and W.-P. Tang. Refining an approximate inverse. J. Comput. Appl. Math., 123:293–306,
2000.

[9] E. Chow and Y. Saad. Approximate inverse preconditioners via sparse–sparse iterations. SIAM J.
Sci. Comput., 19(3):995–1023, 1998.

[10] T. Davis. Sparse matrix collection. NA Digest, 1994.

[11] I. Duff, R. Grimes, and J. Lewis. Sparse matrix test problems. ACM Trans. Math. Software, 15:1–14,
1989.

[12] I. S. Duff and J. Koster. The design and use of algorithms for permuting large entries to the diagonal
of sparse matrices. SIAM J. Matrix Anal. Appl., 20:889–901, 1999.

[13] R. Freund, G. Golub, and N. Nachtigal. Iterative solution of linear systems. Acta Numerica, pages
1–44, 1992.

[14] J. A. George and J. W. Liu. Computer Solution of Large Sparse Positive Definite Systems. Prentice-
Hall, Englewood Cliffs, NJ, USA, 1981.

[15] M. Grote and T. Huckle. Parallel preconditioning with sparse approximate inverses. SIAM J. Sci.
Comput., 18(3):838–853, 1997.

[16] M. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. J. Res. Nat.
Bur. Standards, 49:409–436, 1952.

[17] I. E. Kaporin. New convergence results and preconditioning strategies for the conjugate gradient
method. Numer. Lin. Alg. w. Appl., 1(2):179–210, 1994.

[18] S. Kharchenko, L. Kolotilina, A. Nikishin, and A. Yeremin. A reliable AINV–type preconditioning
method for constructing sparse approximate inverse preconditioners in factored form. Numer. Lin.
Alg. w. Appl., 8(3):165–179, 2001.



A Factored Approximate Inverse Preconditioner With Pivoting 10

[19] Y. Kolotilina and Y. Yeremin. Factorized sparse approximate inverse preconditionings I. Theory.
SIAM J. Matrix Anal. Appl., 14:45–58, 1993.

[20] J. Meijerink and H. A. V. der Vorst. An iterative solution method for linear systems of which the
coefficient matrix is a symmetric M–matrix. Math. Comp., 31:148–162, 1977.

[21] N. Munksgaard. Solving sparse symmetric sets of linear equations by preconditioned conjugate gra-
dient method. ACM Trans. Math. Software, 6:206–219, 1980.

[22] Y. Saad. ILUT: a dual treshold incomplete ILU factorization. Numer. Lin. Alg. w. Appl., 1:387–402,
1994.

[23] Y. Saad. SPARSKIT and sparse examples. NA Digest, 1994.

[24] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing Company, 1996.

[25] Y. Saad and M. Schultz. GMRES: A generalized minimal residual algorithm for solving nonsymmetric
linear systems. SIAM J. Sci. Statist. Comput., 7:856–869, 1986.

5 Appendix



A Factored Approximate Inverse Preconditioner With Pivoting 11

Table 1: Summary of results - total of 178 matrices. Number of successful computed problems for
drop tolerance τ and pivot threshold α.

Parameters
Preconditioner Accelerator τ = 0.1 τ = 0.01

α = 0.1 α = 1.0 α = 0.1 α = 1.0

Harwell–Boeing Collection (94 test matrices)
AINV GMRES(30) 35 39
AINV QMR 38 38

AINVP GMRES(30) 57 63 78 86
AINVP QMR 66 72 85 84

ILUT GMRES(30) 44 43
ILUT QMR 41 44

ILUTP GMRES(30) 53 54 69 71
ILUTP QMR 59 58 74 76

Davis Collection (26 matrices)
AINV GMRES(30) 14 14
AINV QMR 14 14

AINVP GMRES(30) 12 16 17 19
AINVP QMR 15 17 18 20

ILUT GMRES(30) 14 14
ILUT QMR 14 14

ILUTP GMRES(30) 13 15 16 18
ILUTP QMR 14 15 16 17

SPARSKIT Collection (58 matrices)
AINV GMRES(30) 2 6
AINV QMR 4 9

AINVP GMRES(30) 3 16 14 32
AINVP QMR 4 27 17 34

ILUT GMRES(30) 7 18
ILUT QMR 9 20

ILUTP GMRES(30) 6 9 19 19
ILUTP QMR 11 12 25 23



A Factored Approximate Inverse Preconditioner With Pivoting 12

Table 2: Harwell–Boeing–Collection. Changes in each matrix family when pivoting is used for
drop tolerance τ and pivot threshold α

matrix family τ = 0.1 τ = 0.01
α = 0.1 α = 1.0 α = 0.1 α = 1.0

ASTROPH ◦ ◦ ◦ ◦
CHEMIMP ++ ++ ++ ++
CHEMWEST + ++ + ++
CIRPHYS ◦ ◦ ◦ ◦
ECONAUS ++ ++ ++ ++
FACSIMILE − − ◦/− ◦/−
GEMAT ◦ ◦ ◦ +
GRENOBLE ◦ + + ◦/+
LNS ◦ ◦/+ ◦/+ ◦/+
NNCENG ◦ ◦ ◦ ◦
NUCL ◦ ◦ ◦ ◦/+
OILGEN ◦ ◦/− ◦ ◦
PORES +/− ◦/+ ◦ ◦/+
PSMIGR ◦/+ + ◦/+ + ◦/+ ◦/+
SAYLOR ◦ ◦ ◦ ◦
SHERMAN ◦/+ ◦/+ + ◦/+ + ◦/+ +
SMTAPE(BP*) ◦ ◦ + +/+ +
SMTAPE(SHL*,STR*) ++ ++ ++ ++
STEAM ◦ ◦ ◦ ◦
WATT ◦ ◦ ◦ ◦

Table 3: Davis–Collection. Changes in each matrix family when pivoting is used for drop tolerance
τ and pivot threshold α

matrix family τ = 0.1 τ = 0.01
α = 0.1 α = 1.0 α = 0.1 α = 1.0

HAMM ◦ ◦ ◦ ◦
MALLYA ◦ ◦ ◦ ◦/+
PORTFOLIO ◦ ◦ ◦ ◦
SIMON ◦/− ◦ ◦/− ◦
SHYY ◦ ◦ ◦ +
WANG ◦/− ◦/− ◦/− ◦/−
ZITNEY ◦/+ ◦/+ + ◦/+ + ++



A Factored Approximate Inverse Preconditioner With Pivoting 13

Table 4: SPARSKIT–Collection. Changes in each matrix family when pivoting is used for drop
tolerance τ and pivot threshold α

matrix family τ = 0.1 τ = 0.01
α = 0.1 α = 1.0 α = 0.1 α = 1.0

DRIVCAV ◦ ◦/+ ◦/+ ◦/+ +
FIDAP ◦ ◦/+ ◦ ◦/+
TOKAMAK ◦/− ◦/− − −

Table 5: Matrix CHEMWEST/WEST2021. AINVP and ILUTP with different drop tolerances τ
and pivot thresholds α

pivot drop Decomposition GMRES(30) QMR
Method

thresh. α tol. τ Fill–in/time[sec] Steps/time[sec] Steps/time[sec]

0.1 10−3 9.9, 1.0·100 30, 1.2·10−1 33, 2.2·10−1

AINVP 10−1 1.5, 2.0·10−1 121, 3.0·10−1 81, 4.0·10−1

1.0
10−2 2.8, 3.2·10−1 31, 9.0·10−2 37, 1.9·10−1

0.1 10−5 3.1, 2.0·10−2 14, 1.0·10−2 23, 6.0·10−2

ILUTP
1.0 10−5 3.0, 2.0·10−2 14, 2.0·10−2 27, 6.0·10−2

Table 6: Matrix SHERMAN/SHERMAN2. AINVP and ILUTP with different drop tolerances τ
and pivot thresholds α

pivot drop Decomposition GMRES(30) QMR
Method

thresh. α tol. τ Fill–in/time[sec] Steps/time[sec] Steps/time[sec]

10−4 3.1, 5.6·10−1 371, 9.6·10−1 104, 4.9·10−1

AINV
10−5 4.7, 9.8·10−1 14, 5.0·10−2 18, 1.2·10−1

0.1 10−2 1.0, 4.3·10−1 24, 4.0·10−2 25, 9.0·10−2

AINVP 10−1 0.3, 2.3·10−1 151, 2.1·10−1 100, 2.6·10−1

1.0
10−2 0.6, 3.4·10−1 22, 3.0·10−2 24, 7.0·10−2

10−5 1.5, 2.0·10−2 82, 8.0·10−2 111, 2.2·10−1

ILUT
10−6 1.9, 3.0·10−2 10, 1.0·10−2 17, 3.0·10−2

10−5 2.0, 5.0·10−2 89, 1.0·10−1 76, 1.7·10−1

ILUTP
0.1

10−6 2.6, 8.0·10−2 8, 1.0·10−2 9, 3.0·10−2

1.0 10−5 2.3, 6.0·10−2 30, 4.0·10−2 59, 1.5·10−1



A Factored Approximate Inverse Preconditioner With Pivoting 14

Table 7: Matrix ZITNEY/RDIST1. AINVP and ILUTP with different drop tolerances τ and
pivot thresholds α

pivot drop Decomposition GMRES(30) QMR
Method

thresh. α tol. τ Fill–in/time[sec] Steps/time[sec] Steps/time[sec]

10−2 21.8, 9.8·101 — 248, 2.6·101

AINVP
0.1

10−3 34.5, 1.8·102 11, 8.1·10−1 11, 1.7·100

1.0 10−2 7.7, 3.5·101 50, 1.5·100 46, 2.6·100

0.1 10−2 3.2, 5.3·10−1 60, 6.0·10−1 55, 9.4·10−1

ILUTP
1.0 10−2 2.9, 4.2·10−1 23, 2.2·10−1 30, 5.0·10−1

Table 8: Matrix SPARSKIT/FIDAP31. AINVP and ILUT(P) with different drop tolerances τ
and pivot thresholds α

pivot drop Decomposition GMRES(30) QMR
Method

thresh. α tol. τ Fill–in/time[sec] Steps/time[sec] Steps/time[sec]

10−2 9.9, 6.1·101 — 155, 1.1·101

0.1
10−3 15.8, 1.0·102 13, 6.1·10−1 13, 1.2·100

AINVP
10−1 0.6, 1.8·100 — 194, 4.6·100

1.0
10−2 3.8, 1.0·101 48, 1.1·100 37, 1.6·100

10−2 1.2, 1.0·10−1 78, 4.8·10−1 72, 8.0·10−1

ILUT
10−3 1.5, 1.3·10−1 23, 1.6·10−1 26, 3.1·10−1

10−1 1.8, 3.4·10−1 — 421, 5.7·100

ILUTP
0.1

10−2 3.7, 1.2·100 22, 2.7·10−1 24, 5.5·10−1

1.0 10−2 5.8, 3.6·100 27, 4.5·10−1 29, 9.3·10−1



A Factored Approximate Inverse Preconditioner With Pivoting 15

Table 9: AINV(P) — Comparison of Pivoting and Preprocessing.

Number of successful computed problems for drop tolerance τ
τ = 10−1 τ = 10−2

matrix only only prepr.+ only only prepr.+
family pivoting preproc. pivoting pivoting preproc. pivoting

(# matrices) α = 1.0 α = 0.1 α = 1.0 α = 0.1
GMRES GMRES GMRES GMRES GMRES GMRES
/ QMR / QMR / QMR / QMR / QMR / QMR

Harwell–Boeing Collection (20 test matrices)
CHEMW.(11) 10 / 11 9 / 10 11 / 11 11 / 11 11 / 11 11 / 11
LNS(6) 4 / 4 4 / 6 4 / 4 5 / 6 6 / 6 6 / 6
NNC(3) 0 / 1 0 / 0 1 / 2 0 / 1 0 / 0 2 / 3

Davis Collection (11 test matrices)
MALLYA(6) 0 / 0 1 / 2 1 / 2 0 / 1 2 / 2 2 / 3
ZITNEY(6) 3 / 3 0 / 0 1 / 2 4 / 5 3 / 4 6 / 6

SPARSKIT Collection (64 test matrices)
DRIVC.(22) 5 / 13 4 / 8 7 / 12 15 / 17 10 / 10 14 / 14
FIDAP(37) 12 / 14 8 / 8 11 / 12 20 / 19 9 / 9 23 / 25
TOKAM.(5) 0 / 1 3 / 4 0 / 1 1 / 2 2 / 5 1 / 3

Table 10: Matrix BP/BP1200. AINV(P) with different versions of pivoting and preprocessing

version drop Fill–in/ GMRES(30) QMR
of AINV(P) tol. τ time[sec] steps/time[sec] steps/time[sec]

only 10−2 8.3, 4.2 ·10−1 — 56, 1.5 ·10−1

pivoting (α = 1.0) 10−3 13.4, 6.9 ·10−1 15, 3.0 ·10−2 15, 5.0 ·10−2

only 10−1 5.1, 9.0 ·10−2 — 281, 5.5 ·10−1

preprocessing 10−2 7.3, 1.1 ·10−1 20, 3.0 ·10−2 40, 8.0 ·10−2

preprocessing 10−1 4.8, 1.4 ·10−1 49, 5.0 ·10−2 37, 7.0 ·10−2

+ pivoting (α = 0.1) 10−2 7.5, 1.6 ·10−1 9, 1.0 ·10−2 8, 2.0 ·10−2



A Factored Approximate Inverse Preconditioner With Pivoting 16

Table 11: Matrix WEST/WEST2021. AINV(P) with different versions of pivoting and prepro-
cessing

version drop Fill–in/ GMRES(30) QMR
of AINV(P) tol. τ time[sec] steps/time[sec] steps/time[sec]

only 10−1 1.5, 2.0 ·10−1 121, 3.0 ·10−1 81, 4.0 ·10−1

pivoting (α = 1.0) 10−2 2.8, 3.2 ·10−1 31, 9.0 ·10−2 37, 1.9 ·10−1

only
preprocessing

10−2 8.1, 1.7 ·10−1 13, 3.0 ·10−2 13, 7.0 ·10−2

preprocessing 10−1 3.5, 1.7 ·10−1 24, 4.0 ·10−2 25, 9.0 ·10−2

+ pivoting (α = 0.1) 10−2 7.8, 2.5 ·10−1 9, 2.0 ·10−2 8, 4.0 ·10−2

Table 12: Matrix ZITNEY/EXTR1.. AINV(P) with different versions of pivoting and preprocess-
ing

version drop Fill–in/ GMRES(30) QMR
of AINV(P) tol. τ time[sec] steps/time[sec] steps/time[sec]

only 10−2 19.3, 4.7 ·100 — 159, 2.9 ·100

pivoting (α = 1.0) 10−3 31.3, 9.8 ·100 26, 3.5 ·10−1 29, 7.4 ·10−1

only 10−2 19.0, 5.9 ·10−1 — 183, 3.0 ·100

preprocessing 10−3 24.0, 7.2 ·10−1 21, 1.9 ·10−1 29, 4.9 ·10−1

preprocessing 10−1 11.5, 5.5 ·10−1 — 255, 3.9 ·100

+ pivoting (α = 0.1) 10−2 16.0, 7.9 ·10−1 12, 1.2 ·10−1 12, 2.7 ·10−1

Table 13: Matrix MALLYA/LHR07C. AINV(P) with different versions of pivoting and prepro-
cessing

version drop Fill–in/ GMRES(30) QMR
of AINV(P) tol. τ time[sec] steps/time[sec] steps/time[sec]

only 10−3 9.3, 1.2 ·102 — 281, 2.9 ·101

pivoting (α = 1.0) 10−4 16.5, 2.9 ·102 27, 2.0 ·100 29, 4.3 ·100

only 10−4 14.4, 2.2 ·101 — 257, 3.2 ·101

preprocessing 10−5 17.9, 2.9 ·101 13, 1.0 ·100 13, 2.2 ·100

preprocessing
+ pivoting (α = 0.1)

10−3 7.3, 3.3 ·101 21, 9.3 ·10−1 22, 2.0 ·100


