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Mainz, 1996



Berichterstatter:

Prof. Dr. Bernhard Amberg, Mainz, Germany
Prof. Dr. Hermann Heineken, Würzburg, Germany
Prof. Dr. Michael J. Tomkinson, Glasgow, UK

Datum der mündlichen Prüfung:
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Introduction

A group G is called the product of its subgroups A and B if G equals the set AB =
{ab | a ∈ A, b ∈ B}. A subgroup S of G = AB is prefactorized if S is the product of a
subgroup of A and a subgroup of B, and in this case, S satisfies S = (S ∩ A)(S ∩ B). A
prefactorized subgroup of G = AB is called factorized if, in addition, it contains A ∩ B. In
particular, if S is a subgroup of G = AB, then the intersection of all factorized subgroups
containing S is a factorized subgroup of G. This subgroup, which is evidently the smallest
factorized subgroup of G containing S, is called the factorizer of S in G = AB.

Products of two subgroups, and in particular products of two locally nilpotent subgroups
have been studied by many authors. One of the fundamental results about such products is the
theorem of Kegel [Keg61] and Wielandt [Wie58], which states that a product of finite nilpotent
subgroups is soluble. Many further results about products of locally nilpotent subgroups, both
finite and infinite, can be found in the monograph [AFG92].

Consider a periodic locally soluble group G which is the product of two locally nilpotent
subgroups A and B. In order to investigate the structure of G, it is important to have a
detailed knowledge about prefactorized and factorized subgroups of G, because this allows to
reduce structural questions to certain subgroups of G. The present dissertation is concerned
with finding conditions under which certain subgroups of G are prefactorized or factorized.
In particular, we improve results obtained in [Hei90], [Fra91], [Hoe93], [AF94] and [AH94] for
products of two finite nilpotent subgroups and extend them to various classes of locally finite
groups.

Sylow theory

In Chapter 2, we investigate Sylow π-subgroups, i.e. maximal π-subgroups, of locally soluble
groups G which are the product of two locally nilpotent subgroups A and B. It turns out
that the problem of finding prefactorized Sylow π-subgroups is closely connected with the
question whether the characteristic subgroups Oπ(G) and Oπ′,π(G) of G are prefactorized
or factorized; see Theorem 2.2.5 for details. If the group G is radical, i.e. if G possesses an
ascending series whose factors are locally nilpotent, then the prefactorized Sylow p-subgroups
of G = AB often form a Sylow basis of G (for our definition of a Sylow basis, see Section 1.2
below). In particular, we obtain the following result; see Theorem 2.3.3 below for further
details.

Theorem. Let the periodic radical group G be the product of two locally nilpotent sub-
groups A and B. If, for every prime p, Ap and Bp denote the p-components of A and B,
respectively, then the following statements are equivalent:

(a) {ApBp | p ∈ P} is a Sylow basis of G.
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(b) For every prime p and every normal subgroup N of G, the set ApBpN/N is a maximal
p-subgroup of G/N .

(c) The group G has an ascending series of prefactorized subgroups with locally nilpotent
factors.

(d) For every normal subgroup N of G, the Hirsch-Plotkin radical R(G/N) of G/N is
factorized.

In the sequel, prefactorized Sylow bases of the form {ApBp | p ∈ P} will play an important
role. For instance, in Theorem 2.3.7, it is shown that such Sylow bases determine which
subgroups of G = AB may be prefactorized.

Theorem. Let the periodic radical group G be the product of its locally nilpotent sub-
groups A and B, and suppose that the set {ApBp | p ∈ P} is a Sylow basis of G. If S is a
prefactorized subgroup of G, then {ApBp ∩ S | p ∈ P} is a Sylow basis of S, i.e. {ApBp | p ∈ P}
reduces into S.

In Section 2.4, we show that a product G of two locally nilpotent subgroups A and B
possesses a prefactorized Sylow basis if G belongs to some class of periodic locally soluble
groups for which a satisfactory Sylow theory has been developed. This is for instance the
case when G is an FC- or a CC-group, a U-group in the sense of [GHT71], or if G satisfies
the minimal condition for p-subgroups (min-p) for every prime p. Here a group G is an FC-
group (a CC-group) if, for every g ∈ G, the factor group G/CG(xG) is finite (a Černikov
group). Furthermore, U denotes the largest subgroup-closed class of periodic locally soluble
groups such that for every G ∈ U and every set π of primes, the Sylow π-subgroups of G
are conjugate. In particular, the class U contains all homomorphic images of periodic locally
soluble linear groups and all periodic soluble locally nilpotent-by-finite groups.

Schunck classes of nilpotent-by-finite groups
The results of Chapter 3 do not deal with products of groups and may be of independent inter-
est. Using the notion of a Schunck class introduced in [Tom95], we extend well-known results
about Schunck classes of finite soluble groups to the class of all periodic soluble nilpotent-
by-finite groups. For instance, in Proposition 3.1.1, we prove that if H is a class of periodic
soluble nilpotent-by-finite groups such that every periodic soluble nilpotent-by-finite group
possesses H-projectors, then H is a Schunck class. As a consequence, every local formation of
periodic soluble nilpotent-by-finite group is a Schunck class; see Proposition 3.1.2. Our main
result about Schunck classes of nilpotent-by-finite groups, contained in Theorem 3.2.6 and
Corollary 3.2.7, can be summarized as follows.

Theorem. Let H be a Schunck class of nilpotent-by-finite groups and suppose that G is
a periodic soluble nilpotent-by-finite group. Then G possesses H-projectors, and any two are
conjugate. Moreover, if H is an H-projector of G and H is contained in a subgroup L of G,
then H is also an H-projector of L.

Thus the H-projectors of a periodic soluble nilpotent-by-finite group G are pronormal in G.
In Proposition 3.3.1, it is shown that pronormal subgroups of periodic soluble nilpotent-by-
finite groups can be characterized as in the finite case.
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Factorizers of F-subgroups

Let the periodic locally soluble group G be the product of two locally nilpotent subgroups A
and B. In Chapter 4, we study group-theoretical properties of a subgroup H of G which are
inherited by the factorizer of H. Theorem 4.1.5 deals with the factorizers of H-subgroups of
a nilpotent-by-finite product of two locally nilpotent subgroups, where H is a Schunck class
of nilpotent-by-finite groups.

Theorem. Let H be a Schunck class of nilpotent-by-finite groups whose characteristic
is π, and suppose that the periodic soluble nilpotent-by-finite group G is the product of two
locally nilpotent subgroups A and B. Further, let H be an H-subgroup of G into which the
Sylow basis {ApBp | p ∈ P} of G reduces.

(a) If π contains π(A) ∩ π(B), then the factorizer of H is an H-group.

(b) If H is a π-group, then the factorizer of H in AπBπ is an H-group. Hence H is
contained in a prefactorized H-subgroup of G.

Here, the characteristic π of a group class X is the set of primes p such that X contains a
cyclic group of order p. Note also that by [Har71, Lemma 2.1] and [GHT71, Theorem 2.10],
every subgroup of a periodic soluble nilpotent-by-finite group has a conjugate into which a
given Sylow subgroup reduces. This implies the following necessary and sufficient condition
for an H-maximal subgroup to be factorized or prefactorized.

Corollary. Let H be a Schunck class of nilpotent-by-finite groups of characteristic π and
suppose that the periodic soluble nilpotent-by-finite group G is the product of two locally nilpo-
tent subgroups A and B. If H is an H-maximal subgroup of G, then:

(a) If π contains π(A) ∩ π(B), then H is prefactorized if and only if the Sylow basis
{ApBp | p ∈ P} of G reduces into H. Thus an H-maximal subgroup of G is prefactorized if
and only if it is factorized.

(b) If H is a π-group, then H is prefactorized if and only if the Sylow basis {ApBp | p ∈ P}
of G reduces into H.

Similar results hold for the classes of all periodic locally soluble FC- and CC-groups and
for the class of all periodic locally soluble groups satisfying min-p for all primes p, since
the groups belonging to these classes have sufficiently many nilpotent-by-finite factor groups
(see [KW73, Theorem 3.17]). However, our results have to be formulated in terms of local
formations, because the theory of Schunck classes of finite groups has not yet been extended
to such groups. Our theorems 4.1.10, 4.2.2 and 4.3.1 can be summarized as follows.

Theorem. Let X = QSX be a class of periodic locally soluble groups and assume that X

is a class of nilpotent-by-finite groups, of CC-groups, or of groups satisfying min-p for every
prime p. Further, suppose that F is a local X-formation of characteristic π and that the X-
group G is the product of two locally nilpotent groups A and B. If H is an F-subgroup of G
into which the Sylow basis {ApBp | p ∈ P} of G reduces, then H is contained in a prefactorized
F-subgroup of G. If π(A) ∩ π(B) is contained in π, then H is even contained in a factorized
F-subgroup of G.
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As in the nilpotent-by-finite case, these statements yield necessary and sufficient condi-
tions for an F-maximal subgroup to be prefactorized or factorized; see Corollary 4.2.3 and
Corollary 4.3.2.

Projectors

If the product G of two locally nilpotent subgroups A and B possesses F-projectors, then
the above results about F-maximal subgroups can be used to prove the existence of a unique
prefactorized F-projector. This is for instance the case for periodic locally soluble FC-groups
and certain groups satisfying min-p for every prime p; see Corollary 4.2.8 and Corollary 4.3.6.

It seems to be an open question whether the factorizers of certain F-subgroups of a U-
group G are F-groups, and in particular, whether every F-maximal subgroup of G has a
prefactorized conjugate. However, the following theorem (see Theorem 5.1.5) shows that a
soluble U-group G has a unique prefactorized F-projector. Thus our result holds in particular
for all periodic locally soluble linear groups.

Theorem. Let X be a QS-closed class of U-groups and suppose that F is a local X-
formation of characteristic π. Moreover, let the X-group G be the product of two locally
nilpotent subgroups A and B. If G has a normal subgroup N such that G/N ∈ F and N
has a hypoabelian Sylow π-subgroup, then G has a unique prefactorized F-projector, and this
F-projector contains Aπ ∩ Bπ. Thus if the characteristic π of F contains π(A) ∩ π(B), then
this F-projector is factorized.

Recall that a group is hypoabelian if it has a descending normal series with abelian factors.
Without the assumption that G is hypoabelian in the preceding theorem, we can prove the
existence of a unique prefactorized F-injector only in a very special case, namely when F is
the class of all periodic locally nilpotent groups; see Theorem 5.2.2.

Our results about F-maximal subgroups and F-projectors widely generalize a result of
Heineken [Hei90] which states that if F is a local formation of finite groups, then every
product of two finite nilpotent subgroups possesses a prefactorized F-projector.

Trifactorized groups

The above results about factorized and prefactorized H- and F-subgroups can also be used
to prove theorems concerning trifactorized groups. Here, a group G is called trifactorized if
it has subgroups A, B and C such that G = AB = AC = BC. In particular, we obtain the
following result; see Corollary 4.1.9, Theorem 4.2.9 and Theorem 4.3.3.

Theorem. Let X = QSX be a class of periodic locally soluble groups and assume that X

is a class of nilpotent-by-finite groups, of CC-groups or of groups satisfying min-p for every
prime p. Let F be a local X-formation of characteristic π and suppose that the X-group G has
subgroups A, B and C such that G = AB = AC = BC. If A and B are locally nilpotent, C
is an F-group and π(A) ∩ π(B) is contained in π, then G ∈ F.

Example 4.4.1 shows that a finite trifactorized group G = AB = AC = BC need not be
supersoluble if A and B are normal supersoluble subgroups of G and C is nilpotent. On the
other hand, in Theorems 4.4.2, 4.4.3, 4.4.4 and 4.4.6, we prove the following.
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Theorem. Let X = QSX be a class of periodic locally soluble groups and assume that X

is a class of nilpotent-by-finite groups, of CC-groups, of groups satisfying min-p for every
prime p, or of U-groups. Further, suppose that F is a local X-formation of characteristic π.
If the X-group G has F-subgroups A and B and a normal locally nilpotent π-subgroup R such
that G = AB = AR = BR, then G is an F-group.

Note that trifactorized groups G = AB = AC = BC in which one of the subgroups A, B
or C is even normal in G occur for instance as factorizers of normal subgroups; see [AFG92,
Lemma 1.1.4].

Injectors

In Section 5.3 and Section 5.4, we investigate injectors and radicals of FC- and CC-groups.
Observe that there exist Fitting classes F and products of two finite nilpotent subgroups
which do not have a prefactorized F-injector or a prefactorized F-radical; see e.g. [AH94,
Example 2]. However, as in the finite case [AH94, Theorem C*], a relation between prefactor-
ized or factorized F-injectors and F-radicals can be established. For FC-groups, we obtain
the following statement (see Theorem 5.3.8).

Theorem. Suppose that the periodic FC-group is the product of two locally nilpotent
subgroups A and B and let F be a Fitting set of G. Then the following statements are
equivalent:

(a) For every prefactorized subgroup S of G, there exists a unique F-injector which is a
prefactorized (factorized) subgroup of S.

(b) For every prefactorized subgroup S of G, the F-radical of S is a prefactorized (factor-
ized) subgroup of S.

(c) For every finite prefactorized subgroup S of G, there exists an F-injector which is a
prefactorized (factorized) subgroup of S.

(d) For every finite prefactorized subgroup S of G, the F-radical of S is a prefactorized
(factorized) subgroup of S.

This shows that, in order to decide whether an FC-group has a prefactorized F-injector or
an F-radical, it suffices to consider its finite prefactorized subgroups. Note that the preceding
theorem holds in particular for Fitting classes F. If we consider central-by-finite prefactorized
subgroups instead of finite subgroups, it is also possible to obtain results concerning Fitting
sets and Fitting classes of FC-groups which are not necessarily periodic (see Theorem 5.3.12
and Corollary 5.3.13).

The above theorem about FC-groups can also be applied to obtain the following result
for CC-groups (see Theorem 5.4.7).

Theorem. Let the CC-group G be the product of two locally nilpotent subgroups A and B
and suppose that F is a Fitting class of CC-groups. If G is periodic or F contains an infinite
cyclic group, then the following statements are equivalent:

(a) For every prefactorized subgroup S of G, there exists a unique F-injector which is a
prefactorized (factorized) subgroup of S.
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(b) For every prefactorized subgroup S of G, the F-radical of S is a prefactorized (factor-
ized) subgroup of S.

(c) For every central-by-finite prefactorized subgroup S of G, there exists an F-injector
which is a prefactorized (factorized) subgroup of S.

(d) For every central-by-finite prefactorized subgroup S of G, the F-radical of S is a pre-
factorized (factorized) subgroup of S.

Subgroups of products of two finite nilpotent groups
In Section 6.1, we study groups which can be embedded into a product of two nilpotent
groups. In the case of finite groups, this leads to very satisfactory results. Let F be the class
of all finite groups which occur as subgroups of a product of two finite nilpotent subgroups.
By Example 6.1.6, the class F is strictly larger than the class G of all products of two finite
nilpotent subgroups. Unlike G, the class F has a number of surprising properties which do
not hold for the class of all groups which are the product of two finite nilpotent subgroups.
For instance, Theorem 6.1.5 below shows that the class F is a local formation and a Fitting
class.

Theorem. Let F denote the class of all subgroups of products of two finite nilpotent
subgroups. Then the class F has the following properties:

(a) F is the class of all finite groups such that G/Oπ(G) has a nilpotent Hall π-subgroup
for every set π of primes.

(b) F is a class of finite soluble groups; hence if G ∈ F, then every Hall π-subgroup
of G/Oπ(G) is nilpotent.

(c) F is the smallest formation of soluble groups which contains all products of two finite
nilpotent subgroups.

(d) F is the smallest local formation which contains every product of two locally nilpotent
groups. Moreover, F can be locally defined by the formation function f , where for every
prime p, f(p) is the class of all finite soluble groups having a nilpotent Hall p′-subgroup.

(e) F is the smallest subgroup-closed Fitting class of soluble groups which contains all
products of two finite nilpotent groups.

(f) F is the smallest Schunck class of finite soluble groups which contains all products of
two finite nilpotent subgroups.

Products of more than two nilpotent subgroups
In Section 6.2, we discuss briefly which results about products of two locally nilpotent sub-
groups can be extended to products of more than two locally nilpotent subgroups. (For a
definition of such products and how to extend the notion of prefactorized and factorized sub-
groups, see Section 1.1.) For instance, the theorem of Kegel [Keg61] and Wielandt [Wie58]
states that a finite product G of finitely many nilpotent subgroups is soluble; moreover by
[Wie51], such a product G has a prefactorized Sylow basis. It shows that a product of finitely
many finite nilpotent subgroups has prefactorized Sylow basis.

On the other hand, if the group G is the product of two finite nilpotent subgroups, then
by [Amb73] or [Pen73], the Fitting subgroup F (G) is factorized. However, Proposition 6.2.1
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shows that this is not the case for a product of three pairwise permutable finite nilpotent sub-
groups. Moreover, by Proposition 6.2.2 in general no term of the Fitting series of a product G
of three pairwise permutable nilpotent subgroups is prefactorized.

Notation
Basic definitions and some elementary results connected with them are collected in Chapter 1.
In particular, in Section 1.1, we introduce prefactorized and factorized subgroups of products
in full generality; Section 1.2 and Section 1.5 contain some fundamental results about Sylow
subgroups, Sylow bases and formations of locally finite groups, some of which seem not to
have been proved in such generality. Our notation is mostly standard and follows [AFG92],
[DH92], [KW73], [Rob72] and [Rob82]. For an overview, see also the list of symbols in the
appendix.

Acknowledgements
I wish to express my gratitude towards my Ph.D. supervisor, Prof. B. Amberg for having
introduced me to the theory of products of groups, and in particular to the problems con-
cerning factorized subgroups, for his excellent support and helpful advice. Moreover, I would
like to thank Prof. K. Doerk for numerous fruitful discussions and Dr. F. Leinen for many
valuable suggestions. Finally, I wish to thank Stefan Reiter, who helped proofreading the
present dissertation, and Heike Hentschel for her patience and permanent encouragement.

This dissertation was supported in part by a scholarship according to the Landesgradu-
iertenförderungsgesetz awarded by the Zentrale Kommission für Graduiertenförderung of the
Johannes-Gutenberg-University of Mainz.



Chapter 1

Basic concepts

1.1. Prefactorized and factorized subgroups
of products

A group G is the product of its subgroups A and B if G equals the set

AB = {ab | a ∈ A, b ∈ B}.

A subgroup S of G = AB is called prefactorized if S is the product of a subgroup of A and
a subgroup of B. Thus S is prefactorized if and only if S = (S ∩ A)(S ∩ B), or equivalently,
if every s ∈ S can be written s = ab with a ∈ A ∩ S and b ∈ B ∩ S.

A subgroup S of G is called factorized if, whenever s = ab with a ∈ A and b ∈ B, then
a ∈ S (and b ∈ S). Since every g ∈ G, and thus every element g of S, can be written g = ab
with a ∈ A and b ∈ B, every factorized subgroup of G is prefactorized. It is also clear that
every subgroup of G containing A or B is factorized. By [Wie58, Hilfssatz 1], a subgroup S
of G is factorized if it is prefactorized and contains A ∩ B. See also Lemma 1.1.1 below.

In order to handle Sylow bases of a group G, to be introduced in Section 1.2, more
efficiently, we introduce the following more general concept of a product of groups. Let S be a
set of subgroups of the group G. Then G is the product of its subgroups S ∈ S if G = <S ∈ S>
and UV = V U for all U , V ∈ S. Observe also that for every normal subgroup N of G, the
factor group G/N is the product of the subgroups in {SN/N | S ∈ S}.

A subgroup U of G is prefactorized in G if U is the product of its subgroups U ∩ S,
where S ∈ S. A subgroup U of G is factorized in G if U is prefactorized and contains
S ∩ <T | T ∈ S, T #= S> for every S ∈ S. Factorized subgroups can also be characterized as
follows:

1.1.1 Lemma. Suppose that the group G is the product of its subgroups S ∈ S. Then the
following statements about a subgroup U of G are equivalent:

(a) U is factorized.

(b) Whenever an element g ∈ U can be written as g = s1. . .sn with si ∈ Si for i ∈
{1, . . ., n}, where S1, . . ., Sn are pairwise distinct subgroups contained in S, then the elements
s1, . . ., sn belong to U .

Proof. Assume first that U is factorized and let g ∈ U . Now suppose that n ∈ N, that
S1, . . ., Sn ∈ S are pairwise distinct subgroups of G, and that si ∈ Si for i ∈ {1, . . ., n}
such that g = s1. . .sn. Since U is in particular prefactorized, there exists an integer m ∈ N
and subgroups Sn+1, . . ., Sm ∈ S such that S1, . . ., Sm are pairwise distinct and g = u1. . .um

with ui ∈ U ∩ Si for every i ∈ {1, . . .,m}. Then u−1
1 s1 = u2. . .ums−1

n . . .s−1
2 is contained



Prefactorized and factorized subgroups of products 13

in S1∩<S ∈ S | S #= S1>. Since U is factorized, this shows that u−1
1 s1 ∈ U , and consequently

s1 ∈ U . Now s−1
1 g = s2. . .sn ∈ U , and so by induction on n, it follows that also s2, . . ., sn ∈ U .

Conversely, suppose that (b) holds, then clearly U is prefactorized. Now let S ∈ S and
suppose that s ∈ S ∩<T | T ∈ S, T #= S>. Since the subgroups in S permute, there exists an
integer n ∈ N, pairwise distinct subgroups S1, . . ., Sn ∈ S and elements s1, . . ., sn of G with
Si #= S and si ∈ Si for every i ∈ {1, . . ., n} such that s = s1. . .sn. Then we have s ∈ U by
hypothesis, and so U is factorized.

The next proposition studies the behaviour of factorized (prefactorized) subgroups in the
subgroup lattice and the factor groups of a factorized group G.

1.1.2 Proposition. Let the group G be the product of its subgroups S ∈ S.

(a) If U is prefactorized (factorized) in G, then V ≤ U is a prefactorized (factorized)
subgroup of U (regarded as a product of its subgroups U ∩ S, where S ∈ S) if and only if V
is prefactorized (factorized) in G.

(b) If U is a prefactorized subgroup of G and V is a factorized subgroup of G, then U ∩V
is a factorized subgroup of U (regarded as a product of its subgroups U ∩ S, where S ∈ S),
hence is a prefactorized subgroup of G.

(c) The intersection of any family of factorized subgroups of G is factorized.

(d) If T is a set of prefactorized subgroups of G whose union U is a subgroup of G, then
U is a prefactorized subgroup of G. It is factorized, provided that one of the subgroups T ∈ T
is factorized.

(e) If N is a normal subgroup of G and U is a prefactorized subgroup of G, then UN/N
is a prefactorized subgroup of G/N , where G/N is regarded as a product of the subgroups
{SN/N | S ∈ S}.

(f) If N is a normal subgroup of G and U is subgroup of G which contains N , then U is
a factorized subgroup of G if and only if U/N is a factorized subgroup of G/N .

Proof. (a) The statement concerning prefactorized subgroups follows directly from the
definition of a prefactorized subgroup. It is also clear that a factorized subgroup V of G
which is contained in U is a factorized subgroup of U . Now suppose that V is a factorized
subgroup of U and that U is a factorized subgroup of G. Let g ∈ V and assume that n is an
integer and S1, . . ., Sn are pairwise distinct subgroups of G contained in S such that g can be
written g = s1. . .sn with si ∈ Si. Since U is a factorized subgroup of G and g ∈ U , we have
si ∈ U ∩Si for every i ∈ {1, . . ., n} by Lemma 1.1.1. Since V is factorized in U , it follows that
si ∈ V ∩ Si for every i ∈ {1, . . ., n}, and so V is factorized in G, as required.

(b) Let g ∈ U ∩ V . Since U is prefactorized and g ∈ U , there exists an n ∈ N such that g
can be written as g = s1. . .sn with si ∈ U ∩Si for pairwise distinct subgroups S1, . . ., Sn ∈ S.
Now V is factorized and g ∈ V , and so we have si ∈ U ∩ V ∩ Si for every i ∈ {1, . . ., n}. In
view of Lemma 1.1.1, this shows that U ∩ V is a factorized subgroup of U . Hence U ∩ V is a
prefactorized subgroup of G by (a).

(c) Let T be a set of factorized subgroups of G and let U denote the intersection of all
T ∈ T . Let g ∈ U , then there exists an integer n ∈ N and elements s1, . . ., sn with si ∈ Si for
i ∈ {1, . . ., n}, where S1, . . ., Sn are pairwise distinct subgroups of S. If V ∈ T , then g ∈ V
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and so si ∈ V for every i ∈ {1, . . ., n} by Lemma 1.1.1. This shows that si ∈ U for every
i ∈ {1, . . ., n}, and so U is factorized by Lemma 1.1.1.

(d) Let u ∈ U , then u ∈ T for some T ∈ T . Since T is prefactorized, there exists
an integer n and pairwise distinct subgroups S1, . . ., Sn ∈ S such that u can be written
u = s1. . .sn with si ∈ Si ∩ T . In particular, si ∈ Si ∩ U for every i ∈ {1, . . ., n}, and
so U is prefactorized. Moreover, if one of the subgroups T ∈ T is factorized, it contains
S ∩ <V ∈ S | V #= S> for every S ∈ S, and so U is factorized.

(e) is obvious.
(f) Suppose first that U is factorized and let uN ∈ U/N . If there exists an integer n and

pairwise distinct subgroups S1, . . ., Sn ∈ S such that uN = s1N. . .snN , where si ∈ Si for
every integer i ∈ {1, . . ., n}, then u = s1. . .snx for some x ∈ N , and since N ≤ U , we have
s1. . .sn = ux−1 ∈ U . Since U is factorized, it follows that si ∈ Si ∩U for every i ∈ {1, . . ., n},
and so siN ∈ (U ∩ SiN)/N for every i. Therefore U/N is factorized.

Conversely, assume that U/N is factorized and let u ∈ U . If there exists an integer n
and pairwise distinct subgroups S1, . . ., Sn ∈ S such that u = s1. . .sn such that si ∈ Si for
every integer i ∈ {1, . . ., n}, then uN = s1N. . .snN , and since U/N is factorized, we have
siN ∈ (U ∩ SiN)/N for every i ∈ {1, . . ., n}. In particular, si ∈ U ∩ Si for every i, and so U
is factorized.

If the group G is the product of two subgroups, then also a number of additional statements
hold. The statements about factorized subgroups can also be found in Chapter 1 of [AFG92].

1.1.3 Proposition. Let the group G be the product of its subgroups A and B.

(a) If U is prefactorized (factorized) in G, then V ≤ U is prefactorized (factorized) with
respect to the factorization U = (U ∩ A)(U ∩ B) of U if and only if V is prefactorized
(factorized) in G = AB.

(b) If U is a prefactorized subgroup of G and V is a factorized subgroup of G, then U ∩V
is a factorized subgroup of U = (U ∩ A)(U ∩ B), hence is prefactorized in G = AB.

(c) The intersection of any family of factorized subgroups of G is factorized.

(d) If S is a set of prefactorized subgroups of G whose union U is a subgroup of G, then
U is a prefactorized subgroup of G. It is factorized, provided that one of the subgroups S ∈ S
is factorized.

(e) The product of two prefactorized subgroups one of which is normalized by the other is
prefactorized. It is factorized, provided that one of the subgroups is factorized.

(f) The product of any number of prefactorized normal subgroups is prefactorized. It is
factorized if one of the normal subgroups is factorized.

(g) If N is a normal subgroup of G and S is a prefactorized (factorized) subgroup of G =
AB, then SN/N is a prefactorized (factorized) subgroup of G/N = (AN/N)(BN/N).

(h) If N is a prefactorized normal subgroup of G and S is subgroup of G which contains N ,
then S is a prefactorized subgroup of G = AB if and only if S/N is a prefactorized subgroup
of G/N = (AN/N)(BN/N).

(i) If N is a normal subgroup of G and S is a subgroup of G which contains N , then S
is a factorized subgroup of G = AB if and only if S/N is a factorized subgroup of G/N =
(AN/N)(BN/N).
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Proof. (a), (b), (c) and (d) follow from the respective statements in Proposition 1.1.2.
(e) Let N and P be prefactorized subgroups of G with N ! PN . Then

PN = (P ∩ A)(P ∩ B)N = (P ∩ A)N(P ∩ B)

= (P ∩ A)(N ∩ A)(N ∩ B)(P ∩ B)

≤ (PN ∩ A)(PN ∩ B),

which shows that PN is prefactorized. The statement about factorized subgroups now follows
as in (d).

(f) Let N be a set of prefactorized normal subgroups of G. By (e), the product of two
prefactorized normal subgroups is prefactorized, and since it is clearly normal, the statement
is true for every finite subset of N . Now the product of all N ∈ N is the union of all products
of a finite number of the N ∈ N , and so the full result follows from (d).

(g) If S = (S∩A)(S∩B) is prefactorized, then SN = (S∩A)(S∩B)N which is contained
in (SN ∩AN)(SN ∩BN) by the modular law. Therefore (SN ∩AN)(SN ∩BN) = SN and
so SN/N = (SN/N ∩ AN/N)(SN/N ∩ BN/N).

(h) If S is prefactorized in G, then S/N is prefactorized in G/N by (g). Conversely, suppose
that S/N is prefactorized, then S = (S ∩ AN)(S ∩ BN). Moreover, N = (A ∩ N)(B ∩ N),
and since N ≤ S, it follows from the modular law that

S = (S ∩ A(B ∩ N))(S ∩ B(A ∩ N))

= (S ∩ A)(B ∩ N)(A ∩ N)(S ∩ B)

= (S ∩ A)(A ∩ N)(B ∩ N)(S ∩ B)

= (S ∩ A)(S ∩ B).

(i) has been proved in Proposition 1.1.2 (f) and can also be found in [AFG92, Lemma 1.1.2].

Suppose that the group G is the product of its subgroups S ∈ S and let U be a subgroup
of G. Then by Proposition 1.1.3 (c), the intersection X of all factorized subgroups of G
which contain U is itself factorized. The subgroup X is called the factorizer of U in G, and
evidently X is the unique smallest factorized subgroup containing U . If G is the product of
its subgroups A and B and N is a normal subgroup of G, then AN ∩ BN is the factorizer
of N in G; see [AFG92, Lemma 1.1.4].

We give an example which shows that the intersection of a descending chain of prefactor-
ized subgroups or the intersection of two prefactorized subgroups need not be prefactorized.

1.1.4 Example. Let G be the direct product of countably many isomorphic cyclic sub-
groups Ci = <ci> (i ∈ N), and let

A = <c1c
−1
n | n ∈ N, n ≥ 2>

and
B = <cn | n ∈ N, n ≥ 2>,

then clearly G = AB. For every n ∈ N, let Sn = <c1, ck | k ≥ n>. Then

c1 = (c1c
−1
n ) · cn ∈ (Sn ∩ A)(Sn ∩ B)
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and so every Sn is prefactorized. Moreover, the Sn form a descending chain of subgroups of G.
Clearly, S = <c1> equals the intersection of all Sn. But S ∩ A = 1 = S ∩ B and so S is not
prefactorized.

To see that the intersection of two prefactorized subgroups is not prefactorized in general,
let H1 = <c1, c3> and H2 = <c1, c4>, then H1 and H2 are prefactorized subgroups of G.
But S = H1 ∩ H2 is not prefactorized. (Of course, for the second part, it would have been
possible to replace G by its prefactorized subgroup <c1, c2, c3, c4>.)

The following lemma gives a criterion for the intersection of a descending chain of pre-
factorized subgroups to be prefactorized.

1.1.5 Lemma. Let the group G be the product of two subgroups A and B and suppose
that S is a totally ordered set of prefactorized subgroups of G. If A∩B ∩ S is finite for some
S ∈ S, then the intersection of all S ∈ S is prefactorized.

Proof. Let U denote the intersection of all S ∈ S and let T ∈ S such that A ∩ B ∩ T is
finite. If T = {S ∈ S | S ≤ T}, then U also equals the intersection of all S ∈ T . Therefore it
suffices to show that U is a prefactorized subgroup of T , and so we may suppose without loss
of generality that G = T and S = T , and so A ∩ B is finite.

Let g ∈ U . For every S ∈ S, fix elements aS ∈ A ∩ S and bS ∈ B ∩ S such that g = aSbS .
If S, T ∈ S, then aSbS = aT bT and so a−1

T aS = bT b−1
S ∈ A ∩ B. This shows that the set

A0 = {aS | S ∈ S} is finite. For every a ∈ A0, let Sa = {S ∈ S | aS = a}, then the Sa form a
partition of S.

If, for every a ∈ A0, there exists Sa ∈ S which is contained in every S ∈ Sa, then the totally
ordered set S has a least element S, since A0 is finite. Therefore U = S is prefactorized.

Therefore assume that there exists a ∈ A0 such that Sa does not have a least element. It
follows that U equals the intersection of all S ∈ Sa, and so a ∈ U ∩A. Moreover, b = a−1g =
bS ∈ S for every S ∈ Sa and so b ∈ U ∩ B. Therefore g = ab ∈ (U ∩ A)(U ∩ B).

The next lemma shows in particular that a finite subset of a product G of two subgroups is
contained in a countable prefactorized subgroup of G. It is also useful as a (weak) substitute
of Proposition 1.1.3 (c), since it ensures that certain intersections of prefactorized subgroups
are prefactorized.

1.1.6 Lemma. Suppose that the group G is the product of two subgroups A and B. More-
over, let S be a set of prefactorized subgroups of G which is closed with respect to arbitrary
intersections of its members. Then every subset X of G is contained in a prefactorized sub-
group H of cardinality not exceeding max(ℵ0, |X|), such that H∩S is a prefactorized subgroup
of H for every S ∈ S.

Proof. Suppose without loss of generality that G ∈ S. For every x ∈ G, let Gx denote the
intersection of all S ∈ S such that x ∈ S, then by hypothesis Gx ∈ S for every x ∈ G, and
in particular Gx is prefactorized. Now define functions a1:G → A, b1:G → B, a2:G → A and
b2:G → B as follows: For each x ∈ G, choose elements a, a′ ∈ A∩Gx and b, b′ ∈ B∩Gx such
that x = ab = b′a′ and put a1(x) = a, b1(x) = b, a2(x) = a′ and b2(x) = b′.

Let X0 = X and A0 = B0 = ∅. By induction, we construct from the set Xi the
sets Ai+1, Bi+1 and Xi+1 containing Ai, Bi and Xi respectively: If i is even, let Ai+1 =
<Ai, a1(x) | x ∈ Xi>, Bi+1 = <Bi, b1(x) | x ∈ Xi> and Xi+1 = Ai+1Bi+1. If i is odd, put
Ai+1 = <Ai, a2(x) | x ∈ Xi>, Bi+1 = <Bi, b2(x) | x ∈ Xi> and Xi+1 = Bi+1Ai+1. Then in
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both cases, Xi is contained in Xi+1, and the cardinalities of Ai+1, Bi+1 and Xi+1 do not
exceed max(ℵ0, |X|).

Now let A∞ =
⋃

i∈N Ai and B∞ =
⋃

i∈N Bi, then it is easy to verify that A∞B∞ ⊆
B∞A∞ ⊆ A∞B∞ so that H = A∞B∞ is a prefactorized subgroup of G whose cardinality
does not exceed max(ℵ0, |X|).

Let S ∈ S, then it remains to show that H ∩ S is prefactorized. Choose x ∈ H ∩ S, then
x ∈ Xi ⊆ Xi+1 for some integer i so that i may be assumed odd. Then Xi = AiBi and x ∈ Xi

is the product of a = a1(x) ∈ A and b = b1(x) ∈ B. By construction, a and b belong to Gx

and Gx ≤ S because x ∈ S. This shows that x = ab ∈ (A ∩ H ∩ S)(B ∩ H ∩ S) and H ∩ S is
prefactorized.

For some statements concerning groups which are the product of two of their subgroups,
the following generalization of Dedekind’s modular law will be useful:

1.1.7 Lemma. Let G be a group and suppose that X, Y and U are subsets of G such
that u−1 ∈ U for every u ∈ U .

(a) If XU ⊆ X, then (X ∩ Y )U = X ∩ Y U .

(b) If UX ⊆ X, then U(X ∩ Y ) = X ∩ UY .

Proof. Suppose that XU ⊆ X. Clearly, (X ∩ Y )U ⊆ XU ∩ Y U which is contained in
X ∩ Y U by hypothesis. Conversely, let x ∈ X ∩Y U and write x = yu with y ∈ Y and u ∈ U .
Then xu−1 is contained in XU ∩ Y ⊆ X ∩ Y and therefore x = (xu−1)u is contained in the
set (X ∩ Y )U . The proof of the second statement is similar.

1.2. Sylow subgroups and Sylow bases

Let G be a group and π be a set of primes. We define a Sylow π-subgroup of G to be a maximal
π-subgroup of G. This terminology differs from that of [KW73], although for the group classes
considered in the sequel, namely U-groups, periodic FC- and CC-groups, periodic locally
soluble groups with the minimal condition on p-subgroups, our definition coincides with that
of [KW73]. If G is a finite group and π is a set of primes, a subgroup H of G is a Hall
π-subgroup of G if H is a π-group whose index is a π′-number. In particular, every Hall π-
subgroup of G is a Sylow π-subgroup of G. The Sylow subgroup Gπ reduces into a subgroup H
of G if Gπ∩H is a Sylow π-subgroup of H. Two subgroups U and V of G are conjugate (locally
conjugate, conjugate via an automorphism α) if there exists an element g ∈ G (a locally inner
automorphism α, an automorphism α) such that Ug = V (Uα = V ). An automorphism α of G
is called locally inner if for every finite subset {x1, . . ., xn} of G, there exists an element g ∈ G
such that xα

i = xg
i for every i ∈ {1, . . ., n}.

Our first simple lemma is a weak version of the Schur-Zassenhaus theorem, which, never-
theless, holds for arbitrary locally finite groups.

1.2.1 Lemma. Suppose that G is a locally finite group and π a set of primes such that
G/N is a π-group for some subgroup N ≤ Z(G). Then G has a unique Sylow π-subgroup Gπ

and a unique Sylow π′-subgroup Gπ′ such that G = GπGπ′ .



Sylow subgroups and Sylow bases 18

Proof. Let Nπ′ be the unique Sylow π′-subgroup of N , then also G/Nπ′ is a π-group.
Therefore assume without loss of generality that N is a π′-group. Let S be the set of all
π-elements of G. If g, h ∈ S, then F = <g, h> is a finite group. Hence by the theorem of
Schur and Zassenhaus, F = FπFπ′ , where Fπ is a Hall π-subgroup of F and Fπ′ = F ∩ N
is the unique Hall π′-subgroup of F . Since Fπ′ ≤ Z(F ), the subgroup Fπ is the unique Hall
π-subgroup of F and so gh ∈ Fπ is a π-element. Hence gh ∈ S and S is a π-subgroup of G.

Now every element g ∈ G can be expressed as the product of a π-element s and a π′-
element x. Since G/N is a π-group, we have x ∈ N ; moreover, s ∈ S by the definition of S.
Therefore G = SN , as required.

We will call a set {Gp | p ∈ P} of subgroups of an arbitrary group G a Sylow basis of G if
it satisfies the following conditions.

(SS1) For every set π of primes, the group <Gp | p ∈ π> is a Sylow π-subgroup of G.

(SS2) GpGq = GqGp for all primes p and q.

Observe that if {Gp | p ∈ P} is a Sylow basis of the group G, then G is the product of its
subgroups Gp, where p ∈ P.

Note that our definition of a Sylow basis differs from that in [Bae70] and [Dix82]. There,
a set of subgroups {Gp | p ∈ P} is called a Sylow basis if the Gp are Sylow p-subgroups of G
satisfying (SS2), and a set of subgroups {Gp | p ∈ P} satisfying (SS1) and (SS2) is called
a Sylow generating basis. For an example of a group where these concepts differ, see e.g.
Baer [Bae70, Satz 5.3]). Since in our context only Sylow bases satisfying (SS1) are relevant,
we do not make this distinction between Sylow bases and Sylow generating bases.

As in the case of Sylow subgroups, one is often interested whether the Sylow bases of a
group G satisfy some form of conjugacy. Let {Gp | p ∈ P} and {G∗

p | p ∈ P} be Sylow bases
of G, then {Gp | p ∈ P} and {G∗

p | p ∈ P} are conjugate (locally conjugate, conjugate via an
automorphism α) if there exists an element g ∈ G (a locally inner automorphism α, an
automorphism α) such that Gg

p = G∗
p (Gα

p = G∗
p) for every prime p ∈ P.

The next lemma states some equivalent definitions of a Sylow basis.

1.2.2 Lemma. Let G be a group and suppose that {Gp | p ∈ P} is a set of subgroups of G
and for every set of primes π, set Gπ = <Gp | p ∈ π>. Then the following statements are
equivalent:

(a) {Gp | p ∈ P} is a Sylow basis of G.

(b) For every set π of primes, Gπ is a π-group, G = <Gp | p ∈ P> and GpGq = GqGp

for all primes p and q.

(c) For every set π of primes, Gπ is a π-group and G = GπGπ′ .

(d) For every prime p, Gp is a p-group and Gp′ is a p′-group; moreover, G = GpGp′ for
every prime p.

Proof. (a) ⇒ (b) is obvious.
(b) ⇒ (c). Let g ∈ G = <Gp | p ∈ P>, then there exist an integer n and primes p1, . . ., pn

such that g ∈ <Gp1
, . . ., Gpn

>. Since <Gp1
, . . ., Gpn

> = Gp1
·. . .·Gpn

and GpGq = GqGp for all
primes p, q, we may assume without loss of generality that p1, . . ., pm ∈ π and pm+1, . . ., pn ∈
π′ for some m ∈ N. This shows that g ∈ Gp1

· . . . · Gpn
≤ GπGπ′ and so G = GπGπ′ .

(c) ⇒ (d) is trivial.
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(d) ⇒ (a). In order to show that GpGq is a subgroup of G for all primes p and q with
p #= q, observe that

Gq =
⋂

r∈P\{q}
Gr′ ,

so that
GpGq = Gp

( ⋂

r∈P\{q}
Gr′

)
= Gp

(
Gp′ ∩

⋂

r∈P\{p,q}

Gr′

)
,

and by Dedekind’s modular law, we obtain

GpGq = GpGp′ ∩
( ⋂

r∈P\{p,q}

Gr′

)
=

⋂

r∈P\{p,q}

Gr′ ,

whence GpGq is a subgroup of G. Now let π be a set of primes, then clearly

Gπ ≤
⋂

p∈π′

Gp′ .

This shows that Gπ is a π-group. Therefore G satisfies (b), and since we have already proved
that (b) implies (c), it follows that G = GπGπ′ . Thus if Gπ is contained in a π-group P , then
we have P = P ∩ GπGπ′ = Gπ(P ∩ Gπ′) = Gπ by Dedekind’s modular law. This shows that
Gπ is a Sylow π-subgroup of G, as required.

Let G be a group possessing a Sylow basis {Gp | p ∈ P}. The Sylow basis {Gp | p ∈ P}
of G reduces into a subgroup H of G if {Gp ∩ H | p ∈ P} is a Sylow basis of H. Thus, if we
consider G as a product of its subgroups Gp, where p ∈ P, then in view of Lemma 1.2.2 (b),
the Sylow basis {Gp | p ∈ P} reduces into H if and only if H is a prefactorized subgroup
of G. Note that, since <Gq | q ∈ P, q #= p> is a p′-group, every prefactorized subgroup of G
is actually factorized. This is extremely useful for proving the following statements.

1.2.3 Lemma. Let G be a group and suppose that G possesses a Sylow basis {Gp | p ∈ P}.
(a) If N ! G, then {GpN/N | p ∈ P} is a Sylow basis of GN/N .

(b) If N ! G and U is a subgroup of G into which {Gp | p ∈ P} reduces, then the Sylow
basis {GpN/N | p ∈ P} of G/N reduces into UN/N .

(c) If S is a set of subgroups of G such that {Gp | p ∈ P} reduces into every U ∈ S, then
{Gp | p ∈ P} also reduces into the intersection S of all U ∈ S.

(d) Let U be a subgroup of G such that {Gp | p ∈ P} reduces into U and assume that N
is a locally nilpotent normal subgroup of G. Then {Gp | p ∈ P} also reduces into UN .

(e) Suppose that N is a normal subgroup of G. If the Sylow basis {GpN/N | p ∈ P} reduces
into the subgroup U/N of G/N , then {Gp | p ∈ P} reduces into U .

Proof. (a) follows directly from Lemma 1.2.2 (b). (b) and (c) are consequences of Propo-
sition 1.1.2 (e) and Proposition 1.1.2 (c), respectively.

(d) For every set π of primes, let Gπ = <Gp | p ∈ π>, Uπ = U ∩ Gπ and Nπ = Oπ(N).
Put Up = U{p} and Np = N{p} for every prime p, then by hypothesis, {Up | p ∈ P} and
{Np | p ∈ P} are Sylow bases of U and N , respectively. Let π be a set of primes. Since NπGπ

is a π-group, we have Nπ ≤ Gπ and so UπNπ ≤ Gπ is a π-group. Moreover, UπNπUπ′Nπ′ =
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UπUπ′NπNπ′ = UN , and so {UpNp | p ∈ P} satisfies condition (c) of Lemma 1.2.2, hence it
is a Sylow basis of UN .

(e) This follows from Proposition 1.1.2 (f).

1.3. Series, chains and major subgroups

Let G be a group, Γ a set of endomorphisms of G and Ω a totally ordered set. A set S =
{Uσ, Vσ | σ ∈ Ω} of Γ-invariant subgroups of G is called a Γ-series of G if:

(S1) Vσ is a normal subgroup of Uσ for every σ ∈ Ω.

(S2) Uσ ≤ Vτ for all σ, τ ∈ Ω with σ < τ .

(S3) For every g ∈ G with g #= 1, there exists a σ ∈ Ω such that g ∈ Uσ \ Vσ.

For an equivalent formulation, see also [Rob82, Section 12.4]. The subgroups Uσ and Vσ are
called terms of S and the factor groups Uσ/Vσ are called the factors of S. The order type
of S is defined to be the order type of the index set Ω. The series is called finite (finite of
length n ∈ N) if Ω is finite (|Ω| = n). The series is called ascendant if Ω is well-ordered and
descendant if Ω is well-ordered with respect to its inverse ordering. A group is radical if it
has an ascending series with locally nilpotent factors; it is hypoabelian if it has a descending
normal series with abelian factors.

If Γ is the set of all inner automorphisms (all automorphisms, all endomorphisms) of G,
then the series is called normal (characteristic, fully invariant). A ∅-series of a group G is
just called a series of G.

Let S and T be Γ-series of the group G. If S is contained in T , then T is called a refinement
of S. The Γ-series S is a Γ-composition series of G if S does not have a proper refinement.
A ∅-composition series of G is called just a composition series of G, and if Γ consists of all
inner automorphisms, a Γ-composition series is called a chief series of G or a principal series
of G. The factors occurring in a composition series are called composition factors of G; those
of a chief series are called chief factors or principal factors.

A subgroup S of the group G is called serial if it is a term in some ∅-series of G. The
subgroup S is called subnormal (ascendant , descendant) if S is a term of a finite (ascendant,
descendant) series of G.

A set C of subgroups of the group G is called a chain of subgroups of G if it is totally
ordered (with respect to inclusion). If the set C is well-ordered (well-ordered with respect to
the inverse ordering), the set C is an ascending chain (descending chain). Let X be a class
of groups. Then the group G has the minimal (maximal) condition for X-groups if every
descending (ascending) chain of G whose members are X-groups is finite.

Let G be a group and C a chain of subgroups of G. If C has a minimal element U and a
maximal element V , then C is called a chain from U to V .

Following Tomkinson [Tom75], we define major subgroups of a group G as follows. For
every subgroup U of G, let m(U) denote the least upper bound of the lengths of all ascending
chains from U to G. A subgroup M of G is a major subgroup of G if m(M) = m(V ) for every
subgroup V of G with M ≤ V .
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1.4. Classes and closure operations

A class X of groups (or group class) is a class whose members are groups and such that if
G ∈ X, then X contains every group isomorphic with G. If G ∈ X, then the group G will be
called an X-group.

Since this dissertation is concerned with locally finite groups only, we denote with S the
class of all locally finite-soluble groups. Moreover, A and N are the classes of all periodic
abelian and of all periodic nilpotent groups, respectively. A group G is an FC-group (a
CC-group) if, for every g ∈ G, the factor group G/CG(gG) is finite (a Černikov group). A
Černikov group is a finite extension of a periodic radicable abelian group of finite rank, and
hence it satisfies the minimal condition on subgroups. Let p be a prime, then the group G
satisfies the minimal condition on p-subgroups, also called min-p, if every p-subgroup of G
satisfies the minimal condition on subgroups.

The class U can be characterized as follows. A periodic locally soluble group G belongs to
the class U if, for every subgroup H and every set π of primes, the Sylow π-subgroups of H
are conjugate in H. Note that by a result of Hartley [Har72a, Theorem E], every U-group has
a finite series with locally nilpotent factors.

If X is a class of groups, then X∗ denotes the class of all finite X-groups, and if π is a set
of primes, then Xπ is the class of all π-groups contained in X.

If X and Y are classes of groups, then XY is the class of all groups G which possess a
normal X-subgroup N such that G/N is an Y-group. If Z is another class of groups, we define
XYZ = (XY)Z.

The set of all primes p such that the group class X contains a cyclic group of order p is
called the characteristic of X.

A map C : {group classes} → {group classes} is called a closure operation if, for any two
group classes X and Y, we have

(C1) X ⊆ CX.

(C2) CX = C2X.

(C3) If X ⊆ Y, then CX ⊆ CY.

We introduce the following closure operations: Q, S, L, Sn, N, D and R. If X is a class of groups,
then QX and SX are the classes of all factor groups of X-groups and the class of all subgroups
of X-groups, respectively. LX is the class of all groups G such that every finite subset of G
is contained in an X-subgroups of G, and SnX is the class of all subnormal subgroups of X-
groups. NX is the class of all groups which are generated by their serial X-subgroups and DX

is the class of all groups which are the direct product of an arbitrary number of their normal
X-subgroups. RX is the class of all groups G which possess a set N of normal subgroups such
that

⋂
N∈N N = 1 and G/N ∈ X for every N ∈ N .

Let C be a closure operation. A group class X is called C-closed if X = CX. We follow
[DH92] in defining C∅ = ∅ for every closure operation C.

If C1 and C2 are closure operations, then C1C2 and <C1,C2> are defined as follows. If X is
a group class, then C1C2X = C1(C2X) and <C1,C2>X is the intersection of all group classes Y

which contain X and are both C1- and C2-closed. By [DH92, II, Lemma 1.14], <C1,C2>X is the
unique smallest class which contains X and is both C1- and C2-closed.
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Sometimes, it is useful to restrict closure operations C to a certain universe Y of groups.
The next lemma shows that such restricted closure operations are again closure operations.

1.4.1 Lemma. Let Y be a class of groups and C a closure operation. Then CY, defined
by CYX = CX ∩ (X ∪ Y) for every group class X, is a closure operation.

Proof. Let X be a group class. Then X ⊆ CX ∩ (X ∪ Y) = CYX and if X is contained in
the group class X1, then CYX = CX ∩ (X ∪ Y) ⊆ CX1 ∩ (X1 ∪ Y) = CYX1. Moreover,

(CY)2X = C(CYX) ∩ (CYX ∪ Y) = C(CX ∩ (X ∪ Y)) ∩ (CYX ∪ Y)

⊆ C
2X ∩ (X ∪ Y) ∩ (CYX ∪ Y) = CX ∩ (X ∩ Y) = CYX.

This shows that (CY)2 = CY.

1.5. Local formations

In order to introduce the concept of a local formation, we follow the approach of [GHT71]. Let
X and Y be classes of groups. For every G ∈ X, we define CG(Y, p) to be the intersection of the
centralizers of all p-principal factors U/V of G such that G/CG(U/V ) ∈ Y and CG(Y, p) = G
if no such chief factors exist. The class Y is an (X, p)-preformation if Y is empty or satisfies:

(PF1) Y = QY.

(PF2) For every group G ∈ X, we have G/CG(Y, p) ∈ Y.

X-formations are important examples of group classes which form (X, p)-preformations for
every prime p. Here the group class F is called an X-formation if:

(F1) F = QF.

(F2) F = RF ∩ X.

Note that the second condition implies that F is a subclass of X.
Let X = QX be a class of periodic locally soluble groups. A function f assigning to every

prime p a (possibly empty) (X, p)-preformation is called an X-preformation function. The
support π of f is the set of primes p such that f(p) is nonempty. Now let F be the class of all
X-groups G such that G/CG(U/V ) ∈ f(p) for every prime p and every p-principal factor U/V
of G. The class F is called the local X-formation defined by the X-preformation function f . A
class F is a local X-formation or local formation of X-groups if it is a local X-formation for
some X-preformation function.

We give some useful alternative descriptions of local formations of periodic locally soluble
groups.

1.5.1 Lemma. Let X = QX be a class of periodic locally soluble groups and suppose that
F a local X-formation defined by the X-preformation function f and let π denote the support
of G. Then the following statements about the X-group G are equivalent:

(a) G ∈ F.

(b) Let S be a chief series of G. If U/V is a p-factor of S for the prime p, then G/CG(U/V ) ∈
f(p).

(c) G is a π-group and G/Op′,p(G) ∈ f(p) for every prime p ∈ π.
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(d) G is a π-group and G ∈ Sp′Spf(p) for every prime p ∈ π.

Proof. The implications (a) ⇒ (b) and (c) ⇒ (d) are obvious.
(b) ⇒ (c) Let S be a chief series of G and p a prime. If p /∈ π, then f(p) is empty and

so G does not have p-chief factors. Since every principal factor of G is an elementary abelian
p-group for some prime p (see e.g. [KW73, Corollary 1.B.4] or [Rob82, 12.5.1]), the group G
is a π-group. Now let p ∈ π. By [GHT71, Theorem 3.8], Op′,p(G) equals the intersection of
all centralizers of the p-principal factors in S. Thus G/Op′,p(G) ∈ f(p) by (PF2).

(d) ⇒ (a) Let p ∈ π and U/V a p-principal factor of G. Then G possesses a normal
subgroup N ∈ Sp′Sp; moreover, G/N ∈ f(p) and N is contained in Op′,p(G). Since Op′,p(G) ≤
CG(U/V ) by [GHT71, Theorem 3.8], G/CG(U/V ) is a factor group of G/N , hence belongs
to f(p).

The following lemma shows that a local X-formation is indeed an X-formation.

1.5.2 Lemma. Let X = QX be a class of periodic locally soluble groups and F a local
X-formation. Then F = QF = RF ∩ X, and so F is an X-formation.

Proof. Let G ∈ F and N ! G. If p ∈ π, then G/Op′,p(G) ∈ f(p) and since Op′,p(G)N/N ≤
Op′,p(G/N), the factor group (G/N)/Op′ ,p(G/N) is also an f(p)-group. Therefore G/N ∈ F

by Lemma 1.5.1.
Now assume that N is a set of normal subgroups of the X-group G such that G/N ∈ F

for every N ∈ N and let π denote the characteristic of F. Then G/N is a π-group for every
N ∈ N , and since G is periodic, G is likewise is a π-group. Let p ∈ π and put C = CG(f(p), p).
Now set LN/N = Op′,p(G/N) for every N ∈ N . Since G/LN ∈ f(p) for every N ∈ N ,
by [GHT71, Theorem 3.8], we have G/CG(U/V ) ∈ f(p) for every p-principal factor U/V
of G with N ≤ V . This shows that C ≤ LN for every N ∈ N . Since G is periodic, we
have

⋂
N∈N Ln = Op′,p(G) and so C ≤ Op′,p(G). Moreover, by the definition of C, we have

G/C ∈ f(p) and so G/Op′,p(G) ∈ f(p). Since this holds for every p ∈ π, we have G ∈ F by
Lemma 1.5.1.

We mention a number of elementary yet useful properties of local formations.

1.5.3 Lemma. Let X = QX be a class of periodic locally soluble groups and F a local X-
formation of characteristic π. If G is an X-group such that G/Z(G) ∈ F and G is a π-group,
then G ∈ F.

Proof. Suppose that f is an X-preformation function defining F. Refine the series 1 !
Z(G) ! G to a chief series S of G and let U/V be a p-principal factor of S for some p ∈ π.
If U ≤ Z(G), then CG(U/V ) = G and so G/CG(U/V ) ∈ f(p). Otherwise, Z(G) ≤ V , and
since CG/Z(G)(U/V ) = CG(U/V )/Z(G) and G/Z(G) ∈ F, we have G/CG(U/V ) ∈ f(p) by an
isomorphism theorem. Therefore G ∈ F by Lemma 1.5.1.

The next elementary lemma will be needed later.

1.5.4 Lemma. Let X = QX be a class of periodic locally soluble group and assume that
F is a local X-formation of characteristic π. Further, let G be an X-group and N a normal
p-subgroup of G such that G/N ∈ F. If p ∈ π and Op′(G/N) = 1, then G ∈ F.

Proof. Since N and G/N are π-groups, also G is a π-group. If q ∈ π and q #= p, then
N ≤ Oq′(G) and so Oq′(G/N) = Oq′(G)/N . Thus G ∈ Sq′Sqf(q). Moreover, Op′(G)N/N ≤
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Op′(G/N) = 1 and so Op′(G) = 1. It follows that Op′,p(G) = Op(G) and so Op′,p(G)/N =
Op′,p(G/N). Consequently, G ∈ Sp′Spf(p) and hence G belongs to F.

Sometimes it will be necessary to restrict the universe X of a local X-formation F. The
restriction of F to that universe is again a local formation:

1.5.5 Lemma. Let X and Y be two QS-closed classes of groups such that Y ⊆ X. If F is a
local X-formation of characteristic π defined by the preformation function f , then G = F∩Y

is a local Y-formation. Moreover, the function g defined by g(p) = f(p)∩Y for all primes is
a local definition of G.

Proof. Since is easy to see that g(p) is a preformation function for every p ∈ π, we only
have to show that G is locally defined by g. Let G ∈ G and p ∈ π, then G/Op′,p(G) ∈
f(p) ∩ QY = g(p) and G belongs to the local Y-formation defined by g. Conversely, suppose
that the Y-group G satisfies G/Op′,p(G) ∈ g(p) for every p ∈ π, then G/Op′,p(G) ∈ f(p) and
so G ∈ F ∩ Y = G by Lemma 1.5.1.

Let F be a local X-formation, then in view of Zorn’s lemma, the following proposition
shows that every F-group supplementing the Hirsch-Plotkin radical of a group G is contained
in a maximal F-subgroup of G.

1.5.6 Proposition. Let X be a QS-closed class of periodic locally finite groups and F a
local X-formation. Suppose that the X-group G is the union of an ascending chain C of F-
subgroups. If, for every prime p, there exists S ∈ C which supplements Op′,p(G), then G is an
F-group.

Proof. Suppose that f is an X-preformation function for F and let p be a prime and U/V
a p-principal factor of G. We have to show that G/C ∈ f(p), where C = CG(U/V ). Hence
we may assume without loss of generality that SOp′,p(G) = G for every S ∈ C.

By [GHT71, Theorem 3.8], U/V is centralized by Op′,p(G). Let S ∈ C, then (U ∩ S)V/V
is normalized by S and centralized by Op′,p(G), hence is normal in SOp′,p(G) = G. Since
U =

⋃
S∈C(U ∩ S) and U/V is a principal factor of G, there exists an S ∈ C such that

U = (U ∩ S)V . Let K be a normal subgroup of S with V ∩ S ≤ K < U ∩ S, then also
KV/V < U/V is centralized by Op′,p(G), hence is normal in G = SOp′,p(G) and so K = S∩V .
This shows that (U ∩ S)/(V ∩ S) is a principal factor of S. Therefore Op′,p(S) centralizes
(U ∩ S)/(V ∩ S). Since U/V is S-isomorphic with (U ∩ S)/(V ∩ S), the subgroup Op′,p(S)
is contained in C = CG(U/V ). By an isomorphism theorem, we have G/C ∼= S/S ∩ C, and
since S/Op′,p(S) ∈ f(p) by hypothesis, we also have G/C ∈ f(p), as required.

1.6. Projectors and injectors

Let X be a class of groups and G any group. An X-subgroup X of G is called X-maximal
(in G) if, whenever Y is an X-subgroup of G containing X, then X = Y ; in other words, X
is X-maximal if it is an X-group and X is not properly contained in any X-subgroup of G.

Following [DH92], a subgroup X of G is called X-projector of G if XN/N is an X-maximal
subgroup of G/N for every normal subgroup N of G. A subgroup X of G is called an
X-covering subgroup of G if X is an X-projector of H for every subgroup H of G which



Projectors and injectors 25

contains X. Note that our terminology differs from that used in [Dix82], [GHT71] or [Kli75],
whose definition of an X-projector coincides with our definition of an X-covering subgroup.
However, since the X-projectors which will occur in the sequel are in fact X-covering sub-
groups, there should be no danger of confusion.

Let X = QSX, G ∈ X and F a local X-formation. If N a set of normal subgroups of G, the
following well-known lemma shows in particular that

H
( ⋂

N∈N
N

)
=

⋂

N∈N
HN

for every F-projector H of G.

1.6.1 Lemma. Let X be a QS-closed class of periodic locally soluble groups and assume
that F is a local X-formation. Further, let H be an F-maximal subgroup of the X-group G and
assume that N is a set of normal subgroups of G such that the intersection of all N ∈ N is
trivial. Then

H =
⋂

N∈N
HN.

Proof. Let L =
⋂

N∈N HN , then LN = HN for every N ∈ N . This shows that L/L∩N ∼=
LN/N = HN/N ∈ F. Therefore by Lemma 1.5.2, we have L ∈ F. Since H is contained in L
and H is F-maximal, we have H = L, as required.

Let G be a group. A nonempty set F of subgroups of G is called a Fitting set of G if it
satisfies the following conditions:

(FS1) If U ∈ F and V is a serial subgroup of U , then V ∈ F .

(FS2) If S is a set of F-subgroups and every V ∈ S is serial in the subgroup U generated
by all V ∈ S , then U belongs to F .

(FS3) If U ∈ F and g ∈ G, then Ug ∈ F .

If F is a Fitting set of the group G, then the subgroup GF of G generated by all serial
F-subgroups of G is called the F-radical of G; note that by (FS2), GF is an F-subgroup of G.
A subgroup I of G such that I ∩ S is an F-maximal subgroup of S for every serial subgroup
of G is called an F-injector of G.

Let F be a Fitting set of the group G. If H is a subgroup of G, then the set

FH = {U | U ≤ H, U ∈ F}

is a Fitting set of H. If there is no ambiguity, we will usually omit the reference to H and
call the FH-injectors of H simply F-injectors of H. The FH-radical of H is then just called
the FH -radical of H and will be denoted with HF .

If G is a finite soluble group, these definitions evidently coincide with those introduced
by Anderson in [And75]. Moreover, if G is a locally soluble FC-group, then it is easy to see
that our definition of a Fitting set agrees with that of Beidleman and Karbe in [BK86]; (see
[Ens90], Bemerkung 2.2 and Bemerkung 2.9).

Our first lemma shows in particular that for every Fitting set of a group G, the F-radical
is contained in every F-injector of G.

1.6.2 Lemma. Let F be a Fitting set of the group G and suppose that I is an F-injector
of G. Then GF equals the core of I in G.
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Proof. Let N denote the core of I in G. Then N ∈ F by (FS1). Therefore N ≤ GF by
(FS2). On the other hand, I ∩ GF is an F-maximal subgroup of the F-group GF and so
GF ≤ I, as required.

The next lemma shows how injectors and the radical of a group G are related to the
corresponding injectors and radicals of certain subgroups of G.

1.6.3 Lemma. Let G be a group and F a Fitting set of G. Suppose that X is a subgroup X
of G which possesses a set S of subgroups which are serial in G and whose union equals X.
Then the F-radical XF equals the union of the subgroups SF , where S ∈ S, and XF = X∩GF .
Moreover, if G possesses an F-injector I, then X ∩ I is the union of the F-injectors S ∩ I
of S, where S ∈ S, and X ∩ I is an F-injector of X.

Proof. If S is a serial subgroup of G contained in X, then S is also serial in X. Therefore
S ∩XF = SF = S ∩GF = S ∩X ∩GF . Since every g ∈ X is contained in such a subgroup S
of X, it follows that XF = X ∩ GF . A similar argument can be used to prove the statement
about F-injectors.

Let X and F be classes of groups. F is called an X-Fitting class (or Fitting class of X-
groups) if, for every G ∈ X, the set F of all F-subgroups of G forms a Fitting set of G. In
this case, an F-injector of G is simply an F-injector and the F-radical GF equals GF .



Chapter 2

Prefactorized Sylow subgroups
and Sylow bases of products

2.1. Prefactorized Sylow subgroups

The following section is concerned with finding prefactorized Sylow π-subgroups of a group G
which is the product of two subgroups A and B which have normal Sylow π- and π′-subgroups
Aπ, Aπ′ , Bπ and Bπ′ , respectively. The finite case suggests that the sets AπBπ and Aπ′Bπ′

are natural candidates for prefactorized Sylow π- and π′-subgroups of G, although even if
<Aπ, Bπ> is not a π-group, then there may nevertheless be subsets A0 and B0 of Aπ and Bπ,
respectively, such that A0B0 is a Sylow π-subgroup of G. For instance, in Example 2.1.8 below,
the subgroups Ap and Bp themselves are Sylow p-subgroups of G, while G = <Ap, Bp> is
not a p-group. However, in the sequel, we will only investigate the question under which
hypotheses the product of the π-components of A and B is a Sylow π-subgroup of G.

If a product G of two subgroups is, in addition, the direct product of a π-group and a
π′-group, the existence of a prefactorized Sylow π-subgroup can be proved using the following
elementary lemma.

2.1.1 Lemma. Suppose that the group G = M × N is the product of two subgroups A
and B. If A = (A ∩ M)(A ∩ N) and B = (B ∩ M)(B ∩ N), then M = (M ∩ A)(M ∩ B).

Proof. Clearly, G = AB = (A ∩ M)(B ∩ M)N . Therefore M = M ∩ (A ∩ M)(B ∩ M)N
and so by Lemma 1.1.7, M = (A ∩ M)(B ∩ M)(M ∩ N) = (A ∩ M)(B ∩ M) as required.

In particular, if π(M) and π(N) are disjoint, this leads to:

2.1.2 Corollary. Let G be a group and suppose that G is the direct product of a normal
Sylow π-subgroup Gπ and a normal Sylow π′-subgroup Gπ′ . If G = AB for two subgroups A
and B, then Gπ = AπBπ and Gπ′ = Aπ′Bπ′, where Aπ, Aπ′ , Bπ and Bπ′ are normal Sylow
π- and Sylow π′-subgroups of A and B, respectively.

Thus we obtain a first result about Sylow bases of periodic locally nilpotent products.

2.1.3 Corollary. Suppose that the periodic locally nilpotent group G is the product of two
subgroups A and B. If π is a set of primes, then the set {ApBp | p ∈ P} is the unique Sylow
basis of G.

The next proposition states some criteria for a periodic product of two subgroups to have
prefactorized Sylow subgroups.



Prefactorized Sylow subgroups 28

2.1.4 Proposition. Suppose that the periodic group G is the product of two subgroups A
and B and that A = AπAπ′ and B = BπBπ′, where Aπ, Aπ′, Bπ and Bπ′ are π- and π′-
subgroups of A and B, respectively.

(a) (N. S. Černikov [Cer82, Lemma 2]) If <Aπ, Bπ> is a π-group and <Aπ′ , Bπ′> is
a π′-group, then AπBπN/N = BπAπN/N is a Sylow π-subgroup of G/N for every normal
subgroup N of G (and Aπ′Bπ′N/N is a Sylow π′-subgroup of G/N).

(b) If N is a set of normal subgroups of G such that
⋂

N∈N N = 1 and for every N ∈
N , the subgroups <Aπ, Bπ>N/N and <Aπ′ , Bπ′>N/N are a π-and a π′-subgroup of G/N ,
respectively, then AπBπ and Aπ′Bπ′ are a Sylow π- and a π′-subgroup of G.

(c) If G is locally finite, N ≤ Z(G) and <Aπ, Bπ>N/N and <Aπ′ , Bπ′>N/N are a π- and
a π′-subgroups of G/N , respectively, then AπBπ and Aπ′Bπ′ are a Sylow π- and a π′-subgroup
of G.

Proof. (a) Since the hypotheses are inherited by every factor group G/N of G, it clearly
suffices to consider the case when N = 1. Now assume that the π-group <Aπ, Bπ> is contained
in a π-group P of G and let g ∈ P . Since G = AB = AπAπ′Bπ′Bπ, the element g can be
written as g = aπaπ′bπ′bπ, where aπ ∈ Aπ, aπ′ ∈ Aπ′ , bπ ∈ Bπ and bπ′ ∈ Bπ′ . Therefore
aπ′bπ′ = a−1

π gb−1
π is contained in P ∩ <Aπ′ , Bπ′> = 1. Hence g = aπbπ is contained in the

set AπBπ and so <Aπ, Bπ> = AπBπ is a Sylow π-subgroup of G. A similar argument shows
that Aπ′Bπ′ is a Sylow π′-subgroup of G.

(b) Let S = <Aπ, Bπ>, then by hypothesis, S/S ∩ N ∼= SN/N is a π-group for every
N ∈ N . Since G is periodic, this shows that S is a π-group. Similarly, <Aπ′ , Bπ′> is a
π′-group. Now the result follows from (a).

(c) Let H = <Aπ, Bπ>N , then H has a normal Sylow π-subgroup Hπ by Lemma 1.2.1.
Since AπHπ and BπHπ are π-subgroups of H, it follows that <Aπ, Bπ> ≤ Hπ is a π-group.
Similarly, <Aπ′ , Bπ′> is a π′-group, and the desired result follows from (a).

Remark. Note that in Proposition 2.1.4 (a), we do not claim that the Sylow subgroups
AπBπ and Aπ′Bπ′ of G = AB permute. See Theorem 2.2.5 for an additional hypothesis which
ensures that G = (AπBπ)(Aπ′Bπ′).

Next, we investigate the question under which hypotheses the π-radical Oπ(G) of a product
of two subgroups is prefactorized.

2.1.5 Lemma. Let π be a set of primes and suppose that the group G is the product of
two subgroups A = Aπ × Aπ′ and B = Bπ × Bπ′ , where Aπ, Aπ′, Bπ and Bπ′ are π-and
π′-subgroups of A and B, respectively. Further, assume that AπBπ is a π-subgroup of G. If
N is a normal π-subgroup of G contained in AπBπ, then the factorizer of N is the direct
product of its maximal π-subgroup AπN ∩ BπN and its maximal π′-subgroup Aπ′ ∩ Bπ′.

Proof. Let X = AN ∩BN denote the factorizer of N and put P = AπN ∩BπN . Then P is
a subgroup of AπBπ, hence is a factorized subgroup of AπBπ. Therefore Aπ′ ∩Bπ′ centralizes
P = (P ∩ Aπ)(P ∩ Bπ) and so Y = (Aπ′ ∩ Bπ′) × P = (Aπ′ ∩ Bπ′)(P ∩ A)(P ∩ B) is a
prefactorized subgroup of G. Since A = Aπ ×Aπ′ , we also have A∩B = (Aπ′ ∩Bπ′)(Aπ ∩Bπ)
and so Y contains A ∩ B. Since N ≤ Y ≤ X and X is the smallest factorized subgroup of G
that contains N , we have Y = X.
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Observe that the following corollary holds in particular if AπBπN/N is a Sylow π-subgroup
of G/N for every normal subgroup N of G.

2.1.6 Corollary. Let π be a set of primes and suppose that the group G is the product
of two subgroups A = Aπ × Aπ′ and B = Bπ × Bπ′, where Aπ, Aπ′, Bπ and Bπ′ are π-
and π′-subgroups of A and B, respectively. If the set AπBπ is a π-subgroup of G which
contains Oπ(G), then the factorizer X = AOπ(G) ∩ BOπ(G) of Oπ(G) is the direct product
of its maximal π-subgroup AπOπ(G) ∩ BπOπ(G) and its maximal π′-subgroup Aπ′ ∩ Bπ′.
Moreover, if Oπ′,π(G) is contained in AπBπOπ′(G), then the factorizer of Oπ′,π(G) is an
extension of a π′-group by a π-group.

Proof. Put N = Oπ(G), then the first statement follows directly from Lemma 2.1.5. Now
let X denote the factorizer of Oπ′,π(G), then by Proposition 1.1.3, X/Oπ′(G) is the factorizer
of Oπ′,π(G)/Oπ′(G) = Oπ(G/Oπ′(G)) in G/Oπ′(G), hence is an extension of a π′-group by a
π-group, as required.

We mention one important special case when a product of two subgroups possesses pre-
factorized Sylow π-subgroups. Note that Proposition 2.1.7 holds in particular if the Sylow π-
and π′-subgroups of G are conjugate.

2.1.7 Proposition. Let π be a set of primes and suppose that the periodic group G is
the product of two subgroups A and B which are the product of their Sylow π- and π′-groups
Aπ, Aπ′, Bπ and Bπ′ . If Aπ and Bπ are contained in conjugate Sylow π-subgroups of G and
Aπ′ and Bπ′ are contained in conjugate Sylow π′-subgroups of G, then there exist a ∈ A and
b ∈ B such that A = Aa

πAa
π′ , B = Bb

πBb
π′, and furthermore, Aa

πBb
π is a Sylow π-subgroup of G

and Aa
π′Bb

π′ is a Sylow π′-subgroup of G.

Proof. By hypothesis, there exists a Sylow π-subgroup Gπ of G and an element g ∈ G
such that Gπ and Gg

π contain Aπ and Bπ, respectively. Since G = AB, there exist a1 ∈ A and
b1 ∈ B such that g = a1b

−1
1 . Consequently, Aa1

π is contained in Ga1
π , and also Bb1

π is a subgroup
of Ggb1

π = Ga1
π . Therefore <Aa1

π , Bb1
π > is a π-group. Since A = AπAπ′ and B = BπBπ′ , the

elements a1 and b1 may clearly be chosen from Aπ′ and Bπ′ , respectively.
As Aπ′ and Bπ′ are contained in conjugate Sylow π′-subgroups of G, the same also holds for

Aa1
π′ and Bb1

π′ . Now a similar argument, applied to the π′-subgroups Aa1
π′ and Bb1

π′ of A = Aa1
π Aa1

π′

and B = Bb1
π Bb1

π′ , respectively, yields that there exist a2 ∈ Aa1
π and b2 ∈ Bb1

π , such that
<Aa1a2

π′ , Bb1b2
π′ > is a π′-group. Observing that Aa1

π = Aa1a2
π and Bb1

π = Bb1b2
π , it is now clear

that a = a1a2 and b = b1b2 are the required elements of A and B, respectively.
The rest of the proposition now follows from Proposition 2.1.4 (a).

The following example shows that in Proposition 2.1.7, it does not suffice to assume that
Aπ and Bπ are contained in locally conjugate Sylow π-subgroups of G.

2.1.8 Example. Let p be a prime. By [Sys95, Corollary 1], there exists a locally finite
group G = AB = A " M = B " M , where A and B are residually finite p-groups and M is
an elementary abelian q-group for a prime q #= p. In particular, G is a periodic radical group.

We show that A and B are locally conjugate. Let δ : A → M be the surjective derivation
constructed in the proof of [Sys95, Theorem 3A], written multiplicatively. Then (a1a2)δ =
(aδ

1)a2aδ
2 for all a1, a2 ∈ A, and by construction, there exist elements v1, v2, . . . of M such



Prefactorized Sylow subgroups 30

that for every a ∈ A, there exists an integer n ∈ N such that for every integer m ≥ n, we
have aδ = [vm, a].

Let g ∈ G, then g can be written in a unique way as g = am, where a ∈ A and m ∈ M .
We define a map φ : G → G by gφ = aaδm. If gφ = 1, then a = 1 and aδm = 1, and since
(a · 1)δ = (aδ)11δ, it follows that m = 1. To see that φ is a homomorphism, let g1 = a1m1

and g2 = a2m2 be elements of G, where a1, a2 ∈ A and m1, m2 ∈ M . Then

(a1m1a2m2)
φ = (a1a2m

a2
1 m2)

φ = a1a2(a1a2)
δma2

1 m2 = a1a2(a
δ
1)

a2aδ
2m

a2
1 m2

= a1a2(a
δ
1)

a2ma2
1 aδ

2m2 = a1a
δ
1m1a2a

δ
2m2 = (a1m1)

φ(a2m2)
φ.

Now let g be an element of G. Since G = BM , there exists b ∈ B and m ∈ M such that
g = bm. Since B = {aaδ | a ∈ A}, there exists a ∈ A such that b = aaδ. Thus we have
g = (am)φ, and so φ is an automorphism of G. We show that φ is locally inner. Let g1, . . ., gn

be elements of G and write gi = aimi, where ai ∈ A and mi ∈ M . By construction, we have
aδ

i = [vni
, ai] for suitable integers ni ∈ N. Let n denote the maximum of the ni, then also

aδ
i = [vn, ai] = vai

n v−1
n and so

= vnaiv
−1
n mi = av−1

n
i mv−1

n
i = gv−1

n
i ,

as required.

Next, we show that a prefactorized subgroup of a periodic product of two locally nilpotent
groups having prefactorized Sylow π- and π′-subgroups likewise has prefactorized Sylow π-
and π′-subgroups.

2.1.9 Proposition. Suppose that the group G is the product of its subgroups A = Aπ×Aπ′

and B = Bπ × Bπ′, where Aπ, Aπ′ , Bπ and Bπ′ are Sylow π- and Sylow π′-subgroups of A
and B, respectively. Further, assume that <Aπ, Bπ> and <Aπ′ , Bπ′> are a π- and a π′-
subgroup of G. If S is a prefactorized subgroup of G, then (S ∩Aπ)(S ∩Bπ) = S ∩AπBπ and
(S ∩ Aπ′)(S ∩ Bπ′) = S ∩ Aπ′Bπ′ are a Sylow π- and a Sylow π′-subgroup of S. Hence the
Sylow subgroups AπBπ and Aπ′Bπ′ reduce into S.

Proof. Clearly, S ∩ A = (S ∩ Aπ)(S ∩ Aπ′) and S ∩ B = (S ∩ Bπ)(S ∩ Bπ′). Since
<S ∩ Aπ, S ∩ Bπ> ≤ AπBπ is a π-group and <S ∩ Aπ′ , S ∩ Bπ′> is a π′-group, the subgroup
S = (S∩A)(S∩B) satisfies the hypotheses of Proposition 2.1.4 (a). Therefore (S∩Aπ)(S∩Bπ)
is a Sylow π-subgroup of S. Since this Sylow subgroup is contained in the π-subgroup S∩AπBπ

of G, it follows that (S ∩ Aπ)(S ∩ Bπ) = S ∩ AπBπ. The corresponding result about Aπ′Bπ′

follows by exchanging π and π′.

In particular, Proposition 2.1.9 can be used to prove the uniqueness of a prefactorized
Sylow π-subgroup of the form AπBπ.

2.1.10 Corollary. Suppose that the group G is the product of its subgroups A and B.
Further, assume that A = Aπ × Aπ′ , B = Bπ × Bπ′ , where Aπ, Aπ′, Bπ and Bπ′ are Sylow
π- and Sylow π′-subgroups of A and B, respectively, and that <Aπ, Bπ> and <Aπ′ , Bπ′> are
a π- and a π′-subgroup of G. Then G possesses a unique prefactorized Sylow π-subgroup and
a unique prefactorized Sylow π′-subgroup, namely AπBπ and Aπ′Bπ′.

Proof. Let S be a prefactorized Sylow π-subgroup of G, then by Proposition 2.1.9, the
subgroup S ∩AπBπ is a Sylow π-subgroup of S. Thus S ≤ AπBπ and S = AπBπ, since AπBπ
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is a π-group by Proposition 2.1.4 (a). Therefore AπBπ is the unique prefactorized Sylow
π-subgroup of G. The statement about Aπ′Bπ′ follows by exchanging π and π′.

2.2. Permutable Sylow subgroups
of π-separable groups

Suppose that the group G is the product of two subgroups A = Aπ ×Aπ′ and B = Bπ ×Bπ′ ,
where Aπ, Aπ′ , Bπ and Bπ′ are π-and π′-subgroups of A and B, respectively. In the preceding
section, we have established certain conditions for the sets AπBπ and Aπ′Bπ′ to be Sylow
π- and Sylow π′-subgroups of G. In this section, we will show that under the additional
hypothesis that G has an ascending series whose factors are π- and π′-groups, the group G
is the product of its Sylow π-subgroup AπBπ and its Sylow π′-subgroup Aπ′Bπ′ . It seems to
be an open question whether this is true in general.

The next lemma is probably known. It generalizes a result about π-soluble finite groups;
see [HH56, Lemma 1.2.3]. Recall that a group is π-soluble if it has a finite series whose factors
are π′-groups or soluble π-groups.

2.2.1 Lemma. Let π be a set of primes such that the locally finite group G has an as-
cending series whose factors are either π-groups or π′-groups. If every finite subgroup of G
is either π-soluble or π′-soluble, then CG(Oπ′,π(G)) ≤ Oπ′,π(G).

Proof. Clearly, we may assume without loss of generality that Oπ′(G) = 1. Let C =
CG(Oπ(G)) and define P/Oπ(C) = Oπ′(C/Oπ(C)), then C, and hence P , are normal sub-
groups of G. Let g, h ∈ P be π′-elements and put F = <g, h>, then F is finite. Now
F/F ∩ Oπ(C) ∼= FOπ(C)/Oπ(C) ≤ P/Oπ(C) is a π′-group. By the Schur-Zassenhaus theo-
rem, g and h are contained in conjugate Hall π′-subgroups Fπ′ and F x

π′ of F , where x ∈ F .
Since F = Fπ′(F∩Oπ(C)), we may assume that x ∈ Oπ(C), and because h ∈ P ≤ CG(Oπ(C)),
we have hx = h. So <g, h> is contained in the π′-group Fπ′ . This shows that the subgroup Q
generated by the π′-elements of P is a π′-subgroup of P , hence is a characteristic π′-subgroup
of P . It follows that Q ≤ Oπ′(G) = 1, and so we have Oπ′(C/Oπ(C)) = 1. On the other hand,
G, and hence C, possesses an ascending series whose factors are either π- or π′-groups. Since
also Oπ(C/Oπ(C)) = 1, we must have C = Oπ(C), and so C is contained in Oπ(G).

From this, we can derive a criterion for the characteristic subgroups Oπ(G) and Oπ′(G)
of a product G of two groups to be prefactorized.

2.2.2 Proposition. Let π be a set of primes and suppose that G is a locally finite group
which has an ascending series whose factors are π-groups or π′-groups. Further, assume that
G is the product of two subgroups A = Aπ × Aπ′ and B = Bπ × Bπ′ , where Aπ, Aπ′, Bπ

and Bπ′ are π- and π′-subgroups of A and B, respectively. If <Aπ, Bπ> and <Aπ′ , Bπ′> are
a π-group and a π′-group, respectively, then Oπ′,π(G) is factorized. Moreover, Oπ(G) is a
factorized subgroup of the Sylow π-subgroup AπBπ. Hence Oπ(G) is a prefactorized subgroup
of G = AB.

Proof. First, we show that Oπ′,π(G) is factorized. By Proposition 2.1.4, AπBπN/N and
Aπ′Bπ′N/N are a maximal π-subgroup and a maximal π′-subgroup of G/N for every normal
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subgroup N of G. Thus it suffices to consider the case when Oπ′(G) = 1. Now by Corol-
lary 2.1.6, Aπ′ ∩ Bπ′ centralizes Oπ(G) and so by Lemma 2.2.1, Aπ′ ∩ Bπ′ = 1. Therefore
the factorizer X of Oπ(G) is a π-group. Exchanging the roles of π and π′, it follows by the
same arguments that Y/Oπ(G) is a π′-group, where Y is the factorizer of Oπ,π′(G). Since
the factorized subgroup Y contains Oπ(G), we have X ≤ Y , and so the π-group X must be
contained in Oπ(G). Hence Oπ(G) is factorized.

To prove the second statement, observe that, exchanging the roles of π and π′, it follows
from the first part that, applied to G/Oπ(G), and Proposition 1.1.3 that Oπ,π′(G) is factorized.
Therefore Oπ(G) = AπBπ∩Oπ,π′(G) is a factorized subgroup of AπBπ, hence is a prefactorized
subgroup of G by Proposition 1.1.3.

Now suppose that the locally finite group G is the product of two subgroups A = Aπ×Aπ′

and B = Bπ ×Bπ′ . Further, assume that the subgroups Oπ(G) and Oπ′(G) are prefactorized.
In the sequel, we will examine in how far this can be used to show that G possesses prefactor-
ized Sylow π- and π′-subgroups. In doing this, we generalize an approach used in [FGS94].
The proof of the following lemma is derived from that of [FGS94, Lemma 2.2].

2.2.3 Lemma. Let π be a set of primes and suppose that the locally finite group G pos-
sesses an ascending series whose factors are π-groups or π′-groups. Further, assume that G
is the product of a π-group A and a π′-group B. If Γ is a finite group of automorphisms of G
and X is a finite subset of G, then there exists a finite factorized Γ-invariant subgroup of G
containing X.

Proof. Observe first that A∩B = 1, so that every prefactorized subgroup of G is factorized.
By hypothesis, there exists an ordinal β such that G possesses an ascending series

G0 ! G1 ! G2 ! . . . ! Gβ = G

whose factors are π- or π′-groups, and clearly the Gi may be assumed characteristic in G. Since
AN/N and BN/N are maximal π- and π′-subgroups of G/N for every normal subgroup N
of G, we show by induction on α that every Gα is factorized: if α is a limit ordinal, we have

Gα =
⋃

β<α

Gβ =
⋃

β<α

(A ∩ Gβ)(B ∩ Gβ)

which is clearly contained in (A ∩ Gα)(B ∩ Gα). Therefore suppose that α − 1 exists. If
Gα/Gα−1 is a π-group, then Gα ≤ AGα−1. Therefore Gα = Gα ∩ AGα−1 = (Gα ∩ A)Gα−1,
and since Gα−1 is factorized by hypothesis, Gα is contained in (A∩Gα)(B ∩Gα). Thus Gα is
factorized. Otherwise, the π′-group Gα/Gα−1 is contained in Gα−1B, and a similar argument
shows that Gα is factorized also in that last case.

Now let α be the least ordinal such that G possesses a finite Γ-invariant subgroup K
containing X such that KGα is factorized, and assume that α > 0. By the modular law, we
have

A ∩ KGα = A ∩ K(B ∩ Gα)(A ∩ Gα) = (A ∩ K(B ∩ Gα))(A ∩ Gα).

Let A0 = A∩KB and B0 = B∩KA, then A∩KGα is contained in A0(A∩Gα) and similarly,
B ∩KGα ≤ B0(B ∩Gα). Now the sets A0 and B0 are contained in the factorizer X of K by
[AFG92, Lemma 1.1.3]. Since KGα is factorized, it contains X, and so we have A0 ≤ A∩KGα

and B0 ≤ B ∩KGα. This shows that A ∩ KGα = A0(A ∩Gα) and B ∩ KGα = B0(B ∩Gα).
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Moreover, K is obviously contained in the set A0B0. Since KGα is Γ-invariant and
<A0, B0> is finite, there exists a Γ-invariant finite subgroup F of G such that <A0, B0> ≤
F ≤ KGα. Thus, applying the modular law twice, we obtain

F = F ∩ KGα = F ∩ A0GαB0 = A0(F ∩ GαB0) = A0(F ∩ Gα)B0.

Assume that α is a limit ordinal, then F ∩ Gα = F ∩ Gβ for some β < α and so FGβ =
A0GβB0 = A0(A ∩ Gβ)(B ∩ Gβ)B0. Therefore FGβ is factorized, contradicting the choice
of α.

Therefore α− 1 exists, and we may assume without loss of generality that α = 1 and that
G1 is a π′-group. Then F ∩ G1 is a subgroup of B and F = A0(F ∩ B)B0 is factorized. This
final contradiction proves the lemma.

Our next lemma is a slight extension of [FGS94, Lemma 2.3].

2.2.4 Lemma. Let π be a set of primes and suppose that the countable locally finite
group G has an ascending series whose factors are π- or π′-groups. If N is a normal subgroup
of G such that G/N is a π-group and N is the product of a π-group A0 and a π′-group B,
then there exists a π-subgroup A of G such that G = AB.

Proof. Since G is countable, G is the union of an ascending chain of finite subgroups G1 ≤
G2 ≤ . . . of type ω. We define an ascending chain {Ki | i ∈ N} of finite subgroups of N as
follows: Put K1 = 1. If i > 1, then by Lemma 2.2.3, there exists a finite Gi-invariant subgroup
Ki of N = A0B which contains Gi ∩ N and Ki−1 and satisfies Ki = (A0 ∩ Ki)(B ∩ Ki).

Suppose now that Gi−1 = Ai−1(B ∩Gi−1) for a π-subgroup Ai−1 of Gi−1. Since Ki is Gi-
invariant, GiKi is a finite subgroup of G, hence is π-separable. Therefore Ai−1 is contained in
a Hall π-subgroup Ai of GiKi. Since Gi ∩ N ≤ Ki, the factor group GiKi/Ki

∼= Gi/Gi ∩ Ki

is a π-group and B ∩ Ki is a Hall π′-subgroup of GiKi so that GiKi = Ai(B ∩ Ki). Thus
A =

⋃
i∈N Ai is the required π-subgroup of G.

We can now formulate the relation between the existence of prefactorized Sylow subgroups
and of certain prefactorized characteristic subgroups of a group G which is the product of
two subgroups A = Aπ × Aπ′ and B = Bπ × Bπ′ .

2.2.5 Theorem. Let π be a set of primes and suppose that the locally finite group G has
an ascending series whose factors are either π-groups or π′-groups. Further, assume that G is
the product of two subgroups A = Aπ×Aπ′ and B = Bπ×Bπ′, where Aπ, Aπ′, Bπ and Bπ′ are
π-and π′-subgroups of A and B, respectively. Then the following statements are equivalent:

(a) <Aπ, Bπ> is a π-group and <Aπ′ , Bπ′> is a π′-group.

(b) For every normal subgroup N of G, AπBπN/N is a Sylow π-subgroup of G/N and
Aπ′Bπ′N/N is a Sylow π′-subgroup of G; moreover, G = (AπBπ)(Aπ′Bπ′).

(c) Oπ′,π(G/N) and Oπ,π′(G/N) are factorized for every normal subgroup N of G.

(d) Oπ(G/N) and Oπ′(G/N) are prefactorized for every normal subgroup N of G.

(e) The group G possesses an ascending series of prefactorized subgroups whose factors
are either π- or π′-groups.

Proof. The implication (a) ⇒ (c) has been proved in Proposition 2.2.2.
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(c) ⇒ (d). Since Oπ′,π(G/N) ∩ Oπ,π′(G/N) = Oπ(G/N) × Oπ′(G/N) is factorized by
Proposition 1.1.3 (c), this follows from Corollary 2.1.2.

Since the implications (d) ⇒ (e) and (b) ⇒ (a) are trivial, it remains to show that
(e) ⇒ (b).

In view of Proposition 2.1.4, it clearly suffices to consider the case when N = 1. Let
{Nα}α≤β be an ascending series of prefactorized subgroups such that Nα+1/Nα is a π-group
or a π′-group for every α < β. By transfinite induction on β, the sets (Aπ ∩ Nα)(Bπ ∩ Nα)
and (Aπ′ ∩ Nα)(Bπ′ ∩ Nα) are Sylow π- and π′-subgroups of Nα such that

Nα = (Aπ ∩ Nα)(Bπ ∩ Nα)(Aπ′ ∩ Nα)(Bπ′ ∩ Nα)

for every α < β. Thus if β is a limit ordinal, then

AπBπ =
( ⋃

α<β

Aπ ∩ Nα

)
·
( ⋃

α<β

Bπ ∩ Nα

)
=

⋃

α<β

(Aπ ∩ Nα)(Bπ ∩ Nα)

and so AπBπ is a π-group. Similarly, Aπ′Bπ′ is a π′-group and G = (AπBπ)(Aπ′Bπ′).
Therefore assume that β possesses a predecessor β − 1 and set N = Nβ−1. Exchanging

π and π′ if necessary, we may also assume that G/N is a π-group, so that <Aπ′ , Bπ′> =
(Aπ′ ∩ Nβ−1)(Bπ′ ∩ Nβ−1) = Aπ′Bπ′ is a Sylow π′-group of G. Now suppose that <Aπ, Bπ>
is a π-group. Then it follows from Proposition 2.1.4 that AπBπ is a Sylow π-subgroup of G
and that AπBπN/N is a Sylow π-subgroup of G/N . Hence

G = AπBπN = (AπBπ)(Aπ′ ∩ Nβ−1)(Bπ′ ∩ Nβ−1) = (AπBπ)(Aπ′Bπ′),

as required.
Thus it remains to show that <Aπ, Bπ> is a π-group. Let A0 and B0 be arbitrary finite

subsets of Aπ and Bπ, respectively, then it clearly suffices to show that <A0, B0> is a π-group.
By Lemma 1.1.6, there exists a countable prefactorized subgroup H of G containing A0 and B0

such that H ∩Nα is prefactorized for every α ≤ β. Therefore we may assume without loss of
generality that G = H and so G is countable. Then by Lemma 2.2.4, there exists a maximal
π-subgroup P of G containing (Aπ ∩N)(Bπ ∩N) such that G = PAπ′Bπ′ . By Lemma 2.2.3,
<A0, B0> is contained in a finite subgroup F satisfying F = (F ∩P )(F ∩Aπ′Bπ′). Let Q be
a Hall π-subgroup of F containing A0, then B0 ≤ Qg for some g ∈ F , since F is π-separable.
Since F = Q(F ∩ Aπ′Bπ′), we may clearly assume that g ∈ F ∩ Aπ′Bπ′ . Write g = ab−1

with a ∈ Aπ′ and b ∈ Bπ′ , then A0 = Aa
0 is contained in Qa and also B0 = Bb

0 is contained
in Qgb = Qa. Therefore <A0, B0> is a π-group, as required.

In order to examine whether, under the hypotheses of the preceding theorem, one of the
groups Oπ(G), Oπ′(G), Oπ′,π(G) or Oπ,π′(G) is prefactorized, it often suffices to investigate
whether Oπ′,π(G) and Oπ,π′(G) are factorized, which is in most cases a much easier task.This
can be expressed as follows.

2.2.6 Corollary. Let π be a set of primes and G a locally finite group which is the product
of two subgroups A = Aπ × Aπ′ and B = Bπ × Bπ′ where Aπ, Bπ, Aπ′ and Bπ′ are π- and
π′-subgroups of A and B, respectively. If G possesses an ascending series whose factors are
either π- or π′-groups, then the following statements are equivalent:

(a) For every N ! G, the groups Oπ(G/N) and Oπ′(G/N) are prefactorized.

(b) For every N ! G, the groups Oπ′,π(G/N) and Oπ,π′(G/N) are prefactorized.
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(c) For every N ! G, the groups Oπ′,π(G/N) and Oπ,π′(G/N) are factorized.

In view of Theorem 2.2.5, we can also strengthen the statement of Proposition 2.1.7.

2.2.7 Proposition. Let π be a set of primes and G a group whose Sylow π-subgroups and
Sylow π′-subgroups of G are conjugate. If G is the product of two subgroups A = Aπ×Aπ′ and
B = Bπ ×Bπ′, where Aπ, Aπ′ , Bπ and Bπ′ are π- and π′-subgroups of A and B, respectively,
then AπBπ is a Sylow π-subgroup of G and Aπ′Bπ′ is a Sylow π′-subgroup of G such that G =
(AπBπ)(Aπ′Bπ′). Moreover, the subgroups Oπ′,π(G) and Oπ,π′(G) are factorized subgroups
of G and Oπ(G) and Oπ′(G) are factorized subgroups of AπBπ and Aπ′Bπ′ , respectively.
Hence Oπ(G) and Oπ′(G) are prefactorized subgroups of G.

Proof. By Proposition 2.1.7, the sets AπBπ and Aπ′Bπ′ are a Sylow π- and a Sylow π′-
subgroup of G. Since by [Har72a, Theorem D], the group G possesses a finite series whose
factors are π- or π′-groups, Theorem 2.2.5 shows that G = (AπBπ)(Aπ′Bπ′), as required.

2.3. Sylow bases of radical groups

The results obtained so far are of special interest when G is a periodic radical group which
is the product of two locally nilpotent subgroups A and B. We will show that if AπBπ is a
Sylow π-group of G for every set of primes π, then the set {ApBp | p ∈ P} even forms a Sylow
basis of G. First, we study the factorizer of the Hirsch-Plotkin radical of G.

2.3.1 Lemma. Suppose that the periodic group G is the product of two locally nilpotent
subgroups A and B. If p is a prime such that the set ApBp is a p-group containing Op(G),
then the factorizer X = AR ∩ BR of the Hirsch-Plotkin radical R of G is an extension of a
p′-group by a p-group.

Proof. Let Rp = Op(G) and Rp′ be the Sylow p- and p′-subgroups of R, respectively,
and denote with X the factorizer of R. Then R/Rp′ is contained in ApBpRp′/Rp′ . Now by
Lemma 2.1.5, the factorizer X/Rp′ of R/Rp′ is an extension of a p′-group by a p-group.
Therefore also X is an extension of a p′-group by a p-group.

In particular, this result can be applied to locally finite groups which are the product of
two locally nilpotent subgroups.

2.3.2 Corollary. Suppose that the locally finite group is the product of two locally nilpo-
tent subgroups A and B. If the set ApBp is a Sylow p-subgroup of G for every prime p, then
the factorizer of the Hirsch-Plotkin radical of G is locally nilpotent.

Proof. Let X denote the factorizer of the Hirsch-Plotkin radical of G. By Lemma 2.3.1,
X/Op′(X) is a p-group for every p ∈ P. Since

Op(X) =
⋂

q∈P\{p}
Oq′(X),

it follows that X/Op(X) is a p′-group for every prime p, and so X is the direct product of its
Sylow subgroups. Since X is locally finite, it is locally nilpotent.
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In the following theorem, we collect the main properties of a periodic radical group which
is the product of two locally nilpotent subgroups. Note that, despite the similarities with The-
orem 2.2.5, the results for radical groups are slightly stronger, mainly because it suffices to
consider p-groups in (d) below.

2.3.3 Theorem. Let the periodic radical group G be the product of two locally nilpotent
subgroups A and B. Then the following statements are equivalent:

(a) {ApBp | p ∈ P} is a Sylow basis of G.

(b) <Ap′ , Bp′> is a p′-group for every prime p.

(c) For every set of primes π and every normal subgroup N of G, the set AπBπN/N is a
Sylow π-subgroup of G/N .

(d) For every prime p and every normal subgroup of G, the set ApBpN/N is a Sylow
p-subgroup of G/N .

(e) For every normal subgroup N of G, the Hirsch-Plotkin radical R(G/N) of G/N is
factorized.

(f) Every term of the Hirsch-Plotkin series of G is factorized.

(g) The group G possesses an ascending series of prefactorized subgroups with locally
nilpotent factors.

Proof. (a) ⇒ (b) follows directly from the definition of a Sylow basis.
(b) ⇒ (c) Clearly, A and B are the direct product of their Sylow π- and π′-subgroups and

<Aπ, Bπ> is obviously contained in the π-group
⋂

q∈P\π
<Aq′ , Bq′>.

Therefore <Aπ, Bπ> and <Aπ′ , Bπ′> are a π- and a π′-subgroup, and so (c) follows from Propo-
sition 2.1.4 (a).

The implication (c) ⇒ (d) is trivial.
(d) ⇒ (e). Let R0 = N and for every ordinal α, define Rα+1/Rα = R(G/Rα); moreover,

put Rα =
⋃

γ<α Rγ if α is a limit ordinal. Then G = Rβ for some ordinal β since G is
radical. For every ordinal α, let Xα denote the factorizer of Rα. Then for every α, the factor
group Xα+1/Rα is locally nilpotent by Corollary 2.3.2. Therefore by [Rob72, II, p. 10], the
subgroup Xα/Rα is a serial subgroup of Xα+1/Rα for every α hence of G/Rα for every
α ≤ β. Now suppose that α ≤ β has a predecessor α − 1. Since G is locally finite, it follows
from [Har72b, Lemma 3] that the serial locally nilpotent subgroup Xα/Rα−1 is contained
in Rα/Rα−1, and thus we have Xα = Rα and so Rα is factorized for every α that is not a
limit ordinal. For limit ordinals α, the same statement follows from Proposition 1.1.3 (d) and
the fact that

Rα =
⋃

γ<α

Rγ =
⋃

γ<α

Xγ .

Obviously, (e) implies (f) and (f) implies (g).
Suppose now that (g) holds. For every set σ of primes, let Aσ and Bσ denote the (unique)

Sylow σ-subgroup of A and B, respectively. Let π be any set of primes, then an ascend-
ing series of prefactorized subgroups with locally nilpotent factors can be refined to a se-
ries whose factors are π- or π′-groups by Corollary 2.1.2. Therefore it follows from Theo-
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rem 2.2.5 that AπBπ and Aπ′Bπ′ are a Sylow π- and a Sylow π′-subgroup of G such that
G = (AπBπ)(Aπ′Bπ′). Since this holds for arbitrary sets π of primes, {ApBp | p ∈ P} is a
Sylow basis of G by Lemma 1.2.2. This proves (a).

We mention a number of particularly useful consequences of the preceding theorem. The
first shows that in most cases, the question whether the Hirsch-Plotkin radical of a periodic
radical product of two locally nilpotent subgroups is prefactorized can be reduced to the
easier question whether it is factorized.

2.3.4 Corollary. Suppose that the periodic radical group G is the product of its locally
nilpotent subgroups A and B. If the Hirsch-Plotkin radical R(G/N) of G/N is prefactorized
for every normal subgroup N of G, then R(G/N) is factorized for all N ! G.

We also mention a useful criterion for the Hirsch-Plotkin radical of a product G of two
locally nilpotent subgroups (and, indeed, of every factor group of G) to be factorized.

2.3.5 Corollary. Suppose that the periodic radical group G is the product of its locally
nilpotent subgroups A and B. If every factor group of G possesses a prefactorized locally
nilpotent normal subgroup, then the Hirsch-Plotkin radical of G is factorized.

In view of Theorem 2.2.5 (b) and Theorem 2.3.3, we also obtain:

2.3.6 Corollary. Suppose that the periodic radical group G is the product of its locally
nilpotent subgroups A and B. For every set of primes, let Aπ and Bπ denote the (unique) Sylow
π-subgroups of A and B, respectively, and suppose that <Aπ, Bπ> is a π-group for every set of
primes π. Then {ApBp | p ∈ P} is a Sylow basis of G, and in particular G = (AπBπ)(Aπ′Bπ′)
for every set π of primes.

The next theorem is a direct consequence of Proposition 2.1.9 and Theorem 2.3.3; however,
it will be of great importance in the sequel.

2.3.7 Theorem. Let the periodic radical group G be the product of its locally nilpotent
subgroups A and B, and suppose that the set {ApBp | p ∈ P} is a Sylow basis of G. If S is a
prefactorized subgroup of G, then {ApBp | p ∈ P} reduces into S.

Proof. By Proposition 2.1.9, (S∩Aπ)(S∩Bπ) = S∩AπBπ is a (maximal) π-subgroup of S
for every set of primes π. Therefore S satisfies Theorem 2.3.3 (b) and so {ApBp ∩ S | p ∈ P}
is a Sylow basis of S.

An argument similar to Corollary 2.1.10 can now be used to show that a periodic radical
product G of two locally nilpotent subgroups has at most one Sylow basis consisting of
prefactorized Sylow subgroups of G.

2.3.8 Corollary. Let the periodic radical group G be the product of its locally nilpotent
subgroups A and B, and suppose that the set {ApBp | p ∈ P} is a Sylow basis of G. Then
{ApBp | p ∈ P} is the unique Sylow basis of G which consists of prefactorized subgroups of G.

Next, we mention one important case when such a Sylow basis of prefactorized subgroups
exists. Observe that Example 2.1.8 shows that it does not suffice to assume that the π-
components of A and B are contained in locally conjugate Sylow π-subgroups of G.
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2.3.9 Theorem. Suppose that the periodic radical group G is the product of two locally
nilpotent subgroups A and B. If the π-components of A and B are contained in conjugate
Sylow π-subgroups of G for every set of primes π, then {ApBp | p ∈ P} is a Sylow basis of G.

Proof. By Proposition 2.1.7, the subgroup Ap′Bp′ is a Sylow p′-subgroups of G for every
prime p. Therefore the result follows from Theorem 2.3.3.

The following theorem restates the results of Proposition 2.1.4 for Sylow bases of periodic
radical products of two locally nilpotent subgroups.

2.3.10 Theorem. Suppose that the periodic radical group G is the product of two locally
nilpotent subgroups A and B.

(a) If the group <Aπ, Bπ> is a π-group for every set π of primes, then {ApBpN/N | p ∈ P}
is a Sylow basis of G/N for every normal subgroup N of G.

(b) If N is a set of normal subgroups of G such that
⋂

N∈N N = 1 and for every N ∈ N ,
the set {ApBpN/N | p ∈ P} is a Sylow basis of G/N , then {ApBp | p ∈ P} is a Sylow basis
of G.

(c) If N ≤ Z(G) and {ApBpN/N | p ∈ P} is a Sylow basis of G/N , then {ApBp | p ∈ P}
is a Sylow basis of G.

Proof. (a) follows directly from Theorem 2.3.3. In view of the equivalence of statements
(a) and (b) of Theorem 2.2.5, the statements (b) and (c) follow from (a) and Proposition 2.1.4.

2.4. Existence of prefactorized Sylow bases

In this section, we collect the consequences of the results obtained so far for the classes of
periodic locally soluble groups that we will consider in the following chapters.

2.4.1 Theorem. Suppose that the U-group G is the product of its locally nilpotent sub-
groups A and B. Then:

(a) The set {ApBp | p ∈ P} is a Sylow basis of G.

(b) For every set π of primes, Oπ(G) is a factorized subgroup of AπBπ, hence is a pre-
factorized subgroup of G.

(c) For every set π of primes, Oπ′,π(G) is a factorized subgroup of G.

(d) The Hirsch-Plotkin radical of G is factorized.

Proof. By Theorem 2.3.9, the set {ApBp | p ∈ P} is a Sylow basis of G. Therefore the
remaining statements follow from Theorem 2.3.3.

Černikov [Cer82, Lemma 5] has shown that, as in the finite case, the existence of a Sylow
basis of an U-group G = AB which consists entirely of prefactorized Sylow subgroups of U-
groups can be proved without the assumption that A and B be locally nilpotent. We restate
Černikov’s result for the convenience of the reader.



Existence of prefactorized Sylow bases 39

2.4.2 Proposition. Suppose that the U-group G is the product of two subgroups A and B.
Then there are Sylow bases {Ap | p ∈ P} and {Bp | p ∈ P} of A and B, respectively, such that
{ApBp | p ∈ P} is a Sylow basis of G.

Proof. Let {Ap | p ∈ P} and {Bp | p ∈ P} be Sylow bases of A and B respectively. By
[Har71, Lemma 2.1], these Sylow bases can be extended to Sylow bases {Gp | p ∈ P} and
{G∗

p | p ∈ P} of G, which are conjugate by [GHT71, Theorem 2.10]. So there exists an element
g = ab−1 ∈ G such that Gg

p = G∗
p for all p. Then Aa

p ≤ Ga
p and Bb

p ≤ Ggb
p = Ga

p. For all sets π
of primes, S = <Aa

p, B
b
p | p ∈ π> is contained in <Ga

p | p ∈ π>, which is a π-group. Hence
by Proposition 2.1.4 (a), we have Ga

p = Aa
pB

b
p for every prime p. Thus {Aa

p | p ∈ P} and
{Bb

p | p ∈ P} are the required Sylow bases of A and B, respectively.

In order to prove a result similar to Theorem 2.4.1 for periodic CC-groups, we need the
following auxiliary results on CC-groups, which is also mentioned in the introduction of
[Dix88]. For the corresponding result about FC-groups, see e.g. [Rob72, Theorem 4.32] or
[Tom84, Theorem 1.4].

2.4.3 Lemma. Let G be a CC-group. Then G has a local system of normal subgroups
which are central-by-Černikov. Moreover G has a local system of central-by-finite subgroups.

Proof. For every x ∈ G, the normal subgroup [G,x] of G is a Černikov group ([Pol64];
see also [Rob72, Theorem 4.36]). So if X = {x1, . . ., xn} is a finite subset of G, then also
[G,X] = [G,x1] · . . . · [G,xn] is Černikov and so N = XG = [G,X]X is Černikov-by-(free
abelian of finite rank). Since N is likewise a CC-group and Z(N) =

⋂
x∈X CN (xN ), also

N/Z(G) is Černikov and N is central-by-Černikov. In particular, every finitely generated
subgroup is central-by-finite.

Also the next proposition is known for FC-groups; see e.g. [Tom84, Theorem 1.18] and
[AO87, Lemma 1].

2.4.4 Proposition. Assume that every finite image of the CC-group G is soluble. Then
G is locally soluble and G has a descending series of type ≤ ω + 1 whose factors are abelian.

Proof. Let x ∈ G, then G/CG(xG) is a Černikov group, hence abelian-by-finite. Since ev-
ery finite image of G is soluble, the factor group G/CG(xG) is soluble. Since

⋂
x∈G CG(xG) =

Z(G), the group G/Z(G) has a descending series of type ≤ ω whose factors are abelian. Con-
sequently G has such a descending normal series of type ≤ ω+1. Now let X be a finite subset
of G, then N = XG is central-by-Černikov by Lemma 2.4.3. Therefore <X>Z(N)/Z(N) is
finite, hence soluble, and so also <X> is soluble and central-by-finite.

Since every FC-group is a CC-group, the following theorem holds in particular, if G is a
periodic FC-group.

2.4.5 Theorem. Suppose that the periodic CC-group G is the product of its locally nilpo-
tent subgroups A and B. Then:

(a) G is periodic and locally soluble; moreover, it has a descending series of length ≤ ω+1
whose factors are abelian.

(b) The set {ApBp | p ∈ P} is a Sylow basis of G.

(c) For every set π of primes, Oπ(G) is a factorized subgroup of AπBπ, hence is a pre-
factorized subgroup of G.
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(d) For every set π of primes, Oπ′,π(G) is a factorized subgroup of G.

(e) The Hirsch-Plotkin radical of G is factorized.

Proof. (a) Clearly, every finite image G/N of G is the product of two nilpotent sub-
groups AN/N and BN/N , hence is soluble by the theorem of Kegel and Wielandt [Keg61],
[Wie58]. Therefore by Proposition 2.4.4, the group G has a descending series of length ≤ ω+1
with abelian factors and is locally soluble.

(b) Since G/CG(xG) is an U-group for every x ∈ G and
⋂

x∈G CG(xG) = Z(G), it follows
from Theorem 2.4.1 and Theorem 2.3.10 (b) that {ApBpZ(G)/Z(G) | p ∈ P} is a Sylow basis
of G/Z(G). Thus {ApBp | p ∈ P} is a Sylow basis of G by Theorem 2.3.10 (c). The remaining
statements now follow from Theorem 2.3.3.

It may also be of interest that Theorem 2.4.5 (e) remains true for general CC-groups. To
prove this, we need the following results.

2.4.6 Proposition. The class of locally nilpotent CC-groups is R-closed.

Proof. Let G be a CC-group and N a set of subgroups of G such that G/N is locally
nilpotent for every N ∈ N . Then every finitely generated subgroup U of G is central-by-
finite by Lemma 2.4.3. Moreover, for every N ∈ N , the finitely generated group U/U ∩ N is
nilpotent of class at most |U : Z(U)|. Therefore U is nilpotent and G is locally nilpotent.

The following elementary lemma will also be needed later.

2.4.7 Lemma. Let G be a CC-group. If Rx/CG(xG) denotes the Hirsch-Plotkin radical
of G/CG(xG) and R equals the intersection of all Rx, then R is the Hirsch-Plotkin radical
of G. Moreover, G/R is a periodic FC-group.

Proof. Clearly, the Hirsch-Plotkin radical of G is contained in every Rx and hence in R.
Since R/CR(xG) is locally nilpotent for every x ∈ G, it follows from Proposition 2.4.6 that
R/Z(G) is locally nilpotent. Therefore also R is locally nilpotent and so the normal sub-
group R of G equals the Hirsch-Plotkin radical of G. Now let X be a finite subset of G, then
XG is central-by-Černikov by Lemma 2.4.3. Therefore the Hirsch-Plotkin radical R ∩ XG

of XG has finite index in XG and so XGR/R is finite. Thus every finite subgroup of G/R is
contained in a finite normal subgroup of G/R, and so G/R is a periodic FC-group.

From this, we deduce the following result about the Hirsch-Plotkin radical of a CC-group
which is the product of two locally nilpotent subgroups.

2.4.8 Theorem. Let the CC-group G be the product of its locally nilpotent subgroups A
and B. Then the Hirsch-Plotkin radical of G is factorized.

Proof. For every x ∈ G, let Rx/CG(xG) denote the Hirsch-Plotkin radical of G/CG(xG),
then by Lemma 2.4.7, the intersection R =

⋂
x∈G Rx equals the Hirsch-Plotkin radical of G.

By Theorem 2.4.5 (e), the subgroups Rx of G are factorized for every x ∈ G, and so R is
factorized by Proposition 1.1.3 (c).

Results like Theorem 2.4.1 and Theorem 2.4.5 can also be proved for periodic locally
soluble groups satisfying the minimal condition on p-subgroups for every prime p. However,
different arguments are required because such groups need not be radical; see e.g. [Bae70,
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Folgerungen 4.5 and 5.4]. Note that what we call a Sylow basis is referred to as a Sylow
generating basis in [Dix82].

2.4.9 Theorem. Let G be a periodic locally soluble group which satisfies min-p for every
prime p. Suppose that G is the product of its locally nilpotent subgroups A and B. Then:

(a) G is countable and has a descending series of length ≤ ω whose factors are abelian.

(b) The set {ApBp | p ∈ P} is a Sylow basis of G.

(c) For every set π of primes, Oπ′,π(G) is a factorized subgroup of G.

(d) For every set π of primes, Oπ(G) is a factorized subgroup of AπBπ, hence is a pre-
factorized subgroup of G.

(e) The Hirsch-Plotkin radical of G is factorized.

(f) If U is a prefactorized subgroup of G, then the Sylow basis {ApBp | p ∈ P} of G reduces
into U .

Proof. (a) Since the p-components of A and B are locally soluble and satisfy the minimal
condition on subgroups, the p-components of A and B are Černikov groups (see e.g. [KW73,
Theorem 1.E.6]), hence are countable. Therefore also A and B are countable, and so G is
countable.

Moreover, since G is locally soluble, for every prime p, the factor group G/Op′(G) is a
Černikov group by [KW73, Theorem 3.17]. Hence these factor groups are soluble by the
theorem of Kegel and Wielandt. Since

⋂
p∈P Op′(G) = 1, it follows that G has a descending

series of length ≤ ω whose factors are abelian.
(b) Since G/Op′(G) is a soluble Černikov group and thus an U-group, it follows from Theo-

rem 2.4.1 that for every prime p, {AqBqOp′(G)/Op′(G) | q ∈ P} is a Sylow basis of G/Op′(G).
Therefore G/Op′(G) = (ApBpOp′(G)/Op′(G)) · (Ap′Bp′/Op′(G)) and so G = (ApBp)(Ap′Bp′).
Moreover, by Lemma 1.2.2, {ApBp | p ∈ P} is a Sylow basis of G.

(c) Let π be a set of primes, and for every prime p, set Pp/Op′(G) = Oπ′,π(G/Op′(G)).
Then Oπ′,π(G) =

⋂
p∈P Pp since G is periodic. By Theorem 2.4.1, the subgroups Pp/Op′(G)

are factorized for every p ∈ P, and so every Pp is factorized. Therefore by Proposition 1.1.3 (c),
also their intersection Oπ′,π(G) is factorized.

(d) By (c), Oπ,π′(G) is factorized. Therefore by Proposition 1.1.3 (b), the subgroup
Oπ(G) = Oπ,π′(G) ∩ AπBπ is factorized in AπBπ, hence is a prefactorized subgroup of G.

(e) Let R(G) denote the Hirsch-Plotkin radical of G. Clearly, R(G) =
⋂

p∈P Op′,p(G) and so
R(G) is the intersection of factorized subgroups, hence is factorized by Proposition 1.1.3 (c).

(f) Since U likewise satisfies min-p for every prime p, {(U ∩ Ap)(U ∩ Bp) | p ∈ P} is a
Sylow basis of U by (b). Since obviously (U ∩ Aπ)(U ∩ Bπ) ≤ U ∩ AπBπ, it follows that
(U ∩ Aπ)(U ∩ Bπ) = U ∩ AπBπ for every set π of primes, as required.



Chapter 3

Projectors of nilpotent-by-finite
groups

3.1. Schunck classes of periodic soluble
nilpotent-by-finite groups

Recall that AS∗ and NS∗ denote the classes of all periodic soluble abelian-by-finite groups
and of all of all periodic soluble nilpotent-by-finite groups, respectively. Let H be a class of
NS∗-groups. In this section, we will show that every NS∗-group possesses an H-projector if
and only if H is a NS∗-Schunck class. Moreover, in this case, the H-projectors of an NS∗-
group are conjugate. Here a subclass H of NS∗ is called an NS∗-Schunck class if a group G
belongs to H if and only if

(SC1) every finite primitive image G/N of G is an H-group and

(SC2) every semiprimitive image G/K of G is the union of an ascending chain X1/K ≤
X2/K ≤ . . . of finite H-groups Xi/K.

A finite group G is primitive if it has a maximal subgroup with trivial core. A group G is
semiprimitive if it is a semidirect product M " D of a nontrivial radicable abelian group D
of finite rank with a finite soluble group M such that MG = 1 and every proper M -invariant
subgroup of D is finite. In particular, D is a p-group for some prime p.

While it is well-known that condition (SC1) is necessary (and sufficient) to guarantee the
existence of H-projectors in every finite soluble group (see e.g. [DH92, III, Theorem 3.10]),
the following proposition shows that the second condition is also necessary for the existence
of projectors in every NS∗-group; cf. also the example given in [Tom95, Section 3].

3.1.1 Proposition. Assume that H is a class of groups such that every AS∗-group has
an H-projector. Then a semiprimitive Černikov group is an H-group if and only if it is the
union of an ascending chain of finite H-groups.

Proof. If the semiprimitive Černikov group G is the union of finite H-groups, then G is an
H-group by [Tom95, Lemma 3.1].

Conversely, suppose that G = M " D ∈ H is an infinite semiprimitive Černikov group,
where M is finite with trivial core and D is a radicable abelian p-group for the prime p.
Then also M ∼= G/D ∈ H. Put X0 = M and for every positive integer n, put Dn = D[pn]
and let Xn be an H-maximal supplement of Dn in MDn which contains Xn−1. Then the Xn

form an ascending chain of finite H-subgroups of G. Moreover, for every integer n, the Xn

are H-projectors of MDn by [DH92, III, Lemma 3.14].
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Put X =
⋃

n∈N Xn. Since M ≤ X, we have X = X ∩MD = M(X ∩D) and so X ∩D is a
normal subgroup of G. Assume first that X is finite. Then we have Xn = Xn+1 = . . . = X for
an integer n, and moreover, D ∩X ≤ Dm for some integer m ∈ N. Now by [Tom95, Proposi-
tion 2.3 (ii)], there exists an isomorphism α : G → G/Dm which maps MDn to MDm+n/Dm

and M to MDm/Dm = Xm+nDm/Dm. This shows that the subgroup M is an H-projector
of MDn. Since the H-projectors of MDn are conjugate by [DH92, III, Theorem 3.13], we have
M ∼= Xn, and since M ≤ Xn, it follows that M = Xn = X.

Now let N = #$n∈N Dn be the (external) direct product of the Dn and set H = M " N ,
where M acts on the components of N in the natural way. Then H is an AS∗-group, hence
possesses an H-projector Y . For every integer n, put

Kn = #$
i∈N
i'=n

Di,

then Kn is a normal subgroup of H contained in N and H/Kn is isomorphic with MDn.
Therefore MKn/Kn and Y Kn/Kn are H-projectors of the finite group H/Kn. By [DH92, III,
Theorem 3.21], there exists g ∈ H such that Y Kn = MgKn, and so we have Y Kn ∩ N =
MgKn∩N = Kn(Mg ∩N) = Kn for every integer n. This shows that Y ∩N ≤

⋂
n∈N Kn = 1.

and Y complements N in H. Let r denote the rank of D and for every n ∈ N, fix generators
dn,1, . . ., dn,r of D[pn]. Let

K = <d−1
n,id

p
n+1,i | n ∈ N, i ∈ {1, . . ., r}>,

then H/K ∼= G and so Y K/K is an H-projector of H/K ∼= G. Since Y K/K is finite, this
proves that G /∈ H. This contradiction shows that X must be infinite, and so also X ∩ D is
infinite. As G is semiprimitive, we have X ∩ D = D and so G = X is the union of the chain
{Xn}n∈N of finite H-groups.

The next proposition shows that every local NS∗-formation is an NS∗-Schunck class.

3.1.2 Proposition. Let X be a QS-closed class of NS∗-groups. Then every local X-formation
is an NS∗-Schunck class.

Proof. Let F be a local X-formation and G ∈ X. Further, assume that G/N ∈ F for every
finite primitive and every infinite semiprimitive factor group G/N of G. By [GHT71, Theo-
rem 5.4], the U-group G possesses an F-projector H. If H < G, then by [Tom75, Lemma 2.3],
H is contained in a major subgroup M of G. Now G/MG is a finite primitive or infinite
semiprimitive group by [Tom92], hence is an F-group. Since H is an F-projector of G, we
have G = HMG ≤ M . This contradiction shows that G = H ∈ F.

The proof of the second statement of the next lemma is similar to that of [Tom95,
Lemma 3.3].

3.1.3 Lemma. Let H be an NS∗-Schunck class. Then:

(a) QH = H.

(b) LH ∩ NS∗ = H.

(c) Every H-subgroup of an NS∗-group G is contained in an H-maximal subgroup of G.
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Proof. (a) Let G ∈ H and N ! G. Since every factor group of G/N is isomorphic with a
factor group of G, every finite primitive and every infinite semiprimitive factor group of G/N
belongs to H. Therefore G/N ∈ H.

(b) Let G ∈ LH∩NS∗. Since QLX ≤ LQX for every group class X and H = QH by (a), the
class LH is Q-closed. Therefore every factor group of G belongs to the class LH. Let G/N be a
finite primitive image of G. Then G = FN for some finite H-group F , and so G/N ∼= F/F ∩N
belongs to H. If G/N is an infinite semiprimitive image of G and D/N is the finite residual
of G/N , then G/N is the union of an ascending chain of finite subgroups Li/N , and without
loss of generality, LiD = G for every integer i. As in the finite case, it is possible to find an
ascending chain {Fi/N} of H-subgroups of G/N satisfying Li/N ≤ Fi/N and Fi ≤ Fi + 1 for
every i ∈ N. Therefore G/N is the union of the finite H-groups Fi/N , hence is an H-group.
Thus G is an H-group by the definition of an NS∗-Schunck class.

(c) follows at once from (b).

Since the definition of a NS∗-Schunck class H depends only on the finite H-groups, it is no
surprise that there is a one-one correspondence between the Schunck classes of finite soluble
groups and the NS∗-Schunck classes.

3.1.4 Proposition. Let H0 be a Schunck class of finite soluble groups. Then the class H

consisting of all NS∗-groups whose finite primitive factor groups are H0-groups and whose
infinite semiprimitive groups are unions of chains of H0-groups is the smallest Schunck class
of NS∗-groups containing H0, and the class H∗ of all finite H-groups coincides with H0.
Therefore there is a one-one correspondence between the Schunck classes of finite soluble
groups and the NS∗-Schunck classes.

Proof. Clearly, H is a Schunck class containing H0 so that in particular H0 ⊆ H∗. If G is a
finite H-group, then every primitive image of G is an H0-group, and so by the definition of a
Schunck class of finite groups, G is an H0-group. This shows that H∗ ⊆ H0 and so H0 = H∗.
Thus the map defined by H .→ H∗ for every NS∗-Schunck class H is a bijection between the
NS∗-Schunck classes and the Schunck classes of finite soluble groups.

The following proposition shows that not only semiprimitive Černikov H-groups are the
union of an ascending chain of H-groups.

3.1.5 Proposition. Let H be a Schunck class of NS∗-groups. Then a Černikov group G is
an H-group if and only if it is the union of an ascending chain {Gi | i ∈ N} of finite H-groups.

Proof. First, suppose that G is the union of an ascending chain {Gi | i ∈ N} of finite H-
groups. If G/N is a finite primitive image of G, then G = NGi for some i and so G/N ∈ H.
Moreover, if G/N is an infinite semiprimitive Černikov group, then G/N is the union of an
ascending chain {GiN/N} of H-groups, hence belongs to H by the definition of a Schunck
class of NS∗-groups. Therefore every finite primitive and every infinite semiprimitive image
belongs to H, and consequently G is an H-group.

Conversely, suppose that the Černikov group G belongs to the class H and let D be the
maximal radicable abelian normal subgroup of G and H a finite supplement of D in G. Let
L be an H-projector of H, then H = L(D ∩ H) because H/H ∩ D ∈ H. Therefore G = LD
and we may assume without loss of generality that H ∈ H.
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Assume first that D does not have infinite G-invariant subgroups. Then D is a p-group
for a prime p. Let N = CH(D), then N ! HD = G and H ∩ D ≤ N . If N = 1, then G is
semiprimitive and thus possesses an ascending chain of H-groups by the definition of H.

If N #= 1, then by induction on |G : D|, G/N = (H/N)(DN/N) possesses an ascending
chain {Gi/N | i ∈ N} of finite H-groups, and since H is finite, we may assume without loss of
generality that H ≤ Gi for every i. Hence Gi = HD ∩ Gi = H(D ∩ Gi) by the modular law.
Since N is finite, it suffices to show that every Gi is an H-group.

Fix an i ∈ N and let Gi/K be a finite primitive image of Gi with unique minimal normal
subgroup L/K = F (Gi/K). If N ≤ K, we have Gi/K ∈ H, as required. Therefore assume
that L ≤ NK. Then L = L ∩ NK = (L ∩ N)K by the modular law. Moreover, the abelian
normal subgroup (DK ∩ Gi)/K of Gi/K is contained in F (Gi/K) = L/K. It follows that
Gi = HL = H(L ∩ N)K. Since N is contained in H, we even have Gi = HK and so
Gi/K ∼= H/H ∩ K ∈ H. This shows that every primitive image of Gi is an H-group, and so
Gi ∈ H by the definition of a Schunck class.

Therefore G is the union of the finite H-groups {Gi | i ∈ N}. This completes the proof
when D does not have infinite G-invariant subgroups.

Finally, suppose that D has a proper infinite G-invariant subgroup E. By induction
on the rank of a maximal radicable abelian normal subgroup of G, the factor group G/E
possesses an ascending chain {Gi/E | i ∈ N} of finite H-groups. Since the Gi are Černikov
groups, by induction on the rank of a maximal radicable abelian normal subgroup of Gi,
each Gi possesses an ascending chain {Gi,j | j ∈ N} of finite H-groups. We define an ascend-
ing chain {G∗

i | i ∈ N} of finite H-groups satisfying G∗
i ≤ Gi for every positive integer i:

firstly, let G∗
1 = G1,1. Now let n > 1. Since Gn is the union of its subgroups {Gn,j | j ∈ N},

there exists an integer m such that the H-group Gn,m = G∗
n contains the (finite) subgroups

G1,n−1, G2,n−2, . . . , Gn−2,2, Gn−1,1 and G∗
n−1 of Gn. By construction, {G∗

n} is an ascending
chain of H-groups and Gi,j ≤ G∗

i+j for every i, j ∈ N. Therefore G is the union of the
chain {G∗

n | p ∈ P} of finite H-groups, as required.

3.2. Existence of projectors in periodic soluble
nilpotent-by-finite groups

Let H be an NS∗-Schunck class. We will now prove the existence and conjugacy of H-
projectors in NS∗-groups. This generalizes a theorem of Tomkinson [Tom95] who established
the existence and conjugacy of H-projectors for Schunck classes of AS∗-groups. Except for
some auxiliary results, our proofs are formally independent of the results in [Tom95].

As a first step, we show that the existence and conjugacy of H-maximal supplements of a
nilpotent normal subgroup of a semiprimitive group can be deduced from the finite soluble
case (cf. [DH92, III, Theorem 3.14]). Note that the next lemma can also be deduced from the
results about AS∗-groups in [Tom95].

3.2.1 Lemma. Let H be an NS∗-Schunck class and G = M"D a semiprimitive Černikov
group, where M ∈ H is finite and soluble and D is a radicable abelian p-group. If G /∈ H,
then:

(a) G possesses H-maximal subgroups which supplement D.
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(b) If U and V are H-maximal supplements of D, then there exists a finite nilpotent
normal subgroup N of G such that UN = V N .

(c) Any two H-maximal supplements U and V of G are conjugate, and every Sylow basis
of G reduces into a unique H-maximal supplement of D.

(d) Every H-maximal supplement of D is an H-projector of G.

(e) M is an H-projector of G. Hence every H-maximal supplement of D is conjugate to M ,
and every H-projector of G is a complement of D.

(f) Every supplement H of D contains an H-maximal supplement of G.

Proof. (a) Since H is closed with respect to unions of ascending chains by Lemma 3.1.3 (c),
there exists an H-maximal subgroup of G containing M .

(b) Let U and V be H-maximal supplements of D in G. Then U ∩ D and V ∩ D are
normal subgroups of G, and since G /∈ H and G is semiprimitive, the normal subgroups
U ∩ D and V ∩ D are finite. Thus U and V are finite. Therefore there exists an integer n
such that U ≤ V D[pn] and V ≤ UD[pn]. This shows that UD[pn] = V D[pn] and U and V
are H-maximal supplements of D[pn] in UD[pn].

(c) Let N be a finite nilpotent normal subgroup of G such that UN = V N , then by [DH92,
III, Lemma 3.14], U and V are H-projectors of N , hence are conjugate. Let {Gp | p ∈ P} be a
Sylow basis of G reducing into U and V . Then by Lemma 1.2.3 (d), {Gp | p ∈ P} also reduces
into UN = V N . Therefore the statement follows from [DH92, I, Theorem 6.6] and the fact
that H-projectors of finite soluble groups are pronormal.

(d) Let N be a normal subgroup of G and assume that H is an H-maximal supplement
of D in G. Moreover, let Y/N be an H-subgroup of G which contains HN/N . In order to
show that H is an H-projector of G, we have to prove that HN = Y .

Observe that Y ∩D ! Y D = G, and so Y ∩D is finite. Thus Y is finite, and so by [DH92,
III, Theorem 3.21], Y contains an Y-projector Y0. Hence we have Y = Y0(Y ∩ D). On the
other hand, we obtain Y = Y ∩ HD = H(Y ∩ D) by the modular law. Therefore H is an
H-projector of Y by [DH92, III, Lemma 3.14]. In particular HN/N is an H-maximal subgroup
of Y/N , and so HN = Y .

(e) Let H be an H-projector of G. Since H ∩ D ! HD = G and G /∈ H, the inter-
section H ∩ D is finite. Therefore there exists an integer n such that H ∩ D ≤ D[pn] and
HD[pn]/D[pn] is an H-maximal subgroup of G/D[pn]. Since H = H ∩ MD = M(H ∩ D),
we have HD[pn]/D[pn] ∼= M . Moreover, by [Tom95, Proposition 2.3 (ii)], the factor group
G/D[pn] is isomorphic with G and so M is H-maximal in G.

(f) Since H ∩ D is a normal subgroup of G, the subgroup H is finite or equals G, and
in the last case, the statement is trivial. Therefore assume that H is finite and let H0 be an
H-projector of H. Then H = H0(H ∩D) and so G = H0D. Let L be an H-maximal subgroup
of G containing H, then L is an H-projector of G by (d). Therefore L complements D by (e),
and so L = L ∩ H0D = H0(L ∩ D) = H0, as required.

The conjugacy of the H-projectors of a periodic soluble nilpotent-by-finite group will be
a consequence of the next proposition.

3.2.2 Proposition. Let H be a Schunck class of NS∗-groups. Suppose that the NS∗-
group G has a nilpotent subgroup N of finite index such that G/N ∈ H. Then there exist
H-maximal supplements of N in G, and any two are conjugate.
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Proof. Let H be a finite supplement of N in G, then by [DH92, III, Theorem 3.21],
the subgroup H possesses an H-projector H0. Since H/H ∩ N ∼= G/N ∈ H, we have H =
H0(H ∩ N) and hence G = H0N . Therefore by Lemma 3.1.3 (c), there exists an H-maximal
subgroup U of G containing H0. Clearly, U is the required H-maximal supplement of N in G.

Now suppose that U and V are H-maximal supplements of N in G. Since the Sylow bases
of G are conjugate by [GHT71, Theorem 2.10], we may assume without loss of generality
that the Sylow basis {Sp | p ∈ P} of G reduces into U and V . We show that if G /∈ H, then G
possesses a proper subgroup H containing U and V such that the Sylow basis {Sp | p ∈ P}
of G reduces into H.

By the definition of an NS∗-Schunck class, there exists a finite primitive or an infinite
semiprimitive image G/K of G which is not an H-group. In both cases, we have NK/K ≤
F (G/K), and so UK/K and V K/K are H-groups supplementing F (G/K). If G/K is finite
and primitive, UK/K and V K/K are conjugate maximal subgroups of Gβ/K by [DH92,
A, Theorem 15.2] and [DH92, A, Theorem 16.1]. Hence UK/K and V K/K are pronormal
subgroups of G/K into which the Sylow basis {SpK/K | p ∈ P} of G/K reduces, and it follows
from [DH92, I, Theorem 6.6] that UK = V K. If G/K is an infinite semiprimitive group, we
have UK = V K by Lemma 3.2.1 (c). Since the Sylow basis {Sp | p ∈ P} of G reduces into UK
and V K by Lemma 1.2.3 (e), we put H = UK = V K.

Now the hypotheses of the proposition are inherited by the subgroup H. Put G0 = G and
G1 = H. If H /∈ H, we can find a subgroup G2 which is properly contained in G1 and contains
U and V . Continuing like this, we obtain a descending chain

G = G0 > G1 > . . . > Gα ≥ <U,V >

of subgroups Gβ of G which can be continued transfinitely, since by Lemma 1.2.3 (c), the
Sylow basis {Sp | p ∈ P} of G also reduces into

⋂
β<λ Gβ = Gλ for every limit ordinal λ. This

process must terminate since the cardinality of α cannot exceed that of G, and so we have
Gα ∈ H for some α. But then we find that Gα = U = V because U and V are H-maximal
subgroups of G.

Although not needed in the sequel, we mention the following generalization of [Tom95,
Lemma 4.1] to the class of all periodic soluble nilpotent-by-finite groups.

3.2.3 Lemma. Let N be a normal nilpotent subgroup of the periodic soluble nilpotent-
by-finite group G and assume that X ∈ H is a subgroup of G such that G = XCG(N) and
G/X ∩ N ∈ H. Then G ∈ H.

Proof. Let C = CG(N) and observe that X ∩N is indeed a normal subgroup of XC = G.
Now let G/K be an image of G. If X ∩ N ≤ K, then obviously G/K ∈ H. Moreover, if
(X ∩N)K = CK, then XK = XCK = G, and so G/K ∼= X/X ∩K ∈ H. Since H is an NS∗-
Schunck class, it suffices to show that every finite primitive and every infinite semiprimitive
factor group of G belongs to H.

First, let G/K be a finite primitive image of G. By our preliminary observations, we
may assume that K < (X ∩ N)K. As (X ∩ N)K/K is nilpotent and F (G/K) is the unique
minimal normal subgroup of G/K, we have (X ∩ N)K/K = F (G/K). Since F (G/K) =
CG/K(F (G/K)) by [DH92, A, Theorem 15.6], it follows that CK = (X ∩ N)K, and so
G/K ∈ H.
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Now let G/K be an infinite semiprimitive image of G. Then G/K = (M/K)(D/K), where
M/K is finite and D/K = CG/K(D/K) is a radicable abelian p-group. If (X ∩N)K is finite,
it is contained in Dn/K = (D/K)[pn] for some n ∈ N. Since G/K ∼= G/Dn by [Tom95,
Proposition 2.3 (ii)] and G/Dn ∈ H because Dn contains X ∩N , the factor group G/K is an
H-group. Therefore assume that (X∩N)K is infinite. Since D/K = F (G/K) = CG(F (G/K))
by [Tom95, Proposition 2.3 (i)] and (X ∩ N)K/K is nilpotent, we have (X ∩ N)K = D and
CK = DK = (X ∩ N)K. Therefore G/K is an H-group by our introductory remarks.

In order to prove the main theorem of this section, we first consider the following special
case:

3.2.4 Proposition. Suppose that G is an NS∗-group and that H is an NS∗-Schunck
class. Let X be an H-maximal subgroup of G supplementing a nilpotent normal subgroup N
of G. Let K ≤ N be a normal subgroup of G such that G/K ∈ H. Then G = XK.

Proof. Without loss of generality, we may suppose that N has finite index in G. Assume
that XK < G, then XK is contained in a major subgroup M of G, and so K is contained
in L = MG. Now G/L ∼= XL/L ∼= X/X ∩ L is an H-group and by [Tom92], G/L is a finite
primitive or an infinite semiprimitive group. In both cases, G/L = M/L " F/L, where M/L
is finite and F/L is the Fitting subgroup of G/L; see [DH92, A, Theorem 15.6] and [Tom95,
Proposition 2.3 (i)]. Therefore NL/L ≤ F/L and clearly XL/L ≤ M/L. Since G = XN , we
have F = NL and M = XL.

Suppose first that G/L is finite, then also G/L ∩ N is finite, and so there exists a finite
subgroup H of G such that G = H(L ∩ N). Let Y0 be an H-projector of H, then H =
Y0(H ∩N) = Y0(H ∩L), since H/H ∩N ∼= G/N ∈ H and H/H ∩L ∼= G/L ∈ H. Therefore we
have G = Y0L = Y0N . Let Y be an H-maximal subgroup of G containing Y0, then G = Y N
and so Y is conjugate to X by Proposition 3.2.2. But then |XL/L| = |Y L/L| = |G/L| and
so G = XL = M , a contradiction.

Otherwise G/L is a semiprimitive Černikov group. Since G/L is an H-group, G/L is the
union of an ascending chain of finite H-groups Li/L. Moreover, XL/L ≤ M/L is finite,
and so there exists an integer i such that XL is properly contained in Li. Therefore LiN
contains XLN = DM = G and so LiN = G. Since G/N is finite, also the group Li/L ∩ N
is finite. Thus there exists a finite subgroup H of G such that Li = H(L∩N), and it follows
that G = HN . As above, let Y0 be an H-projector of H, then H/H ∩L ∼= HL/L = Li/L ∈ H

and so H = Y0(H ∩ L) and Li = Y0L. Similarly, H = Y0(H ∩ N) and so G = Y0N . Let Y
be an H-maximal subgroup of G containing Y0, then by Proposition 3.2.2, there exists g ∈ G
such that Xg = Y . Therefore XL < Li ≤ XgL = G. But this is impossible since XL/L is
finite and so |XL/L| = |XgL/L|. This final contradiction shows that KX = G.

From this, we deduce the crucial covering property of an H-projector:

3.2.5 Proposition. Let H be a Schunck class of NS∗-groups and suppose that G is a
periodic soluble group having a nilpotent normal subgroup N of finite index such that G/N ∈
H. If X is an H-maximal supplement of N in G and K is a normal subgroup of G such that
G/K ∈ H, then G = XK.

Proof. If K ≤ N , this follows from Proposition 3.2.4. We proceed by induction on the
order of the finite group K/K ∩ N . Let L = K ′(K ∩ N), then K/L is an abelian normal
subgroup of G/L and so the normal subgroup NK/L is nilpotent. Let Y/L be an H-maximal
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subgroup of G/L containing the H-group XL/L, then G/L = (Y/L)(NKL/L), and so by
Proposition 3.2.4, it follows that G = Y K. Now we have Y = Y ∩ XN = X(Y ∩ N) and
L∩N = K∩N . Moreover, |L/K∩N | < |K/K∩N | because K is soluble and K/K∩N is finite.
Since Y/L ∈ F, we have Y = XL by induction hypothesis, and so G = Y K = XLK = XK,
as required.

Now we are ready to prove the existence and conjugacy of H-projectors of nilpotent-by-
finite periodic soluble groups.

3.2.6 Theorem. Let H be a Schunck class of NS∗-groups. Then every group G ∈ NS∗

possesses H-projectors, and any two are conjugate.

Proof. Let G ∈ NS∗ and N a nilpotent normal subgroup of G which has finite index
in G. Moreover, let H/N be an H-projector of the finite soluble group G/N , then by Propo-
sition 3.2.2, there exists an H-maximal subgroup X of G such that H = XN . We show that
X is an H-projector of G.

Let K be a normal subgroup of G and suppose that XK/K is contained in the H-
group Y/K. Then XNK/NK ≤ Y N/NK, and since H/N = XN/N is an H-projector
of G/N , the group XNK/NK is an H-maximal subgroup of G/NK. Thus XNK = HK =
Y N . Therefore Y = Y ∩ HK = (Y ∩ H)K and consequently Y/K = (Y ∩ H)K/K ∼=
(Y ∩ H)/(H ∩ K) is an H-group. Since X ≤ Y ∩ H, we have Y ∩ H = (Y ∩ H) ∩ XN =
X(Y ∩H∩N) by the modular law. Therefore X is an H-maximal supplement of the nilpotent
normal subgroup Y ∩ H ∩ N of Y ∩ H. By Proposition 3.2.5, we have Y ∩ H = X(H ∩ K)
and so Y = X(H ∩ K)K = XK. This shows that X is an H-projector of G.

Now let X1 and X2 be H-projectors of G. We show that X1 and X2 are conjugate. Since
X1N/N and X2N/N are H-projectors of G/N , by the finite case (see e.g. [DH92, III, The-
orem 3.21]), there exists an element g ∈ G such that X1N = Xg

2N . Thus X1 and Xg
2 are

H-maximal supplements of N in the group X1N , and hence by Proposition 3.2.2, there exists
h ∈ X1N such that X1 = Xgh

2 , as required.

The next corollary shows that H-projectors of periodic locally nilpotent-by-finite groups
are even H-covering subgroups.

3.2.7 Corollary. Let H be an NS∗-Schunck class and suppose that G ∈ NS∗. If X is an
H-projector of G and X ≤ H ≤ G, then X is also an H-projector of H.

Proof. Let N be a normal subgroup of finite index in G. By the finite case (see e.g. [DH92,
III, Theorem 3.21]), the H-projector XN/N of G/N is also an H-projector of HN/N and so
by an isomorphism theorem, X(H ∩N)/(H ∩N) is an H-projector of H/H ∩N . Now let Y be
an H-projector of H, then Y (H ∩N)/(H ∩N) is also an H-projector of H/H ∩N . Therefore
we have X(H ∩ N) = Y h(H ∩ N) for some h ∈ H by Theorem 3.2.6. Now X and Y h are
H-maximal supplements of the nilpotent subgroup H ∩N in the group X(H ∩N). Therefore
Proposition 3.2.2 shows that X and Y are conjugate. Hence X is an H-projector of H.

It is also possible to extend [DH92, III, Lemma 3.14] to periodic soluble nilpotent-by-finite
groups.

3.2.8 Corollary. Let H be an NS∗-Schunck class and G ∈ NS∗. If N is a normal
nilpotent subgroup of G such that G/N ∈ H, then every H-maximal supplement of N in G is
an H-projector of G.
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Proof. Let H be an H-projector of G and L an H-maximal supplement of N in G. Moreover,
by Fitting’s theorem, we may assume without loss of generality that N has finite index in G.
So H and L are conjugate by Proposition 3.2.2, and so L is an H-projector of G.

3.3. Pronormal subgroups of periodic soluble
nilpotent-by-finite groups

A subgroup P of a group G is called pronormal if, for every g ∈ G, the subgroups P and P g

are conjugate in their join <P,P g>. If H is an NS∗-Schunck class, then by Theorem 3.2.6
and Corollary 3.2.7, every H-projector of an NS∗-group G is a pronormal subgroup of G.

The finite case of following proposition has been proved by Mann [Man69, Corollary]; see
also [DH92, I, Theorem 6.6].

3.3.1 Proposition. Let G be a periodic soluble nilpotent-by-finite group. Then the fol-
lowing statements are equivalent:

(a) P is pronormal in G.

(b) Every Sylow basis of G reduces into exactly one conjugate of P .

(c) If there exists g ∈ G such that the Sylow bases {Sp | p ∈ P} and {Sg
p | p ∈ P} of G

reduce into P , then P = P g.

Proof. (a) ⇒ (b). Let g ∈ G and suppose that {Sp | p ∈ P} is a Sylow basis of G which
reduces into P and P g. By transfinite induction, we construct a descending chain

G = G0 > G1 > . . . > Gα = <P,P g>

of subgroups Gβ of G such that for every β ≤ α, the Sylow basis {Sp | p ∈ P} of G reduces
into Gβ, and every Gβ contains the pronormal subgroups P and P g. Suppose that we have
constructed the subgroup Gβ . If <P,P g> is properly contained in Gβ, then by [Tom75,
Lemma 2.3], <P,P g> is contained in a major subgroup M of Gβ. Let N be the core of M
in Gβ , then by [Tom92], the factor group Gβ/N is finite or an infinite semiprimitive Černikov
group.

Assume first that Gβ/N is finite. Since PN/N is a pronormal subgroup of Gβ/N and the
Sylow basis {(Sp ∩ Gβ)N/N | p ∈ P} of GβN/N reduces into PN/N and P gN , we have PN =
P gN by [DH92, I, Theorem 6.6]. Now PN ≤ M < Gβ and the Sylow basis {Sp ∩ Gβ | p ∈ P}
reduces into PN by Lemma 1.2.3 (e). Thus we set Gβ+1 = PN .

Otherwise, Gβ/N is an infinite semiprimitive group. Let D/N be the maximal radicable
abelian subgroup of Gβ/N , then Gβ/N = M/N " D/N and M/N is finite. Therefore also
PN/N and P gN/N are finite. Let K/N be a finite normal subgroup of D/N such that
P g is contained in PK. Then the Sylow basis {(Sp ∩ Gβ)N/N | p ∈ P} of GβN/N reduces
into PN/N and P gN/N and also into the abelian group K/N . Therefore by Lemma 1.2.3 (d),
GβN/N also reduces into the finite group PK/N = P gK/N . Thus [DH92, I, Theorem 6.6]
yields that PN = P gN . Moreover, the Sylow basis {Sp | p ∈ P} of G reduces into PN by
Lemma 1.2.3 (e). Since the subgroup PN ≤ M is a proper subgroup of G, we set Gβ+1 = PN .
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If λ is a limit ordinal, then by Lemma 1.2.3 (c), {Sp | p ∈ P} also reduces into
⋂

β<λ Gβ =
Gλ. Therefore we have <P,P g> = Gα for every ordinal α whose cardinality exceeds that
of G.

This shows that we may assume without loss of generality that G = <P,P g>. Now
suppose that P is properly contained in G. Then P is contained in a major subgroup M
of G. Put N = MG, then by the above arguments, PN/N is a finite subgroup of G/N ,
and hence G/N = <PN/N,P gN/N> is finite. Hence by [DH92, I, Theorem 6.6], we have
G/N = PN/N = P gN/N , contradicting PN ≤ M < G. Therefore G = P , as required.

The implications (b) ⇒ (c) and (c) ⇒ (a) can be proved as in [DH92, I, Theorem 6.6].

Since H-projectors of periodic soluble nilpotent-by-finite groups are pronormal by Theo-
rem 3.2.6 and Corollary 3.2.7, we obtain:

3.3.2 Corollary. Let H be a Schunck class of NS∗-groups and suppose that G is an
NS∗-group. Then every Sylow basis of G reduces into exactly one H-projector of G.



Chapter 4

Factorizers of subgroups of
products

4.1. Factorizers of H-subgroups
of nilpotent-by-finite groups

In this chapter, we examine under which hypotheses the factorizer of an X-subgroup of a
product of two locally nilpotent subgroups is again an X-group, where X is a Schunck class
or a local formation. First, we consider H-maximal subgroups of nilpotent-by-finite products
of two locally nilpotent subgroups. Our theorems generalize the results obtained in [AH94]
and [Hoe93].

By a result of Gross [Gro73, Theorem 1], see also [AFG92, Lemma 2.5.2], a finite primitive
group G which is the product of two nilpotent subgroups A and B is either a p-group or A
and B are a Sylow p-subgroup or a Hall p′-subgroup of G. The following is a weaker version
for semiprimitive groups.

4.1.1 Theorem. Suppose that G is an infinite semiprimitive group with finite residual D
and suppose that D is a p-group. If G is the product of two locally nilpotent subgroups A
and B, then one of the groups AOp(G)/Op(G) and BOp(G)/Op(G) is a p-group and the
other is a p′-group. In particular, A or B is a p-group.

Proof. If G is a p-group, the statement is clear. Therefore suppose that G is not a p-group.
Since Ap′Bp′ is a Sylow p′-subgroup of G, we must have Ap′ #= 1 or Bp′ #= 1. Assume without
loss of generality that Bp′ #= 1. Then D ∩ BG

p′ is either finite or equals D. Assume first that
D∩BG

p′ is finite. Then D∩BG
p′ ≤ D[pn] = N for some integer n and so D/N∩BG

p′N/N = 1, and
in particular, Bp′ is contained in CG(D/N). As in the proof of [Tom95, Proposition 2.3 (ii)],
there exists an isomorphism G → G/N mapping D to D/N , and so we have D = CG(D/N).
But then Bp′ is contained in a p-group, contradicting Bp′ #= 1. This shows that we must have
D ≤ BG

p′ .
Now Op′(G) is contained in CG(D) = D and so Op′(G) = 1. Therefore [Ap′ ,D] ≤

[AG
p′ , B

G
p′ ] = 1 by Lemma 2.7 and Lemma 2.1 of [FGS94]. But then Ap′ is contained in CG(D) =

D and A is a p-group. Now BG
p = BA

p is contained in the Sylow p-subgroup ABp of G. There-
fore BG

p ≤ Op(G) and BOp(G)/Op(G) is a p′-group.

The following lemma further investigates the structure of certain semiprimitive groups.

4.1.2 Lemma. Let H be a Schunck class of NS∗-groups of characteristic π and suppose
that G = M " D is an infinite semiprimitive Černikov group, where D is a radicable abelian
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p-group for the prime p and M is finite and soluble. If G/D is an H-group and p ∈ π but G
is not an H-group, then M does not centralize any M -composition factor of D.

Proof. Since G /∈ H, the H-subgroup M is an H-projector of G by Lemma 3.2.1. Let U/V
be an M -composition factor of D which is centralized by M . Then MU/V = MV/V ×U/V ,
and since Schunck classes of finite groups are closed with respect to finite direct products
by [DH92, III, Corollary 6.2] and U/V is an elementary abelian p-group and p ∈ π, we have
MU/V ∈ H. On the other hand, by Corollary 3.2.7, M is also an H-projector of MU . This
contradiction shows that M does not centralize any M -composition factor of D.

Next, we deduce an important property of groups satisfying the hypotheses of the preced-
ing Lemma 4.1.2.

4.1.3 Lemma. Suppose that G is an infinite semiprimitive Černikov group which is a
semidirect product of a radicable abelian normal p-group D and a finite soluble group M .
Further, assume that M does not centralize any M -composition factor of D (of a given M -
composition series of D). If M is not a p-group, then ND(Mp′) = 1 for every Hall p′-subgroup
Mp′ of M .

Proof. Let
1 = D0 " D1 " . . . " Dα = D

be an M -composition series of D for an ordinal α whose factors are not centralized by M .
Since D does not contain infinite M -invariant subgroups, we have α ≤ ω, the least infinite
ordinal number. Therefore it suffices to show that NDn

(Mp′) = 1 for every integer n. We
proceed by induction on n, assuming that n > 0 and NDn−1

(Mp′) = 1.

•H

!!""
!! ""•MK • C

!!"" !!""
!! ""!! ""•M •K • Dn
"" !!"" !!

""!! ""!!
•M ∩ C • Dn−1"" !!

""!!
•
1

The structure of the group H in the proof of Lemma 4.1.3

Let H = MDn and C = CH(Dn/Dn−1). Put K = C ∩ MDn−1 = (C ∩ M)Dn−1 and
observe that K is a normal subgroup of H = DnM because K/Dn−1 is centralized by Dn

and normalized by M . Since Dn ∩ K = Dn−1(Dn ∩ M) = Dn−1 by Dedekind’s modular
law, the factor group Dn/Dn−1 is H-isomorphic with DnK/K = (C ∩ M)Dn/K = C/K. It
follows that C/K is a self-centralized minimal normal subgroup of H/K. Therefore H/K =
(MK/K)(C/K) is a primitive group by [DH92, A, Theorem 15.8 (b)]. Let R/C = Op′(H/C)
and Q = Mp′ ∩ R, then Q is nontrivial because C/K = Op(H/K).
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Since the p′-group QK/K = Op′(MK/K) cannot be normal in H/K and MK/K is
a maximal subgroup of H/K, it follows that MK = NH(QK/K) and since QK/K is a
characteristic subgroup of MK/K, we also have NH(Mp′K/K) ≤ NH(QK/K) = MK. It
follows that NH(Mp′) ≤ NH(Mp′K/K) ≤ MK. Therefore

NDn
(Mp′) ≤ MK ∩ Dn = M(C ∩ M)Dn−1 ∩ Dn = MDn−1 ∩ Dn = Dn−1,

and it follows that NDn
(Mp′) = NDn−1

(Mp′) = 1, as required.

Combining Lemma 4.1.2 and Lemma 4.1.3, we obtain a first result about H-maximal
subgroups of infinite semiprimitive Černikov groups which are the product of two locally
nilpotent subgroups.

4.1.4 Proposition. Let H be a Schunck class of NS∗-groups and suppose that G is an
infinite semiprimitive Černikov group. Further, assume that every finite image of G is an H-
group and that G is not an H-group. If G is the product of two locally nilpotent subgroups A
and B, then G possesses an H-projector which contains A or B, hence is factorized.

Proof. Let D denote the finite residual of G, which is a radicable abelian p-group for a
prime p. Suppose that B is not a p-group, then by Theorem 4.1.1, A is a p-group and Bp′

is a Sylow p′-subgroup of G. Let M be a complement of D in G which contains Bp′ , then
by Lemma 4.1.2 and Lemma 4.1.3, M contains B ≤ NG(Bp′) because B is locally nilpotent.
Since M is an H-projector of G by Lemma 3.2.1 (e) and M contains B, it follows that M is
factorized.

If G is a U-group with Sylow basis {Gp | p ∈ P} and H is a subgroup of G, then by
[Har71, Lemma 2.1] and [GHT71, Theorem 2.10], there exists a g ∈ G such that {Gp | p ∈ P}
reduces into Hg. Thus, with the notation of the following theorem, every H-subgroup has
a conjugate H into which the Sylow basis {ApBp | p ∈ P} reduces. For details, see also the
proof of Corollary 4.1.7 below.

4.1.5 Theorem. Let H be an NS∗-Schunck class of characteristic π and suppose that the
NS∗-group G is the product of two locally nilpotent subgroups A and B. Further, let H be an
H-subgroup of G into which the Sylow basis {ApBp | p ∈ P} of G reduces.

(a) If π contains π(A) ∩ π(B), then the factorizer of H is an H-group.

(b) If H is a π-group, then the factorizer of H in AπBπ is an H-group. Hence H is
contained in a prefactorized H-subgroup of G.

Proof. (a) Let X denote the factorizer of H. Since the Sylow basis

{(X ∩ Ap)(X ∩ Bp) | p ∈ P} = {(X ∩ ApBp) | p ∈ P}

reduces into H, we may assume without loss of generality that G = X. Therefore it remains
to show that G ∈ H. Now H is a Schunck class and our hypotheses are inherited by factor
groups. Hence it suffices to consider the cases when G is a finite primitive group or an infinite
semiprimitive Černikov group.

Suppose first that G is finite and primitive. Then by [Gro73, Theorem 1], either G = A = B
is a cyclic p group for some prime p, or A is a Sylow p-subgroup of G and B is a Hall p′-
subgroup of G. In the first case, we have p ∈ π and so G ∈ H. Otherwise, the Sylow basis
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{ApBp | p ∈ P} of G reduces into H. Therefore the subgroup H = (H ∩ApBp)(H ∩Ap′Bp′) =
(H ∩ A)(H ∩ B) is factorized and hence G = H ∈ H.

If G is an infinite semiprimitive Černikov group, we have G = M " D, where D is a
radicable abelian p-group for the prime p and M is finite. Since every primitive image of G/D
belongs to H, we have M ∼= G/D ∈ H because H is a Schunck class. Now suppose that G /∈ H.
Then by Theorem 4.1.1 and Proposition 4.1.4, without loss of generality, A is a p-group
containing D and B ≤ M is finite. Now every subgroup containing B is factorized, so that
the subgroup MD[pn] = MD[pn] ∩ AB = (MD[pn] ∩ A)B is factorized for every n ∈ N.
Since G =

⋃
n∈N MD[pn], this shows that every finite subgroup U of G is contained in a

finite factorized subgroup of G. In particular, the factorizer of every finite subgroup of G is
finite.

By Proposition 3.1.5, the Černikov group H is the union of an ascending chain {Hi | i ∈ N}
of finite H-groups. Since H∩D has finite index in H, we may assume without loss of generality
that H = H1(H ∩ D). Since G is an U-group, there is a g ∈ G such that the Sylow basis
{ApBp | p ∈ P} of G reduces into Hg

1 . Replacing Hi by Hg
i for every i ∈ N, we may assume

that the Sylow basis {ApBp | p ∈ P} of G reduces into H1. Now Hi = H1(Hi ∩ D) by the
modular law, and so by Lemma 1.2.3 (d), the Sylow basis {ApBp} reduces into every Hi.
Therefore the factorizers Xi of the Hi are H-groups by the finite case. Now the union U
of the factorizers of the Hi is a factorized subgroup of G which contains H. Thus G = U
and {Xi | i ∈ N} is an ascending chain of H-subgroups of the semiprimitive group G. By the
definition of a Schunck class, this contradicts G /∈ H, and so G ∈ H.

(b). Since H is a π-group and the Sylow basis {ApBp | p ∈ P} of G reduces into H, we have
H ≤ AπBπ. Applying (a) to the group AπBπ, we obtain that the factorizer of H in AπBπ is
an H-group, as required.

From this theorem, we derive a necessary and sufficient condition for an H-maximal sub-
group of G to be factorized.

4.1.6 Corollary. Let H be an NS∗-Schunck class of characteristic π and suppose that the
NS∗-group G is the product of two locally nilpotent subgroups A and B. If H is an H-maximal
subgroup of G, then:

(a) If π contains π(A) ∩ π(B), then H is prefactorized if and only if the Sylow basis
{ApBp | p ∈ P} of G reduces into H. Thus an H-maximal subgroup of G is prefactorized if
and only if it is factorized.

(b) If H is a π-group, then H is prefactorized if and only if the Sylow basis {ApBp | p ∈ P}
of G reduces into H.

Proof. If H is any prefactorized subgroup of G, then by Theorem 2.3.7, the Sylow basis
{ApBp | p ∈ P} of G reduces into H. This shows the necessity of our conditions.

Conversely, if π contains π(A) ∩ π(B) and the Sylow basis {ApBp | p ∈ P} of G reduces
into H, then the factorizer X of H is an H-group by Theorem 4.1.5. Hence H = X by the
H-maximality of H, and so H is factorized.

As in the proof of Theorem 4.1.5, statement (b) now follows by considering the Sylow
π-subgroup AπBπ instead of G.

Since every H-maximal subgroup of an NS∗-group possesses a conjugate into which a
given Sylow basis of G reduces, we also have:
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4.1.7 Corollary. Let X be an NS∗-Schunck class of characteristic π and suppose that
the NS∗-group G is the product of two locally nilpotent subgroups A and B.

(a) If π contains π(A) ∩ π(B), then every H-maximal subgroup of G has a factorized
conjugate.

(b) Every H-maximal subgroup of G which is a π-group has a prefactorized conjugate.

Proof. Let H be an H-maximal subgroup of G, then a Sylow basis of H can be extended
to a Sylow basis {Gp | p ∈ P} of G (see [Har71, Lemma 2.1]). Therefore by [GHT71, The-
orem 2.10], there exists an element g ∈ G such that {Gg

p | p ∈ P} = {ApBp | p ∈ P}. Thus
{ApBp | p ∈ P} reduces into Hg−1. The result now follows from Corollary 4.1.6.

Since H-projectors are in particular H-maximal subgroups, we also obtain

4.1.8 Corollary. Let X be an NS∗-Schunck class of characteristic π and suppose that
the NS∗-group G is the product of two locally nilpotent subgroups A and B. If π contains
π(A) ∩ π(B) or an H-projector of G is a π-group, then G possesses a unique H-projector H
which is prefactorized. If π contains π(A) ∩ π(B), then H is even factorized.

Proof. By Corollary 3.3.2, the Sylow basis {ApBp | p ∈ P} of G reduces into a unique H-
projector of G. Therefore by Theorem 2.3.7, G has at most one prefactorized H-projector.
Since G possesses a prefactorized H-projector by Corollary 4.1.7 and this projector is factor-
ized if π contains π(A) ∩ π(B), the proof is complete.

The above results can also be applied to trifactorized groups.

4.1.9 Corollary. Let H = QSH be an NS∗-Schunck class and suppose that the NS∗-
group G has a triple factorization G = AB = AC = BC by its subgroups A, B and C, where
A and B are locally nilpotent and C ∈ H. If π(A) ∩ π(B) is contained in the characteristic
of H, then G ∈ H.

Proof. In view of Lemma 3.1.3 (c), we may assume without loss of generality that C is an
H-maximal subgroup of G. Hence C has a factorized conjugate by Corollary 4.1.7. Therefore
G = C by [AH94, Lemma 1].

If F is a local formation of characteristic π, then by Lemma 1.5.1, every F-group is a
π-group . This shows that the hypothesis of Theorem 4.1.5 (b) is always satisfied if H = F is
a local formation. Thus we obtain:

4.1.10 Theorem. Let X = QSX be a class of NS∗-groups and F a local X-formation of
characteristic π. Further, suppose that the X-group G is the product of two locally nilpotent
groups A and B. If H is an F-subgroup of G into which the Sylow basis {ApBp | p ∈ P} of G
reduces, then H is contained in a prefactorized F-subgroup of G. If π(A)∩π(B) ⊆ π, then H
is even contained in a factorized F-subgroup of G.

Proof. By Lemma 1.5.1, the F-group H is a π-group. Hence H is contained in the Sylow
π-subgroup AπBπ of G. Since by Proposition 3.1.2, F is a Schunck class of nilpotent-by-finite
groups. Therefore by Theorem 4.1.5, the factorizer X of H in AπBπ is an F-group. Since AπBπ

is a prefactorized subgroup of G, the subgroup X is the required prefactorized subgroup of G.
If π(A) ∩ π(B) ⊆ π, then A ∩ B is a π-group and so A ∩ B = Aπ ∩ Bπ is contained in X.
Hence X is a factorized subgroup of G.
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4.2. Factorizers of F-subgroups
of FC- and CC-groups

In this section, we will show that for local formations of periodic FC- and CC-groups, results
similar to those of Section 4.1 can be obtained. Since the concept of Schunck classes has
not yet been extended to the class of all periodic locally soluble CC-groups, we formulate
our theorems for local X-formations of periodic locally soluble CC-groups only. Note also
that FC-groups are CC-groups, so that our results hold in particular for local formations of
periodic locally soluble FC-groups.

First, we show that, as in the case of NS∗-groups, every F-subgroup of a CC-group G is
contained in an F-maximal subgroup of G.

4.2.1 Lemma. Let X = QSX be a class of periodic locally soluble CC-groups and F a local
X-formation of characteristic π. Moreover, let G be an X-group.

(a) The group G is an F-group if and only if G is a π-group and G/CG(xG) ∈ F for every
x ∈ G.

(b) The class F is closed with respect to unions of chains of subgroups.

Proof. (a) If G is an F-group, then clearly every factor group of G belongs to F. Conversely,
suppose that G/CG(xG) ∈ F for every x ∈ G. Since Z(G) =

⋂
x∈G CG(xG), we have G/Z(G) ∈

F by Lemma 1.5.2. Therefore also G ∈ F by Lemma 1.5.3.
(b) Let {Gi} be a chain of F-subgroups of the X-group G and assume without loss of

generality that G =
⋃

Gi. If x ∈ G, then G/CG(xG) is a Černikov group. Since F∩NS∗ is a
local NS∗-formation, hence a NS∗-Schunck class by Proposition 3.1.2, by Lemma 3.1.3 (c) the
factor groups G/CG(xG) are F-groups for every x ∈ G. Therefore G ∈ F by Lemma 4.2.1 (a).

Now we can prove an analogue of Theorem 4.1.5 for periodic CC-groups which are the
product of two locally nilpotent subgroups.

4.2.2 Theorem. Let X = QSX be a class of periodic locally soluble CC-groups and F

a local X-formation of characteristic π. Further, suppose that the X-group G is the product
of two locally nilpotent groups A and B. If H is an F-subgroup of G into which the Sylow
basis {ApBp | p ∈ P} of G reduces, then H is contained in a prefactorized F-subgroup of G.
If π(A) ∩ π(B) ⊆ π, then the factorizer of H is an F-subgroup of G.

Proof. Suppose first that π(A) ∩ π(B) ⊆ π and let X denote the factorizer of H in G.
By Theorem 2.3.7, the Sylow basis {ApBp | p ∈ P} of G, reduces into X. Therefore we may
assume without loss of generality that G = X. Hence it remains to show that G ∈ F.

Let x ∈ G, then G/CG(xG) is a Černikov group. Moreover, the Sylow basis

{ApBpCG(xG)/CG(xG) | p ∈ P}

of G/CG(xG) reduces into the group HCG(xG)/CG(xG). Since F ∩ NS∗ is a NS∗-Schunck
class by Proposition 3.1.2, the factorizer Y/CG(xG) of the F-group HCG(xG)/CG(xG) is also
an F-group by Theorem 4.1.5. Now Y is a factorized subgroup of G containing H, and so
G = Y and G/CG(xG) ∈ F. Therefore G ∈ F by Lemma 4.2.1 (a).
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In the general case, the π-group H is contained in the Sylow π-subgroup AπBπ of G because
{ApBp | p ∈ P} reduces into H. Therefore by the first part, the factorizer of H in AπBπ is a
prefactorized F-subgroup of G which contains H.

As in the case of Theorem 4.1.5, we deduce a number of useful consequences, whose proofs
are similar to the corresponding results about nilpotent-by-finite groups. First, we derive a
necessary and sufficient condition for an F-maximal subgroup of G to be factorized.

4.2.3 Corollary. Let X = QSX be a class of periodic locally soluble CC-groups and F a
local X-formation of characteristic π. Further, suppose that the X-group G is the product of
two locally nilpotent subgroups A and B and let H be an F-maximal subgroup of G.

(a) H is prefactorized if and only if the Sylow basis {ApBp | p ∈ P} of G reduces into H.

(b) If π contains π(A) ∩ π(B), then the subgroup H is factorized if and only if the Sylow
basis {ApBp | p ∈ P} of G reduces into H.

Since the Sylow bases of a periodic locally soluble CC-groups are locally conjugate by
[OP91, Theorem 4.3], the following lemma shows that in Theorem 4.2.2, every F-subgroup H
has a local conjugate into which the Sylow basis {ApBp | p ∈ P} of G reduces.

4.2.4 Lemma. Let G be a periodic locally soluble CC-group and H a subgroup of G. Then
every Sylow basis of H can be extended to a Sylow basis of G.

Proof. Let {Hp | p ∈ P} be a Sylow basis of H. For every prime p, put

Hp′ = <Hq | q ∈ P, q #= p>.

Moreover, let Gp′ be a Sylow p′-subgroup of G which contains Hp′. Define

Gp =
⋂

q∈P,q '=p

Gq′ ,

then {Gp | p ∈ P} is a Sylow basis of G by [OP91, Lemma 4.2]. Since Hp is contained in Gp

for every prime p, the Sylow basis {Gp | p ∈ P} reduces into H.

For F-maximal subgroups, this has the following consequence.

4.2.5 Corollary. Let X = QSX be a class of periodic locally soluble groups satisfying
min-p for every prime p and F a local X-formation of characteristic π. Suppose that the
CC-group G is the product of two locally nilpotent subgroups A and B. Then:

(a) Every F-maximal subgroup of G is locally conjugate to a prefactorized F-maximal
subgroup of G.

(b) If π contains π(A) ∩ π(B), then every F-maximal subgroup of G is locally conjugate
to a factorized F-maximal subgroup of G.

To prove that a periodic locally soluble CC-group which is the product of two locally
nilpotent subgroups has at most one prefactorized F-projector, we need the following result.

4.2.6 Proposition. Let X = QSX be a class of periodic locally soluble CC-groups and F a
local X-formation of characteristic π. If the X-group G has an F-projector, then every Sylow
basis of the reduces into a unique F-projector of G. Thus the F-projectors of G are locally
conjugate.



Factorizers of F-subgroups of FC- and CC-groups 59

Proof. Let H be an F-projector of G, then by Lemma 4.2.4, there exists a Sylow basis
{Gp | p ∈ P} of G which reduces into H. Now assume that L is an F-projector into which
{Gp | p ∈ P} reduces. Let x ∈ G, then the Sylow basis

{GpCG(xG)/CG(xG) | p ∈ P}

of G/CG(xG) reduces into both HCG(xG)/CG(xG) and LCG(xG)/CG(xG). Therefore

HCG(xG)/CG(xG) = LCG(xG)/CG(xG)

by Corollary 3.3.2. Put H∗ =
⋂

x∈G HCG(xG), then

H∗CG(xG)/CG(xG) = HCG(xG)/CG(xG) ∈ F.

Thus by Lemma 1.5.2, H∗/Z(G) ∈ F, and finally H∗ ∈ F by Lemma 1.5.3. Since H∗ contains
both H and L, it follows that H = H∗ = L by the F-maximality of H and L.

Now let H and H∗ be arbitrary F-projectors of G and suppose that {Gp | p ∈ P} and
{G∗

p | p ∈ P} are Sylow bases of G reducing into H and H∗, respectively. Since the Sylow bases
of G are locally conjugate by [OP91, Theorem 4.3], there exists a locally inner automorphism
φ of G such that Gφ

p = G∗
p for every p ∈ P. Now the Sylow basis {G∗

p | p ∈ P} reduces into Hφ

and H∗, and so we have H∗ = Hφ by the first part.

Although it seems to be an open question whether every periodic locally soluble CC-group
possesses F-projectors, there is also a result analogous to Corollary 4.1.8, provided that the
CC-groups in question possess F-projectors.

4.2.7 Theorem. Let X = QSX be a class of periodic locally soluble CC-groups and F a
local X-formation of characteristic π. If G is an X-group which is the product of two locally
nilpotent subgroups A and B, then G has at most one prefactorized F-projector. If G has
F-projectors, then G possesses a unique F-projector which is prefactorized. If π contains
π(A) ∩ π(B), then this F-projector is factorized.

For periodic locally soluble FC-groups, the existence and local conjugacy of F-projectors
has been proved by Tomkinson [Tom69a]; see also [Tom84]. Thus we obtain:

4.2.8 Corollary. Let X = QSX be a class of periodic locally soluble FC-groups and F

a local X-formation of characteristic π. Then every X-group G which is the product of two
locally nilpotent subgroups A and B possesses a unique F-projector which is prefactorized. If
π contains π(A) ∩ π(B), then this F-projector is factorized.

Despite the fact the Sylow bases of a periodic locally soluble CC-group need not be
conjugate, also a result similar to Corollary 4.1.9 can be obtained.

4.2.9 Theorem. Let X = QSX be a class of periodic locally soluble CC-groups and F a
local X-formation of characteristic π. Moreover, suppose that the X-group G has subgroups A,
B and C such that G = AB = AC = BC. If A and B are locally nilpotent, C ∈ F and
π(A) ∩ π(B) is contained in π, then G ∈ X.

Proof. Let x ∈ G, then G/CG(xG) is a Černikov group. Since by Proposition 3.1.2, F∩NS∗

is a NS∗-Schunck class, we have G/CG(xG) ∈ F by Corollary 4.1.9. Therefore G ∈ F by
Lemma 4.2.1 (a).
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4.3. Factorizers of F-subgroups of groups
with min-p for all primes p

Since periodic locally soluble groups satisfying the minimal condition on p-subgroups for every
prime p are residually Černikov groups by [KW73, Theorem 3.17], the methods applied to
periodic CC-groups which are the product of two locally nilpotent subgroups yield essentially
the same results for periodic locally soluble groups satisfying min-p for every prime p. The
main difficulties are due to the fact that Sylow bases of the latter class of groups are not so
well-behaved as in the case of CC-groups.

4.3.1 Theorem. Let X = QSX be a class of periodic locally soluble groups satisfying min-
p for every prime p and F a local X-formation of characteristic π. Further, suppose that the
X-group G is the product of two locally nilpotent groups A and B. If H is an F-subgroup of G
into which the Sylow basis {ApBp | p ∈ P} of G reduces, then H is contained in a prefactorized
F-subgroup of G. If π(A) ∩ π(B) ⊆ π, then H is even contained in a factorized F-subgroup
of G.

Proof. Let X denote the factorizer of H in AπBπ, then we may assume without loss
of generality that G = X. Since the factor group G/Oπ′(G) is a Černikov group for every
finite set π of primes by [KW73, Theorem 3.17], an argument similar to that in the proof
of Theorem 4.2.2 shows that G/Oπ′(G) ∈ F. Now the intersection of all subgroups Oπ′(G),
where π is a finite set of primes, is trivial, we have G ∈ F by Lemma 1.5.2.

For F-maximal subgroups, this has the following consequence.

4.3.2 Corollary. Let X = QSX be a class of periodic locally soluble groups satisfying
min-p for every prime p and F a local X-formation of characteristic π. Further, suppose that
the X-group G is the product of two locally nilpotent subgroups A and B and let H be an
F-maximal subgroup of G.

(a) H is prefactorized if and only if the Sylow basis {ApBp | p ∈ P} of G reduces into H.

(b) If π contains π(A) ∩ π(B), then the subgroup H is factorized if and only if the Sylow
basis {ApBp | p ∈ P} of G reduces into H.

The proof of the next theorem does not use the above results about periodic locally soluble
products satisfying min-p. Instead, it relies on the nilpotent-by-finite case.

4.3.3 Theorem. Let X = QSX be a class of periodic locally soluble groups satisfying min-
p for all primes p and F a local X-formation of characteristic π. Further, suppose that the
X-group G has a triple factorization G = AB = AC = BC by its subgroups A, B and C,
where A and B are locally nilpotent and C ∈ F. If π(A) ∩ π(B) ⊆ π, then G ∈ F.

Proof. Let π be a finite set of primes. By [KW73, Theorem 3.17], the factor group
G/Oπ′(G) is a Cernikov group. So by Corollary 4.1.9, we have G/Oπ′(G) ∈ F for every
finite set π of primes. Since the intersection of the subgroups Oπ′(G), where π is a finite set
of primes, is trivial, we have G ∈ F by Lemma 1.5.2.
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The next proposition will be used to show that a periodic locally soluble group satisfying
min p for every prime p which is the product of two locally nilpotent subgroups has at most
one prefactorized F-projector.

4.3.4 Proposition. Let X = QSX be a class of periodic locally soluble groups satisfying
min-p for every prime p and F a local X-formation. If the X-group G has an F-projector, then
every Sylow basis of the reduces into at most one F-projector of G.

Proof. Let H and L be F-projectors of G into which the Sylow basis {Gp | p ∈ P} of G
reduces. Let p ∈ P, then the Sylow basis {GpOp′(G)/Op′(G) | p ∈ P} of G/Op′(G) reduces
into HOp′(G)/Op′(G) and LOp′(G)/Op′(G). Thus by Corollary 3.3.2, we have HOp′(G) =
LOp′(G). Since

⋂
p∈P Op′(G) = 1, it follows from Lemma 1.6.1 that H = L.

Although the Sylow bases of a periodic locally soluble group G satisfying min-p for every
prime p are locally conjugate by [DT80], G may have LN-projectors into which no Sylow
basis reduces [Dix82, Section 5], even if G is countable. Therefore our next result might also
be of independent interest. Recall that a group G is co-Hopfian if it does not contain a proper
subgroup isomorphic with G. In particular, every periodic radical group satisfying min-p is
co-hopfian (cf. [Bae70]).

4.3.5 Proposition. Let X = QSX be a class of countable locally finite-soluble group sat-
isfying min-p for all primes p. If G ∈ X and F is a class of co-Hopfian groups, then every
Sylow basis of G reduces into a unique F-projector of G.

Proof. Let {Gp | p ∈ P} be a Sylow basis of G and let {p1, p2, . . .} denote the set of all
primes in their natural order and set Ni = O{pi+1,pi+2,...} for every i ∈ N. Then G/Ni is a
Černikov group by [KW73, Theorem 3.17]. Hence it has an F-projector Hi/Ni into which the
Sylow basis {GpNi/Ni | p ∈ P} of G/Ni reduces. Let H =

⋂
n∈N Hi, then by Lemma 1.2.3 (c),

the Sylow basis {Gp | p ∈ P} also reduces into H. Continuing as in the proof of [Dix82,
Theorem 3.4], H is an F-projector of G. The uniqueness statement now follows from Propo-
sition 4.3.4.

Since every countable periodic locally soluble group satisfying min-p for every prime p
possesses F-projectors by [Dix82, Theorem 3.4], we thus obtain:

4.3.6 Corollary. Let X = QSX be a class of periodic locally soluble groups satisfying min-
p for every prime p and F a local X-formation of characteristic π. Then every X-group G
which is the product of two locally nilpotent subgroups A and B has at most one prefactorized
F-projector. If F is a class of co-Hopfian groups, then G possesses a unique F-projector which
is prefactorized. If, in addition, π contains π(A) ∩ π(B), then this F-projector is factorized.

4.4. Triply factorized groups

Throughout this chapter, we have frequently encountered trifactorized groups, i.e. groups G
possessing subgroups A, B and C such that G = AB = AC = BC. In Corollary 4.1.9,
Theorem 4.2.9 and Theorem 4.3.3, we have shown that under certain additional assumptions,
G is an F-group if A and B are locally nilpotent and C ∈ F, where F is a local formation.
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Since by [AFG92, Lemma 1.1.4], the factorizer X of a normal subgroup N of a product G =
AB has a triple factorization

X = (A ∩ BN)(AN ∩ B) = (A ∩ BN)N = (AN ∩ B)N,

it is also of interest to study triply factorized groups, i.e. groups G which possess subgroups A
and B and a normal subgroup N such that G = AB = AN = BN . We will show below that in
this case, in order to prove that G is an F-group, it suffices that A and B are F-groups and N
is locally nilpotent. The following example shows that even in the finite case, the assumption
that N is normal in G cannot be replaced by the assumption that A and B are normal
subgroups of G. It also shows that in Corollary 4.1.9, Theorem 4.2.9 and Theorem 4.3.3 it is
not enough to assume that A is locally nilpotent and B and C belong to the local formation F.

4.4.1 Example. Let p be a prime, P an extraspecial p-group of order p3 and let A0 and
B0 be distinct maximal subgroups of P . Let q #= p be a prime and F = GF (q) the field with q
elements, then by [DH92, B, Corollary 10.7], the p-group P has a faithful irreducible FP -
module N . Put G = P "N and let A = A0N and B = B0N , then G = AB = AP = BP , and
the normal subgroups A and B of G belong to the local S∗-formation F = N∗A∗of all finite
nilpotent-by-abelian groups. But since N = F (G) and P is nonabelian, we have G /∈ N∗A∗.
Moreover, if we choose q > p, then A and B even belong to the local S∗-formation of all
finite supersoluble groups, but since G is not nilpotent-by-abelian, it cannot be supersoluble.

Now we come to our first theorem about triply factorized groups.

4.4.2 Theorem. Let H be a Schunck class of NS∗-groups. Suppose that the NS∗-group G
has H-subgroups A and B and a normal locally nilpotent subgroup R such that G = AB =
AR = BR. Then G is an H-group.

Proof. We may assume without loss of generality that A and B are H-maximal subgroups
of G. Then A and B are conjugate by Proposition 3.2.2. Then by direct calculation or by
[Wie58, Hilfssatz 10], we have G = A = B, and so G is an H-group.

Theorem 4.4.2 may be used to obtain a similar theorem for local formations of FC- and
CC-groups.

4.4.3 Theorem. Let X = QSX be a class of periodic locally soluble CC-groups and F a
local X-formation. Suppose that the X-group G has F-subgroups A and B and a normal locally
nilpotent subgroup R such that G = AB = AR = BR. Then G is an F-group.

Proof. Let x ∈ G and put N = CG(xG). Then the factor group G/CG(xG) is a Černikov
group and G/N = (AN/N)(BN/N) = (AN/N)(RN/N) = (BN/N)(RN/N) and so G/N ∈
F by Theorem 4.4.2. Since this holds for every x ∈ G, we have G ∈ F by Lemma 4.2.1 (a).

The same argument can also be used to prove Theorem 4.4.2 for groups satisfying the
minimal condition on p-subgroups.

4.4.4 Theorem. Let X = QSX be a class of periodic locally soluble groups satisfying min-p
for every prime p. Moreover, let F be a local X-formation. Suppose that the X-group G has F-
subgroups A and B and a normal locally nilpotent subgroup R such that G = AB = AR = BR.
Then G is an F-group.
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Proof. Let π be a finite set of primes and put N = Oπ′(G). Then G/N is a Černikov
group by [KW73, Theorem 3.17]. Moreover, G/N = (AN/N)(BN/N) = (AN/N)(RN/N) =
(BN/N)(RN/N) and so G/N ∈ F by Theorem 4.4.2. Since the intersection of all Oπ′(G),
where π is a finite set of primes, is trivial, we have G ∈ F by Lemma 1.5.2.

In order to obtain a theorem similar to Theorem 4.4.3 and Theorem 4.4.4 for U-groups,
we need a result like Proposition 3.2.2 for local formations of U-groups.

4.4.5 Theorem. Let X be a QS-closed subclass of U and F a local X-formation. Further,
suppose that G is X-group such that G/R is in F for some locally nilpotent subgroup R of G.
Then the F-maximal supplements of R in G coincide with the F-projectors of G and the
F-normalizers of G. Hence the F-maximal supplements of R are conjugate in G.

Proof. Let H be an F-maximal supplement of R in G. Since H ∈ F, by [GHT71, The-
orem 4.6 (iii)], the group H coincides with its F-normalizer. Therefore by [GHT71, The-
orem 4.9], there exists an F-normalizer D of G containing H. Since D ∈ F by [GHT71,
Theorem 4.6 (vi)] and H is F-maximal, it follows that D = H. Now [GHT71, Theorem 5.1]
shows that the F-projectors of G coincide with the F-normalizers of G. The conjugacy of the
F-maximal supplements of R now follows directly from the fact that the F-projectors of G
are conjugate by [GHT71, Theorem 5.4].

Our theorem about triply factorized U-groups generalizes a result of B. Amberg and
A. Fransman [AF94, Corollary 2], replacing the nilpotency hypothesis on the normal sub-
group by local nilpotency, at the same time shortening the proof considerably.

4.4.6 Theorem. Let X be a QS-closed subclass of U and F a local X-formation. Suppose
that the X-group G has F-subgroups A and B and a normal locally nilpotent subgroup R, such
that G = AB = AR = BR. Then G is an F-group.

Proof. Without loss of generality, we may assume that A and B are F-maximal subgroups
of G. Therefore A and B are conjugate by Theorem 4.4.5. As in Theorem 4.4.2, this yields
G = A = B and so G is an F-group.



Chapter 5

Projectors and injectors of products

5.1. Projectors in soluble and hypoabelian
U-groups

Let F be a local U-formation. Although we have not been able to prove the existence of pre-
factorized F-maximal subgroups of a U-group G which is the product of two locally nilpotent
subgroups, we have nevertheless obtained positive results for the most important class of F-
maximal subgroups of G, namely for F-projectors of G. As a first step, we consider periodic
locally soluble groups which are the extension of a p-group by an F-group.

Let G be a group and suppose that F is any class of groups. Then GF denotes the intersec-
tion of all normal subgroups N of G such that G/N ∈ F. Observe that if F is an X-formation
for some Q-closed class of groups, then G/GF ∈ F.

5.1.1 Proposition. Suppose that F is a local X-formation of characteristic π for some
QS-closed class X of locally finite groups. Let G be an X-group such that GF is a p-group for
some p ∈ π and suppose that H is an F-maximal subgroup of G which satisfies G = HGF.
Then:

(a) H = NG(Op′(H)).

(b) If the Sylow p′-subgroups of every subgroup S of G are conjugate in S, then every
Sylow p′-subgroup of G reduces into at most one conjugate of H.

(c) If GF is abelian, then H complements GF.

(d) If GF is abelian, then then every Sylow p′-subgroup of G reduces into at most one
complement of GF.

Proof. (a) Let Q = Op′(H) and set L = NG(Q), then clearly, H ≤ L. We will show that
L ∈ F. Then the desired result will follow from the F-maximality of H. Since F is a local
X-formation, we have

F = Xπ ∩
⋂

q∈π

Sq′Sqf(q)

by Lemma 1.5.1 (d). Now if q #= p is a prime, then G/N ∈ Sq′Sqf(q) by hypothesis, where
N = GF, and so also L/L ∩ N belongs to that class. Since N is a q′-group, this shows that
L ∈ Sq′Sqf(q) for every prime q #= p.

Now L = L ∩ HN = H(L ∩ N) and (H ∩ N) ∩ Q(L ∩ N) = Q(H ∩ N) by the modular
law, and so

L/Q(L ∩ N) = H(L ∩ N)/Q(L ∩ N) ∼= H/Q(H ∩ N) ∈ Spf(p)



Projectors in soluble and hypoabelian U-groups 65

because H/Q ∈ Spf(p). Therefore also L/Q ∈ Spf(p) and consequently L ∈ Sp′Spf(p).
Since G is a π-group contained in X, the same is true for L, and we have L ∈ F by Lemma 1.5.1.
Therefore H = NG(Op′(H)).

(b) Suppose that the Sylow p′-subgroup Gp′ reduces into H and Hg. Then Gg−1

p′ reduces
into H. Let Hp be a Sylow p-subgroup of H, then H = (H ∩Gp′)Hp by [GHT71, Lemma 2.1].
Therefore Gp′ = Gp′ ∩HN = Gp′ ∩ (H ∩Gp′)HpN = (H ∩Gp′)(Gp′ ∩HpN) = (H ∩Gp′) is a
Sylow p′-subgroup of H, and by the same argument, also Gg−1

p′ is a Sylow p′-subgroups of H.
Since H is a U-group, it follows that Gg−1

p′ = Gh
p′ for some h ∈ H. Therefore gh ∈ NG(Gp′).

Since Gp′ is contained in H, we clearly have NG(Gp′) ≤ NG(Op′(H)) and so gh ∈ H by (a).
This shows that g ∈ H, proving that H = Hg.

(c) Put N = GF and Q = Op′(H) and observe that NQ is a normal subgroup of G.
Therefore also K = [N,Q] = [N,NQ] is normal in G.

First, we show that G/K ∈ F. Since N/K is a p-group, we have G/K ∈ Sq′Sqf(q) for
every prime q #= p. Now G/NQ ∈ Spf(p) as in the proof of (a). Since QN = Q[Q,N ] = QK
and Q ! H, the subgroup QK is normalized by NH = G and so QK is a normal subgroup
of G. Now QN/QK is a p-group, and so also G/QK ∈ Spf(p). But then G/K ∈ Sp′Spf(p),
and so G/K ∈ F. Therefore we have N = GF ≤ K and so N = [N,Q].

Next, we show that CN (Q) = 1. Let x ∈ CN (Q). Since x ∈ N , we have x =
∏n

i=1[yi, qi],
where yi ∈ N and qi ∈ Q. Let Q0 = <q1, . . ., qn> ≤ Q which is a finitely generated subgroup
of Q, hence is finite, and so also Y = <x, y1, . . .yn>Q0 ≤ N is finite. Applying [Hup67,
III.13.4] to the finite group Q0Y , we obtain that Y = [Y,Q0] × CY (Q0). In particular, we
have x ∈ [Y,Q0] ∩ CY (Q0) = 1 and so CN (Q) = 1.

Now the normal p-subgroup H ∩ N of H centralizes Q = Op′(H) and so H ∩ N = 1, as
required.

(d) Suppose that the Sylow p′-subgroup Gp′ of G reduces into H and H∗. Since both H
and H∗ complement N = GF by (c), we have Op′(H)N/N = Op′(G/N) = Op′(H∗)N/N . So
Op′(H∗) = Gp′ ∩ NOp′(H) = Op′(H) and thus H = H∗ by (a).

Our next lemma is the key for finding a prefactorized F-projectors.

5.1.2 Lemma. Let π be a set of primes and suppose that the group G is the product of
two subgroups A and B. Further, assume that A and B have Sylow subgroups Aπ, Aπ′ , Bπ and
Bπ′ respectively such that A = Aπ × Aπ′ and B = Bπ × Bπ′. If AπBπ is a Sylow π-subgroup
of G and N is a normal π′-subgroup of G such that L/N = Oπ(G/N) is a prefactorized
subgroup of G/N , then L ∩ AπBπ is a prefactorized Sylow π-subgroup of L.

Proof. By hypothesis, we have L/N = (L/N ∩ AN/N)(L/N ∩ BN/N) and so

L = (L ∩ AN)(L ∩ BN) = (L ∩ A)N(L ∩ B)

by the modular law. Since L/N is a π-group, it follows that Aπ′ ∩ L ≤ N and Bπ′ ∩ L ≤
N . Since A = Aπ × Aπ′ , we have L ∩ A = (L ∩ Aπ) × (L ∩ Aπ′), and hence we obtain
L = (L ∩ Aπ)(L ∩ Bπ)N . Now the set (L ∩ Aπ)(L ∩ Bπ) is clearly contained in L ∩ AπBπ

which is a π-group. Put A∗ = (L ∩ Aπ)N and B∗ = (L ∩ Bπ)N , then Proposition 2.1.4 (a),
applied to L = A∗B∗, shows that (L ∩ Aπ)(L ∩ Bπ) is a Sylow π-subgroup of L, and so
L ∩ AπBπ = (L ∩ Aπ)(L ∩ Bπ), as required.

Recall that a group is hypoabelian if it has a descending series with abelian factors. Hence
every soluble group is hypoabelian. Note also that the following theorem does not claim that
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F-projectors do exist in the group G or, in case they exist, that any Sylow basis of G reduces
into an F-projector of G.

5.1.3 Theorem. Let X be a QS-closed class of periodic locally soluble groups and suppose
that F is a local X-formation. Assume that G ∈ X and that H is an F-projector of G. If G is
hypoabelian or an U-group, then every Sylow basis of G reduces into at most one F-projector
of G.

Proof. Suppose that {Gp | p ∈ P} is a Sylow basis of G and that H and L are F-projectors
of G into which {Gp | p ∈ P} reduces.

Since G is hypoabelian or an U-group, there exists an ordinal α such that G possesses a
descending series

G = N0 # N1 # · · · # Nα = 1

whose factors Nβ/Nβ+1 are p-groups for some prime p depending on β < α. In case G is
hypoabelian, we may also assume that every factor Nβ/Nβ+1 is abelian. Let β < α, then
{GpNβ/Nβ | p ∈ P} reduces into the F-projectors HNβ/Nβ and LNβ/Nβ of G/Nβ , and so by
transfinite induction, we have HNβ = LNβ for all β < α. Thus if α is a limit ordinal, then
we have

H =
⋂

β<α

HNβ =
⋂

β<α

LNβ = L

by Lemma 1.6.1.
Otherwise, α has a predecessor α − 1. Then Nα−1 is a p-group for a prime p, and

HNα−1 = LNα−1. Now H and L are F-maximal subgroups of HNα−1 and {Gp | p ∈ P}
reduces into HNα−1 by Lemma 1.2.3 (d). In particular, if Gp′ = <Gq | q ∈ P, q #= p>, then
Gp′ reduces into HNα−1, H and L. The result now follows from Proposition 5.1.1 (b) if G ∈ U

and from Proposition 5.1.1 (d) if G is hypoabelian.

Since every U-group G possesses F-projectors by [GHT71] and by [Har71, Lemma 2.1],
there exists a Sylow basis of G reducing into a given subgroup of G, we have:

5.1.4 Corollary. Let X be a QS-closed class of U-groups and suppose that F is a local
X-formation. If G ∈ X, then every Sylow basis of G reduces into exactly one F-projector
of G.

Now we are ready to prove the main theorem of this section.

5.1.5 Theorem. Let X be a QS-closed class of U-groups and suppose that F is a local
X-formation of characteristic π. Moreover, let the X-group G be the product of two locally
nilpotent subgroups A and B. If G has a normal subgroup N such that G/N ∈ F and N has
a hypoabelian Sylow π-subgroup, then G has a unique prefactorized F-projector H, and this
F-projector contains Aπ ∩ Bπ. Thus if the characteristic π of F contains π(A) ∩ π(B), then
H is factorized.

Proof. By Corollary 5.1.4, there exists a unique F-projector H of G into which the Sylow
basis {ApBp | p ∈ P} of G reduces, and by Theorem 2.3.7, this is the only F-projector of G
which may be prefactorized.

In view of Lemma 1.5.1, every F-group is a π-group. Thus H is contained in the Sylow
π-subgroup AπBπ of G. Since H is also an F-projector of G by [GHT71, Theorem 5.4], it will
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suffice to show that H is a factorized subgroup of AπBπ. Since N ∩AπBπ is hypoabelian, we
may assume without loss of generality that G = AπBπ and that N is hypoabelian.

Now let
N = N1 # N2 # . . . # Nα = 1

be a descending normal series of N with abelian factors which are p-groups for suitable
primes p. Clearly, we may assume that α > 1. Let β < α, then the Sylow basis

{ApBpNβ/Nβ | p ∈ P}

of G/Nβ reduces into the F-projector HNβ/Nβ of G/Nβ and hence by induction on α, the
subgroup HNβ is factorized for all β < α. If α is a limit ordinal, then by Lemma 1.6.1,

H =
⋂

β<α

HNβ

and so H is factorized. Therefore assume that α has a predecessor. Now the Sylow ba-
sis {ApBp | p ∈ P} of G reduces into the factorized subgroup HNα−1, and consequently it
suffices to consider the case G = HNα−1. Since G/Nα−1 ∈ F and N is an abelian p-
group, also the F-residual GF of G is an abelian p-group. Thus we may assume without
loss of generality that N = GF. Then H complements N by Proposition 5.1.1 (c), and so
Op′(G/N) = Op′(H)N/N . Since Op′(G/N) is a prefactorized subgroup of G/N by Theo-
rem 2.4.1, it follows from Lemma 5.1.2 that Op′(H) = Ap′Bp′ ∩ Op′(H)N is prefactorized.
Moreover, Ap′ ∩ Op′(H)N = Ap′ ∩ Op′(H) is a normal subgroup of Ap′ , hence of A, and
similarly, Bp′ ∩Op′(H) is a normal subgroup of B. Therefore by [Wie58, Hilfssatz 7] (see also
[AFG92, Lemma 1.2.2]), the normalizer NG(Op′(H)) of Op′(H) = (Ap′∩Op′(H))(Bp′∩Op′(H))
is factorized. Since we have H = NG(Op′(H)) by Proposition 5.1.1 (a), it follows that H is
factorized.

Since by [Weh68, Theorem A1], every periodic locally soluble linear group is a soluble
U-group, we also have:

5.1.6 Corollary. Let X be a class of periodic locally soluble linear groups and suppose
that F is a local QSX-formation of characteristic π. Moreover, let the QSX-group G be the
product of two locally nilpotent subgroups A and B. Then G has a unique prefactorized F-
projector, and this F-projector contains Aπ ∩ Bπ. Thus if the characteristic π of F contains
π(A) ∩ π(B), then this F-projector is factorized.

5.2. System normalizers and Carter subgroups
of U-groups

Let G be an U-group which is the product of two locally nilpotent subgroups. If G is not
hypoabelian, the techniques used in the last section to prove the existence of a prefactorized
F-projector of G cannot be applied any more. This is mainly due to the fact that then
Proposition 5.1.1 (c) does not hold if GF is a nonabelian p-group. However, we have a positive
result about LN-projectors of G which will be proved using the following proposition. If G is
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a group with Sylow basis {Gp | p ∈ P}, then the subgroup H =
⋂

p∈P NG(Gp) is the system
normalizer of G associated with the Sylow basis {Gp | p ∈ P}.

5.2.1 Proposition. Suppose that the U-group G is the product of two locally nilpotent
subgroups. Then G has a factorized system normalizer.

Proof. Let {ApBp | p ∈ P} be the Sylow basis of G consisting of prefactorized Sylow sub-
groups of G. Then for each p ∈ P, Ap and Bp are normal subgroups of A and B, respectively,
and so by [Wie58, Hilfssatz 7], NG(ApBp) is factorized. Therefore also the system normalizer
D =

⋂
p∈P NG(ApBp) is factorized.

We define a Carter subgroup of an U-group to be an LN-projector. For equivalent definitions
of a Carter subgroup, see also [GHT71, Lemma 5.6]. The preceding result can now be used
to prove the existence of a unique factorized Carter subgroup.

5.2.2 Theorem. Suppose that the U-group G is the product of two locally nilpotent sub-
groups. Then G has a unique prefactorized Carter subgroup, and this Carter subgroup is
factorized.

Proof. By Corollary 5.1.4, there exists a unique Carter subgroup C of G into which the
Sylow basis {ApBp | p ∈ P} of G reduces. Therefore by Theorem 2.3.7, this is the only Carter
subgroup of G which may be prefactorized.

Let n denote the length of the Hirsch-Plotkin series of G. If n ≤ 2, the Carter subgroups
of G coincide with its system normalizers (see [GHT71, Theorem 5.1]). So in this case, the
result follows from Proposition 5.2.1. Therefore assume that n ≥ 3 and let R denote the
Hirsch-Plotkin radical of G. Then CR/R is a Carter subgroup of G/R into which the Sylow
basis {ApBpR/R | p ∈ P} of G/R reduces. Thus by induction on n, the subgroup CR of G is
factorized. Since C is also a Carter subgroup of CR and n(CR) = 2 < n, the subgroup C is
factorized in CR, hence in G.

5.3. Injectors and radicals of FC-groups

Let G be a locally soluble FC-group and F a Fitting set of G. Then by a result of Beidleman
and Karbe [BK87], G possesses F-injectors, and the F-injectors of G are locally conjugate. A
similar result about F-injectors, where F is a Fitting class of FC-groups, has been proved by
Tomkinson [Tom69b]; see also [Tom84].

The following theorem is the key to apply the results on finite products of two nilpo-
tent subgroups obtained in [AH94] to FC-groups being the product of two locally nilpotent
subgroups.

5.3.1 Theorem. Suppose that the periodic FC-group is the product of two locally nilpo-
tent subgroups A and B. Then every finite subset of G is contained in a finite subnormal
prefactorized subgroup of G.

Proof. Let X be a finite subset of G, then by [Tom84, Theorem 1.8], X is contained in a
finite normal subgroup N of G. By [Cer80, Lemma 3], cf. also [Keg65], N is contained in a
finite prefactorized subgroup H of G, and we may assume without loss of generality that no
proper prefactorized subgroup of H contains N .
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Similarly, K = HG is contained in a finite prefactorized subgroup L of G. Now let Y/N =
F (L/N), then by [Amb73] or [Pen73], Y is a factorized subgroup of L, and so H ∩ Y is
a prefactorized subgroup of G containing N . Therefore H ≤ Y by the choice of H and
H/N ≤ F (G/N) is a subnormal subgroup of L/N . Since HG is contained in L, the subgroup
H is also subnormal in HG ! G and so H is a prefactorized subnormal subgroup of G which
contains X.

For our purposes, it will be necessary to consider finite subsets of a factorizer of a normal
subgroup.

5.3.2 Proposition. Suppose that the periodic FC-group is the product of two locally
nilpotent subgroups A and B. If N is a normal subgroup of G and X = AN ∩ BN , then
every finite subset of X is contained in a finite prefactorized subgroup of X which is subnor-
mal in G.

Proof. Let {x1, . . . , xn} be a finite subset of X. By Theorem 5.3.1, {x1, . . . , xn} is con-
tained in a finite prefactorized subset S of G. We show that the prefactorized subgroup X∩S
is also subnormal in G. Let R/N = R(G/N), then R is factorized by Theorem 2.4.5, we have
X/N ≤ R/N . Thus S∩X is contained in S∩R. Since S is finite, (S∩R)/(S∩N) ∼= (S∩R)N/N
is nilpotent, and so S ∩ X is a subnormal subgroup of S ∩ R. Since R ∩ S ! S is subnormal
in G, this proves that X ∩ S is also a subnormal subgroup of G.

The next proposition follows directly from Proposition 5.3.2 and Lemma 1.6.3. It can be
used to reduce questions about injectors and radicals in FC-groups to factorizers of normal
subgroups.

5.3.3 Proposition. Suppose that the periodic FC-group is the product of two locally
nilpotent subgroups A and B. Let N be a normal subgroup of G and X = AN ∩ BN . If
F is a Fitting set of G and I is an F-injector of G, then X ∩ I is an F-injector of X and
XF = X ∩ GF .

For finite groups, the following theorem has been proved in [AH94, Proposition 3]. A
similar result also holds for CC-groups, see Theorem 5.4.4 below.

5.3.4 Theorem. Suppose that the periodic FC-group is the product of two locally nilpo-
tent subgroups A and B. If F is a Fitting set of G and I is a prefactorized F-injector of G,
then GF is prefactorized.

Proof. Let X = AGF ∩BGF , then X ∩ I is a prefactorized F-injector of X and XF = GF
by Proposition 5.3.3. Therefore we may assume that G = X. We show that in this case
I = GF . Let g ∈ I and let N be a finite normal subgroup of G that contains g. Then
N/N ∩ GF

∼= NGF/GF is finite. Since G/GF is locally nilpotent, this shows that I ∩ N is
subnormal in N and hence I ∩N is contained in NF = GF ∩N . Thus g ∈ GF , as required.

The following example shows that even a finite product of two nilpotent subgroups having
a factorized F-radical need not have a prefactorized F-injector.

5.3.5 Example. Let p and q be distinct primes and F = GF (q) Moreover, let H be the
semidirect product of a cyclic group Hp of order p with a faithful irreducible FHp-module Hq

(such a FHp-module exists by [DH92, B, Corollary 10.7]). Now let G = H×K, where K ∼= H,
and put A = Hp×Kq and B = Hq×Kp. If h and k are generators of Hp and Kp, respectively,
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set I = <hk> and F = {1, Ig | g ∈ G}. Now I is a Sylow p-subgroup of the normal subgroup
HqKqI of G, and so it follows from [DH92, VIII, Theorem 3.8] or by direct calculation that
F is a Fitting set of G. Clearly, I is an F-injector of G and GF = 1. Since A ∩ B = 1, this
shows that the F-radical of G is factorized.

Moreover, NG(I) ∩ HqKq = 1 and so NG(I) = HpKp is factorized. Thus [AH94, Proposi-
tion 1] shows that I is the only candidate for a prefactorized F-injector. But evidently I is
not prefactorized.

Let G be a periodic FC-group which is the product of two locally nilpotent subgroups A
and B and suppose that F is a Fitting set of G. The next lemma shows that in order to prove
that GF is prefactorized, it suffices to investigate the F-radicals of the finite prefactorized
subnormal subgroups of G.

5.3.6 Lemma. Let the periodic FC-group G be the product of two locally nilpotent sub-
groups A and B and F a Fitting set of G. Furthermore, suppose that for every finite subnormal
prefactorized subgroup S of G, the F-radical SF is prefactorized (factorized) in S. Then GF
is prefactorized (factorized). Conversely, if GF is factorized, then SF is a factorized subgroup
of S for every finite prefactorized subgroup S of G.

Proof. Suppose first that SF is prefactorized for every finite prefactorized subnormal sub-
group S of G and let g ∈ GF . Then by Theorem 5.3.1, g is contained in a finite subnormal
prefactorized subgroup S of G. Therefore g ∈ S ∩ GF = SF . Since the latter subgroup
is prefactorized, it follows that g ∈ (A ∩ SF )(B ∩ SF) ⊆ (A ∩ GF )(B ∩ GF ). Therefore
GF = (A ∩ GF )(B ∩GF ), as required. Now suppose that, in addition, the F-radical of every
prefactorized finite subnormal subgroup S of G contains A∩B ∩S. Then every g ∈ A∩B is
contained in a finite subnormal prefactorized subgroup V and g ∈ V ∩A∩B ⊆ VF ⊆ GF , as
required.

Conversely, if GF is a factorized subgroup of G and S is a subnormal prefactorized sub-
group of G, then SF = S ∩ GF , hence is a factorized subgroup of S.

The following proposition shows that an FC-group which is the product of two locally
nilpotent subgroups cannot have more than one prefactorized F-injector.

5.3.7 Proposition. Let F be a Fitting set of the FC-group G. If G is the product of two
locally nilpotent subgroups A and B, then G has at most one prefactorized F-injector.

Proof. Suppose that I and J are prefactorized F-injectors of G. By Theorem 2.4.5, the
set {ApBp | p ∈ P} is a Sylow basis of G, and by Theorem 2.3.7, {ApBp | p ∈ P} reduces into
both I and J .

Now by Theorem 5.3.1, every element g ∈ I is contained in a finite prefactorized subnormal
subgroup S of G. By Theorem 2.3.7, the Sylow basis {ApBp | p ∈ P} also reduces into S.
Therefore by Lemma 1.2.3 (c), the Sylow basis {ApBp ∩ S | p ∈ P} reduces into S ∩ I and
S ∩ J . Since S ∩ I and S ∩ J are F-injectors of S and the F-injectors of S are pronormal in S
by [DH92, VIII, Proposition 2.14], it follows from [DH92, I, Theorem 6.6] that I ∩S = J ∩S.
Therefore g ∈ J and consequently I = J , as required.

Now the main theorem of this section can be proved. It shows that, in order to determine
whether an F-injector or the F-radical of an FC-group which is the product of two locally
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nilpotent subgroups is factorized, it suffices to consider F-injectors or the F-radical of its
finite prefactorized subgroups.

5.3.8 Theorem. Suppose that the periodic FC-group is the product of two locally nilpo-
tent subgroups A and B and let F be a Fitting set of G. Then the following statements are
equivalent:

(a) For every prefactorized subgroup S of G, there exists a unique F-injector which is a
prefactorized (factorized) subgroup of S.

(b) For every prefactorized subgroup S of G, there exists an F-injector which is a pre-
factorized (factorized) subgroup of S.

(c) For every prefactorized subgroup S of G, the F-radical of S is a prefactorized (factor-
ized) subgroup of S.

(d) For every finite prefactorized subgroup S of G, there exists a unique F-injector which
is a prefactorized (factorized) subgroup of S.

(e) For every finite prefactorized subgroup S of G, there exists an F-injector which is a
prefactorized (factorized) subgroup of S.

(f) For every finite prefactorized subgroup S of G, the F-radical of S is a prefactorized
(factorized) subgroup of S.

Proof. The implications (a) ⇒ (b), (a) ⇒ (d), (b) ⇒ (e), (c) ⇒ (f) and (d) ⇒ (e) are
trivial. Moreover, (b) ⇒ (c) and (e) ⇒ (f) are a direct consequence of Theorem 5.3.4.

(f) ⇒ (d). Let S be a finite prefactorized subgroup of G. Since the F-radical of every
factorized subgroup of S is prefactorized (factorized), S has a unique prefactorized (factorized)
F-injector by [AH94, Theorem C*].

Thus it remains to show that (d) implies (a). Since G has at most one prefactorized
F-injector by Proposition 5.3.7, we only have to prove the existence of a prefactorized (fac-
torized) F-injector.

Let I be an F-injector of G into which the Sylow basis {ApBp | p ∈ P} reduces and let
g ∈ I. By Theorem 5.3.1, there exists a finite prefactorized subnormal subgroup S of G
which contains g. Since S is prefactorized, the Sylow basis {ApBp | p ∈ P} reduces into S.
Therefore by Lemma 1.2.3 (c), the Sylow basis {ApBp | p ∈ P} of G also reduces into the
intersection S ∩ I. Since S satisfies the hypothesis of [AH94, Theorem C*], S ∩ I is a pre-
factorized F-injector of S. Therefore g ∈ (S ∩ I ∩A)(S ∩ I ∩B) ⊆ (I ∩A)(I ∩B). This shows
that I is the unique prefactorized F-injector of G.

Now suppose that SF is factorized for every finite prefactorized subgroup of G. Then GF
is factorized by Lemma 5.3.6. Therefore we have A ∩ B ≤ GF ≤ I and so I is factorized.

For Fitting classes of periodic FC-groups, we thus obtain:

5.3.9 Corollary. Let X be a subgroup-closed class of periodic FC-groups and F an X-
Fitting class. If the X-group G is the product of two locally nilpotent subgroups A and B, then
the following statements are equivalent:

(a) For every prefactorized subgroup S of G, there exists a unique F-injector which is a
prefactorized (factorized) subgroup of S.
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(b) For every prefactorized subgroup S of G, the F-radical of S is a prefactorized (factor-
ized) subgroup of S.

(c) For every finite prefactorized subgroup S of G, there exists an F-injector which is a
prefactorized (factorized) subgroup of S.

(d) For every finite prefactorized subgroup S of G, the F-radical of S is a prefactorized
(factorized) subgroup of S.

The following is a simple criterion for a prefactorized F-radical and an F-injector of a
periodic FC-group to be factorized.

5.3.10 Proposition. Let F be a Fitting class of periodic locally soluble FC-groups of
characteristic π and suppose that the periodic FC-group G is the product of two locally nilpo-
tent subgroups A and B. Then A ∩ B ∩ GF = Aπ ∩ Bπ. Thus if GF is prefactorized, then
GF is factorized if and only if A ∩ B is a π-group. Moreover, a prefactorized F-injector is
factorized if and only if A ∩ B is a π-group

Proof. It follows from Proposition 5.3.3 that (A∩B)F = A∩B∩GF. Since GF is a π-group
by [Dix88, Lemma 2.2] and by Theorem 2.4.5 (e), the intersection A ∩ B is contained in the
Hirsch-Plotkin radical of G, we have A∩B∩GF = Aπ ∩Bπ. The statement about F-injectors
follow from the fact that GF is contained in every F-injector of G by Lemma 1.6.2.

Although we are mainly concerned with locally finite groups, it is also possible to deduce
from the above theorems some results about Fitting sets F of FC-groups which are not
necessarily periodic. For example, it is clear that Theorem 5.3.8 holds for non-periodic FC-
groups if we assume that F consists of periodic subgroups of G only and that the torsion
subgroup of G is factorized. For the prefactorized case, it obviously suffices to assume that
the torsion subgroup of G is prefactorized. Trivial examples show that the torsion subgroup
of an FC-group need not be prefactorized.

For Fitting classes of FC-groups containing infinite cyclic groups, a different result is
possible. To prove this, we need the following lemma, which might also be of independent
interest.

5.3.11 Lemma. Let G be a group such that G/Z(G) is periodic (locally finite) and let
G be the product of two subgroups A and B. Then there exists a prefactorized torsion-free
subgroup M of Z(G) such that G/M is periodic (locally finite).

Proof. By Zorn’s lemma, there exists a maximal torsion-free subgroup N of Z(G). Then
G/N is periodic. Let M = (A∩N)(B ∩N), then also M ≤ Z(G) is a normal subgroup of G.
Let g ∈ Z(G), then there exist a ∈ A and b ∈ B such that g = ab. Since A/A ∩ N and
B/B ∩N are periodic, there exists an integer n such that an ∈ A∩N and bn ∈ B ∩N . Since
g ∈ Z(G), we have gn = anbn ∈ M and so Z(G)/M is a periodic abelian group, hence is
locally finite. Therefore also G/M is periodic, and if G/Z(G) is locally finite, then also G/M
is locally finite.

We state the result about Fitting classes of FC-groups containing an infinite cyclic sub-
group in a slightly more general form.
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5.3.12 Theorem. Let the FC-group G be the product of two locally nilpotent subgroups
A and B. If F is a Fitting set of G which contains every torsion-free subgroup of Z(G), then
the following statements are equivalent:

(a) For every prefactorized subgroup S of G, there exists a unique F-injector which is a
prefactorized (factorized) subgroup of S.

(b) For every prefactorized subgroup S of G, the F-radical of S is a prefactorized (factor-
ized) subgroup of S.

(c) For every central-by-finite prefactorized subgroup S of G, there exists an F-injector
which is a prefactorized (factorized) subgroup of S.

(d) For every central-by-finite prefactorized subgroup S of G, the F-radical of S is a pre-
factorized (factorized) subgroup of S.

Proof. By Lemma 5.3.11, G possesses a torsion-free central prefactorized subgroup M
such that G/M is periodic, and since F contains every torsion-free subgroup of G, we have
M ∈ F . Now let

FG/M = {U/M | M ≤ U ≤ G,U ∈ F},

then it is easy to verify that FG/M is a Fitting set of G/M . If S is a prefactorized subgroup S
of G containing M , then SF/M is the FG/M -radical of G/M , and the subgroup I/M is an
FG/M -injector of G/M if and only if I is an an F-injector of G; see e.g. [Ens90, Proposition 8.1].
Therefore Theorem 5.3.8 may be applied to the factor group G/M with the Fitting set FG/M ,
and so the desired result follows from Proposition 1.1.3 (h).

For Fitting classes, this may be formulated as follows.

5.3.13 Corollary. Let the FC-group G be the product of two locally nilpotent subgroups
A and B. If F is a Fitting class of locally soluble FC-groups which contains an infinite cyclic
group, then the following statements are equivalent:

(a) For every prefactorized subgroup S of G, there exists a unique F-injector which is a
factorized subgroup of S.

(b) For every prefactorized subgroup S of G, the F-radical of S is a factorized subgroup
of S.

(c) For every central-by-finite prefactorized subgroup S of G, there exists an F-injector
which is a prefactorized subgroup of S.

(d) For every central-by-finite prefactorized subgroup S of G, the F-radical of S is a pre-
factorized subgroup of S.

Proof. Let F be the Fitting set consisting of all F-subgroups of G. Since F contains an
infinite cyclic group, F clearly contains all torsion-free subgroups of Z(G). Assume now that G
satisfies one of the above statements, then by the prefactorized case of Theorem 5.3.12, every
prefactorized subgroup S of G has a unique prefactorized F-injector, and SF is prefactorized.
Thus it remains to prove that the latter subgroups are factorized. Since F contains an infinite
cyclic group, by [Dix88, Lemma 2.2], it contains every locally nilpotent FC-group. Moreover,
by Theorem 2.4.8, the Hirsch-Plotkin radical of the prefactorized subgroup S of G is factorized
in S, and so A ∩ B ∩ S ≤ R(S) ≤ SF. Since SF is contained in every F-injector of S, also
every prefactorized F-injector of G is factorized.
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5.4. Injectors and radicals of CC-groups

We will now generalize some of the results about injectors and radicals of FC-groups which
are the product of two locally nilpotent subgroups to CC-groups. Note that if F is a Fitting
class of CC-groups, then by [Dix88], every locally soluble CC-group has F-injectors.

The following elementary observation is the key to transfer our results about FC-groups
to CC-groups.

5.4.1 Lemma. Suppose that the periodic CC-group is the product of two locally nilpotent
subgroups A and B. Then every finite subset of G is contained in a subnormal factorized
subgroup of G which is locally nilpotent-by-finite.

Proof. Let {x1, . . . , xn} be a finite subset of G. If R denotes the Hirsch-Plotkin radical
of G, then G/R is an FC-group by Lemma 2.4.7. Therefore by Theorem 5.3.1, HR/R is
contained in a finite prefactorized subnormal subgroup K/R of G/R. Since R is factorized
by Theorem 2.4.5 (e), also H is a factorized subgroup of G by Proposition 1.1.3.

For our results about F-radicals of CC-groups, we need a result similar to Proposi-
tion 5.3.2.

5.4.2 Proposition. Let G be a periodic CC-group which is the product of two locally
nilpotent subgroups A and B. If N is a normal subgroup of G and X = AN ∩BN , then every
finite subset of X is contained in a (locally nilpotent)-by-finite subgroup of X which is serial
in G.

Proof. Let {x1, . . . , xn} be a finite subset of X and S a locally nilpotent-by-finite subnor-
mal factorized subgroup of G containing {x1, . . . , xn}. Then also X ∩ S is factorized. Now
let R/N = R(G/N), then (X ∩ S)N/N ≤ R/N because R is factorized by Theorem 2.4.5.
Therefore X ∩ S is a subgroup of R ∩ S, hence is locally nilpotent. This shows that X ∩ S is
a serial subgroup of R ∩ S. Now R ∩ S is a normal subgroup of the subgroup S, which is in
turn subnormal in G. Hence X ∩ S is the required serial subgroup of G.

The next Proposition 5.4.3 is now a direct consequence of Lemma 1.6.3.

5.4.3 Proposition. Suppose that the periodic CC-group is the product of two locally
nilpotent subgroups A and B. Let N be a normal subgroup of G and X = AN ∩ BN . If
F is a Fitting set of G and I is an F-injector of G, then X ∩ I is an F-injector of X and
XF = X ∩ GF .

We are now able to prove the equivalent of Proposition 5.3.10.

5.4.4 Theorem. Suppose that the periodic CC-group G is the product of two locally nilpo-
tent subgroups A and B. Let F be a Fitting set of G and suppose that G has a prefactorized
(factorized) F-injector I. Then GF is prefactorized (factorized).

Proof. Let X = AGF ∩ BGF , then XF = X ∩ GF = GF and I ∩ X is a prefactorized
(factorized) injector of X. Therefore it suffices to consider the case when G = AGF = BGF .
But then G/GF is locally nilpotent, and hence I is serial in G. It follows that I ≤ GF and
I = GF which is prefactorized (factorized), as required.
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In view of Lemma 5.4.1, it is natural to study (locally nilpotent)-by-finite products of two
locally nilpotent subgroups. Note that by [Dix88, Lemma 2.2], the condition that GF must
contain the Hirsch-Plotkin radical of AπBπ in the next proposition is automatically satisfied
if F is the set of all F-subgroups of G, where F is a Fitting class of CC-groups. We have not
been able to provide a version which avoids this condition.

5.4.5 Proposition. Suppose that the periodic (locally nilpotent)-by-finite group G is the
product of two locally nilpotent subgroups and let F be a Fitting set of G and let π be a set
of primes such that every F-subgroup of G is a π-group. If GF contains the Hirsch-Plotkin
radical of AπBπ and SF is a prefactorized (factorized) subgroup of S for every prefactorized
subgroup S of G, then G has a prefactorized (factorized) F-injector I. Moreover, I is the
unique prefactorized F-injector of G.

Proof. By Lemma 1.6.3 and Lemma 5.4.1, N = GF is the union of the subgroups SF ,
where S is a prefactorized (locally nilpotent)-by-finite subnormal subgroups of G. Therefore
by Proposition 1.1.3 (d), N is prefactorized if the SF are prefactorized. Since A ∩ B is the
union of the subgroups A ∩ B ∩ S, it follows that GF is factorized if the SF are factorized.
In this case, by Lemma 1.6.2, also every F-injector of G contains A ∩ B. Hence it suffices to
show that I prefactorized.

Let I be an F-injector of G into which the Sylow basis {ApBp | p ∈ π} of AπBπ reduces.
Then the π-subgroup I is contained in AπBπ and so by [Ens90, Satz 7.2], I is also an F-
injector of AπBπ. Now assume that J is a prefactorized F-injector of G, then {ApBp | p ∈ P}
reduces into J , and since J is a π-group, it follows that J ≤ AπBπ. Therefore we may assume
without loss of generality that G = AπBπ. Let R denote the Hirsch-Plotkin radical of G, then
by hypothesis, R is contained in N . Now by[Ens90, Lemma 8.1], the set

FG/N = {H/GF | GF ≤ H ≤ G,H ∈ F}

is a Fitting set of G/N , and I/N and J/N are FG/N -injectors of G/N . Let S be a prefactorized
subgroup of G containing N , then SF/N is the FG/N -radical of S/N and S ∩ I and S ∩J are
F-injectors of S. Therefore G/N , together with its Fitting set FG/N , satisfies the hypothesis
of Theorem 5.3.8 (e), whence I/N = J/N is the unique prefactorized FG/N -injector of G/N .
Since N is prefactorized, it follows that I itself is prefactorized and I = J , as required.

As in the case of FC-groups, we state first the result about Fitting classes of CC-groups
containing an infinite cyclic subgroup in a slightly more general form.

5.4.6 Theorem. Let the CC-group G be the product of two locally nilpotent subgroups A
and B and suppose that F is a Fitting set of G. If GF contains the Hirsch-Plotkin radical
of G, then the following statements are equivalent:

(a) For every prefactorized subgroup S of G, there exists a unique F-injector which is a
factorized subgroup of S.

(b) For every prefactorized subgroup S of G, the F-radical of S is a factorized subgroup
of S.

(c) For every (locally nilpotent)-by-finite prefactorized subgroup S of G, there exists an
F-injector which is a prefactorized (factorized) subgroup of S.

(d) For every (locally nilpotent)-by-finite prefactorized subgroup S of G, the F-radical of S
is a prefactorized (factorized) subgroup of S.
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Proof. Let R = R(G) and put

FG/R = {U/R | R ≤ U ≤ G,U ∈ F},

then FG/R is a Fitting set of G/R. Let S be a prefactorized subgroup S of G containing R,
then SF/R is the FG/R-radical of G/R, and the subgroup I/R is an FG/R-injector of G/R
if and only if I is an an F-injector of G; see e.g. [Ens90, Proposition 8.1]. In view of Propo-
sition 1.1.3 (h), the result now follows by applying Theorem 5.3.8 to the Fitting set FG/R

of G/R.

Note that, as in Corollary 5.3.13, the radicals and injectors in the following theorem are
factorized if the Fitting class contains an infinite cyclic group.

5.4.7 Theorem. Let the CC-group G be the product of two locally nilpotent subgroups A
and B and suppose that F is a Fitting class of CC-groups. If G is periodic or F contains an
infinite cyclic group, then the following statements are equivalent:

(a) For every prefactorized subgroup S of G, there exists a unique F-injector which is a
prefactorized (factorized) subgroup of S.

(b) For every prefactorized subgroup S of G, there exists an F-injector which is a pre-
factorized (factorized) subgroup of S.

(c) For every prefactorized subgroup S of G, the F-radical of S is a prefactorized (factor-
ized) subgroup of S.

(d) For every central-by-finite prefactorized subgroup S of G, there exists an F-injector
which is a prefactorized (factorized) subgroup of S.

(e) For every central-by-finite prefactorized subgroup S of G, the F-radical of S is a pre-
factorized (factorized) subgroup of S.

Proof. Suppose first that F contains an infinite cyclic group. Then by [Dix88, Lemma 2.2],
F contains the Hirsch-Plotkin radical of G. Therefore the Fitting set F consisting of all F-
subgroups of G satisfies the hypotheses of Theorem 5.4.6, and by that theorem, the above
statements are equivalent.

Otherwise G is periodic. Let π denote the characteristic of F, then by [Dix88, Lemma 2.2],
every F-group is a π-group, where π is the characteristic of F, and every CC-group which
is a locally nilpotent π-group is contained in F. Now consider the Sylow π-subgroup AπBπ

of G. Then the Hirsch-Plotkin radical of AπBπ is contained in the F-radical of AπBπ and so it
satisfies the hypotheses of Theorem 5.4.6. Thus if G satisfies (d) or (e), then Proposition 2.1.9
shows that also AπBπ satisfies (d) or (e). Therefore every prefactorized subgroup of AπBπ

has a factorized F-injector, and in view of [Ens90, Satz 7.2], the fact that every F-subgroup
is a π-group and Theorem 2.3.7, these F-injectors are the F-injectors of the prefactorized
subgroups of G. So by Theorem 5.4.4, also the F-radical of every prefactorized subgroup is
prefactorized.

Remark. The proof periodic case of Theorem 5.4.7 can also be formulated for Fitting
sets F of G. In this case, the following additional assumptions have to be made: (1) G is
periodic; (2) π is a set of primes such that every F-subgroup of G is a π-group; (3) the
Hirsch-Plotkin radical of the Sylow π-subgroup AπBπ of G is contained in F .



Chapter 6

Miscellaneous results

6.1. The class of all subgroups of products
of two finite nilpotent groups

In this section, we will study groups which can occur as subgroups of a product of two
nilpotent subgroups. First, we collect some properties of a product of two nilpotent groups.

6.1.1 Lemma. Suppose that the periodic radical group G is the product of two nilpotent
subgroups A and B. Then {ApBp | p ∈ P} is a Sylow basis of G and Ap′Bp′/Op′(G) is a
nilpotent p′-group of class c + d, where c and d are the nilpotency classes of Ap′ and Bp′.

Proof. By [FGS94, Proposition 2.6] and Lemma 1.2.2, {ApBp | p ∈ P} is a Sylow basis
of G. Moreover, [FGS94, Lemmas 2.1 and 2.7], we have [Ap′ , Bp′ ] ≤ Op′(G). Therefore the
group Ap′Bp′/Op′(G) is the product of its normal nilpotent subgroups Ap′Op′(G)/Op′(G) and
Bp′Op′(G)/Op′(G) of classes c and d, respectively. Thus by Fitting’s theorem (see e.g. [Rob82,
Theorem 5.2.8]), Ap′Bp′/Op′(G) is nilpotent of class at most c + d.

Conversely, groups satisfying the properties obtained in Lemma 6.1.1 can often be embed-
ded in a product of two nilpotent subgroups.

6.1.2 Proposition. Suppose that the group G possesses a Sylow basis {Gp | p ∈ P} and
for every set of primes π, let Gπ = <Gp | p ∈ π>. Then:

(a) If π(G) is finite and Gp′/Op′(G) is nilpotent (locally nilpotent) for every prime p, then
G can be embedded into a periodic product H of two nilpotent (locally nilpotent) groups which
satisfies |π(H)| < ∞.

(b) If there exist integers c and d such that for every prime p, the group Gp is nilpotent
of class at most c and the factor group Gp′/Op′G) is nilpotent of class at most d, then G can
be embedded into a product H of two nilpotent groups of classes at most c and d, respectively.
If G has finite exponent n, then H can be chosen to have exponent n.

Proof. Form the cartesian product

H =
∏

p∈P
G/Op′(G),

then clearly the map α : g → (gOp′(G))p∈P is a monomorphism from G to H. Now put

A =
∏

p∈P
GpOp′(G)/Op′(G) and B =

∏

p∈P
Gp′/Op′(G),
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then we have H = AB since it follows from Lemma 1.2.2 that

G/Op′(G) = (GpOp′(G)/Op′(G))(Gp′/Op′(G))

for every prime p.
If π(G) is finite, then the above cartesian products are in fact finite direct products, and

so A and B are nilpotent (locally nilpotent) and π(H) is finite. If G is finite, then also H, A
and B are finite. This proves (a).

Now suppose that for every prime p, the groups Gp and Gp′/Op′(G) have nilpotency classes
at most c and d, respectively. Then also their cartesian products A and B have nilpotency
classes c and d, respectively. Moreover, if G has finite exponent n, then also the cartesian
product H has exponent dividing n. Since the homomorphism α is a monomorphism, H has
exponent n.

Thus from Lemma 6.1.1 and Proposition 6.1.2 (a), we obtain:

6.1.3 Corollary. Let G be a periodic radical group such that π(G) is finite Then G can
be embedded into a group which is the product H of two nilpotent subgroups if and only if
G possesses a Sylow basis {Gp | p ∈ P} such that Gp′/Op′(G) is nilpotent for every prime p,
where Gp′ = <Gq | q ∈ P, q #= p>. Moreover, in this case, H may be chosen such that H is
periodic and π(H) is finite.

A similar argument also allows to characterize the class of all finite groups which can be
embedded into a product of two finite nilpotent subgroups. In the next lemma, we investigate
this class of groups further. Note also that every finite group G satisfying one of the statements
of the following lemma possesses Hall π-subgroups for every set π of primes, hence is soluble
by a well-known theorem of Hall.

6.1.4 Lemma. Let G be a finite group. Then the following statements about G are equiv-
alent.

(a) G/Oπ(G) has a nilpotent Hall π-subgroup for all sets π of primes.

(b) G/Oπ,π′(G) has a nilpotent Hall π-subgroup for all sets π of primes.

(c) G/Op′(G) has a nilpotent Hall p′-subgroup for all primes p.

(d) G/Op′,p(G) has a nilpotent Hall p′-subgroup for all primes p.

(e) G/O{p,q}(G) has a nilpotent Hall {p, q}-subgroup for all primes p, q.

Proof. Clearly, (a) implies (c) and (e); moreover, (d) follows from (b). If G/Oπ(G) has a
nilpotent Hall π-subgroup, the same is clearly true for G/Oπ,π′(G). Therefore (a) implies (b)
and (d) is a consequence of (c). Thus it remains to show that (a) follows from both (d) and
(e).

Suppose first that G satisfies (d) and let π be a set of primes. Moreover, for every prime p,
let Hp′/Op′,p(G) be a nilpotent Hall p′-subgroup of G. Then by the Schur-Zassenhaus the-
orem, Op′,p(G)/Op′(G) has a complement Lp′/Op′(G) in Hp′/Op′(G). Clearly, Lp′ is a Hall
p′-subgroup of G and Lp′/Op′(G) is nilpotent. Now L =

⋂
p∈π′ Lp′ is a Hall π-subgroup of G

and L/Oπ(G) ∼= L/L ∩
⋂

p∈π′ Op′(G) which is nilpotent. Therefore G satisfies (a).
Finally, assume that the finite group G satisfies (e). As a first step, we prove that G is

a soluble group. Since condition (e) is inherited by factor groups of G, by induction on the
group order of G, we may assume that G possesses a unique minimal normal subgroup K such
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that G/K is soluble. Since O{p,q}(G) is soluble by Burnside’s p-q-theorem, we may assume
that O{p,q}(G) = 1 for all primes p, q. Therefore G has a nilpotent Hall {p, q}-subgroup G{p,q}
for all primes p and q. Fix a prime p dividing |G| and let P be a Sylow p-subgroup of G. If
q is a prime distinct from p and Gp and Gq are the unique Sylow p- and Sylow q-subgroup
of G{p,q}, then P = Gg

p for a suitable element g ∈ G. So the Sylow q-subgroup G∗
q = Gg

q of G
centralizes P . Therefore also the subgroup C = <G∗

q | q ∈ P, q #= p> centralizes Gp and so P
is a normal subgroup of <P,C> = G. But then K ≤ P is soluble, hence G is soluble. This
proves that every finite group G satisfying (e) is soluble.

Thus if π is an arbitrary set of primes, and G is a group satisfying (e), then G possesses
a Hall π-subgroup H, and since for every p ∈ π, a Sylow p-subgroup Hp of H is a Sylow
p-subgroup of G , we have [Hp,Hq] ≤ O{p,q}(G) ≤ Oπ(G) for all primes p, q ∈ π. This shows
that H/Oπ(G) is nilpotent. Therefore G satisfies (a).

Let X be a class of periodic groups and F a local X-formation of characteristic π. A
preformation function f for F is called full if Spf(p) = f(p) for every prime p ∈ π. It is called
integrated if f(p) ⊆ F for every p ∈ π. Note that by [DH92, IV, Theorem 3.7], every local
formation of finite groups has a unique formation function which is both full and integrated.

6.1.5 Theorem. Let F denote the class of all finite groups such that G/Oπ(G) has a
nilpotent Hall π-subgroup for every set π of primes. Moreover, let Y be the class of all groups
which are the product of two finite nilpotent subgroups. Then the class F has the following
properties:

(a) F is a class of finite soluble groups; hence if G ∈ F, then every Hall π-subgroup
of G/Oπ(G) is nilpotent.

(b) For every prime p, let f(p) be the class of all finite soluble groups having a nilpotent
Hall p′-subgroup. Then f(p) is closed with respect to subgroups, factor groups and products of
finitely many normal subgroups. In particular, f(p) is a formation of finite soluble groups.

(c) F is the local formation of finite soluble groups defined by the formation function f .
Moreover, f is a (the unique) full and integrated local function for F.

(d) F is a subgroup-closed Fitting class of finite soluble groups.

(e) F = SY, i.e. F is the class of all subgroups of products of two finite nilpotent subgroups.

(f) F is the smallest Schunck class of finite soluble groups which contains all products of
two finite nilpotent subgroups.

(g) F is the smallest subgroup-closed Fitting class of finite soluble groups which contains
all products of two finite nilpotent groups.

(h) F is the smallest formation of finite soluble groups which contains F.

Proof. (a) If H/Oπ(G) is a Hall π-subgroup of G/Oπ(G), then H is a Hall π-subgroup
of G. Therefore every G ∈ F possesses Hall subgroups for every set π of primes, and so every
F-group is soluble. In particular, the Hall π-subgroups of G/Oπ(G) are conjugate, hence
isomorphic.

(b) Let p be a prime. Then it is straightforward to check that f(p) is closed with respect
to factor groups and subgroups. Now suppose that the finite soluble group G has normal
subgroups N1 and N2 ∈ f(p) such that G = N1N2 and let Gp and Gp′ be a Sylow p-subgroup
and a Hall p′-subgroup of G. Since Gp and Gp′ reduce into every normal subgroup of G, we
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have N1 = (Gp ∩ N1)(Gp′ ∩ N1) and N2 = (Gp ∩ N2)(Gp′ ∩ N2); in particular Gp′ ∩ N1 and
Gp′ ∩N2 are Hall p′-subgroups of N1 and N2, respectively. Therefore by order reasons Gp′ is
the product of its normal nilpotent subgroups Gp′ ∩N1 and Gp′ ∩N2. It follows from Fitting’s
theorem that Gp′ is nilpotent. Consequently, f(p) is closed with respect to products of finitely
many normal subgroups. Since f(p) is in particular closed with respect to subgroups of finite
direct products, it is residually closed with respect to the class of all finite soluble groups.

(c) If G/Op(G) ∈ f(p), then G ∈ f(p) by the Schur-Zassenhaus theorem. so that f is a
full formation function. Now let G be the saturated formation defined by f , then

G =
⋂

p∈P
Sp′Spf(p) =

⋂

p∈P
Sp′f(p)

and so G is the class of all groups G such that G/Op′(G) has a nilpotent Hall p′-subgroup for
every prime p. Therefore G = F by Lemma 6.1.4. Since every group in f(p) is the product two
nilpotent subgroups, namely of a Sylow p-subgroup and a Hall p′-subgroup, we have f(p) ⊆ F

by Lemma 6.1.1 and so f is integrated.
(d) By [DH92, IV, Proposition 3.14], F is closed with respect to subgroups and products

of finitely many normal subgroups. Therefore by [DH92, II, Proposition 2.11], F is a Fitting
class of finite groups.

(e) Suppose that the group G is the product of two nilpotent subgroups A and B. Then
by Lemma 6.1.1 and Lemma 6.1.4, for every set of primes π, the group G/Oπ(G) has a
nilpotent Hall π-subgroup. Therefore Y is contained in F, and since F is closed with respect
to subgroups, we also have SY ⊆ F.

Conversely, if G ∈ F, then by Proposition 6.1.2, G can be embedded in a product of two
finite nilpotent groups, and so F ⊆ SY.

(f) Let H be the intersection of all Schunck classes of finite soluble groups containing Y.
Then H ⊆ F because every local formation of finite soluble groups is a Schunck class by
[DH92, IV, Theorem 3.3] and [DH92, III, Proposition 4.1]. Conversely, in order to show that
F is contained in H, it suffices to show that every primitive F-group G belongs to H. Since G is
soluble, G has a unique minimal normal subgroup N which is an elementary abelian p-group
for some prime p and Op′(G) = 1; see [DH92, A, Theorem 15.6]. But then the F-group G has
a nilpotent Hall p′-group and so G is the product of a Sylow p-subgroup and a nilpotent Hall
p′-subgroup. Thus G ∈ Y ⊆ H.

(g) Since F is evidently the smallest subgroup-closed class containing all products of two
finite nilpotent groups, this follows at once from (d).

(h) Since Y is closed with respect to finite direct products, we have RY∩S∗ ⊆ SDY∩S∗ ⊆
S(DF∩S∗) = F; see [DH92, II, Lemma 1.18]. On the other hand, if G ∈ F, then G/Op′(G) is
the product of a Sylow p- and a nilpotent Hall p′-subgroup. Since

⋂
p∈P Op′(G) = 1, it follows

that G ∈ RY ∩ S∗ and so F = RY ∩ S∗. Now let G be an S∗-formation containing Y, then
F = RY ∩ S∗ is contained in RG ∩ S∗ = G. Since F is in particular a formation, this shows
that F is the unique smallest formation which contains Y.

Recall that a class F is saturated if G ∈ F whenever G/N ∈ F for some normal subgroup N
of G which is contained in the Frattini subgroup of G. In particular, every Schunck class, and
thus every local formation is saturated; see [DH92, III, Lemma 2.10].
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It seems to be an open question whether F is the smallest Fitting class (the smallest
Sn-closed class, the smallest N0-closed class, the smallest saturated class) containing every
product of two finite nilpotent subgroups.

The following example shows that the class of all products of two finite nilpotent subgroups
is not closed with respect to subnormal subgroups, and in particular that a subgroup of a
product of two finite nilpotent groups need not be a product of two nilpotent groups.

6.1.6 Example. Let p and r be distinct primes. Then by Dirichlet’s remainder theorem,
for every choice of p and r, there are infinitely many primes q and s such that p divides q− 1
and pr divides s−1. In particular, q and s may be chosen such that p, q, r and s are distinct.
(For instance, take p = 2, r = 3, q = 5 and r = 7.)

Now let Cqr = <xq> × <xr> be a direct product of a cyclic group <xq> of order q
and a cyclic group <xr> of order r. Let n be a primitive p-th root modulo q and let xp be
the automorphism of Cqr defined by x

xp
q = xn

q and x
xp
r = xr. Let L = Cqr % <xp>, then

L′ = <xq> is cyclic of order q and L = L′ % <xpxr>. Moreover, F (L) = Cqr and so by
[DH92, B, Corollary 10.7], L has a faithful irreducible GF (p)-module N of order pm, say. (If
p = 2, r = 3 and q = 5, then N has order 24). Form the semidirect product H = L " N .
Furthermore, let ypr be an automorphism of order pr of a cyclic group <ys> of order s and
put K = <ypr>" <ys>. Form the direct product G = H ×K, then clearly, G is the product
of its nilpotent subgroups Hp × Ks′ and Hp′ × Ks.

•G

!
!"

"pr pr pr

!
! "

"• •M •

!
!"

" !
!"

"s q

!
! "

"!
! "

"•H • • NK
"

" !
!"

"
"

"pr pm

"
"!

! "
"

"
"•H ′ • K

"
"

"
" !

!
q pr"

"
"

"!
!

•N • F (K)"
" !

!

pm s"
"!

!
•
1

The structure of the group G in Example 6.1.6

Now let M = <N,xq, xp · xr · ypr, ys> which is a normal subgroup of G with |G : M | = pr.
We show that M is not the product of two nilpotent subgroups.

Assume that M = AB with A, B nilpotent. Since G = MH = MK, the factor groups
MH/H ∼= K and MK/K ∼= H are primitive. Then by [Gro73, Theorem 1], without loss
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of generality AK/K is a Sylow p-subgroup of G/K. Since the order of a Sylow p-subgroup
of G/K equals that of M , the p-component Ap of A is a Sylow p-subgroup of M . Since A is
nilpotent, the Sylow r-subgroup Ar of A centralizes N ≤ Mp ≤ A, hence ArK/K is contained
in CG/K(NK/K). Since CG/K(NK/K) = NK/K by [DH92, A, Theorem 15.6] and NK/K
is a p-group, it follows that Ar ≤ K ∩ M , which is an s-group. Consequently Ar = 1. If q
divides the order of A, then Aq is a Sylow q-subgroup of M , hence G/NK ∼= L has a nilpotent
Hall {p, q}-subgroup, a contradiction. This shows that Aq = 1. Similarly, if we had As #= 1,
then G/H would have a nilpotent Hall {p, s}-subgroup. This contradiction shows that As = 1
and A is a Sylow p-subgroup of M . Thus B must contain a Hall p′-subgroup of M . But then
G/K and G/H would have to have nilpotent Hall p′-subgroups. Since this is not the case, M
is not the product of two nilpotent subgroups.

6.2. Products of more than two
finite nilpotent groups

While the main results in Section 1.1 hold for arbitrary products of groups, most theorems
about prefactorized subgroups products of two nilpotent groups and products of locally nilpo-
tent groups do not hold for products of more than two subgroups. The only exception known
to the author is the existence of prefactorized Sylow bases in such products; see [Wie51,
Satz 1]. The next proposition shows that even in the finite case, the main results of Chap-
ter 2 cannot be extended to products of more than two locally nilpotent subgroups.

6.2.1 Proposition. There is a finite group which is the product of three pairwise per-
mutable nilpotent subgroups A, B and C such that F (G) #= (A∩F (G))(B∩F (G))(C ∩F (G)).
In addition, G may be chosen such that

(a) |G| = pαqβ for given distinct primes p and q and suitable integers α and β.

(b) A = G′ = Oq(G) and BC is a Sylow p-subgroup of G.

(c) A < F (G) and B ∩ F (G) = C ∩ F (G) = 1.

(d) The subgroups Op(G), F (G), Oq′,q(G) of G are not prefactorized.

(e) If Bg #= B, then Bg does not permute with C. In particular, there exists a g ∈ G such
that C does not permute with Bg.

Proof. Let p and q be distinct primes and let H be the product of a normal q-group A
with a cyclic group B = <b> of order p such that B does not centralize A (for example, let
H be the regular wreath product of a group of order q with a group of order p). Now let
G = H × <x>, where <x> is a cyclic group of order p. Let C = <bx>, then A = Oq(G)
and BC is a Sylow p-subgroup of G. This shows that AB, AC and BC are subgroups of G
and G = ABC. Now B ∩Oq(G) = C ∩Oq(G) = 1 and so Oq(G) = <x> is not prefactorized.
Also, F (G) = A × <x> and B ∩ F (G) = C ∩ F (G) = 1 which shows that F (G) = Oq′,q(G)
is not prefactorized.

We show that the conjugates of B do not permute with C: Let g ∈ G with BgC = CBg.
Then BgC is a Sylow p-subgroup of G and so <x> = Op(G) is contained in BgC. Since
bx ∈ C, the subgroup BgC contains b. Since H ! G, we have Bg ≤ H and so BgC ∩H = Bg
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is a Sylow p-subgroups of H containing b and bg. Since Bg is a cyclic p-group, we have
Bg = <bg> = <b> = B and so g ∈ NG(B). This shows that BgC is a group if and only if
B = Bg.

Let G be the product of three pairwise permutable finite nilpotent subgroups. The fol-
lowing proposition shows that in general, no term of the upper Fitting series of G except 1
and G is prefactorized.

6.2.2 Proposition. For every integer k ≥ 2, there is a finite group of Fitting length k
which is the product of three pairwise permutable nilpotent subgroups A, B and C, such that
for every n with 1 ≤ n ≤ k − 1, Fn(G) #= (A ∩ Fn(G))(B ∩ Fn(G))(C ∩ Fn(G)). The example
may be chosen such that

(a) For any two prescribed primes p and q, G is a {p, q}-group.

(b) The subgroups A ∩ Fn(G), B ∩ Fn(G) and C ∩ Fn(G) are mutually permutable.

Proof. Let p and q be distinct primes and suppose that Zp and Zq are groups of order
p and q respectively. Further, set H0 = 1 and H1 = Zp and for every integer n ≥ 2, let
Hn = (Hn−2

∩∪ Zq) ∩∪ Zp. Then each Hn has Fitting length n and Hn = Zp " Op(Hn). Now
let Gn = Zp × Hn, then Gn can be identified with the group

{(x, y, z) | x, y ∈ Zp, z ∈ Op(Hn)}

with (x1, y1, z1)(x2, y2, z2) = (x1x2, y1y2, z
y2
1 z2) as the rule of multiplication. Now let An

and Bn be a Sylow p- and a Sylow q-subgroup of Hn = {(1, y, z) | y ∈ Zp, z ∈ Op(Hn)}
respectively and Cn = {(x, x, 1) | x ∈ Zp}. Then AnBn = Hn, AnCn is a Sylow p-subgroup
of Gn and it is straightforward to check that also BnCn = {(x, x, z) | x ∈ Zp, z ∈ Bn} is a
subgroup of Gn. Therefore Gn = AnBnCn is the product of the pairwise permutable subgroups
An, Bn and Cn. Now let Kn = Fn−1(Gn) = Zp × Op(Hn), then An ∩ Kn and Bn = Bn ∩ Kn

are a Sylow p- and a Sylow q-subgroup of Op(Hn) respectively and Cn ∩ Kn = 1. Therefore
the (pairwise permutable) subgroups An ∩ Kn, Bn ∩ Kn and Cn ∩ Kn do not generate Kn.
Therefore Kn is not prefactorized.

Now let G = #$k
i=2 Gi, then G is the product of its pairwise permutable subgroups A =

#$k
i=2 Ai, B = #$k

i=2 Bi and C = #$k
i=2 Ci. If 1 ≤ n ≤ k − 1, then Fn(G) = #$k

i=2 Fn(Gi). Let φ
be the canonical projection of G onto Gn+1. Then Aφ = An+1, Bφ = Bn+1 and Cφ = Cn+1.
Moreover, Fn(G)φ = Fn(Gn+1) = Kn+1. So if Fn(G) were prefactorized, then Kn+1 would be
a prefactorized subgroup of Gn+1 = An+1Bn+1Cn+1, a contradiction.

Let the finite group G be the product of two subgroups A and B. If A0 and B0 are normal
subgroups of A and B, then by a result of Wielandt [Wie58, Hilfssatz 7], see also [AFG92,
Lemma 1.2.5], the normalizer NG(<A0, B0>) is factorized. However, also this important result
does not hold in finite products of more than two nilpotent subgroups.

6.2.3 Example. Let p and q be two primes with p
∣∣ q − 1. Let H and K be nonabelian

groups of order pq and put G = H ×K. Let A = Hp ×Kq and B = Hq ×Kp. Then G = AB.
Let x and y be generators of Hq and Kq respectively, then C = <xy> permutes with A
and B. Now L = NG(C) has index p in G but A ∩ L = Kq and B ∩ L = Hq which shows
that the group (L ∩ A)(L ∩ B)(L ∩ C) = Hq × Hq has index p2 in G. Therefore L is not
prefactorized in G = ABC.
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List of symbols
Generally, uppercase Latin letters denote groups (A, B, G, H, . . . ) or sets, lowercase (Latin)
letters symbolize elements of sets or groups. Uppercase Fraktur letters (F, G, H, X, . . . )
represent classes of groups, while Script (F , G, . . . ) is used for sets of (sub)groups. Lowercase
and uppercase Greek letters usually denote homomorphisms of groups (α, β, . . . ) and sets of
automorphisms (Γ) or sets of primes (π, σ, τ . . . ).

In the following, G and H will be groups, A and B are subgroups of G and g, h ∈ G. Γ
will be a set acting on G via endomorphisms and α ∈ Γ. X and Y represent sets, while the
letters k, m, n and p denote integers and p is a prime. Moreover π is a set of primes. S is a
set of subgroups of G and X is a class of groups.

X ⊆ Y the set X is contained in the set Y
X \ Y the difference of the set X and the set Y

N the set of positive integers
N0 the set of nonnegative integers
GF (pn) the finite field of order pn

(m,n) the greatest common divisor of the integers m and n
P the set of primes
π′ the set P \ π
p′ the set P \ {p}

G ≤ H G is a subgroup of the group H
G ∼= H G is isomorphic with H
G × H the direct product of G and H

G ∩∪ H the regular wreath product of G and H
<X> the subgroup of G generated by the elements of X ⊆ G

<x1, x2, . . .> the subgroup generated by the set {x1, x2, . . .}
gh = h−1gh
Xα the set {xα | x ∈ X}
XΓ the subgroup of G generated by the set {xα | x ∈ X, α ∈ Γ}
XΓ =

⋂
α∈Γ Xα

[g, α] the commutator of g and α; [g, α] = g−1gα

[A,B] the subgroup of G generated by all [a, b] where a ∈ A and b ∈ B
NΓ(X) normalizer of the set X: NΓ(X) = {α ∈ Γ | [x, α] ∈ X for all x ∈ X}
CΓ(X) centralizer of the set X: CΓ(X) = {α ∈ Γ | [x, α] = 1 for all x ∈ X}
Z(G) centre of the group G; Z(G) = CG(G)
G(n) n-th derived subgroup of G defined recursively by G(0) = G

and G(n+1) = [G(n), G(n)] for n ≥ 0
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G′, G′′ = G(1), G(2)

R(G) Hirsch-Plotkin radical of G, the subgroup generated by the normal locally
nilpotent subgroups of G

F (G) Fitting subgroup of G, the subgroup generated by the normal nilpotent
subgroups of G

J(G) the intersection of all normal subgroups of G which have finite index in G
Φ(G) Frattini-subgroup of G, the intersection of all maximal subgroups of G, or

Φ(G) = G if no maximal subgroups exists.
Oπ(G) the intersection of all normal subgroups N of G such that G/N is a

π-group
Oπ′,π(G) = Oπ(Oπ′(G))
Oπ(G) the maximal normal π-subgroup of G
Oπ′,π(G) defined by Oπ′,π(G)/Oπ′(G) = Oπ(G/Oπ′(G))
Gπ a Sylow π-subgroup of the group G
G[n] the subgroup of G generated by all g ∈ G with gn = 1
GX the intersection of all normal subgroups N of G such that G/N ∈ X

GS the subgroup of G generated by the subgroups S ∈ S which are serial in G
|G| the cardinality of the set G
π(G) the set of primes dividing the order of some element of G
A the class of all periodic abelian groups
N the class of all periodic nilpotent groups
S the class of all periodic locally soluble groups
Xπ the class of all X-groups which are π-groups
X∗ the class of all finite X-groups
QX the class of all factor groups of X-groups
SX the class of all subgroups of X-groups
LX the class of all group G such that every finite subset of G is contained in

an X-subgroups of G
SnX the class of all subnormal subgroups of X-groups
NX the class of all groups which are the product of their normal X-subgroups
RX the class of all groups which possess a set N of normal subgroups such

that
⋂

N∈N N = 1 and G/N ∈ X for every N ∈ N
DX the class of all groups which are the direct product of X-groups
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