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Introduction

A group G is said to be the product of its subgroups G, for i € I if G is generated by the
G, and the set G,G; is a subgroup of G for all 4, j € I. In this terminology, a famous
result of P. Hall [24] published in 1937 can be formulated as follows: The finite soluble
groups (G are precisely the finite groups which are the product of certain of their Sylow
subgroups. This shows in particular that the finite soluble groups are groups which are
the product of certain of their nilpotent subgroups.

For about 20 years, it remained an open question whether the converse of the last
statement is also true, namely whether a finite group that is the product of certain
nilpotent subgroups is soluble. In 1955, 1t6 [32] obtained a first result in this direction,
namely that a product of two (possibly infinite) abelian subgroups is metabelian.

The original question was answered positively by Wielandt [45] and Kegel [33] in
1958 and 1961 respectively. Their result, stating that a finite group is soluble if and
only if it is the product of finitely many nilpotent subgroups, has become known as the
Kegel-Wielandt theorem.

This motivates the following general question: If the group G is the product of its
subgroups G, with ¢ € I, and certain group-theoretical properties of the G, are known,
what group-theoretical properties does the group G have?

One problem in answering this question is that in general, the group G is not uniquely
determined by the G, since the concept of a product of subgroups includes e.g. direct
and semidirect products. Observe however that these kinds of products are not typical
because the factors are not necessarily normal in G (for a finite group that is the product
of two nonnormal subgroups see Example 3.6.8 below).

A second question, often encountered when dealing with questions of the first type, is
the following: Which subgroups of G inherit the product structure of G, or, more con-
cretely, which subgroups of G are conjugate to (isomorphic to) a prefactorized subgroup
S of G, i.e. a subgroup that is the product of its subgroups S N G,?

In this Diplomarbeit, we will be concerned mainly with groups G that are the product
of two subgroups A and B. Then a subgroup S of G is prefactorized if S = (SNA)(SNB).
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A prefactorized subgroup that also contains AN B will be termed factorized. Chapter 1
will be dedicated to the study of factorized and in particular prefactorized subgroups in

the subgroup lattice of the group G = AB and in quotient groups.

Since products of finite nilpotent subgroups are soluble by the Kegel-Wielandt theo-
rem, we study in Chapter 2 finite groups GG which are the product of two subgroups and
which satisfy some properties related to solubility. Our results are based on a result of
Wielandt [44] who proved that for every prime p, the finite group G has a prefactorized
Sylow p-subgroup. We will show in particular that if GG is soluble, then it possesses a
Hall system that consists entirely of prefactorized Hall subgroups: a Hall system of this
type will play an important role in Section 3.3.

Furthermore, we will show in Section 2.2 and Section 2.3 that a relatively large number
of subgroups of G is prefactorized or factorized if A and B have coprime indices or
orders respectively: if GG is finite and soluble, then it is possible to find a prefactorized

or factorized subgroup among the conjugates of any subgroup.

In Chapter 3, we specialize to groups G that are the products of two nilpotent sub-
groups A and B. One of the main tools of this and the following chapter will be a
theorem due to Gross which gives important information about the structure of G when
G is primitive. This theorem will be proved in Section 3.2 in a somewhat more general
form, based on the proof of Gross’ result given in [4].

The rest of Chapter 3 is dedicated to finding prefactorized or factorized conjugates
for certain subgroups of G: we will show that for every abnormal subgroup of G,
there is exactly one factorized conjugate (Proposition 3.3.5). This result will then be
used to reduce the question whether certain pronormal subgroups of G are prefac-
torized or factorized to questions about normal subgroups. As a first application, we
will be able to improve a result of Heineken [28], showing that for every Schunck
class $ containing all finite nilpotent groups, G has a unique factorized $-projector.
More generally, we will show in Theorem 3.5.1 that every $)-maximal subgroup has a
factorized conjugate. However, these factorized subgroups are not necessarily isomor-
phic.

A corresponding result about §-injectors for arbitrary Fitting classes § does not hold
(see Example 3.6.8). Nevertheless, using our results about pronormal subgroups, we will
prove in Section 3.6 that a product of two finite nilpotent subgroups has a prefactorized
or factorized §-injector if the §-radical of every product of two finite nilpotent subgroups
is prefactorized or factorized respectively and that in this case, every finite group that
is the product of two nilpotent subgroups has exactly one prefactorized §-injector. By

Proposition 3.6.9, this result applies in particular to all saturated Fitting-formations and



Introduction 4

thus to all subgroup-closed Fitting classes. This result generalizes a well-known result of
Amberg [1] and Pennington [40] stating that the Fitting subgroup of a product of two
finite nilpotent subgroups is always factorized.

We do not know wheter our results about injectors and radicals can be extended to
certain other classes of subgroups. In this context, it is of interest to ask whether the
hypercentre of a product G of two finite nilpotent subgroups is prefactorized, since such
a group has a factorized system normalizer (see Corollary 3.3.13). On the other hand,
an example due to Gillam [19] shows that Z(G) is not necessarily prefactorized.

Also, a number of other characteristic subgroups of the group G = AB need not
be prefactorized (or factorized), among them the derived subgroup G’, the nilpotent
residual G* and the subgroups O™(G) (see Example 3.4.4).

If 7w is an arbitrary set of primes, we show in Chapter 4 how to obtain upper bounds
on the 7-length of a group that is the product of two finite nilpotent subgroups A and
B in terms of certain invariants of A and B from bounds on the p-length of a finite
soluble group in terms of a Sylow p-subgroup. We use the bounds found by Hall and
Higman [26], supplemented by some additional results of Gross [21] and Berger and
Gross [9] when p = 2, to show e.g. that for every set 7 of odd primes,

[.(G) < max{d(A),d(B)}

™

and thus for any set 7 of primes,
1.(G) < max{d(A),d(B)} + 1.

Our bounds for the p-lengths are best-possible in the sense of [26] whenever the bounds
in terms of the Sylow p-subgroups are best-possible.

As a further result, it will turn out that nilpotent length and the p-lengths of a group
that is the product of two finite nilpotent subgroups are not too far removed from each
other: We will show in Theorem 4.3.1 that

n(G) < 2 max {1,(G)},

< /
n(G) < 2pI€nﬂE:l}§IP’{lp (@)} +1,

and

n(G) < prengzip{lp(G) + lp,(G)}.

Using essentially the above results, the nilpotent length of a product G of two finite

nilpotent subgroups A and B can also be bounded in terms of invariants of A and B. In
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particular, we show that
n(G) < 2d(A) + max{0, 2d,(A) —4} +1
and

n(G) < d(A) + d(B) + max{0, d,(A) — 2, dy(B) — 2}.

These bounds are best-possible at least for groups of odd order.

Although it seems to be an open question whether the derived length of G can be
bounded by the derived lengths of A and B, we can still obtain some information about
the derived length of G: if 7 is the set of common prime divisors of the orders of A

and B, then we obtain in Section 4.4:
(G B(G) N O,(G)) < max{ey(A), Ldy(A)(dy(A) + 1)}
+ max{c2 B), 1dy(B)(dy(B) + 1)},
d(G/®(G) N OL(G)) = 3d(A) (d(A) + 1) + 3d(B)(d(B) + 1)
+ max{zdy(A ( 2(A) +1), 3d5(B)(dy(B) + 1)

1
2
1
2

and also
d(G/F(G)) < (d(A) + max{0,dy(A) — 1})(d(B) + max{0,d,(B) — 1}).

Finally, in Section 4.5, further structural information about the Fitting quotient group
G/F(G) will be obtained; this will give rise to relate the class of products of finite
nilpotent groups to other classes of finite soluble groups and in particular to the class of

groups ‘with many Sylow bases’ introduced by Huppert in [30].
The notation used is standard and follows Doerk and Hawkes [13], Robinson [43]

and Amberg, Franciosi and de Giovanni [4]. For details, the reader is referred to the list
of symbols at the end of the text.



Chapter 1
Basic properties of products of groups

1.1 Subgroups of products of groups

Let G be a group. If X and Y are subsets of GG, define
XY ={ay|lzeX,yeY}.

We first recall the following elementary lemma which allows to calculate the cardinality of
the set AB; for the proof, see e.g. Robinson [43], 1.3.11 or Doerk and Hawkes [13], A.1.5.

1.1.1 Lemma. Let A and B be subgroups of the group G, then |AB|-|ANB| = |A|-|B|.
In particular if A and B are finite, then
Al - |B]
|ANB|’

|AB| =

If X and Y are subgroups of GG, one is particularly interested in whether XY is again a
subgroup of G. In this case, X and Y are said to be permutable because of the well-known

equivalence of (i) and (ii) in the following

1.1.2 Lemma. Let G be a group and let A and B be subgroups of G. Then the
following statements about the set AB are equivalent:
(i) AB is a subgroup of G;
(i) AB = BA (i.e. A and B are permutable);
(iii) [a,b] € AB for alla € A and b € B;
(iv) a® € AB for alla € A and b € B.

Proof. (i) = (ii). Let g € AB. Since AB is a group, also g~ € AB: write g~! = ab
with a € A and b € B. Then g = b~'a™! € BA and therefore AB C BA. Similarly,
BA C AB so that AB = BA.

(i) = (iii). Let @ € A and b € B, then we have [a,b] = a 'b"'ab € ABAB =
A(AB)B = AB as required.

(iii) = (iv). Since a® = afa, b] for all a € A and b € B, we have a® € A(AB) = AB.
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(iv) = (i). Let a,, ay € A and b, b, € B. We have to show that (a,b,)"!(ayb,) € AB.

But this is true since

(a1b1>71(a1b1> = bflaflazbz = (aflaz)blbfle € (AB)BB = AB.

The following lemma will be needed later.

1.1.3 Lemma. . Let G be a group with subgroups A, B and C' such that AC = CA
and BC = CB. Then also (A, B)C' = C(A, B).

Proof. Let g € (A, B) and ¢ € C. By Lemma 1.1.2, it suffices to show that ¢g¢ €
(A, B). Since g € (A, B), g can be written g = a4b, ...a,b, with a; € A and b, € B for
all b=1...7. Since by Lemma 1.1.2, af € AC and 0§ € BC for all i, we obtain

g =aijbi...ab; € (ACBC)...(ACBC) = (AB)...(AB)C
1 times————— 1 times——
because C' permutes with both A and B. Since clearly
(AB)...(AB) C (A, B),

<r times —

we have ¢g° € (A, B)C. O

A group G is said to be the product of its subgroups A and B if G = AB. Sometimes
such a group is also called factorized by A and B! or simply factorized. A subgroup S
of G = AB is called prefactorized if S = (SN A)(S N B), or equivalently, if every s € S
can be written s = ab with a € AN S and b € BN S. Following Wielandt [45], a
subgroup S of G is called factorized if whenever s = ab with a € A and b € B, then
a € S (and b € S). Since every g € G, and thus every element g of S, can be written
g = ab with a € A and b € B, every factorized subgroup of G is prefactorized. It is
also clear that every subgroup of G containing A or B is factorized; in particular G is
factorized.

For some statements concerning groups which are the product of two of their sub-

groups, the following generalization of Dedekind’s modular law is useful:

1 We will avoid this terminology wherever possible since this might lead to confusion when dealing with
prefactorized subgroups S which are — as groups — factorized by ANS and BN S. In the opinion of
the author, it might have been preferable to use the terms factorized and strongly factorized instead
of prefactorized and factorized respectively because of this problem of terminology. As we will see
later, many results about factorized subgroups also hold for the subgroups now called prefactorized,
which could be an indication that the concept of being prefactorized might be the more natural one

when dealing with subgroups of factorized groups.
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1.1.4 Lemma. Let G be a group. If X, Y and U are subsets of G such that U™! =
{u‘l |u e U} C U, then
(i) if XU C X, then (X NY)U=XNYU and
(il)) f UX C X, thenU(XNY)=XNUY.
Proof. (i) The proof follows that usually given for Dedekind’s modular law: Clearly,
(XNYYUCXUNYU CXNYU. Now let x € X NYU and write x = yu with y € Y
and u € U. Then zu~!' € XUNY C X NY and therefore z = zu~'u € (X NY)U. The

proof of (ii) is similar. O

The following lemma shows in particular that prefactorized subgroups are factorized
if and only if they contain AN B:

1.1.5 Lemma. Suppose that the group G is the product of its subgroups A and B.
Then the following statements are equivalent:

(i) S is factorized; (i) S=(SNA)(SNB)and ANB<S; (iii) ANSB=ANS;
(iv) ANSB C S; (v) ASNB=SNB; (vi)ASNB CS; (vii) S = (ASNB)(ANSB);
(viii) S = (ASNB)S; (ix) S=S(ANSB): (x) S=ASNBS; (xi)S=SANSB.

Proof. (i) = (ii). Since every factorized subgroup is prefactorized, it remains to show
that AN B < S. For every + € AN B, we have 1 = xzz~! € S and, of course, x € A
and 2! € B. So by the definition of a factorized subgroup, we have € S and hence
ANB<S.

(ii) = (iii). Since S = (AN S)(BNS), we have ANSB=AN(SNA)(SNB)B =
AN(SNA)B. By the modular law (or by Lemma 1.1.4), AN(SNA)B = (SNA)(ANB) =
SN Asince also ANB CS.

(iii) = (iv). This is trivial.

(iv) = (i). Iff s=abe Switha € Aand b € B, then a = sb™' € ANSB C S whence
S is factorized.

The implications (i) = (ii) = (v) = (vi) = (i) can be proved similarly.

To prove that (vii), (viii), (ix), (x) and (xi) are equivalent to S being factorized,
suppose first that S is factorized. Then S = (SN B)(ANS) C (ASNB)(ANBS) =5,
so (vii) holds. Also, (viii) and (ix) hold since ASN B C S and ANSB C S by (iv) and
(vi) respectively. (x) and (xi) follow from (viii) and (ix) by Lemma 1.1.4.

Conversely, if one of the equations (vii), (viii), (ix), (x) and (xi) hold, then it is evident
that at least one of the sets ASN B or ANSB is contained in S proving statements (iv)

or (vi) respectively, which are both equivalent to S being factorized. O

Note. It is easy to see that for any subgroup S of G = AB, the set ANSB equals the
set {a€ A|abe S for some b€ B} and ASNB={be€ A|abe S for some a € A}.
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The next lemma studies the behaviour of factorized (prefactorized) subgroups in the
subgroup lattice of a factorized group G. The statements about factorized subgroups
can also be found in Chapter 1 of [4] from which also most proofs are derived. To see

that the intersection of two prefactorized subgroups is not necessarily prefactorized, see
Example 1.2.3.

1.1.6 Lemma. Let the group G be the product of its subgroups A and B.

(i) If S is prefactorized (factorized) in G, then T < S is prefactorized (factorized)
with respect to the factorization S = (S N A)(S N B) of S if and only if T is
prefactorized (factorized) in G.

(ii) The intersection of any family of factorized subgroups of G is factorized.

(iii) The intersection of a prefactorized subgroup and a factorized subgroup is prefac-
torized.

(iv) If the subgroup S of G is the union of the prefactorized subgroups S; where i € I
of G, then S is prefactorized. It is factorized, provided one of the subgroups S; s
factorized.

(v) The product of two prefactorized subgroups one of which is normal in G is pre-
factorized. It is factorized, provided that either of the subgroups is factorized.

(vi) The product of any number of prefactorized normal subgroups is prefactorized. It

1s factorized if one of the normal subgroups is factorized.

Proof. (i) The statement concerning prefactorized subgroups follows from the fact
that by definition,

T=(SNANT)(SNBNT)=(ANT)(BNT)

so that T is a prefactorized subgroup of G. In case S is a factorized subgroup of G,
we have AN B = (ANS) N (BNS); thus if T is factorized in S, then T contains
(AN S)N(BNS)= AN B so that by Lemma 1.1.5, T is a factorized subgroup of G.

(ii) Let {S; | i € I} be a family of factorized subgroups of G. If s = ab € (.S, then
s € S, for all 7, and hence a € S, for all ¢ by the definition of a factorized subgroup.
Hence a is contained in A N ([ S;), which shows that (.5, is factorized.

(iii) Let S and P be a factorized and a prefactorized subgroup of G. Every g € PN S
can be written g = ab with a € AN P and b € PN B since P is prefactorized. Now S
is factorized and also g € S, so we have a € S and b € S, that is, a € AN P NS and
be BN PNS. This shows that S N P is prefactorized.

(iv) Let s € S, then s € S; for some i € I. Since S, is prefactorized, we have s = ab
with a € AN S, and b € BN S,, so in particular a € AN S and b € BN S. This shows
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that S is prefactorized. If one of the S, is factorized, it contains ANB and so ANB < .S
whence S is factorized.

(v) Let N and P be prefactorized subgroups of G with N < N. Then

PN = (PN A)(PnNB)N

= (

=(PNA)N(PNB)
=(PNA)NNA)(NNB)(PNB)
< (PNNA)(PNNB)

< PN,

which shows that PN is prefactorized. The statement about factorized subgroups follows
as in (iv).

(vi) Let {Ni}ig be a family of prefactorized normal subgroups of G. By (v), the
product of two prefactorized normal subgroups is prefactorized and since it is clearly
normal, the statement is true for every finite index set [. For arbitrary index sets, the
product of the N, is the union of all products of a finite number of the N;, so the full

result follows from (iv). O

The following lemma shows in particular that if G is the product of its subgroups A
and B, then also G = A*BY for all z, y € G.

1.1.7 Lemma (Wielandt [44]). Let the group G be the product of its subgroups A
and B. If A, and B, are normal subgroups of A and B respectively such that A,B, =
ByA,, then for every x and y € G, there is a z € G such that Ay = A§ and Bf = B§
and thus Bi B = ByAY = (AyB,)*.

Proof. Let z, y € G and write 2y~ ! = a~'b witha € A and b € B. Let z = ax = by.
Then A = A3® = A? since A, < A; similarly B = Bj. So ArBj) = (A,B,)? is a
subgroup of G which is equivalent to AFBj = Bj A% by Lemma 1.1.2. O

This has the following consequence:

1.1.8 Lemma. [fG = AB = AC = BC where A, B and C are subgroups of G and
CY is factorized with respect to G = AB for some g € G, i.e. C? = (AN CY9)(BNCY)
and C > AN B, then G = C.

Proof. Since G = AC = CA, we deduce from Lemma 1.1.7 that also ACY = C9A
which is conjugate to G, i.e. G = ACY. Similarly, we obtain that G = BCY so that we
may assume w.l.o.g. that C' is factorized. Now by the modular law, G = A(BNC) =
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(A N C)B, therefore, using the modular law again, G = A(BNC)N(ANC)B =
(AN(ANC)B)(BNC)=(ANnC)ANB)(BNC)<C. O

Note that the preceding lemma becomes false if we only have C' = (AN C)(B N C),
that is, if C' is only a prefactorized subgroup of G = AB: take any group G # 1 and put
A=B=Gand C=1#dG.

The following lemma will be needed later.

1.1.9 Lemma. Let the group G be the product of its subgroups A and B and suppose
that {NZ- | i€ [} is a set of factorized normal subgroups of G. Then

(AN, = A((\ V).

icl el
Proof. Clearly, (,c; AN; contains A((0;c; V;). To prove the other inclusion, observe
first that, since every subgroup of GG that contains A or B is factorized, hence AN; is
factorized, AN, = A(B N N;) whence BN AN, = (BN N,;)(ANB) =BNN,.

Now also [),.; AN; is factorized by Lemma 1.1.6, hence

(AN, = A(BN((AN)) = A(((BNAN,) = A(((BNN) < A((| V).

el el el el el

1.2 Factorizers, prefactorizers,

and quotient groups

For every subgroup S of the factorized group G = AB, the intersection of all factorized
subgroups of G which contain S is factorized by Lemma 1.1.6. Clearly, this is the unique
minimal factorized group that contains S. This subgroup is called the factorizer of S;

we denote it with X (S). If S is normal in G, its factorizer can be described as follows:

1.2.1 Lemma. Let the group G be the product of its subgroups A and B. If N is a
normal subgroup of G and X = X (N) is the factorizer of N in G, then AX = AN and
BX = BN, hence ANX =ANBN =ANBX and BN X =BNAN = BNAX Thus
X = AN N BN has a triple factorization

X = (ANNB)N = N(AN BN) = (AN N B)(AN BN).

Proof. Obviously, AN and BN are factorized subgroups of G containing N, therefore
X < AN and X < BN, from which it follows that AX = AN and BX = BN. The

remaining statements follow directly from this and from Lemma 1.1.5 O



1.2 Factorizers, prefactorizers,and quotient groups 12

The next lemma shows that homomorphic images of factorized groups inherit the

factorization of G.

1.2.2 Lemma. If the group G is the product of its subgroups A and B and N is a
normal subgroup of G, then

(i) G/N s the product of its subgroups AN/N and BN/N.

(i) If S is prefactorized in G, then SN/N 1is prefactorized in G/N.

(iii) If N s prefactorized (with respect to G = AB) and N < S, then S/N is a
prefactorized subgroup of G/N if and only if S is a prefactorized subgroup of G.

(iv) If N < S, then S is a factorized subgroup of G if and only if S/N is factorized
in G/N. In particular, AN/N " BN/N = X,(N)/N.

Proof. (i) This is trivial.

(ii) Clearly, SN/N = (SNA)N/N-(SNB)N/N < (SN/NNAN/N)-(SN/NNBN/N)
which is contained in SN/N. This shows that SN/N is prefactorized.

(iii) If S is prefactorized, it is clear by the preceding statement that S/N is pre-
factorized. Conversely, suppose that S/N is prefactorized, or equivalently, that § =
(SNAN)(SNBN). Then by the modular law, S = (SNAN)(SNBN) = (SNA)N(SNB).
Since N is prefactorized and N < S, we have S = (SN A)(NNA)(NNB)(SNB) =
(SN A)(SN B) which shows that S is prefactorized.

(iv) Suppose first that S is factorized. We already know that S/N is prefactorized.
Moreover, AN N BN < ASNSB =S by Lemma 1.1.5 and so AN/N N BN/N < S/N;
thus by the same lemma, S/N is factorized.

Conversely, suppose that S/N is factorized, then by Lemma 1.1.5, S/N contains
AN/NNBN/N whence S contains the subgroup ANNBN. By Lemma 1.2.1, ANNBN =
Xa(N)= (AN N B)(AN NB) and so by the modular law,

S =(SNAN)(SNBN)
=(SNA)N(SNB)
<(SNA)(ANNB)(ANN B)(SN B)
= (SNA)(SNB),

observing that AN BN < ANS and BNAN < BN S. This also shows that ANB < S
and so by Lemma 1.1.5, S is factorized. O

The definition of a factorizer cannot be extended to prefactorized subgroups, since the
intersection of two prefactorized subgroups is not necessarily prefactorized, not even if

the subgroups are normal, as the following simple example shows:



1.2 Factorizers, prefactorizers,and quotient groups 13

1.2.3 Example. Let V be a vector space of dimension 3 over some field F' and let
{x), 25,25} be a base of V. Let A = (x;,2,) and B = (x,,25), then the subgroups
Hy = (zy, 2y + x3) = (21) & (¥, + x3) and Hy = (11 + 2y, x3) = (17 + 2y) @ (x3) are
prefactorized but their intersection H = (x; +x,+x5) intersects A and B trivially, hence
H cannot be prefactorized. If we choose F' to be a field of prime order, H, and H, are
minimal subject to containing H and being prefactorized while the factorizer of H is G
by Lemma 1.2.1.

However if the group G is the product of its subgroups A and B and H < G, let
S = {S <G|H<SandSis prefactorized}.

We call the minimal elements of S prefactorizers of H in GG. Note, however, that unlike

factorizers, prefactorizers need not exist if the group G is infinite.

1.2.4 Lemma. Let the group G be the product of its subgroups A and B. for two
subgroups A and B.
(i) If H < G and S is a prefactorizer of H in G, then S = Xq(H) < X (H).
(ii) If N is a normal subgroup of G and S is a prefactorizer of N in G, then S has
a triple factorization S = (ANS)(BNS)=(ANS)N =(BNS)N.

Proof. (i) If S is a prefactorizer of H in G, then X¢(H), the factorizer of H with
respect to the factorization S = (SN A)(S N B) of S, is a prefactorized subgroup of G
contained in S. Therefore we have X¢(H) = S by the minimality of S. Since X,(H) is
factorized, X(H)NS is prefactorized by Lemma 1.1.6 and H < X,(H)NS < S whence
S = X,(H)NS by the definition of S.

(ii) This follows directly from the fact that S = X¢(N) and the characterization
of Xy (5) given in Lemma 1.2.1. O
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1.3 Classes of groups and factorizations

A class € of groups is a class in the set-theoretical sense whose elements are groups and
that satisfies the condition: if G € € and H = G, then H € €. In other words, a class of
groups is the union of isomorphy classes of groups.! Following Doerk and Hawkes [13],

Chapter 11, a closure operation c¢ is a map
C: {group classes} — {group classes}

such that c@ = @ and for every class € of groups, € C ¢€ and c€ = ¢(c€) and if © is
a class of groups with € C ®, then c¢€ C c¢®.

We introduce the following closure operations on classes of groups
QQ::{G/N|G€€, NﬁG}
s¢ ={H |3 G € € such that H <G}
s.¢ = {S |3 G € € such that § <1 G}
R ={G |3 N,,...,N, < H with G/N; € € and (_, N, = 1}
D& = {G |3G,,...,G, EQ:WithG:X:ﬂGi}
€ ={G|35,....5, < H: S; €€, G=(5,...,5,)}
B:¢ = {G | G/N € € for some N < G with N < #(G)}

If ¢ is a closure operation and € is a class of groups, we say that € is c-closed if
c€ = ¢; if p is another closure operation, we define cp€ = ¢(p€); observe that the latter
class need not be p-closed. Therefore we define (¢,p)& to be the smallest class of groups
that is c-closed and p-closed. We also recall that sp, = (s,Do) and that a spe-closed class
is Ro-closed.

A formation § is a class of groups that is Q-closed and Rre-closed. If € is any class of
groups, QRoC is the smallest formation containing € and qQsp,€ is the smallest subgroup-

closed formation containing €. A class € of groups is said to be saturated if it is E4-closed.

If € is a class of groups, define
p¢ = {G | G/N € € whenever G/N is primitive for an N < G}

(recall that a group is said to be primitive if it has a maximal subgroup whose core
is trivial; see also Section 3.2). A class $) of finite groups is called a Schunck class

if it is PH = §, i.e. the finite group G belongs to § if every primitive epimorphic

1 Some authors impose the additional condition on a class of groups that it must contain the class of

groups with one element. We do not make such an assumption.
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image of G lies in $). Schunck classes are q-closed and po-closed, and every saturated
formation of finite groups is a Schunck class. It should be observed that p is not a closure
operation, but pq is; moreover for any class € of groups, rPQ€ is the smallest Schunck
class containing €.

The following simple lemma is basic when dealing with Schunck classes.

1.3.1 Lemma. Let 3 be a Q-closed class of finite groups. If § is a Schunck class,

then a group of minimal order in 3\ $ is primitive.

Proof. Let G be a group of minimal order that belongs to 3\ $). Since 3 is q-closed,
G/N € 3 for every normal subgroup and so for every N # 1, we have G/N € § by the
minimality of GG. Since the group G does not belong to §, it must be primitive by the
very definition of a Schunck class. O

Let G be a finite group and € a class of groups. If € is Ro-closed, let G¢ denote the
intersection of all normal subgroups N of G such that G/N € €. Then G/G® € ro€ = €
and we call G¢ the €-residual of G; G is obviously a characteristic subgroup of G.

Similarly, if € is No-closed, then the subgroup generated by all subnormal €-subgroups
of G is a (characteristic) €-subgroup of G which is called the €-radical of G and is
denoted by G-

For any class of groups €, we define the characteristic char(€) of € to be the set of

primes p such that € contains a cyclic p-group, and for every set 7 of primes, we define
¢.={Ge¢€|o(G)Cr}.

The following lemma shows in particular that the class of finite groups that are the

product of (two) nilpotent subgroups is q-closed and po-closed.

1.3.2 Lemma. Suppose that X and ) are classes of groups and let
3={G |3 A,B<G with A€ X and B €9 such that G = AB}.

(i) If X and Q) are q-closed, then 3 is Q-closed.
(ii) If X and ) are po-closed, then 3 is Do-closed.

Proof. (i) Let G € 3, then G is the product of two subgroups A and B with A € X
and B € 9. Now if N < G, then G/N is the product of its subgroups AN/N and BN/N
by Lemma 1.2.2. Now by an isomorphism theorem, AN/N =2 A/ANN € QX = X and
similarly BN/N € %), proving that G/N € 3.

(ii) Let G = X;_, G; and suppose that G, € 3 for i = 1,...,7. Then each G, is the
product of two subgroups A; and B; with A, € X and B; € 9. Now A = )_; A, € DX =
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X and B =)|_, B; € Do = Q). Since the subset AB of G = )|_, G, clearly contains all
G,, GG is the product of the X-group A and the )-group B. O

Combining Lemma 1.3.1 and Lemma 1.3.2, we obtain

1.3.3 Lemma. Let X and Q) be Q-closed classes of groups and let 3 be the class of
finite groups that are the product of an X-group with a )-group. If ) is a Schunck class,

then a group of minimal order in 3\ $ is primitive.

1.3.4 Lemma. Let G be a finite group and suppose that € is an Ro-closed class of
groups. If X is a subgroup of the group G such that X N;/N; and X N,/N, € € for two
normal subgroups N, and N, of G with Ny N Ny =1, then X € C.

Proof. We have XN;/N, =2 X/X NN, € § and (X NN;)N (X NN,) = 1, therefore
Xed O

Remark. This can be used to show that there is even some weak form of ro-closure
of the product of an X-group and a )-group in case the classes X and ) are ro-closed: if
the group G is the product of its subgroups A and B and there are normal subgroups V,
and N, with N; NN, = 1 and such that G/N; is the product of the X-subgroup AN, /N,
and the Y-subgroup BN, /N, for i = 1, 2, then G is the product of the X-subgroup A
and the -subgroup B.

A dual of the following statement due to Lockett can be found in [13], I1.2.12:

1.3.5 Lemma. Let G be a finite group and suppose that the class § is a Fitting
formation, i.e. a (QRo,S.,No)-closed class of groups.
(i) If Ny and Ny are two normal subgroups of G with Ny N N, =1 and R;/N; € §
fori=1, 2, then RN R, €F.
(ii) If Ry/N, and R,/N, are the §-radicals of G/N, and G/N, respectively, then
R, N R, is the §-radical of G.

Proof. (i) We have
(R1 N R2)N1/N1 = (Rl N R2N1)/N1 d Rl/Nl

so that
(RN Ry) /(RN RyNN;) = (R, NRy)N, /N, €F.

Similarly,
(BN Ry) /(RN Ry N N,) €F

so that also Ry N R, € § because (R, N R, N N,)N (R, NR,NN,) = 1.
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(ii) Let R denote the §-radical of G. Then RN,/N; is a normal §-subgroup of G/N;
for i =1, 2, therefore R < R, N R,. On the other hand, the normal subgroup R, N R, is

contained in § by (i), proving the other inclusion. O



Chapter 2
Factorizations of finite soluble groups

2.1 Hall subgroups and Hall systems

Finite soluble groups can be characterized by the fact that they possess Hall m-subgroups
for every set m of primes (Hall [24]; see also Doerk and Hawkes [13], Sections 1.3 and 1.4).
Note that we also consider G itself and the unit subgroup as Hall subgroups of G for
the sets =P and @ of primes respectively.

If G is a finite soluble group, a set ¥ of Hall subgroups of G is called a Hall system
of G if ¥ contains a Hall m-subgroup of G for every set of primes 7 and HK = K H for
all H, K € X, we have HK = K H (observe that this implies that ¥ contains exactly
one Hall m-subgroup for every set of primes 7 by Lemma 1.1.1).

Given a Hall p’-subgroup G, of G for every prime p, it is easy to see that

G.=()G,

mCp’

is a Hall m-subgroup of G and the set
¥ ={G, | m aset of primes}

is a Hall system of G. The set {Gp, | pa prime} is called a complement basis of X.
Consequently, Hall systems always exist in finite soluble groups. Moreover, any two Hall
systems are conjugate, i.e. if 3 and T are Hall systems, then there is ¢ € GG such that
T:ZQ:{HHHGZ}.

Also, the set {Gp |pa prime} containing exactly one Sylow p-subgroup G, of G for
each prime is called a Sylow basis it G,G, = GG, whenever p and g are distinct primes.
In this case, a Hall system of G can be obtained by defining the GG ’s to be the product
of all G, where p € .

If S is a subgroup of the finite soluble group G, then a Hall system ¥ is said to reduce
into S if for every set of primes 7, the intersection of the Hall m-subgroup G € ¥ with

S yields a Hall m-subgroup of S; in this case, the set

xNS={G,NS|G, e}
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is a Hall system of S. Conversely, it can be shown that every Hall system »* of S can
be extended to a Hall system X of G, i.e. every subgroup contained in ¥* is contained
in some subgroup contained in X.

Following Hall [25], a group is said to satisfy the property E_ (existence) if it pos-
sesses a Hall m-subgroup; it satisfies C, (conjugacy) if it satisfies £_ and all its Hall 7-
subgroups are conjugate; finally, it satisfies D_ (dominance) if it has C_ and moreover
every m-subgroup is contained in some Hall m-subgroup. Thus the finite soluble groups
are precisely the finite groups that satisfy D_ for all sets 7 of primes.

The following lemma which relates the Sylow structure of a group G to a given factor-
ization of G was first proved by Wielandt [44] for Sylow subgroups and Hall p’-groups

of soluble groups:

2.1.1 Lemma. Let G = AB be a finite group satisfying D_.. If A_ and B, are Hall 7-
subgroups of A and B respectively, then there are a € A and b € B such that A*BY is
a Hall w-subgroup of G. Furthermore, AN B possesses Hall w-subgroups one of which is
AN BL.

Proof. By the property D, the subgroup A_ is contained in a Hall w-subgroup G
and also B_ is contained in a Hall m-subgroup which is conjugate to G by the property
D_, so we have B, < GY for a suitable g € G. Write g = ab™!, then A2 < G% and
Bb < G% = G4. Therefore, replacing A, B, and G, by suitable conjugates, we may

)

suppose that A_and B_ are contained in G, .

By Lemma 1.1.1, the order of the group G is

o JAlBL
|An B|’
thus the order of a Hall m-subgroup (which equals the m-part of |G]) is
Al Brl
G — ™ m

where |AN B|, is the w-part of |AN B|. Now the order of A_NB_ is a m-number dividing

|AN B|,; hence A|B.|

— T —|A_B_|.
Since we also have A, B, C G, we must have A_B, = G as required. So |G| = |A,B,|,
from which we deduce that |A N B|, = |A, N B, |; therefore the subgroup A, N B, is a

Hall subgroup of AN B. O

G| <

Recall that as a consequence of the Feit-Thompson theorem [14], every m-separable
group satisfies D, and that the class of m-separable groups is subgroup-closed so that

every m-separable group satisfies the above lemma.
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In the case of a soluble group, one is interested in Hall systems rather than single Hall
subgroups. The following proposition states the existence of Hall systems in which every
Hall subgroup is of the form just described.

2.1.2 Proposition. If the soluble group G is the product of its subgroups A and B,
then there is a Hall system of G of the form {AWB7T | 7 a set of pm’mes} which reduces
into A and B.

Proof. G is soluble, hence satisfies D, for every set m of primes. By the preceding
proposition, for every prime p there is a Hall p’-subgroup G, of G of the form G, =
A, B, for suitable Hall p’-subgroups A,, and B, of A and B respectively.

Extend the complement bases {Gp,}, {Ap,} and {Bp,} to Hall systems Y = {Gﬂ},
{A.} and {B,} of G, A and B respectively, then it is clear that A, < AN G, and
B < BNG, for every set m of primes; since A and B are Hall subgroups of A and B
respectively, we have A, = ANG,, and B, = BNG,. and as in the proof of Lemma 2.1.1,
G.=A_B,_. So ¥ is the required Hall system. O

Remark. By induction on the number of factors, the last proposition as well as
Lemma 2.1.1 can be extended to finite soluble groups that are the product of any (finite)
number of subgroups.

2.2 Products of subgroups of coprime order

Let the group G be the product of its subgroups A and B. We establish some criteria for
certain subgroups of G to be factorized or prefactorized, based on the orders or indices
of A and B.

The next lemma is well-known:

2.2.1 Lemma. If A and B are subgroups of the finite group G such that |G : A| and
|G : B| are coprime, then G = AB.

Proof. Under the hypothesis of the lemma, we have |G : AN B| = |G : A|-|G : BJ;
together with the formula from Lemma 1.1.1, we obtain that |AB| = |G| and thus we
have G = AB. O

Recall that a subnormal subgroup S of a group GG has subnormal defect n if n is the

least integer such that there is a subnormal series of G of the form

G=5D>5S>-->85 =05

n
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Such a chain can be obtained by recursively defining Sy = G and S;,; = S% for all
positive integers ¢ (see Doerk and Hawkes [13], A.14.7 or Robinson [43], Chapter 13.1).

2.2.2 Lemma. Let the group G be the product of its subgroups A and B. and suppose
that |G : A| and |G : B| are finite.
(i) if N <G and X = X(N) denotes its factorizer, then |[N : NNA| = |X : X NA|
divides |G : Al and [N : NN B| =|X : X N B| divides |G : B.
(ii) Ewvery subgroup S of G contains a prefactorized subgroup N < S of finite indez;
moreover N < AN B.
(iii) If the indices of A and B are coprime, then every subnormal subgroup of G is

prefactorized.

Proof. (i) By Lemma 1.2.1, we have AX = AN which shows that AX is a subgroup
of G. Therefore

IX: XNA=|AX : A|=|AN : A|=|N: NNA|

which divides |G : A|, similarly for B.

(i) Let S be a subgroup of G. Since the indices of A and B are finite, so is |G : AN B|
and thus also |G : (AN B)g|. Then also |S : SN (AN B)g| is finite; moreover N =
SN (AN B)g is trivially prefactorized and so N is the required normal subgroup of S.

(iii) As a first case, assume that S < G; then S/N is finite where N = SN (AN B)g;
moreover since N is prefactorized, by Lemma 1.2.2, S is a prefactorized subgroup of G/N
if (and only if) S/N is prefactorized in G/N. Thus we may assume w.l.o.g. that N =1
and that S is finite.

Now by part (i), |S : SN A| divides |G : A| and |S : SN B| divides |G : B|. Therefore
the indices of AN S and B NS are coprime and we have S = (AN S)(BNS) by
Lemma 2.2.1.

There remains the case when S is a nonnormal subnormal subgroup of defect n > 1
in G: we have already proved that K = S¢ < G is prefactorized and that the indices
of KN A and K N B are coprime. Since the subnormal defect of S in K is n — 1, by
induction on the subnormal defect of S, the subgroup S is a prefactorized subgroup

of N, hence is prefactorized in G by Lemma 1.1.6. a

For a periodic group G, i.e. a group in which every element has finite order, we define
0(G) to be the set of primes that divide the order of an element of G. If G is finite, then
clearly o(G) is the set of prime divisors of |G|. If 7 is a set of primes, the group G is
called a m-group if o(G) C m, that is, if the order of every element is divisible only by

primes in 7.
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2.2.3 Lemma. Let G = AB be a (possibly infinite) group and let N be a normal sub-
group of G. If X denotes the factorizer of N in G, then o(X/N) C (AN/N)No(BN/N).

Proof. By Lemma 1.2.1, we have X = (AN BN)N = (AN N B)N and so X/N <
AN/N and X/N < BN/N. Therefore o0(X/N) C 6(AN/N)No(BN/N). O

2.2.4 Corollary. Let the group G be the product of its subgroups A and B. If A and

B have coprime orders, then every subnormal subgroup of G is factorized.

Proof. If N < G, this follows from lemma since we must have X/N = 1 and therefore
N = X,(N) is factorized. If S is subnormal in G, the result follows by induction on the
defect of S in G like in the proof of Lemma 2.2.2. O

Using transfinite induction, the last result can be extended from subnormal subgroups
to descendant subgroups, observing that the intersection of arbitrarily many factorized
subgroups is factorized by Lemma 1.1.6.

Under certain additional hypotheses, and in particular when G is finite and soluble,
it is possible to extend Lemma 2.2.2; (iii) and Corollary 2.2.4 to a statement about
all subgroups of the group G: there are factorized (prefactorized) conjugates for all

subgroups of the finite group.

2.2.5 Lemma. Let G be a finite group which is the product of its subgroups A and B
with (|A|,|B|) =1 and such that G satisfies D and D, where m and " denote the sets
of prime divisors of |A| and |B| respectively. If S is a subgroup of G which satisfies E_
and E_,, then S possesses a factorized conjugate S9, i. e. S9 = (S9N A)(SYN B) for a
geq.

More generally, if H is a factorized subgroup of G that satisfies D, and D_, and
contains S, then there is a h € H such that S" < H is factorized.

Proof. Clearly, A and B are Hall 7= and 7’-subgroups of G. If S_ and S, denote the
Hall 7- and 7’-subgroups of S, then S = S_S_,. Now S_and S_, are contained in Hall
subgroups A* and BY of G where x, y € G. By Lemma 1.1.7, there is a ¢ € G with
A® = A9 and BY = B9 . Then we also have S9 = S987, with S7 < A and 57, < B,
hence S9 = (S9N A)(SY N B). Note also that S9 > AN B = 1.

The second statement follows directly from the first, observing that AN H and BN H

are m- and 7’-groups respectively. O

Note that Lemma 2.2.5 applies in particular to all subgroups of w-separable groups G
when 7 is the set of prime divisors of |A|. To extend Lemma 2.2.5 to the prefactorized

case, we need the following
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2.2.6 Lemma. Let the group G be the product of its subgroups A and B. If A < A*
and B < B* for two subgroups A* and B* of G, then every subgroup that is prefactor-

ized with respect to the factorization G = AB is also prefactorized with respect to the
factorization G = A*B* of G.

Proof. Let S be a subgroup of GG that is prefactorized with respect to the factorization
G=AB,ie. S=(SNA)(SNB). Clearly, S = (SNA)(SNB) C (SNA*)(SNB*) C S,
proving that S = (SN A*)(S N B*). Application to the case S = G shows in particular
that GG is the product of A* and B*. O

It is easy to see that the preceding lemma becomes false if we substitute ‘factorized’
for ‘prefactorized’: choose any group G # 1 and let A = 1 and A* = B = B* = G,
then the unit subgroup is factorized with respect to G = AB but not with respect to
G = A*B*.

We can now extend Lemma 2.2.5 to a similar result for prefactorized subgroups;
observe that the next lemma is true for every soluble group G that is the product of two

subgroups which have coprime indices.

2.2.7 Lemma. Let G be a finite soluble group which is the product of its subgroups A
and B and such that (|G : A|,|G : B|) = 1. Let w be a set of primes such that A contains
a Sylow p-subgroup of G for all p € ™ and B contains a Sylow p-subgroup of G for all
p € w'. If G satisfies D and D_,, then for every subgroup S of G there is a prefactorized
conjugate S9, i. e. S9=(S9NA)(S'NB) foraged.

More generally, let H be a prefactorized subgroup of G such that AN H and BN H
have coprime indices. If H satisfies D, and D, and contains S, then there is a h € H
such that S" < H s prefactorized.

Proof. Since (|G : A|,|G : B|) = 1, the subgroups A and B contain Hall - and
m’-subgroups A_ and B_, respectively of G. Since the indices of A and B,_, are coprime,
we have G = A_B_, by Lemma 2.2.1 and so every subgroup of S possesses a conjugate
which is factorized with respect to the factorization G = A_B. by Lemma 2.2.7. So by
Lemma 2.2.6, this conjugate is prefactorized with respect to the factorization G = AB.

The second statement follows from the first by considering H instead of G. a
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2.3 Groups with many factorized subgroups

Let the finite soluble group G be the product of its subgroups A and B. We have seen
in Lemma 2.2.5 and Lemma 2.2.7 that every subgroup S of G has a conjugate which
is factorized (prefactorized) if the orders (indices) of A and B are coprime; more pre-
cisely, this conjugate can already be found in certain factorized (prefactorized) subgroups
containing S.

Conversely, if G is a soluble group which is the product of two subgroups A and B
in which every subgroup has a factorized (prefactorized) conjugate in every factorized
(prefactorized) subgroup of G, then we will show that the orders (the indices) of A
and B are coprime. Observe that for finite soluble groups, the condition that A and B
have coprime indices is equivalent to the condition that A and B contain Hall 7 and
7’-subgroups of G for a suitable set 7 of primes.

First, we deal with the nilpotent case:

2.3.1 Proposition. Suppose that the finite nilpotent group G is the product of its
subgroups A and B and that every subgroup of G has a prefactorized conjugate. Then A
and B contain Hall w-and 7' -subgroups of G for some set of primes w. In particular, if

G is a p-group for some prime p, then G = A or G = B.

Proof. As a first step, we prove the proposition for p-groups G. Suppose that the
proposition is false and let G be a counterexample. Clearly, if G = A, the proposition
is fulfilled with 7 = £¥P; similarly if G = B (let 7 = @). So we must have A < G and
B < @. Since G is nilpotent, A and B are contained in maximal normal subgroups A*
and B* of G. By Lemma 2.2.6, every subgroup that is prefactorized with respect to
the factorization G = AB of G is also prefactorized with respect to the factorization
G = A*B* so that GG is also a counterexample with respect to the latter factorization.
Therefore we may suppose w.l.o.g. that A and B are maximal normal subgroups of G.

Let N = AN B, then G/N is the direct product of the two cyclic groups AN/N and
BN/N, both of order p: A/N = (a)N/N and B/N = (b)N/N for suitable a € A and
b € B. Now the diagonal subgroup D/N = (ab)N/N is also a maximal normal subgroup
of G/N which is not prefactorized in G/N since it intersects AN/N and BN/N trivially.
Since N is prefactorized, by Lemma 1.2.2, D cannot be a prefactorized subgroup of G.
So D, being a normal subgroup of GG, does not have a prefactorized conjugate. This
contradiction shows that we must have G = A or G = B.

Now let G be any finite nilpotent group and suppose that P is a Sylow p-subgroup
of G for some prime p. If S is a subgroup of P, then every conjugate of S in G is already

conjugate to S in P since P is centralized by the Hall p’-subgroup of G. On the other
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hand, we know by Proposition 2.1.2 that P = A B, where A, and B, are the Hall p-
subgroups of A and B respectively. So we may apply the first part to P and obtain that
P = A, or P= B, Therefore every Sylow subgroup of G is contained in A or B. This
shows that if 7 is the set of primes p such that A contains a Sylow p-subgroup of G,
then A contains a Hall m-subgroup and B contains a Hall 7’-subgroup of G. O

To analyse the case when every subgroup has a factorized conjugate, we need the

following simple

2.3.2 Lemma. Suppose that the finite group G is the product of its subgroups A
and B. If A and B have coprime indices and AN B =1, then A and B have coprime

orders.

Proof. This follows at once from Lemma 1.1.1. O
Then we obtain

2.3.3 Corollary. Suppose that the finite nilpotent group G is the product of its sub-
groups A and B and that every subgroup of G has a factorized conjugate. Then A and B

have coprime orders, hence are Hall subgroups of G.

Proof. Since the unit subgroup is normal and thus factorized, by Lemma 1.1.5, we
must have AN B = 1. So the result follows from Proposition 2.3.1 and Lemma 2.3.2. O

We formulate the result of this section for prefactorized subgroups first.

2.3.4 Proposition. Suppose that the finite group G is the product of its subgroups A
and B.

(i) If for every prefactorized subgroup H of G, every subgroup S < H has a prefac-
torized conjugate in H, then A and B have coprime indices; moreover if H is a
prefactorized subgroup of G, then H N A and H N B have coprime indices in H.

(ii) Suppose that the indices of A and B in G are coprime and that every subgroup
of G satisfies D, and D, for a set w of primes such that A contains a Sylow p-
subgroup of G for everyp € m and B contain Sylow p-subgroups of G for allp € 7'.
Let H be a prefactorized subgroup of G satisfying D_ and D.. If |H : HN A| and
|H : HN B| are coprime and S < H, then there is a h € H such that S" < H s

prefactorized.

Proof. (i) Let p be a prime, then since every finite group satisfies D, by Sylow’s theo-
rem, by Lemma 2.1.1, G possesses a prefactorized Sylow p-subgroup P = (ANP)(BNP).
Now by hypothesis, every subgroup of P has a prefactorized conjugate in P, and so by

Proposition 2.3.1, P is contained in A or B. If 7 is the set of primes for which A contains
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a Sylow p-subgroup of GG, then B contains a Sylow p-subgroup for all remaining primes
p € 7', So the index of A is a 7’-number while that of B is a w-number.

Since every prefactorized subgroup H of G likewise satisfies the hypotheses of (i), it
is clear that also AN H and B N H have coprime indices in H.

(ii) This has already been proved in Lemma 2.2.7. O

Unfortunately, the statements (i) and (ii) are not equivalent. However, it should be
noted that (i) implies (ii) if the group G is finite and soluble since in this case, G satisfies
D, for every set of primes 7.

In the case when A and B have coprime orders, a much more satisfactory result can

be proved, which even holds for arbitrary finite groups.

2.3.5 Theorem. Let the finite soluble group G be the product of its subgroups A
and B. Then the following statements are equivalent:
(i) For every factorized subgroup H of G and every subgroup S < H, there is an
h € H such that S" is factorized.
(ii) The subgroups A and B of G have coprime orders and every subgroup of G sat-
wsfies D and D

Proof. (i) = (ii). From Proposition 2.3.4 and Lemma 2.3.2, we obtain that A and B

have coprime orders. Since the property (i) is inherited by subgroups and the situation

where m 1is the set of prime divisors of A.

s

is completely symmetrical for the sets 7 and 7/, it remains to show that G itself satisfies
D_: it is clear that G possesses a Hall m-subgroup, namely A. If P is a m-subgroup of G,
there is a conjugate P9 of P for some g € G, with P9 = (PYNA)(PYN B) and since B is
a m’-group, we have P9 N B = 1 and so P? is contained in A. So the conjugates of A are
the maximal w-subgroups of G and every m-subgroup is contained in a conjugate of A;
hence G satisfies D_.

(ii) = (i). This is the result of Lemma 2.2.5. O

For an additional result in the case when the finite soluble group G is the product of

two nilpotent subgroups, see Section 3.3.



Chapter 3

Subgroups of products
of two finite nilpotent groups

3.1 First results about products of nilpotent subgroups

The following theorem, known as the Kegel-Wielandt theorem, is probably the most
important theorem about finite groups that are the product of two finite nilpotent sub-
groups; note that this theorem remains true for products of any finite number of nilpotent

subgroups.

3.1.1 Theorem (Wielandt [45] and Kegel [33]). Let the finite group G be the prod-
uct of its nilpotent subgroups A and B. Then G is soluble.

A proof of the Kegel-Wielandt theorem can also be found in [4], Section 2.4 and
in [31], VI, § 4.

3.1.2 Proposition. Let G be a finite group. If A, B < G such that ABY = BIA for
all g € G, then:
(i) (Kegel [33]) if AB < G, then AB® < G or AB < G in particular, A or B is
contained in a proper normal subgroup of G.
(ii) (Wielandt [46]) [A, B] < AP N BAB <« G.

Proof. (i) Suppose that ABY = A9B = G. We have to show that G = AB. We
proceed by induction on |G : A| + |G : BJ, observing that the statement is trivial if
G = A = B. Also, (i) is true if A is normal in G, we may assume that A* # A for some
r €.

Since every conjugate of B permutes with both A and A*, by Lemma 1.1.3, B also
permutes with A; = (A, A*). Then we have G = A, B by induction hypothesis. Since
r € G = ABY, we can write z = ab¥ with a € A, b € B and y € G. and w.l.o.g., we may
assume that a = 1.

By Lemma 1.1.7, also G = A, BY = (A, A*, BY) = ABY and thus also G = AB.

(ii) If G = AB, then it is clear that [A, B] and A4 N BAB are normal subgroups of G
and that [A, B] < A48 N BAB. Therefore we may suppose that AB < G.
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From (i), we infer that AB < G or ABY < (; w.l.o.g. suppose the former. Then by
finite induction, [A, B] < AAPNBAB 4 AYB and so also [A, B] < AYPNBAB < A% 4G

which shows that the subgroups in question are subnormal in G. O
We mention an important special case of the previous proposition:

3.1.3 Corollary. Let G = AB be a finite group that satisfies D, for a set w of
primes. If A and B have normal Hall m-subgroups A and B,_, then:
(i) If G is not a w-group, then A, or B, is contained in a proper normal subgroup
of G.
(ii) The subgroups [A_, B.] and A3~ N B4~ are subnormal w-subgroups of G.
(i) If A, and B, are nilpotent, then the normal Hall w-subgroup A_ N B, of AN B,
and thus every mw-subgroup of AN B, is a subnormal subgroup of G.

Proof. By Lemma 2.1.1, the group G possesses a Hall m-subgroup of the form A?BP
for some a € A and b € B. Since the Hall m-subgroups of A and B are normal, we
have A2B? = A_B,. Thus by Lemma 1.1.7, every conjugate of A_ permutes with every
conjugate of B_, and consequently [A_, B,] and AP~ N B~ are subnormal 7-subgroups
of G by Proposition 3.1.2. O

3.1.4 Proposition (Pennington [40]). Let G = AB be a finite group satisfying D.,..
If A and B have normal Hall mt-subgroups, then O_(G) = (ANO(G))(BNO.(G)) and
A_NB, <0.(G).

Proof. Write O = O_(G). Since G satisfies D_, by Lemma 2.1.1, there is a Hall 7-
subgroup of G of the form H = A_B,_. We show that O is a factorized subgroup of H =
A, B, (which does not, however, imply that O is factorized in G because H is not
necessarily factorized).

Consider the group G//O: since the normal Hall 7-subgroups A,0/O and B,0O/O are
normal in AO/O and BO/O respectively, every conjugate of A_O/O permutes with
B_0O/O and so by Proposition 3.1.2, A_.O/ON B_0O/O is a subnormal m-subgroup of G.
Therefore A,.O N B,O < O, showing that O = A O N B_O. Thus by Lemma 1.2.1, O

equals its factorizer in H, i.e. O is factorized in H as required. O
This leads to the following

3.1.5 Theorem (Amberg [1], Pennington [40]). If G is the product of two finite
nilpotent subgroups A and B, then F(G), the Fitting subgroup of G, is factorized. There-
fore the subgroup AN B is subnormal in G.
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Proof. Since F'(G) is the product of all O,(G) and by Sylow’s theorem, G satisfies
Dy, for all primes p dividing the order of G, it is clear from the preceding Proposi-
tion 3.1.4 that F'(G) is prefactorized. Also, AN B is nilpotent, hence is the direct product
of all A, N B, and so F(G) also contains AN B. This also shows that AN B < F(G)
is subnormal in G. O

We will see in Section 3.6 that the last two results can be generalized to radicals with
respect to arbitrary Fitting formations.

Also, the fact that AN B, and hence every subgroup of AN B, is a subnormal subgroup
of G has lead to the following result of Maier [36] and Wielandt [47]: they show that if
the finite group G is the product of two subgroups A and B and S < AN B such that
S <1 A and S < B, then S <1 G. Further results in this direction can also be found
in [38] and [11].

3.1.6 Corollary. If the finite group G is the product of its nilpotent subgroups A
and B and N < G, then the factorizer and every prefactorizer of N is subnormal in G.

Proof. Consider the factor group G/N. Then the subgroup AN/NNBN/N is subnor-
mal in G/N the preceding theorem. Therefore the subgroup X = ANNBN is subnormal
in G. On the other hand, by Lemma 1.2.1, X equals the factorizer of N in G.

For prefactorizers S, the result follows from the fact that N < S < X and X/N is
nilpotent. O

3.1.7 Corollary. Let G be a finite group which is the product of its nilpotent sub-
groups A and B. If G possesses a nilpotent normal subgroup N such that G = AN = BN,
then G is nilpotent.

Proof. If N is a nilpotent normal subgroup of G, then its factorizer (with respect to
the factorization G = AB) is contained in the factorized subgroup F(G) of G. But by
Lemma 1.2.1, the factorizer of N equals AN N BN = G and so G is nilpotent. O

For generalizations of the last result to certain classes of infinite groups, we refer the
reader to Section 6.3 of Amberg, Franciosi and de Giovanni [4]. We will also see in
Corollary 3.5.2 that in fact N does not necessarily have to be normal in G.

The following proposition shows that every finite group G that is the product of two

proper nilpotent subgroups has a proper factorized normal subgroup.

3.1.8 Proposition (Kegel [33]). If the finite group G is the product of its nilpotent
subgroups A and B and A # B, then A or B is contained in a proper normal subgroup

of G.



3.1 First results about products of nilpotent subgroups 30

Proof. If G = 1, there is nothing to prove. Therefore suppose by finite induction that
the proposition is true for all groups of smaller order than |G| and let N be a minimal
normal subgroup of G. If AN # BN, then by induction hypothesis, AN/N or BN/N is
contained in a proper normal subgroup of G/N and therefore also A or B is contained
in a proper normal subgroup of G.

Therefore we may assume that AN = BN = (G, and since A, B and N are nilpotent,
G is nilpotent by Corollary 3.1.7. Then, however, at least one of A and B is contained
in a maximal subgroup of G which is normal in G. O

Kegel’s result has been extended by Amberg, Franciosi and de Giovanni [3] to certain
classes of (possibly infinite) groups G which are the product of their subgroups A, ..., A,
satisfying some nilpotency condition: if at least one of the subgroups A, is properly
contained in G, then some A, is contained in a proper normal subgroup of G. This result
holds in particular if the subgroups A, are finite and nilpotent.

On the other hand, a similar result about minimal normal subgroups of a product of
finite nilpotent subgroups does not hold: If p is any prime, J. D. Gillam [19] gives an
example of a p-group P of order p® which is the product of two subgroups A and B but
A and B do not contain normal subgroups of P. This also shows that the centre of P
cannot be prefactorized: since AN Z(P) and B N Z(P) are normal subgroup of P, we
must have Z(P) # 1= (AN Z(P))(BN Z(P))

We mention a consequence Proposition 3.1.8 that might be of interest.

3.1.9 Proposition. Let G be a finite group. If A and B are nilpotent subgroups of G
such that ABY = BYA for all g € G, then AN B is subnormal in G.

Proof. If A = B (= G), the group G is nilpotent and hence every subgroup of G is
subnormal. Therefore we may suppose that A # B and by Proposition 3.1.8, one of the
factors, say A, is contained in a normal subgroup N of G. Now by the modular law, for
all g € G,

AINNBY)=NNAB = NNBIA(NNBY)A

for all ¢ € G which shows that A permutes with every conjugate of B N N. Therefore
by induction on the order of G, AN B = AN BN N is subnormal in N, hence in G. O
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3.2 Primitive groups that are the product

of two nilpotent subgroups

Let G be group that possesses a faithful representation as a a transitive permutation
group on the set X. Recall that G is called primitive if we have |Y| = 1 for every
subset Y of X such that Yg =Y or YgNY = @& for all g € G. By [43], 7.2.3, G is
primitive if and only if for every x € X, the stabilizer M = { g€ G |29 = ZL‘} of x is
a maximal subgroup of G. Since G is transitive, the conjugates of M in G are precisely
the stabilizers of the elements of X, so it is clear that M, = 1. On the other hand, if an
arbitrary group G possesses a maximal subgroup M with M, = 1, then the permutation
representation of GG on the cosets of M is clearly faithful and has M as a stabilizer, hence
G is primitive by the theorem stated above.

The next simple lemma gives a sufficient condition for a finite group to be primitive.

Theorem 3.2.2 below will show that this condition is also necessary:

3.2.1 Lemma. Let G be a finite group. If G possesses a mazximal subgroup M < G
that supplements every minimal normal subgroup of G, then G is primitive and M 1is a
stabilizer of G.

Proof. Suppose that M., # 1, then M contains a minimal normal subgroup N of G.
But then N < M = M N = G, contradicting the maximality of M. O

The class of finite primitive groups can be divided into three disjoint subclasses as the
following theorem (Baer [6], see also Doerk and Hawkes [13], A.15.2) shows:

3.2.2 Theorem. Let G be a finite group. Then the following statements are equiva-
lent:
(i) G is primitive with stabilizer M ;
(ii) G satisfies one of the following statements:

(1) G has a unique minimal normal subgroup N; moreover N is abelian, N =
Cu(N) and N is complemented by M.

(2) G has a unique minimal normal subgroup N; N is non-abelian, Co(N) =1
and N is supplemented by M. Furthermore, if V is a minimal supplement
to N, then NNV < ¢(V),

(3) G has exactly two isomorphic non-abelian minimal normal subgroups N and
N*. Moreover C;(N) = N* and Co(N*) = N and N = N* = NN*N M.
M complements N and N*, and if V < G supplements N and N*, then
V' complements N and N*. Also, M N NN* is a (normal) subgroup of M
isomorphic with N (and N*).
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If G is a finite soluble group, clearly every minimal normal subgroup of GG is abelian,
so a finite primitive soluble group must belong to the class of groups described in (1)
above.

Primitive finite soluble groups can be characterized in several ways:

3.2.3 Lemma. Let G be a finite soluble group and suppose that N is a minimal nor-
mal subgroup of G whose order is divisible by the prime p. Then the following statements
are equivalent:

(i) G is primitive;

i) N = Co();

(iii) N = O,(G) for the prime p and O, (G) = 1;

(iv) N = F(G);

(v)

Proof. Note first that N is elementary abelian of exponent p since G is soluble.

(i) = (ii): This follows directly from Theorem 3.2.2 since N is abelian.

(i) = (ili): If N = C4(N) and N* # N is a minimal normal subgroup, then [N.N*] <
N N N* =1, which shows that N* < C(N) = N, a contradiction. Therefore N is the
unique minimal normal subgroup of G. So if O, (G) # 1, we must have N < O,,(G) which
is, of course, impossible, N being a p-group. Therefore O,,(G) = 1. Let O = O,(G), then
N < O; moreover O is nilpotent and so Z(0O) # 1. Z(O) is characteristic in O, hence
normal in G so that N < Z(0) and so O < C(N) = N, proving that N = O = O,(G).

(iii) = (iv): Clearly, the Hall p’-subgroup of F/(G) is characteristic in F(G), so it
is normal in G and hence contained in O, (G) = 1. Therefore F(G) is a p-group and
F(G)=0,(G)=N.

(iv) = (v): @(G) is a characteristic subgroup of G properly contained in F(G) = N.

?(G) =1 and N s the only minimal normal subgroup of G.

Therefore we must have ¢(G) = 1. Clearly, every minimal normal subgroup of the soluble
group G is abelian, therefore contained in the Fitting subgroup of G. Since F(G) = N
is itself a minimal normal subgroup, it follows that /N is the unique minimal normal
subgroup of G.

(v) = (i): Since @(G) = 1, there is a maximal subgroup M of G which does not
contain N. If M, # 1, the normal subgroup M, must contain the unique minimal
normal subgroup N of G. But then N < M, a contradiction. So we must have M, =1

and G is primitive. O

We will now analyse primitive groups G which are the product of two finite nilpotent
subgroups. The main result, namely that if G is non-nilpotent, then one of these sub-

groups is a Sylow p-subgroup and the other a Hall p’-subgroup, is due to Gross [22].
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First, we prove a generalization of this result which is based on the proof of Gross’ state-
ment that can be found in [4], Lemma 2.5.2. For the definition of a m-separable group,

we refer the reader to Section 4.1.

3.2.4 Lemma. Let the m-separable group G be the product of its subgroups A and B
and suppose that A and B have normal Hall 7'-subgroups. Furthermore, suppose that G
does not contain nontrivial normal 7'-subgroups and let O = O_(G). Then

(i) C4(0) < O;

(i) iof O is the unique minimal normal subgroup of G, then A or B is a m-group;

(iii) of in addition A and B have normal Hall w-subgroups, then AO/O and BO/O
are Hall - and Hall 7’-subgroups of G/O and O is factorized;

(iv) if in addition, O is abelian and O < G, then A and B are Hall m- and Hall 7'-
subgroups of G. Thus every subgroup of G has a factorized conjugate (in partic-
ular, every normal subgroup of G is factorized), and if G = AC = BC' for some
C <@, then G =C.

Proof. (i) This is a result of Hall and Higman [26], Lemma 1.2.3.

(ii) Let A_, and B_, be the Hall 7’-subgroups of A and B respectively, then A_ B_,
is a Hall 7’-subgroup of G by Lemma 2.1.1, because every m-separable group satisfies
D_ and D,,, and since A_, and B,, are normal subgroups of A and B respectively,
we have A, BY, = B, A, for all ¢ € G by Lemma 1.1.7. Now by Proposition 3.1.2,
[AY,) BY)] is a subnormal 7’-subgroup of G and as such it is contained in O (G) = 1.
Therefore also [A%, BS] = 1. If, say, B is not a m-group, then BY # 1, thus O < BY
and [A_,0] < [AY, BS] = 1. Therefore, A, < Cg(0) < O and A must be a -
group.

(iii) Suppose w.l.o.g. that A is a m-group. As above, G has a Hall m-subgroup of the
form A_B_ = AB_ by Lemma 2.1.1. Now B, < B and therefore B = B# which
is contained in the 7-group AB_. So BY is a normal m-subgroup of G, and B, must
be contained in O. Hence AO/O is a w-group and BO/O is a ©'-group. Moreover by
Corollary 2.2.4, 1 = O/O is a factorized subgroup of G/O and so by Lemma 1.2.2, O is
factorized.

(iv) Since O,..(G)/O is a 7'-group, it is contained in BO/O = B_,0/0. Now if O is
abelian, then both O and B, centralize B, < O and so O,.,(G) centralizes B, : Therefore
B, < Z(0,.(G)) < C4(0) = O. By the minimality of O, we have either Z(0,.(G)) =
1 or Z(0,,.(G)) = C;(O). From the latter, it follows directly that O = O,.(G) = G,
contrary to our assumption that O < G. So we must have Z(O,.,(G)) = 1 and hence
B, = 1. So by Lemma 1.1.1, A and B must be Hall subgroups of G. The remaining

statements follow from Lemma 2.2.5 and Lemma 1.1.8. O
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We summarize the results of Lemma 3.2.4 for primitive groups that are the product

of two nilpotent subgroups A and B

3.2.5 Lemma. Let the finite soluble group G = AB be the product of its nilpotent
subgroups A and B. Suppose that G is primitive and denote with N the unique minimal
normal subgroup of G. Then

(i) N = F(G) = O,(G) is an elementary abelian p-group for some prime p and
0,(G)=1;

(ii) A or B is a Sylow p-subgroup of G containing N; if A # B, then the other is a

Hall p'-subgroup. In particular, AN B = 1.

(ii) If F,/N = F(G/N), then F,/N is a p'-group and every prime divisor of |B]

divides already |F,|.

(iv) If A and B are proper subgroups of G, then A and B are mazimal nilpotent

subgroups of G.
(v) If A # B, then every subgroup of G possesses a factorized conjugate.
(vi) If A # B, then G = BC = CA for a subgroup C, then G = C.

Proof. First, we deal first with the case when G is nilpotent. Since then a maximal
subgroup of G is normal, a primitive nilpotent group is cyclic of prime order. So either
G=A=BorA=1and B=Gor A= G and B = 1. In all three cases, it is easy to
see that the lemma holds. Therefore we may suppose from now on that A, B and N are
properly contained in G.

(i) follows directly from Lemma 3.2.3.

(ii), (v) and (vi) follow directly from Lemma 3.2.4 with 7 = {p}, since we have already
excluded the case when G = N.

(iii) If P/N is a Sylow p-subgroup of F,/N, then P is a normal p-subgroup of G
since F,/N is nilpotent. This shows that P = N and F,/N is a p’-group. So F,/N is
contained in the Hall p’-subgroup BN/N of G/N. Therefore Z(BN/N) < Z(F,/N) <
Cen(Fy/N) < F,/N. Since Z(BN/N) = Z(B) is the direct product of the centres of
the primary components of BN/N, this shows that every prime divisor of B divides
F,/N.

(iv) Suppose that A is contained in a proper nilpotent subgroup H of G, then G = HB
and, applying the same arguments to G = H B, we obtain HNB = 1. So by Lemma 1.1.1,
we must have |A| = |H| and thus A = H, similarly for B. Therefore A and B are maximal

nilpotent subgroups of G. O

For further results about the structure of G, see also Lemma 4.2.1.
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3.3 Pronormal and abnormal subgroups

Recall that a subgroup P of the finite group G is called pronormal if P and P9 are
conjugate in the subgroup (P, P9) for every g € G. If P < H < G, then, of course, P is
also a pronormal subgroup of H.

Pronormal subgroups of finite soluble groups can also be characterized in the following

way:

3.3.1 Theorem (Mann [39]). A subgroup P of a finite soluble group G is pronormal

if and only if each Hall system of G reduces into exactly one conjugate of P.
A proof of this can also be found in [13], 1.6.6.

3.3.2 Proposition. Let G be a finite soluble group which is the product of its nilpo-
tent subgroups A and B. If S is a prefactorized subgroup of G, then the Hall system

Y ={A.B,|rC t¥P}

reduces into S. Moreover, ¥ is the only Hall system of G that reduces into every prefac-
torized subgroup of G. In particular 3 is the only Hall system of G consisting entirely of
prefactorized Hall subgroups.

Proof. By Proposition 2.1.2, ¥ is a Hall system of G. Since S is the product of its
nilpotent subgroups SN A and S N B, also the subgroup S possesses a Hall system of

the form
{S,=(SNA).(SNB), |7 CFP}

where (SN A),_and (SN B),_ are the Hall m-subgroups of SN A and S N B respectively.
Since A and B_ are the unique Hall m-subgroups of A and B respectively, we must
have (SN A), <A, and (SN B), < B,. This shows that for every set 7 of primes, the
Hall 7-subgroup S, = (SN A)_(SNB), of S is contained in the 7m-subgroup SN A_B_,
and therefore that S, = SN A_B,. Since this is true for every set 7 of primes, we have
shown that ¥ reduces into S.

Now suppose that ¥* is another Hall system of GG reducing into every prefactorized
subgroup of G. If 7 is a set of primes, then ¥* reduces into the Hall subgroup A_B_ of G.
Therefore A, B, must be contained in a Hall m-subgroup H € ¥* and so A _B,_ € ¥*.

Continuing like this for every set 7 of primes, we have > = ¥* as required. a
The next proposition is a direct consequence of Proposition 3.3.2 and Theorem 3.3.1.

3.3.3 Proposition. Let the finite group G be the product of its nilpotent subgroups A

and B. If P is a pronormal subgroup of G, then P has a unique prefactorized conjugate.
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Proof. If P9 and P" are prefactorized conjugates of P for g, h € G, then by Propo-
sition 3.3.2, the Hall system

S = {(4,B, |~ C P}

reduces into both P9 and P". Since P is pronormal, we must have PY = P" by Theo-
rem 3.3.1. 0O

A subgroup S of G is called abnormal if g € (S, S9) for every g € G. Of course, every
abnormal subgroup of G is pronormal in G. Also, if S < H < G, then, S is abnormal
in H. The following lemma shows in particular that an abnormal subgroup cannot be
contained in a proper normal subgroup of G.

Remark. By induction on the number of factors, it can be proved that Proposi-
tion 3.3.2 and Proposition 3.3.3 even holds for groups G that are the product of finitely
many finite nilpotent subgroups.

3.3.4 Lemma. Let S be an abnormal subgroup of the (possibly infinite) group G. If
S<K<H<LG, then H=K. Thus S = Ng(95).

Proof. For all h € H, we have S" < K" = K and therefore h € (S, 5") < K. So we
have H = K. The second statement follows from the fact that S < N (.5). O

3.3.5 Proposition. Let G = AB be the product of the finite nilpotent subgroups A

and B. Then every abnormal subgroup of G possesses exactly one factorized conjugate.

Proof. Let S be an abnormal subgroup of G. If S = G, then there is nothing to
prove, so suppose that S < G and let M be a maximal subgroup of G which contains
S. By Lemma 3.3.4, M cannot be normal in G and therefore M, < M < G and G/M
cannot be nilpotent. Hence we may apply Lemma 3.2.5 to show that M /M possesses
a factorized conjugate, say, M9/M. So by Lemma 1.2.2, also MY is factorized in G.
Now S9 is clearly an abnormal subgroup of MY and by induction on the order of G,
the subgroup SY possesses a factorized conjugate in MY which is also factorized in G
by Lemma 1.1.6 and is clearly conjugate in G to S as required. The uniqueness of this

conjugate follows from Proposition 3.3.3. O
Since every maximal nonnormal subgroup of a group G is abnormal, we also have

3.3.6 Corollary. Suppose that the group G is the product of its finite nilpotent sub-
groups A and B. Then every maximal nonnormal subgroup of G has a unique factorized

conjugate.
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The following results shows that in general, one cannot expect every conjugate of a

subgroup to be prefactorized or factorized.

3.3.7 Corollary. If the finite group G is the product of its subgroups A and B and

every mazimal subgroup of G is prefactorized, then G is nilpotent.

Proof. Let M be a maximal subgroup of GG. Since M is a pronormal subgroup of G,
M has a unique prefactorized conjugate by Proposition 3.3.3. Since on the other hand,
every conjugate of (G is a maximal subgroup, hence prefactorized, it follows that M < G.

So every maximal subgroup of GG is normal and G must be nilpotent. a

This result can be used to characterize those products of two finite nilpotent subgroups

in which every subgroup is factorized or prefactorized.

3.3.8 Proposition. Let G be a finite soluble group which is the product of its nilpo-
tent subgroups A and B. Then the following statements are equivalent:
(i) Ewery subgroup of the nilpotent group G has a factorized (prefactorized) conjugate.
(ii) G is nilpotent; its subgroups A and B have coprime orders (coprime indices).

(iii) Every subgroup of G is factorized (prefactorized).
Proof. (i) = (ii): This follows immediately from Proposition 2.3.1 and Corollary 2.3.3

respectively.

(ii) = (iii). Obviously, every subgroup of G is subnormal, hence this follows from
Lemma 2.2.2 and Corollary 2.2.4 respectively.

(iii) = (i): We have to show that G is nilpotent. But this follows at once from Corol-
lary 3.3.7 O

The next lemma shows that abnormal subgroups can be characterized as the normal-

izers of the pronormal subgroups:

3.3.9 Lemma. Let G be a (possibly infinite) group. Then the normalizer of a pronor-
mal subgroup of G is abnormal in G. Therefore a subgroup of G is abnormal if and only

if it is pronormal and self-normalized.

Proof. Suppose that P is a pronormal subgroup of G and let g € GG. We have to
show that ¢ € H = (N4(P), Ng(P)9). Since (P, P9) < H, there is an h € H such that
Ph = P9. Hence gh™' € Ng(P) and consequently g € (N,(P),H) = H, proving that
Ng(P) is abnormal.

From this, it follows that a self-normalized pronormal subgroup is abnormal. On the
other hand, we have already proved in Lemma 3.3.4 that abnormal subgroups are self-

normalized. O
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A factorized (abnormal) subgroup clearly contains A N B, hence we obtain

3.3.10 Corollary. Let the group G be the product of its nilpotent subgroups A and B.
If P is any pronormal subgroup of G, then it is normalized by some conjugate of AN B.

Suppose that the group G is the product of its nilpotent subgroups A and B and
that P is a prefactorized pronormal subgroup of G. Then N (P) is abnormal in G, and
therefore we know that some conjugate of N, (P) is factorized. The next proposition
shows that N (P) itself is factorized (and therefore no other conjugate of N (P) can be
factorized). This means that the investigation whether a pronormal subgroup P of G has
a prefactorized (factorized) conjugate may be reduced to finding the factorized conjugate
Ng(P)? of its normalizer and to checking whether the conjugate P? of P that lies in
Nq(P)% = N (P9) is a prefactorized (factorized) normal subgroup of N (P)?.

3.3.11 Proposition. Let the group G be the product of its subgroups A and B and

let P be a pronormal subgroup of G. Then the following statements are equivalent:
(i) P is prefactorized;

(ii) Ng(P) is factorized and P is a prefactorized (normal) subgroup of N (P).

Proof. Suppose that P is a prefactorized pronormal subgroup of G. Since Ng(P) is
abnormal in G, by Proposition 3.3.5, there is a ¢ € G such that N5 (P)? = N (PY)
is factorized. Now by Proposition 3.3.2, the Hall system X defined there reduces into
Ng(PY9) and since P9 < N (PY), ¥ reduces into P9 as well.

On the other hand, ¥ also reduces into P by Proposition 3.3.2 since P is prefactorized,
and so we must have P9 = P by Proposition 3.3.3, showing that the normalizer N (P) =
Ng(PY9) of P is factorized.

The other implication follows directly from Lemma 1.1.6. O

3.3.12 Corollary. Let the group G be the product of its subgroups A and B. If P
is a pronormal subgroup of G such that Ng(P) is factorized, then the factorizer X (P)
of P can be written X(P) = N,(P)PN Ng(P)P and it possesses a triple factorization

X.(P)= A"P = B*P = A*B*
where P <4 X, A* = N,(P) N Ny(P)P < A and B* = N,(P)P N N,4(P) < B.

Proof. N, (P) is factorized, so we have X(P) < N (P) which shows that X, (P) is

also the factorizer of P in N, (P) = N,(P)Ng(P). Since P < N(P), the corollary now

follows directly from Lemma 1.2.1. O

It also follows from Proposition 3.3.11 that the system normalizer of the Hall system

Y is factorized:
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3.3.13 Corollary. Suppose that the group G is the product of its finite nilpotent
subgroups and let ¥ be the Hall system defined in Proposition 3.3.2. Then Ng(H) is

factorized for all H € ¥ and also the system normalizer

No(2) = (] Ne(H)

Hes
of ¥ is factorized.

Proof. Since every Hall subgroup H € X is prefactorized, it follows from Proposi-
tion 3.3.11 that N (H) is factorized for all H € ¥. The system normalizer N, (X) of ¥ is
factorized since by Lemma 1.1.6, the intersection of any number of factorized subgroups

is factorized. O

Question. Recall that the hypercentre of a finite soluble group equals the inter-
section of its system normalizers. Is the hypercentre of a finite group G that is the
product of two nilpotent subgroups prefactorized? (This question is motivated by the
fact that a corresponding result holds for F-injectors: if an F-injector of a group G
that is the product of two nilpotent subgroups is factorized (prefactorized), then also
its core, the F-radical of G, is factorized (prefactorized); see Proposition 3.6.4 for de-
tails.)

On the other hand, by an example of Heineken [28], the hypercentre does not neces-
sarily contain AN B and hence it is not factorized. Also, an example of Gillam [19] of a
finite p-group G which is the product of two subgroups A and B which do not contain
normal subgroups of G shows that it is possible to have ANZ(G) =1 and BNZ(G) =1

whence the centre Z(G) of G is not necessarily prefactorized.

3.4 Projectors

Let X be a class of groups. An X-subgroup X of a group G is X-maximalin G if for every
X-subgroup Y of G with X <Y it follows that X =Y. A subgroup P of G is called an
X-projector if PN/N is an X-maximal subgroup of G/N for every normal subgroup N
of G.

Recall from Section 1.3 that a class $) of finite groups is called a Schunck class it G € $
whenever all primitive homomorphic images of G lie in $. The Schunck classes of finite
soluble groups are precisely the classes for which every finite soluble group G possesses
an $-projector. In this case, the $-projectors of G are conjugate; see e.g. [13], 111.3.10,
3.21, and by [13], 111.3.22, if P is an $-projector of G and P < H < G, then P is an

H-projector of H as well. This also shows that $)-projectors are pronormal.
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In view of Proposition 3.3.11, we examine first the case when a projector is normal
in G; cf. Blessenhohl and Gaschutz [10].

3.4.1 Lemma. Let G be a finite soluble group and suppose that § is a Schunck
class such that an $-projector P is normal in G. Then P = O™ (G) where 7 is the

characteristic of .

Proof. Suppose first that a prime p € 7w divides the order of G/P. Then G/P has a
subgroup of order p which belongs to ) and so 1 = P/ P is not $-maximal in G/ P, contra-
dicting the fact that P is an $-projector. Therefore G/ P is a 7’-group and O™ (G) < P.

Now suppose that O™ (G) < P and let M be a maximal normal subgroup of P
containing O™(G). Then P/M is a n’-group and since G (and hence P) is soluble, P/M
is cyclic of prime order p € 7’. But P/M € Q$) = $ whose characteristic is 7, hence does

not contain cyclic p-groups. This contradiction shows that P = O™ (G). O
We will also make use of the following property of saturated formations.

3.4.2 Proposition. If § is a saturated formation of characteristic w, then every

group G € § is a w-group.
Proof. See e.g. Doerk and Hawkes [13], IV.4.3. O

This result is false for arbitrary Schunck classes, e.g. for the classes of finite m-perfect
(soluble) groups, i.e. the class of finite (soluble) groups G for which O™(G) = G, if
10/ ; s ; +HP.

For saturated formations, the next result has been proved by Heineken [28]:

3.4.3 Theorem. Let $ be a Schunck class and suppose that the group G is the
product of its finite nilpotent subgroups A and B.
(i) If char($)) contains o(A) No(B), then G has a unique factorized $)-projector.

(ii) If $ is a saturated formation, then G has a unique prefactorized $)-projector.

Proof. Note first that in both cases, the uniqueness of the factorized or prefactorized
projector follows from Proposition 3.3.3 since an $)-projector is pronormal. Therefore it
remains to prove the existence of such projectors in G.

Let P be an H-projector of G. Since N (P) is an abnormal subgroup of G, by Propo-
sition 3.3.5, it has a factorized conjugate N (P)9 = N (P9) where g € G. Therefore by
Proposition 3.3.11, it is enough to show that P¢ is a prefactorized subgroup of N (P9),
hence we may assume that G = N, (P?) and P < G. Then we have P = O™ (G) by the
preceding Lemma 3.4.1, where 7 = char(9).
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Now under the hypothesis of (i), the groups AP/P and BP/P have coprime orders
since 7 contains all common prime divisors of A and B. Therefore by Corollary 2.2.4,
1 = P/P is a factorized subgroup of G/P and so by Lemma 1.2.2, P is factorized in G.

In the case of (ii), P is a m-group by Proposition 3.4.2 since §) is a saturated formation.
On the other hand, since G/ P is a n’-group, P is the unique Hall 7-subgroup of G, which
must be prefactorized by Lemma 2.1.1. O

Let the group G be the product two nilpotent subgroups A and B. The following
example shows that none of the following subgroups of G is necessarily prefactorized: G,
G™, [A, B], O™(G) for all sets ™ # @ of primes. (Observe that since all these subgroups
are normal, there cannot exist prefactorized conjugates, and, except possibly for [A, B],
no automorphism of G can map these subgroups to a prefactorized subgroup).

Since for every finite group G, the subgroup O™(G) is the unique $)-projector of G
where $) is the Schunck class of m-perfect groups, the example also shows that statement
(ii) of Theorem 3.4.3 becomes false when $ is a Schunck class that is not a saturated
formation.

Observe also that the subgroups A and B are abelian in the following

3.4.4 Example. Let p and ¢ be distinct primes and let N be a ¢-dimensional vector
space over F' = GF(p), written additively. Define an automorphism « of N of order ¢
by

@ (T, y) = (X, Ty, T ).

Now let G be the semidirect product of N by @ = (), then G is (isomorphic with) the
standard wreath product of a group of order p with a group of order q.

Let D be the diagonal subgroup
D={(z,...,z) |z €F}

of N. Clearly, a centralizes D (in fact, D = Z(G)) and so A = D X @ is an abelian
subgroup of G. Next, let

B = {(x17“‘7xq—170>‘xi EF}a

then B is a ¢ — 1-dimensional F-subspace of N. Since D has F-dimension 1 and clearly
B and D intersect trivially, we have N = DB and thus G = QDB = AB, and since
B<N,wehave ANB=QDNNNB=DQ@NN)NB=DNB=1.

By [13], A.18.4, the derived subgroup G’ of G equals

q
M ={(zy,...,2,) | x; € F, in:O}
i=1
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and OP(G) = QY = MQ. Since obviously N = OP(G), we also have that G =
OP(G)YNOYG) = MQNN = M(@NN) =M =G and [A,B] = [Q,B] = M be-
cause [A, B] < G' = N and [Q, B] < [A, B] contains the elements of the form

(o =1,1,..))

which generate M.
Since clearly ANM < N, we have ANM = ANNNM = QDNNNM = D(QNN)NM =
D N M; thus
AnNM={(z,...,z) |z € F,q-z=0}.

Since g # p, we have x = 0 whenever ¢ - x = 0; thus AN M = 1. Furthermore, BN N
equals the set

q—1
{(x17"-axq—170) | x; € Fa Z'rz - O}
i=1

which has dimension ¢ — 2 while the dimension of N itself is ¢ — 1. This shows that
(MNA)MNB)=MnNB < M and so M, the derived subgroup of G as well as its
nilpotent residual, is not prefactorized.

Also, if OP(G) = M@ were prefactorized, then also its Sylow p-subgroup M would
have to be prefactorized by Lemma 2.1.1. So M () cannot be prefactorized either.

3.5 $H-maximal subgroups

The results about $-projectors obtained in Section 3.4 can also be obtained via a more
general result about $)-maximal subgroups. The following result will also be used in

Section 3.6 to prove certain results for saturated Fitting formations.

3.5.1 Theorem. let$) be a Schunck class and suppose that the group G is the product
of its milpotent subgroups A and B. If H is an $-mazimal subgroup of G, then:

(i) If char($)) contains o(A) No(B), then H possesses a factorized conjugate in G.

(ii) Without any hypothesis on the characteristic of §, if ) is a saturated formation,

then H has a prefactorized conjugate in G.

Proof. (i) If 1 # N denotes a proper normal subgroup of G, then the $-group H N/N
is contained in an $)-maximal subgroup Y/N of G/N. By induction on the order of G,
there is a g € G such that Y9/N, and therefore Y9, is factorized. Then HY < Y9 is also
an $)-maximal subgroup of Y9, so if Y9 < G, by induction on |G| again, HY possesses
a factorized conjugate in Y9 which is also a factorized subgroup of G by Lemma 1.1.6.

Therefore we may suppose that for all normal subgroups N # 1, the factor group G/N is
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an $)-subgroup. Of course, we may also exclude the case when G € §) since then H = G
is factorized. But then by Lemma 1.3.1, G must be primitive.

Next, consider the case when A = B (= G): since G is primitive and nilpotent, G
is cyclic of prime order p, say, and p is a common prime divisor of A and B, hence $
contains G, a case that has already been treated.

So we are left with the case when A # B. Then, however, H possesses a factorized
conjugate in G by Lemma 3.2.5 and the proof of (i) is complete.

(ii) Let 7 = char(9). Since 9 is a saturated formation, H is a m-group by Proposi-
tion 3.4.2, and, replacing H by a suitable conjugate if necessary, we may suppose that H
is contained in the Hall subgroup A _B_ of G. Now o0(A_)No(B,) < m = char($)) whence

H, being also an $)-maximal subgroup of A _B,, is a factorized subgroup of A_B_ by

)

part (i). Thus it is a prefactorized subgroup of G by Lemma 1.1.6. O

Observe also that, $-projectors being in particular $)-maximal subgroups, Exam-

ple 3.4.4 shows that Theorem 3.5.1, (ii) cannot be extended to arbitrary Schunck classes.

Remark. The result of Theorem 3.4.3 can also be obtained combining Theorem 3.5.1
(existence) and Proposition 3.3.3 (uniqueness).

Note also that there may well be more than one factorized $)-maximal subgroup and
that these need not even be isomorphic: consider the symmetric group of degree 3 which
is the product of a cyclic group A of order 2 and a cyclic group B of order 3. Let
$H =N, then A and B are maximal nilpotent subgroups of G which are factorized but

not isomorphic.

As a corollary to Theorem 3.5.1, we obtain the following result which has been proved
by Fransman [17] and Amberg and Fransman [5] for Schunck classes containing all
finite nilpotent groups. The latter result in turn generalizes a result of Peterson [42] for

saturated formations.

3.5.2 Corollary. Suppose that G is a finite group with subgroups A, B and C' where
A and B are nilpotent and C € $. If G = AB = AC = BC, then G € §), provided that
o(A)No(B) C char(9).

Proof. Let D be an $)-maximal subgroup of G containing C'. Then also AD = BD =

G. Now by Theorem 3.5.1, DY is factorized for some g € G and by Lemma 1.1.8,
G=Dc¢cH. O

This result becomes false as soon as we drop the condition o(A) No(B) C char($):
let G = A = B be a cyclic group of order p for some prime p and suppose that § is a

class of groups (not necessarily a Schunck class) whose characteristic does not contain p.
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Then G ¢ $ and therefore the unit subgroup is the only $)-subgroup of G, and of course

3.6 Injectors and radicals

A Fitting set F is a set of subgroups of the group G which satisfies

(FS1) If M € F, then MY € F for all g € G,
(FS2) If M, N € F and M and N normalize each other, then MN € F.
(FS3) If G € F and N < @G, then N € F.

Let § be a Fitting class, i.e. an (s,,No)-closed class of finite groups, then it is easy to see
that the set {S <G|Se S} is a Fitting set of the group G. Moreover, if F is a Fitting
set of G and H < G, then the set F; = {S < H | S € F} is a Fitting set of S.

Let F be a set of subgroups of the group G that satisfies (FS1) and (FS2). In analogy
to the §-radical defined in Section 1.3, the F-radical of GG is the subgroup of G generated
by all subnormal F-subgroups of G. To simplify notation, if H < GG, we will denote the
Fy-radical of H again with H .

3.6.1 Lemma. Let F be a set of subgroups of the finite group G satisfying (FS1)
and (FS2) above. Then:

(i) FEvery subnormal F-subgroup of G is contained in a normal F-subgroup of G.

(ii) Gx is the unique mazimal normal F-subgroup of G.

(iii) If S <« G, then Sy < SN Gy, and if F is a Fitting set and S << G, then

Sr=5NGg.

Proof. (i) If S < G, (i) is trivially true. Therefore by induction on the subnormal
defect of S, the subgroup S is contained in a normal F-subgroup R of S¢ < G. Since
all G-conjugates of R are normal F-subgroups of S¢ by (FS1) and their product R® is
an F-subgroup by (FS2), RY is a G-invariant F-subgroup containing S as required.

(ii) By (i), G is generated by all normal F-subgroups of G and so it is an F-subgroup
by (FS2).

(iii) Sz is a subnormal F-subgroup of G by (ii), therefore S < SNGx. If Fis a
Fitting set, by (FS3), S N Gx is a subnormal subgroup of G and so SN G, € F.
Therefore S N G £ is a normal F-subgroup of S and as such contained in Sr. O

An F-injector I is a subgroup I of G such that I N S is F-maximal in S for all
subnormal subgroups S of G.

By mere definition, it is clear that for every subnormal subgroup S of GG, the subgroup
I'N S is an Fg-injector of S.
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The following proposition was originally proved for Fitting classes by Fischer, Ga-
schiitz and Hartley [15]. For a proof, see e.g. Doerk and Hawkes [13], VIII.2.9 and 2.13.

3.6.2 Proposition. Let F be a Fitting set of the finite soluble group G. Then G
possesses exactly one conjugacy class of F-injectors. If I is an F-injector of G and
I < H LG, then I is also an Fy-injector of H. In particular, the F-injectors of G are

pronormal subgroups of G.

The next lemma shows that if F-injectors exist and form a single conjugacy class,

then their core equals the F-radical.

3.6.3 Lemma. Let G be a finite soluble group. Then the F-radical G of G equals

the intersection of all F-injectors of G.

Proof. Clearly, the intersection of all F-injectors of G is a normal F-subgroup of G,
hence it is contained in Gz. On the other hand, if I is an F-injector, I N Gz is an
F-injector of G, therefore I N G = G . This shows that G is contained in every
F-injector of G. O

Next, we show that the F-radical of a finite group G which is the product of two
nilpotent subgroups is always prefactorized (factorized) if an injector of G is prefactorized
(factorized).

3.6.4 Proposition. Let G be the product of its finite nilpotent subgroups A and B
and let F be a Fitting set of G such that G possess a prefactorized (factorized) F-injector
I. Then the F-radical Gz of G is prefactorized (factorized).

Proof. We prove the proposition by induction on the order of G. Observe that the
case G =1 is trivial.

Let X = AG, N BGx be the factorizer of G, in G. X is a factorized subnormal
subgroup of G by Corollary 3.1.6, therefore I N X is a prefactorized (factorized) F-
injector of X by Lemma 3.6.1. Now G = X NG = X which shows that the F-radical
of G coincides with that of X. So if X < G, by induction hypothesis, we must have
Xz = Gx which is prefactorized (factorized).

In the other case, we have G = X = AG, = BG, and hence G /G is nilpotent. This
shows that I/Gr <1 G/G £ is subnormal in G/G . Thus I is a subnormal F-subgroup
of G and therefore [ is contained in G . So G = I is prefactorized (factorized). O

If, with the notation of the preceding Proposition 3.6.4, the F-injector [ is contained in
a factorized subgroup H of G, then I is also an Fy-injector of H by Proposition 3.6.2.
This shows that H, is prefactorized (factorized) for all such subgroups H. If, on the
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other hand, H is prefactorized (factorized) for all factorized subgroups containing an
F-injector of G, the following proposition shows that G has a unique factorized F-

injector.

3.6.5 Proposition. Let G be the product of its finite nilpotent subgroups A and B
and let F be a Fitting set of G. Let I denote an F-injector of G and define

S = {S < G| S <G is factorized and contains a conjugate of I}.

Then the following statements are equivalent:
(i) Every S € S contains a prefactorized (factorized) F-injector.
(ii) For every S € S, the F-radical Sy is prefactorized (factorized).

Proof. By Proposition 3.6.4, we have already seen that whenever S possesses a prefac-
torized (factorized) F-injector, then the corresponding radical Sz must be prefactorized
(prefactorized). This proves the necessity of our condition.

Conversely, suppose that the proposition is true for all groups of order smaller than
|G| (observe that the statement is trivial if G = 1) and let I be an F-injector of G. Since
I is pronormal by Proposition 3.6.2, by Proposition 3.3.11, we may assume w.l.o.g. that
Ng(I) is factorized and thus that Ng(I) € S. Now if N, (I) < G, then by induction
hypothesis, I is prefactorized (factorized) in N (1), hence also in G by Lemma 1.1.6. In
the other case, when N(I) = G, we have I < G and thus I = G which is prefactorized
(factorized) by hypothesis. O

For Fitting classes, we obtain the following result:

3.6.6 Corollary. Let U be an s-closed class of finite groups and let § be a Fitting
class. Then the following statements are equivalent:
(i) For every group G € U, the §-radical G is prefactorized (factorized).
(ii) Ewvery group G € U that is the product of two nilpotent subgroups has a unique
prefactorized (factorized) §-injector

Proof. Suppose that the group G € U is the product of its nilpotent subgroups A
and B. Let F = {S <G|Se 8’}, then F is a Fitting set of G, and since also all
subgroups of G belong to U, the equivalence of (i) and (ii) follows directly from the
equivalence of the corresponding statements of Proposition 3.6.5. O

Since we know from Theorem 3.1.5 that the Fitting subgroup (and thus F), (G) for all

n > 1) is factorized, we obtain the following result about nilpotent injectors:

3.6.7 Corollary. Let the group G be the product of its finite nilpotent subgroups A

and B. Then G has a factorized MF-radical and a unique factorized NF-injector where
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Mk is the Fitting class of groups of nilpotent length < k; in particular G has a unique

factorized N-injector.

Proof. By Theorem 3.1.5, F'(G), and hence F,(G) for every nonnegative integer k, is
factorized for every finite group G that is the product of two nilpotent subgroups. Now
Fy, is the MF-radical of G, and so by the preceding proposition (with U the class of all

finite groups, say), G has a unique factorized DM*-injector. O

The following example! shows that even when § is a Fitting class and the finite soluble
group G is the product of two cyclic groups A and B, its §-radical is not necessarily
prefactorized and G need not have prefactorized §-injectors. Observe also that in the
following example, every subgroup of A permutes with every subgroup of B.2 The second
part of the example shows that for Fitting sets F, a (normally embedded) F-injector
is not necessarily prefactorized (factorized), even when the F-radical is prefactorized
(factorized).

3.6.8 Example. Let G be a finite soluble group and

be a principal series of G. Every p-chief factor G,/G,_; can be regarded as a vector space
over GF(p), the field with p elements, on which every g € G acts as a nonsingular linear

transformation \,(g). Let
A(g) = [ ] det(Xi(9))

where the product is taken over all i such that G,/G,_; is a p-group. A is a homomor-
phism from G to the multiplicative group of GF'(p). (Note that this homomorphism does
not depend on the choice of the principal series of G by the Jordan-Holder theorem).
Then D(p), the class of finite soluble groups G such that A(g) = 1 for all ¢ € G, is
a normal Fitting class, i.e. a Fitting class such that every finite soluble group has a
(unique) normal ®(p)-injector, as has been shown by Blessenhohl and Gaschutz, [10];
see also Hawkes [27] or Doerk and Hawkes [13], 1X.2.14 (b).

Let S and S* denote the symmetric groups on the sets {1, 2, 3} and {1*, 2%, 3*}. Put
G = S x S*, then the ®(3)-injector of G is the normal subgroup

D = ((123), (1*2*3%), (12)(1*2"))

L T wish to thank K. Doerk for pointing out the relevance of the following example in the context of
products of nilpotent groups.

2 Maier [37] calls such subgroups A and B totally permutable; this is, of course, a property much
stronger than just the permutability of A and B.
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which has index 2 in G.

Now let A = ((123),(1*2*)) and B = ((1*2*3*), (12)). It is easy to see that A and B
are cyclic groups of order 6 and that AN B = 1.

Therefore |AB| = 36 = |G| and so G = AB. Finally, AN D and BN D are both cyclic
of order 3 and so D cannot be factorized (or prefactorized, which is the same in this

case).

For the second example, let P = ((12)(1*2*)) be a Sylow 2-subgroup of D and let
F = {1, Pi|lged } Then it follows from the fact that P is normally embedded in G
or simply by direct calculation that F is a Fitting set of G with injector P and radical
Gy =1. Thus G = 1 is a factorized subgroup of G.

On the other hand, since N, (P) = ((12), (1*2%)) is factorized, by Proposition 3.3.11,
if G had a factorized F-injector, then it would have to be contained in Ng(P). So P

would have to be prefactorized, which is evidently not the case.

Question. Is there an example of a Fitting class § and a finite group G which is the
product of two nilpotent subgroups such that G' does not have a prefactorized (factorized)

S-injectors but nevertheless G5 is prefactorized (factorized)?

To obtain a further result in the case when § is a saturated Fitting formation, we
have to employ the results of Section 3.5. Then we obtain the following proposition,
whose first statement has been proved by Amberg and Fransman [5] in the case when

$ contains all finite nilpotent groups.

3.6.9 Proposition. Let the finite group G be the product of its nilpotent subgroups A
and B and let $ = No$) be a Schunck class whose characteristic contains o(A) N o(B)
(an No-closed saturated formation). Then

(i) Gy is factorized (prefactorized).
(ii) If G admits $H-injectors, then every $-injector has a factorized (prefactorized)

conjugate.

Proof. (i) Suppose first that § is a Schunck class whose characteristic contains
o(A) No(B). Then the factorizer X of R = G has a triple factorization

X =(ANBR)R = (ARNB)R = (ARN B)(AN BR)

by Lemma 1.2.1, and since (AR N B) and (A N BR) are nilpotent and R € $), we have
X € § by Corollary 3.5.2. On the other hand, by Corollary 3.1.6, X is subnormal in G,
hence X < R and therefore R = X is factorized.

Next, let $ be a saturated formation and put m = char(X). Let A, B, be the prefactor-

ized Hall m-subgroup of GG. Since §) is a saturated formation, every $-group is a m-group,
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hence R = G g must be contained in the prefactorized subgroup A, B, of G. Hence A, B,
contains a prefactorizer X of R, and by Lemma 1.2.4, X = A*R = B*R = A*B* for
suitable subgroups A* and B* of A_ and B, respectively. Now we have o(A*)No(B*) C
7w = char($), hence by Corollary 3.5.2, we have that X € $). Since every prefactorizer
of G is subnormal in G by Corollary 3.1.6, it follows that X = R as in the first part.
(ii) The second part follows directly from Section 3.5 since $)-injectors are in particular

$H-maximal subgroups. O

Remark. Proposition 3.6.9, (ii) becomes false if NoH = H is only a Schunck class but
not a saturated formation by Example 3.4.4, for the classes of m-perfect groups are also
No-closed.

Note also that we do not claim that a (pre)factorized injector be unique in the pre-
ceding proposition. However, this is the case when § is a saturated Fitting formation,
i.e. a Fitting class that is also a saturated formation. Perhaps it is also worth noting
that saturated Fitting formations include s-closed Fitting classes, for these are saturated
formations by a theorem of Bryce and Cossey [7], [8]. An outline of their proof can also
be found in [13], Chapter XI.

3.6.10 Corollary. Let the finite group G be the product of its nilpotent subgroups A
and B and suppose that § is both a Fitting class and a Schunck class (a saturated Fitting
formation whose characteristic contains o(A) No(B)). Then:

(i) Gy is prefactorized (factorized).

(ii) G has a unique prefactorized (factorized) §-injector.

Proof. It follows directly from Proposition 3.6.9 that G is prefactorized (factorized).
Therefore the second statement follows from Corollary 3.6.6, taking U to be the class of
all finite soluble groups. O



Chapter 4

Structural properties of a product
of two finite nilpotent groups

4.1 Fundamental results about the p-length

of a p-soluble group

A group G is said to be w-separable for a set m of primes if the series

1<90,.(G)<0,.(G)<0,,. .(G)<...

fskivied ( —=

reaches GG after a finite number of steps. Then the number of nontrivial w-factors in
that series of G is called the w-length of GG. The group G is called m-soluble if the n-
factors in the above series are soluble. If 7 = {p}, the group G is also called p-separable
(p-soluble), and we also write [,(G) instead of I, (G).

Bounds on the p-length of a finite p-soluble group in terms of certain invariants of its
Sylow p-subgroups will play an important role in the sequel. If G is any finite p-soluble
group for the prime p and P is a Sylow p-subgroup of G, define the integers b,(G), c,(G),
d,(G) and e,(Q) as follows: let p’»(G) be the order of P, ¢,(G) its nilpotency class, d,(G)
the derived length of P and p®(G) its exponent. [,(G) will denote the p-length of G.

The following observations are the basis for the bounds on the p-length of G that we

will cite below:

4.1.1 Theorem. Let G be a finite p-soluble group, where p is a prime. Then:

(i) (Hall and Higman [26]) If c,(G) > 0, then c,(G/O,,(G) < c,(G).

(ii) (Hall and Higman [26]) If p # 2 and d,(G) > 0, then d (G/O,,(G) < d,(G).

(iii) (Berger and Gross [9]) If dy(G) > 0, then dy(G/Ogg0(G) < do(G). If the Sy-
low 2-subgroups or the Sylow 3-subgroups of G are abelian and do(G) > 0, then
already dy(G/O4y4(G) < dy(G).

(iv) (Hall and Higman [26]) e,(G/O,,(G) < e,(G), provided that e, (G) > 0 and G
satisfies one of the following conditions holds:
(a) p# 2 and p is not a Fermat prime;
(b) p is an odd Fermat prime and the Sylow 2-subgroups of G are abelian;
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(¢) p =2 and the Sylow q-subgroups of G are abelian for all Mersenne primes q.

The following bounds on the p-length [,(G) of a finite p-soluble group G in terms of
the structure of a Sylow p-subgroup are known. Unless otherwise noted, the bounds are
due to Hall and Higman [26].

4.1.2 Theorem. Let the finite group G be a p-soluble group. Then:

(p» —1 if p is odd and not a Fermat
p—1 prime*;
=)t — ] (p—3)—p+2
(i) 0,(G) > =2 ( p(§)2 )= p if p is a Fermat prime > 3;
p J—
2ty —1 if p=13;
(30,0, +1) in any case.
(-1 if p is odd and not a Fermat
b prime*;
— 92 lp _ 1
(ii) ¢,(G) = (p v _) 3 if p is a Fermat prime > 3;
min{l,, 27"} if p=3;
L, m any case.
(1, if p>3%
if p =2 and dy(G) <1
d(G) > l
(i) d,(&) = P (Berger and Gross [9]);
\ min{l,, 31, + 1} if p=2 (Berger and Gross [9]).
( l if p 1s neither 2 nor a Fermat
p ok
, prime?,
>
(iv) &(@) = %lp if p is an odd prime*;
| min{l,, 5(1, + 1)} ifp=2 (Gross [21]).

Here [z] denotes the greatest integer < the real number x.

In the same paper, Hall and Higman also show that the inequalities marked * are best
possible in the sense that for every integer n, there is a group G of order > n such that
the bound is attained. In our context, it is of interest that the examples furnished by
Hall and Higman are groups whose order is divisible by only two primes, whence they
are the product of their Sylow subgroups and thus products of two nilpotent subgroups.

Observe that all functions of [, in the previous theorem are increasing when [, > 0 so
that the inequalities indeed bound [, in terms of b (G), ¢,(G), d,(G) and e, (G).

> p
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4.2 Bounds on the 7-lengths

of products of two finite nilpotent subgroups

We recall that the classes of m-separable groups of 7-length < k& form saturated s-closed
Fitting formations for every nonnegative integer k.! So we will frequently encounter
primitive groups as minimal counterexample. In view of Lemma 3.2.5, it is no surprise
that the case when G is the product of two nilpotent subgroups of coprime order is of

special importance.

4.2.1 Lemma. Let the finite group G be the product of its nilpotent subgroups A
and B. If (|A|,|B|) = 1 and O_,(G) = 1 where 7 is the set of prime divisors of |A|, then:
(i) 0,1 = 0,(G) = F(G).
(ii) Let Fy =1 and F,_/F), = F(G/F},) for k> 0. Then

F.,JF, = O.(G/F,) ifk is even
BT T 00(G/F,) ik is odd;

moreover every prime divisor of |AF, /F,| divides |F,_/F}| if k is even and every
prime divisor of |BF,/F,| divides |Fy_,/F,| if k is odd.

(iii) n(G) = I,(Q) + 1.(G); moreover either n(G) = 21 (G) = 2l
2, (G) —1=2,(G) + 1.

(G) or n(G) =

p

Proof. (i) If p divides the order of F/(G), then a Sylow p-subgroup of F'(G) is a proper
normal subgroup of G. Since O_,(G) = 1, we must have p € m and F(G) < O_(G). On
the other hand, O,(G) is contained in the nilpotent Hall w-subgroup A of G and is
therefore nilpotent. It follows that F(G) = O_(G) = O, (G).

(ii) Clearly, O,(G) > 1 since G is soluble by the Kegel-Wielandt theorem (our Theo-

rem 3.1.1). Now G/O,_(G) does not contain nontrivial normal w-subgroups and, exchang-

skie

ing 7 and 7’ (observe that the set 7’ is the set of primes that do divide the order of B
plus the primes that do not divide the order of G, so that we may assume that 7' con-
tains exactly the prime divisors of B), we may suppose that the statement is true for
G/F(G). The first part of the statement follows since by part (i), O,(G) = F(G).

For the second statement, observe that F; < A and thus Z(A) < Cg(F;) which is
contained in F}. Now Z(A) is the product of the (nontrivial) centres of the primary
components of A, and so every prime divisor of |A| divides already the order of Z(A) <
F|. The general statement follows by considering G/ F}, instead of G and exchanging A
and B if k is odd.

L' The proof is straightforward except possibly for saturation, a proof of which can be obtained easily
from the proof given by Robinson [43], 9.3.4 for 7 = {p}
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(iii) This follows immediately from (ii), since the Fitting series
l=FK<F < --<F, =G
coincides with the upper m-series which equals the upper 7’-series.
1<0.(G)<0,.(G) <0, <---<G.
O

We will soon see that (iii) remains true for some prime p also when we remove the
condition (|A|,|B|) = 1. This will be proved in Section 4.3. The dual of the previous

lemma is likewise true:

4.2.2 Lemma. Let the finite group G be the product of its nilpotent subgroups A
and B. If (|A],|B|) = 1 and O™ (G) = 1 where 7 is the set of prime divisors of |A|, then:
(i) 07" = O™(G) = G™.
(ii) Set Ly =G and for k >0, define L, = (L))" Then

[ O™(L,) ifkisodd
L/ Ly = {O”/(Lk) if k is even’

Proof. (i) Obviously, G = AO™(G) so that G/O™(G) = A/AN O™(G) is nilpotent.
On the other hand, G/G™ must be a 7-group because O™ (G) = 1 which proves the
other inclusion.

(ii) Note first that every normal subgroup of G is factorized by Corollary 2.2.4 so that
in particular O™(G) is factorized (this can be seen more easily in this case observing
that B < O™(@)). Now O™ (O™(G)) = O™(G) which shows that O™(G) satisfies the
hypotheses of this lemma for the set 7’ (which we may assume to contain exactly the
prime divisors of B; cf. the remark in the proof of Lemma 4.2.1). The full statement

now follows by induction on k. O

It is easy to see that one can construct from the inequalities stated in Theorem 4.1.2
functions f:91 — N, which satisfy

(BP1) for all finite soluble groups G and all primes p, [,(G) < f(G,), where G, is a
Sylow p-subgroup of G.
(BP2) f(P/N) < f(P) for all finite p-groups P and N < P where p a prime.

4.2.3 Theorem. Let f be a function satisfying (BP1) and (BP2) above, and suppose
that the finite group G is the product of its nilpotent subgroups A and B. Then | (G) <

max{f(A,), f(B,) | p € 7}.
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Proof. Suppose that the theorem is false and let G be a counterexample of minimal
order. Let k = max, {f(A,), f(B,)}, and denote with X the class of nilpotent groups H
satisfying f(H,) < k for all p € m. Then we have A, B € X; moreover, using (BP2), it
is easy to see that the class X is Q-closed.

If $) denotes the Schunck class of finite groups satisfying [_(G) < k, then a finite group
of minimal order that is a product of two X-subgroups but does not lie in § is primitive
by Lemma 1.3.3. So G must be primitive with unique minimal normal subgroup N of
exponent p and [ (G) > [ (G/N). This shows that p € 7. Since in view of (BP1), the
theorem is trivially true if G = A = B, we may also assume by Lemma 3.2.5 that A is
a Sylow p-subgroup of G and that B is a Hall p’-subgroup.

Since O,../O,.(G) is a ©’-group and B,, is a Hall 7’-subgroup of G, we have

OTHT//OTF(G) < Bﬂ'/OTF(G)/OTF(G>
Now B_, is centralized by B, because B is nilpotent, and since moreover
CG (OTK‘TI'/(G)/OTI'(G)) S Oﬂ'ﬂ'/(G)/Oﬂ'(G)

(see e.g. [26], Lemma 1.2.3) we must have B, < C(0,(G)/0,(G)) < 0,..(G)/0.(G);
consequently B, < O_(G). This shows that AO_(G)/O,(G) is a p-group with p € 7 and
BO_(G)/0O,.(G) is a w’-group. In particular, the order of G/O, (G) is divisible only by p
and primes in 7/, hence every p-series is also a m-series and viceversa, and in particular,

1,(G/0.(G)) =1,.(G/OL(G)). Since moreover O,,,(G) = N < O,(G), it follows that
(G) < 1+1,(G/0.(G)) < L(G) < f(4,) <k
by (BP1). This final contradiction proves the theorem. O

The following bounds on [, follow directly from Theorem 4.1.2 and Theorem 4.2.3
with m = p:

4.2.4 Corollary. Let the finite group G be the product of its nilpotent subgroups A
and B. Write 1, for 1,(G) and let b, = max{b,(A),b,(B)}, ¢, = max{c,(A),c,(B)},
d, = max{d,(A),d,(B)} and e, = max{e,(A),e,(B)}, then:

(p» —1 if p is odd and not a Fermat
p—1 prime*;
)t ] (p—3) —p+2
i) o, > (=2 ( p(§>2 )—p if p is a Fermat prime > 3;
p —
24— 1 if p=3;

L 20,(1,+1) in any case.
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(Pt
(p—2)"—1
(i) ¢, = (p—3)
min{lp, 211”_1}
Ly
( lp
(i) d, > L,
\ mln{lp, 5l, T 1}
( lp
(iv) e, 2> sl
mln{l s, +1)}

if p is odd and not a Fermat prime*;

if p is a Fermat prime > 3;

if p=3;
m any case.

if p=3%
if p=2 and d;(G) < 1;
if p=2.

if p is neither 2 nor a Fermat prime*;

if p is an odd prime*;
if p=2.

95

Observe that by our remark after Theorem 4.1.2, the inequalities marked * are again

best-possible.

It is clear that the bounds for p = 2 above are very bad compared with the results

obtained for other primes. However, using the fact that [,(G) < ,(G)+1, we can obtain

better results if we use information about the Hall p’-subgroups of A and B.

In order to obtain handy bounds on m-length, we have to simplify the formulas given

in Theorem 4.1.2

4.2.5 Lemma. Let the group G be a finite p-soluble group of p-length |

an odd prime. Then
(i) b,(G) =2t +1 —1;

lp_l
b,(G) > —Zp > 2l 4

+(,—1)-1,

whereas if p is a Fermat prime > 3, we have

(p=2""—1L(p-3)—p+2

(p—3)? p

v
’B

v

—— (-2 + (-

I,—1 B
(p—3) +1,

lp

L (-2 -0, 1)

=0

1>2" " 4, —1.

)-(lp—l)—l—l—(lp—l))

s where p is
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The case p = 3 being obvious, it follows that the first formula holds for all odd primes.

The other statements should be clear. O

Define b, (G) = max{0,b,(G) | p € 7} and similarly c,(G), d,(G), e,(G) (note that
if G is nilpotent, then ¢ (G) and d_(G) are the class and derived length of a Hall -
subgroup of G), then we obtain the following bounds on the 7-length of a group G which
is the product of two finite nilpotent subgroups.

4.2.6 Corollary. Let the finite group G' of w-length | be the product of its nilpotent
subgroups A and B, let w be a set of primes, and define b, = max{b,(A),b,(B)},
¢, = max{c,(A),c.(B)}, d, = max{d (A),d.(B)} and e, = max{e (A), e .(B)}. Then
the following inequalities hold:

(i) b>2t4+1 —1 if2¢n  and by > 224 —2 if 2 € 7;

(ii) ¢,> min{l, 271} if2¢ 7 and ¢p>min{l, — 1,272} if2 € m;

(iii) d,.> 1, if2¢m and d.,>1.—1 if2em;

(iv) e.> 31, if2¢m and eqn> 5(l.—1) if2em.

Proof. (i). Suppose first that 2 ¢ m. Then for every finite p-group P, define f(P) by
2/=1 4 f(P) — 1 =b,(P).

Then f satisfies (BP1) by the preceding lemma, and it satisfies (BP2) because b, satisfies
it and the function 2*~!'4x+1 is strictly increasing for z > 0. Therefore by Theorem 4.2.3,

L(G) < maxpeﬂ{f(Ap), f(Bp)} and so
ol —1< rggg{ﬂ“‘p)*l + f(A,) — 1,277 4 f(B ) — 1}
= rgeagc{bp(A), b,(B)} =b,.
If 2 € 7, we use the fact that [ —1 < [_; thus
o2 4 —2< ot 4, —1<b,.

The proof of the other statements is similar. O
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4.3 Connections between Fitting length and n-lengths

If G is a soluble group of Fitting length n = n(G), then it is always possible to obtain
from its Fitting series a series whose factors are 7- and 7'-groups with § 7-factors if n is
even and (”—;rl) w-factors if n is odd. So 2{_(G) < n+1 for every set of primes 7. Since also
21, <n+1, we also have [_+1_, < n+ 1. The next theorem shows that products of two
finite nilpotent groups have the property that n(G) < 21,(G) and n(G) < 1 (G) +1,(G)

for at least one prime p.

4.3.1 Theorem. Let the group G be the product of its finite nilpotent subgroups A
and B. Then

n(G) <2 max {1,(G)},

n(G) < QP?fgp{lp/(G)} +1 and

G) < L(G)+1p(G)}.
n(G) < max {1,(G) + '(G)}

Proof. Suppose that the group G is a minimal counterexample for one of the above
inequalities. Since the classes of groups H such that

2 ms b} <2 mag (G

QPIQE;([@{ZP(H)} < 2;23}3{]?{[1’,(6:)} +1

or

a {,(H) + 1, ()} < max {1,(G) +1,,(G) }

are Q-closed and the classes of groups H such that n(G) < k form Schunck classes,
the group G can be assumed primitive by Lemma 1.3.1. Now by Lemma 4.2.1, we have
n(G) < 20,(G), n(G) < 21,(G) and n(G) < 1,(G)+1,(G) where p is the exponent of the
unique minimal normal subgroup of G. So the theorem is true also for primitive groups.

O

The last theorem generalizes a result of R. Maier [35]:

4.3.2 Corollary. Let G be a finite group G. Then the following statements are equiv-
alent:

(i) G is the product of its nilpotent subgroups A and B and l,(G) <1 for all primes p.
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(ii) G is metanilpotent.

Proof. (i) = (ii). This follows directly from Theorem 4.3.1 that n(G) < 2, in other
words, G is metanilpotent.

(ii) = (i). Since the class of finite nilpotent groups forms a Schunck class, the soluble
group G has a nilpotent projector P (see Section 3.4). Now since G/F(G) is nilpotent,
G = PF(G) where P is a nilpotent subgroup, whence G is the product of two nilpotent
subgroups. The statement about the p-length is trivial. O

Remark. There are finite soluble groups G satisfying [,(G) < 1 for all primes p
which are not metanilpotent and therefore do not admit a factorization by two nilpotent
subgroups, e.g. if G is the regular wreath product of three groups of orders p, ¢ and r
where p, ¢ and r are distinct primes. The group G is also an example of a group satisfying

n(G) < preniagp{lp(G) +1,(G)}

but which is not the product of two nilpotent subgroups.

Question. Does every finite soluble group satisfying
n(G) < QP?E}Z{P{ZP(G)} or n(G) < 2WI£E§P{ZF(G)}

admit a factorization by two nilpotent subgroups?

Recall that a group is called modular if its subgroup lattice is modular. Modular finite

nilpotent groups can also be characterized as follows:

4.3.3 Lemma. Let G be a finite nilpotent group. Then G is modular if and only if
AB = BA for all subgroups A and B of G.

Proof. Let G be a modular nilpotent group. We show that AB = BA for all sub-
groups A and B of G. Suppose that this is false and let G be a minimal counterexample.
Then G has subgroups A and B such that AB is not a subgroup of G (cf. Lemma 1.1.2),
A and B are proper subgroups of G and we have G = (A, B). Now let M be a maximal
subgroup of G that contains A, then M = M N (A, B) = (A, M N B) by the modularity
of G, and by the minimality of G, we have M = A(BN M). Now AN B < M and since
G is nilpotent, the index |G : M| =|B: BN M| =pis a prime. So Lemma 1.1.1 yields
Al-1Bl _ Al IBO M|
AnB| P JAnBnM|

and therefore we have G = AB. This contradiction shows that in a modular nilpotent

|AB| = p- M| =G|

group any two subgroups permute.
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Conversely, suppose that every two subgroups of the group G permute. We have to
show that the subgroup lattice of G is modular, i.e. that for arbitrary subgroups A, B
and C of G with A < C, we have (A, BN C) = (A, B) N C. But this follows directly
from the ‘usual’ modular law of group theory: since any two subgroups of G permute,
we have AB = (A, B) and (A, BN C) = A(BNC), and hence by the modular law,
(A, BNC)=ABNC)=ABNnC=(A,B)nC. O

This can be used to prove that finite nilpotent modular groups having a complemented
abelian maximal normal subgroup are themselves abelian. This follows at once from the

following

4.3.4 Lemma (R. Maier [35]). Let P be a modular group of order p" and suppose
that N an abelian mazimal normal subgroup of P which possesses a complement C' Then

P is abelian.

Proof. By the maximality of N, we have |C| = p. Let 1 # 2 € N. then (z) is a
subgroup of order p and <x>C’ is a subgroup of order p? by the modularity of P. Thus

<x>C’ is abelian so that x commutes with every element of C' and P must be abelian. O

4.3.5 Theorem (R. Maier [35]). Let the finite group G = AB be the product of the
nilpotent modular subgroups A and B. Then G is metanilpotent.

Proof. Let G be a counterexample of minimal order. Since the class of metanilpotent
groups forms a saturated formation and the class of modular nilpotent groups is Q-
closed, GG is a primitive group by Lemma 1.3.3. Denote with N its unique minimal
normal subgroup, then N = F(G) is elementary abelian of prime exponent p. Also,
we have A # B and by Proposition 3.1.8, A or B is contained in a maximal normal
subgroup M of GG which must be factorized.

Since G is a minimal counterexample, M is metanilpotent, hence M = F,(G). By
Lemma 3.2.5, w.l.o.g. A is a Sylow p-subgroup of G and F,(G)/N is a p’-group and
it is easy to see that G/M is a cyclic p-group, whence AM = G. Therefore AM/M =
AJANM = A/N and since N has a complement C'in G, we have A = ANCN = (ANC)N
which shows that AN C = A/N is cyclic of order p.

So N is an abelian maximal normal subgroup of A which has a complement AN C' in
A, and by the modularity of A, the subgroup A is abelian by Lemma 4.3.4. But then we
have A < C,(N) = N. This final contradiction shows that G must be metabelian. O
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4.4 Bounds on Fitting length and derived length

Bounds on the Fitting length of a group G which is the product of its finite nilpotent
subgroups A and B can be obtained using the bounds on the p-lengths of G obtained in

Section 4.2 and the inequalities

n(G) <2 max {l,(G)}

pELKFP

n(@) < 2- max {1,(G)} +1

n(G) < prglia}ch{lp(G) +1,(G)}

established in Section 4.3. Slightly better bounds on the nilpotent length of G, still based
on the bounds in Theorem 4.1.2, are available via a closer analysis of the series described
in Lemma 4.2.1,

Because of the great number of possibilities, we will restrict ourselves to bounds
on n(G) in terms of d,(A) and d (G) for all primes p since the methods used there

also lead to estimates in terms of b,, ¢, and e,,.

4.4.1 Theorem. Let the finite group G be the product of its nilpotent subgroups A
and B. Then

(i)
n(G) < 2d(A) + max{0, 2d,(A) —4} +1 and

n(G) < 2d(B) + max{0, 2dy(B) — 4} + 1;

n(G) < d(A) + d(B) + max{0, dy(A) —2, dy(B) —2};

(i)
n(G) < 2max{dy(A), dy(B)} + 1;

(iv) (Berger and Gross [9])

n(G) < max{d(A) +d(B), 5(d(A) +d(B)) —1}.

Proof. Suppose that the theorem is false and let the group G = AB be a minimal
counterexample to one of the inequalities. The classes of finite groups of nilpotent length
< k clearly form saturated formations, hence Schunck classes, and the class of nilpotent
groups H with d,(H) < d,(A) for every prime p is q-closed, similarly for B. Since in

addition the above functions are nondecreasing with d (A) and d,(B) for all primes p,
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the minimal counterexample G must be primitive by Lemma 1.3.3. Thus it suffices to
prove the above inequalities in case GG is primitive.

As all of the above inequalities hold for nilpotent groups G, we can also assume that
G # A and G # B and thus we infer from Lemma 3.2.5 that G has a unique minimal
normal subgroup N of prime exponent p, that w.l.o.g. A is a Sylow p-subgroup of G' and
that B is a Hall p’-subgroup.

Since A is a Sylow p-subgroup of G, by Theorem 4.1.2, we have

d (A if p is odd
L(G) = { H]:{j(tx{)dQ(A), 2dy(A) — 2} if p=2.

Therefore we have
(%) 1,(G) < d(A) + max{0,dy(A) — 2}

in any case.

Similarly, by Theorem 4.2.3, we obtain

1y,(G) < qe$%§{p}{dq(A), d,(B),2d,(A) — 2,2d,(B) — 2}

(%) - qeir?‘%’}\({p}{dq(B)’ 205(B) = 2}

= d(B) + max{0,d,(B) — 2},

observing that A is a p-group.
Now by Lemma 4.2.1 and (x),

n(G) < 21(G) < 2d(A) + max{0, 2d,(A) — 4}

< 20 (G) < 2d(A) + max{0,2d,(A) — 4} + 1.

— p

By (),
n(G) < 20,(G) + 1 < 2d(B) + max{0,2dy(B) — 4} + 1.

This proves (i).
Next, again by Lemma 4.2.1, n(G) < [ (G) +1,(G) and so by (x) and (xx),

n(G) < d(A) + max{0,dy(A) — 2} + d(B) + max{0, dy(B) — 2}.
Since either A or B is a 2'-group, we have d,(A) = 0 or d,(B) = 0 and hence
n(G) < d(A) + d(B) + max{0, dy(A) — 2,d,(B) — 2},

proving (ii).
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To see that (iii) is true, we have to consider the cases p = 2 and p # 2 separately.

Assume first that p = 2 and hence that B is a 2’-group. Then by ()
n(G) < 21,(G) + 1 < 2d(B) +max{0,2dy(B) — 4} + 1 = 2d,(B) + 1.
If p# 2, Ais a 2'-group and therefore we have
n(G) < 21,(G) < 2d(A) + max{0,2dy(A) — 4} + 1 = 2dy (A) < 2dy (A) + 1

by (*). Thus (iii) holds.

To prove (iv), suppose first that d(A) < 2 and d(B) < 2. Then by (ii), n(G) <
d(A) + d(B) and (iv) holds. Since we have also excluded the cases G = A and G = B,
we may assume that d(A) > 0 and d(B) > 0, hence that d(A) + d(B) > 3. Then

d(A) +d(B) < 5(d(A) + d(B)) — 1 and thus it remains to show that

n(G) < 5(d(A) +d(B)) — 1.
Consider next the case when p = 2 and 2d(A) — 2 < d(B) + 1. Then
2d(A) —2+d(B) < 3(d(A) +d(B)) — 1
and since we also have d(A) < d(B) + 1, we obtain that
n(G) = 1,(G) + 1,,(G) < max{d(A),2d(A) — 2} + d(B) < 4(d(A) +d(B)) — L.
If p=2 and 2d(A) — 2 > d(B), then we have
2d(B) +1 < 3(d(4) +d(B)) — 1

e n(G) <20,(G)+1<2d(B)+1< 35(d(A) +d(B)) — 1.
Similarly, if p # 2 and 2d(B) — 2 < d(A) + 1, then
n(G) = 1,(G) +1,(G) < d(A) + max{d(B),2d(B) — 2} < 3(d(A) +d(B)) — 1
and finally if p > 2 and 2d(B) — 2 > d(A) + 1. then
n(G) < 21,(G) < 2d(A) < $(d(A) + d(B)) — 1.

O

Remark. The difference of the above inequalities is essentially due to the irregular
behaviour of the prime 2, for if A and B have odd order, then clearly n(G) < d(A)+d(B).
Since in fact [,(G) < dy(G) if d3(G) < 1 by Theorem 4.1.2, it can be checked easily that
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if d3(A) <1 when dy(B) > 2 and d4(B) < 1 if dy(A) > 2, then we obtain
n(G) < d(A)+d(B) and  n(G) < 2d(A) + 1.

These inequalities, and thus the results of Theorem 4.4.1 for groups of odd order, are
best-possible: if p and ¢ are distinct primes, and C, and C, denote cyclic groups of order
p and q respectively, then a group of the form G = C, "L C, L ... L C, "L C, UL C,
where C, occurs k times satisfies n(G) = 2k + 1. Moreover, it is the products of its
Sylow p- and g-subgroups which have derived lengths k + 1 and k respectively by [26],
Theorem 3.5.1.

In this context, it should also be mentioned that Berger and Gross [9] conjecture
that [,(G) < d(G) in any case which would, as has been remarked by Berger and Gross
themselves, imply that n(G) < d(A) + d(B) and n(G) < 2d(A) + 1 always.

Also, (ii) improves a result of Gross [22] who shows that n(G) < d(A) + d(B) if
cy(A) <3 and ¢,(B) < 3.

A bound on the Fitting length similar to (i), however based on the inequalities in

terms of ¢, instead of those involving d, has been obtained by Heineken [29].

Next, we will obtain some information about the derived length of a finite group G
which is the product of its nilpotent subgroups A and B in terms of the derived lengths
or classes of A and B.

The main problem is that hardly anything is known about the derived length of G if
G itself is nilpotent. In fact, the only nontrivial result seems to be [to’s theorem which
states that the derived length of a product of two abelian groups has derived length at
most 2 (It [32]).

In this context, we also mention that the class of the nilpotent group G is not bounded
by the classes (or derived lengths) of the subgroups A and B: in fact, for every nonneg-
ative integer n, there exist groups G of order p*" which are the product of two abelian
subgroups A and B with A < G (and thus d(G) < 2) such that ¢(G) = n, see Dicken-
schied [12], Beispiel 7.1 for details of the construction.

However, it is possible to obtain bounds on the derived length of certain quotient
groups of a group G which is the product of two nilpotent subgroups A and B, such
as G/F(G) and G/ ®(G) N O, (G), where 7 is the set of common prime divisors of |A]
and |B|.

To see that groups G that are minimal subject to d(G / @(G)) = k are primitive, in
view of Lemma 1.3.1, the following lemma is useful:

4.4.2 Lemma. The class of finite soluble groups G that satisfy d(G/P(G)) < n
equals the class of finite groups G such that G™V is nilpotent, i.e. the class of groups
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such that d(G/F(G)) < n —1; this class is s-, Q-, Do- and Es-closed; in other words, it

15 a subgroup-closed saturated Formation.

Proof. We show first that the two classes are equal: if G~ is nilpotent, it is con-
tained in the Fitting subgroup F(G) of G. Since F(G)/®(G) is abelian, we have G <
®(G) and G/ ®(G) has derived length < n. On the other hand, if G™ = (G=VY <
P(G), then GV P(G)/d(G) < F(G/®(G)) = F(G)/9(G) and so GV < F(G),
hence it is nilpotent.

That the class in question is closed with respect to subgroups, homomorphic images
and finite direct products can be checked easily using the second definition. Saturation

is obvious from the first. O

If the group G is the product of its nilpotent subgroups A and B, this can be used
to reduce the search for a bound on d(G/®(G)) to finding bounds in the special case

when A and B have coprime orders.

4.4.3 Proposition. Suppose that f: 0 x N — £¥N, is a function satisfying

(i) f(A,B) = f(A*,B*) if A= A* and B = B* for all A, BEeMN;

(ii) f(A/M,B/N) < f(A,B) for all finite nilpotent groups A and B and for all
M <A, N<B and

(iii) if the finite group G is the product of its nilpotent subgroups A and B and A
and B have coprime order, then d(G/9(G)) < f(A, B).

Then we have d(G/®(G)) < f(A,B) for every group G that is the product of its

nilpotent subgroups A and B.

Proof. Suppose that the group G is a counterexample of minimal order to the propo-
sition. By the minimality of G, if 1 # N < G, then we have

d((G/N)/®(G/N)) < f(AN/N, BN/N) = f(AJANN,B/BNN) < f(A, B)

by (i) and (ii). Therefore every proper epimorphic image belongs to the Schunck class
described in Lemma 4.4.2 for n = f(A, B) but G does not belong to that class. Thus
G must be primitive by Lemma 1.3.1. If A = B (= G), then G is cyclic of prime order,

and since G = A - 1, we have
1= d(G/®(G)) = d(G) < f(A,1) < f(A, B),

Thus we may assume that A # B. But now by Lemma 3.2.5, A and B have coprime

orders and so by (iii), we have

d(G/9(@)) < f(A, B).
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This final contradiction proves the proposition. a

For every n € +¥N, consider the classes of groups G such that G™ is a nilpotent
m-group. Although these classes are not saturated, groups G' that are minimal subject
to not belonging to one of these classes and which are the product of two nilpotent
subgroups A and B still have a structure very similar to that of a primitive product of

two nilpotent subgroups if 7 is chosen to be the set of common prime divisors of |A|
and |B]:

4.4.4 Lemma. Suppose that the finite group G is the product of its nilpotent sub-
groups A and B and let 7 = o(A) N o(B). If there is an integer n such that (G/K)™
is a nilpotent m-group for all normal subgroups K # 1 of G but G™ is not a nilpotent
m-group, then G has a unique minimal normal subgroup N of prime exponent p; further-
more G™ = N, F(G) is a p-group, and (w.l.o.g.) A and B are a Sylow p-group of G
and a Hall p'-subgroup of G respectively. In particular, m = &.

Proof. Suppose first that G has two distinct minimal normal subgroups N and N*
and let H/N = (G/N)™ and H*/N* = (G/N*)™. Then G™ is contained in H N H* =
(HN H*)/(N N N*) which is a nilpotent normal m-group by Lemma 1.3.5 and the fact
that H/N and H*/N* are nilpotent m-groups. Therefore G must have a unique minimal
normal subgroup N which is an elementary abelian p-group for some prime p because
G is soluble, and also the Fitting subgroup of G must be a p-group.

Next, we show that w.l.o.g. A is a Sylow p-subgroup of G and that B a Hall p'-
subgroup: assume first that @(G) # 1. Then we must have N < ¢(G), and since
(G/N)™ is nilpotent, we have G™ &(G)/ #(G) < F(G/9(G)) = F(G)/ ®(G). Therefore
we have G™ < F(G) and thus G™ is a nilpotent p-group. Therefore p ¢ 7 and we may
suppose w.l.o.g. that p divides |A| but not |B|. In particular, B is a p’-group and A
contains a Sylow p-subgroup A, of G whence F(G) < A,. Now A, centralizes A, since
A is nilpotent and therefore A, < Cy(F(G)) < F(G). But F(G) is a p-group, from
which we deduce that A, = 1. Hence A is a p-group and we have already observed that
B is a p’-group. Then, however, it follows from Lemma 1.1.1 that A and B must be a
Sylow p- and Hall p’-subgroups of GG, and the lemma is proved in this case.

If #(G) =1, G is primitive by Lemma 3.2.3. If A = B (= G), then G is a nilpotent
m-subgroup; therefore we must have A # B and so by Lemma 3.2.5, A and B are a
Sylow p- and a Hall p’-subgroup of G.

Therefore we have 7 = {p} Np’ = @ in both cases. Since (G/N)™ is a m-group, we
have (G/N)™ =1 and hence G™ < N. Since G™ # 1 by hypothesis, we must have
N = G™ by the minimality of G. O
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Now we are ready to prove the bounds on the derived length of G/O,.(G) N &(G).

4.4.5 Theorem. Let the group G = AB be the product of its finite nilpotent sub-
groups A and B. If m is the set of primes that divide the orders of both A and B, then
G™ is a nilpotent m-subgroup contained in ®(G), where

n =max{c,(A4), 3d,(A)(d,(A) +1)} + max{c.(B), 1d.(B)(d.(B) + 1)},

and o and T are arbitrary sets of odd primes.

Proof. We show first by way of contradiction that G™ is a nilpotent 7-group, so
suppose that G is a counterexample of minimal order. If 1 # N is a normal subgroup
of G, then we have

n > max{c, (AN/N),
+max{c, (BN/N),

4,(AN/N)(d,(AN/N) + 1)}
d,(BN/N)(d,(BN/N) +1)}

N[

N[

whence (G/N)™ is a nilpotent 7-group for all normal subgroups N # 1 of 7, and so by
Lemma 4.4.4, G has a unique minimal normal subgroup N of prime exponent p, w.l.o.g.
A is a Sylow p-subgroup and B is a Hall p/-subgroup of G. Moreover, G™ < N and also
F = F(G) is a p-group.

If p ¢ o, consider the group G/Z where Z = Z(F'): Clearly,

1< Z(4) < 7 = 2(F) < Cy(F) < T,
therefore c,(A/Z) < ¢,(A). Since A is a p-group, we have

max{c,(A), +d,(A)(d,(A)+1)} = c,(A) = c(A)

2

and similarly
(AZ)Z) = max{c,(AZ|Z), Xd,(AZ|Z)(d,(AZ]Z) + 1) }.

Therefore
n—12>max{c,(AZ/Z),

4,(AZ/2)(d,(AZ)7) + 1))}
+ max{c.(BZ/Z), 3d,

(BZ/2)(d.(BZ/2) +1)}

N N

which shows that already (G/Z)~Y) = 1. Since Z is abelian, we must have G = 1.
This contradiction shows that we must have p € o; in particular, p is odd.

Since F' = O,,(G) and p # 2, we have d(A/F) = d(A/F) < d(A) — 1 =d,(A) -1
by Theorem 4.1.1 and therefore

max{e, (AF/F). Yd,(AF/F)(d,(AF/F)+1)} = Sd(A/F)(d(A/F) + 1),
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Thus
n —d(A) > max{c,, (AF/F),

+ max{c.(BF/F),

J(AF/F)(d,(AF/F) +1)}

1
1d (BF/F)(d,(BF/F) +1)}

This shows that G/F has derived length < n — d(A), yielding that

d(G) < d(F) + d(G/F) <n

since F' < A. This final contradiction shows that G™ is a nilpotent 7-group.
It remains to show that G™ < &(G) for every finite group G that is the product of
two nilpotent subgroups A and B. But since our first result implies that G = 1 if A

and B have coprime orders, this follows at once from Proposition 4.4.3. O

Remark. That we have to treat the prime 2 differently is essentially due to the fact
that for a Sylow 2-subgroup P of the finite soluble group G, it is possible to have

d(POQ/z(G)/Ow(G)) =d(P).

However, this can only happen when P is non-abelian and also the Sylow 3-subgroups
of G are non-abelian (cf. Theorem 4.1.1). Transferring these considerations to the proof
of the theorem, we obtain that the theorem also holds for arbitrary sets of primes o
and 7, provided that A has an abelian Sylow 3-subgroup if the Sylow 2-subgroup of B
is non-abelian and viceversa, i.e. if d;(A) < 1 whenever dy(B) > 2 and ds(B) < 1 if
dy(A) > 2.

If we set 0 = 7 = @ in the preceding theorem, we obtain the following

4.4.6 Corollary (Gross [22] and Pennington [40]). If the finite group G is the prod-
uct of its nilpotent subgroups A and B of classes ¢ and d, then Gt is a nilpotent -
group contained in the Frattini subgroup of G; in particular G/ ®(G) has derived length
<c+d.

4.4.7 Corollary. If the group G is the product of its nilpotent subgroups A and B
of coprime order, then d(G) < c¢(A) + ¢(B).

The irregular behaviour of the prime 2 can also be compensated by considering a
Hall 2’-subgroup of G instead of a Sylow 2-subgroup. The key to this is the observation
that most statements of Theorem 4.1.1 can be extended to statements about a nilpotent
Hall m-subgroup of a group G if we replace p by 7w and p’ by n’. We state some of the

most important consequences.
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4.4.8 Lemma (Berger and Gross [9]). Let G be a finite soluble group.
(i) If Owr(G)/O(G) is nilpotent, then O (G) = () cr Opp(G).
(ii) If H is a nilpotent Hall w-subgroup of G and c¢(H) > 0, then

C(HOﬂ'/ﬂ'/OT(,ﬂ'(G>) < C(H),
if 2¢ 7 and d(H) > 0, then also

d(HO,(G)/0,..(G)) < d(H).

Proof. (i) Since O,.,(G)/0,.(G) is nilpotent, it is clear that O, (G) < O,,,(G) for
all p € 7. Since O,,(G) < O,,(G) for all primes p € m, O,,(G) must be contained in
O, (G) for all such primes. On the other hand, [

p ber O (G) is a normal 7'-subgroup
of G, therefore it is contained in O,,(G). This shows that 0./(G) = yer Op(G). Now
a 7'-element contained in (¢, O,,(G) is contained in O, (G) for all p € 7, whence it is
contained in O.(G). This shows that (ﬂp@r Op,p(G)) /O...(G) is a m-group and therefore
Mper Opp(G) < O, (G). This proves (i).

(ii) Denote with H,, the normal Sylow p-subgroup of H. For all primes p, consider the

canonical homomorphisms

H, — H 0, (G)/0, (G).

p~p'p

These homomorphisms induce a homomorphism

o:H= Y H — D= Y HO, (G0, (G)

pem peET

whose kernel is H N (ﬂpe7T 0,,(G)) = HNO,,.(G) by part (i). This, together with an

isomorphism theorem, shows that
c(HOW,W(G)/OW%(G)) = c(H/H NO,. (G))
< e(D) = max{c(H,0,,(G)/ 0y, (()) }

Now by Theorem 4.1.1, for every prime p,

(H O, ( )/Op’p(G)> < C(Hp)

pp'p

because the H, are Sylow p-subgroups of GG. This shows that

¢(HO,(G)/0,.(G)) <maX{ (H,0,,(G)/0,,(G))}
< rzr)lgs({c L)} =c(H)

as required.
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If p#2and H, # 1, also

d(H,0,,(G)/0,,(G)) < d(H)

p

so that by the same argument,
d(HOTK‘/TF(G)/Oﬂ'/ﬂ'(G)) < d(H)
if 2 ¢ m. O

The following theorem seems rather similar to the preceding Theorem 4.4.5; however
its results are in terms of the derived lengths of A and B only and do not involve ¢,(A)
or ¢y(B).

4.4.9 Theorem. Let the group G = AB be the product of its finite nilpotent sub-
groups A and B. If w is the set of primes that divide the orders of both A and B, then
G™ is a nilpotent m-subgroup contained in ®(G), where

n= %d(A) (d(A) + 1) + %d(B) (d(B) + 1)
+ max{3dy(A)(dy(A) + 1), 3dy(B)(dy(B) + 1) }.
Proof. Like in the proof of Theorem 4.4.5, in view of Proposition 4.4.3, it suffices

to show that G is a nilpotent m-group. Suppose that this is false and let G be a
counterexample of minimal order. Thus if N < G, then

n > 1d(AN/N)(d(AN/N) +1) + Ld(BN/N)(d(BN/N) +1)
+max{1dy(AN/N)(dy(AN/N) + 1), 3d,(BN/N)(dy(BN/N) + 1) }.
Therefore by Lemma 4.4.4, w.l.o.g. A is a Sylow p-subgroup of G containing the unique
minimal normal subgroup N of G and also F' = F(G) < A; moreover B is a Hall p'-
subgroup of GG. We may also assume that d(A) = d,(A) > 0 and d(B) > 0 since otherwise
G = B or G = A and in these cases the theorem is obviously true.

Consider first the case when p # 2. Then we have d(AF/F) < d(A) by Theorem 4.1.1

and therefore
n—d(A) > 1d(AF/F)(d(AF/F) + 1) 4+ $d(BF/F)(d(BF/F) + 1)
+ 3dy(B)(dy(B) + 1).
This shows that d(G/F) < n — d(A) and since F' < A, we have
d(G) <d(F)+d(G/F) <d(A)+n—d(A) =n.

This contradiction shows that we must have p = 2.
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Therefore we have
LA(AF/F)(d(AF/F) + 1) + 3d,(AF/F)(dy(AF/F) + 1) = dy(A) (dy(A) + 1).
Now by Lemma 4.2.1, Fy = F;(G) = Oq199,5(G) and by Theorem 4.1.1, we have
d(AFy/Fy) < d(A);
moreover, applying Lemma 4.4.8 with 7 = 2/, we have
d(B) > d(BF/F) > d(BF,/F,) > d(BF,/F;)
where F, = F,(G). Hence
d(G/Fy) < dy(AFy [ Fy) (dy(AFy [/ Fy) + 1) + 5(d(BFy/Fy)(d(BFy/Fy) + 1)
<n—2d(A)—d(B)

and since by Lemma 4.2.1, FF < A, the group F,/F is isomorphic with a section of B

and Fy/F, is isomorphic with a section of A, we obtain
d(G) < d(F) + d(Fy/F) + d(F3/ Fy) + d(G/ F)
< d(A)+d(B)+d(A) +n—2d(A) —d(B)
=n.

This final contradiction proves the theorem. a

Remark. As in the remark after Theorem 4.4.5, the bound can be improved signifi-
cantly if d4(A) < 1 whenever dy(B) > 2 and ds(B) < 1 if dy(A) > 2. In this case, we
already obtain that G < ¢(G) N O_(G) where

n > 1d(AN/N)(d(AN/N) + 1) + 2d(BN/N)(d(BN/N) + 1).

There is yet another possibility to gain some information about the derived length of

a product of two nilpotent subgroups:

4.4.10 Theorem. Let the finite group G be the product of its nilpotent subgroups A
and B. Then G/F(G) has derived length at most k where

k= (d(A) + max{0, d,(A) — 1}) (d(B) + max{0,dy(B) — 1}).
Proof. Suppose that G is a counterexample of minimal order. Then we have
A((G/N)/F(GIN)) <k

for all normal subgroup N # 1 of G but d(G/F(G)) > k. Since the class of groups H
satisfying d(H/F(H)) < k forms a saturated formation, hence is a Schunck class, by
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Lemma 4.4.2 G must be primitive. Since our statement is trivial if G is nilpotent, we
may also assume that d(A) > 0, d(B) > 0 and also that A # B, hence by Lemma 3.2.5,
w.l.o.g. Ais a Sylow p-subgroup of G and B is a Hall p’-subgroup, where p is the exponent
of the unique minimal normal subgroup F' = F(G) of G.

Suppose first that p # 2, or that d(AF/F) < d(A) if p = 2. Observe that we also
have d(A/F) < d(A) if p # 2 by Theorem 4.1.1 since F' = O, (G). Therefore if we let
F, = F,(G), then

d(G/F,) < d(AF/F)( (BF/F) + max{0, dy(BF/F) — 1})

(d(A) = 1) (d(B) + max{0,dy(B) — 1})
k— d(B)

IA

IN

Since by Lemma 4.2.1, F,/F < BF/F, we have
d(G/F) < d(F,/F) +d(G/F,) <n

This contradiction shows that we must have p = 2 and d(AF/F) = d(A). This also
shows that d(A) > 2 because if we had d(A) = 1, then A would be abelian, hence
A < C,(F) = F which would imply that d(AF/F) =0 < d(A).

Now by Lemma 4.2.1, F, = O.,(G) and Fy; = F3;(G) = Oq4(G) and so by Theo-
rem 4.1.1, d(AFy/F;) < d(A); moreover by Lemma 4.4.8, d(BF;/F;) < d(B). If F, =
F,(G), then we have

d(G/F,) < (2d AF3/F — 1) (d(BF. /F )
< (2d(4) — 1-2) (d(B) - 1)
< (2d(4) = 1)(d(B) - )—( d(A) = 1) = 2d(B) +2
(Qd(A) = 1)(d(B) —1) = d(A) - d(B) — (d(B) - 1)

A\

Since F,/F < BF/F, F;/F, < AF,/F, and F,/F; < BF,/F; by Lemma 4.2.1, we have
d(G/F) < d(F,/F)+d(F,/F,) + d(F,/F;) + d(G/F})
<d(B)+d(A) + (d(B) - 1)
+(2d(A) = 1)(d(B) — 1) — d(A) — d(B) — (d(B) — 1)
=k.
Thus we have reached a final contradiction which proves the theorem. O

Remark. Again, if we have ds(A) <1 in case dy(B) > 2 and d4(B) < 1 if dy(A) > 2
in the preceding theorem, then we obtain that d(G/F(G)) < d(A)d(B), a result that has
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already been obtained by Gross [22] under the hypothesis that A and B have coprime

orders.

4.4.11 Corollary. If the finite group G is the product of its nilpotent subgroups A
and B, then has derived length at most

d(G/®(G)) < (d(A) + max{0,dy(A) — 1})(d(B) + max{0,dy(B) — 1}) + 1
and if T =o0(A)No(B) and
k= (d(A) + max{0,d,(A) — 1}) (d(B) + max{0,dy(B) — 1}) + max{d(A),d(B)}),

then G is a nilpotent T-group contained in the Frattini subgroup of G.

Proof. The first statement follows directly from the fact that F/(G)/®(G) is abelian.

For the second statement, let N be the m-component of F' = F(G). Since F' =
(AN F)(BNF) by Theorem 3.1.5, we have F/N = (AN F)N/N(BnN F)N/N. By
the definition of 7, (AN F)N/N and (B N F)N/N have coprime orders, and since F'/N
is nilpotent, F'//N = (AN F)N/N x (BN F)N/N whence

d(F/N) < max{d((AN F)N/N), d(BNF)N/N)} < max{d(A), d(B)}.

This shows that G*) is a nilpotent m-group. Since the corollary is obviously true if G = 1,
we may also suppose that max{d(A), d(B)} > 1, and therefore by the first part, also
Gk < &(Q). O

The following theorem describes the special case when one of the factors is abelian.

4.4.12 Theorem. Let the finite group G be the product of an abelian group A and a

nilpotent group B. Then
(i) (Franciosi, de Giovanni, Heineken and Newell [16]) AF(G) < G,

(il)) n(G) < 3;

(i) d(G/F(G)) < d(B);

(iv) G < &(G) N O(G) where 7 = 0(A) No(B) and n = max{2d(B),1}.

Proof. (i). If G = 1, this is clearly true, so suppose by finite induction that (i) is
true for all groups of smaller order than G. If G/®(G) satisfies the theorem, so does G
because F(G)/d(G) = F(G/®(G)). Therefore we must have &(G) = 1.

Consider first the case when G possesses two distinct minimal normal subgroups N*
and N**. Denote with F*/N* and F**/N** the Fitting subgroups of G/N* and G/N**,
then F* N F** = F by Lemma 1.3.5 and since by Theorem 3.1.5, F* and F** are
factorized, by Lemma 1.1.9, AF* N AF* = AF, which is a normal subgroup of G since
by induction hypothesis, AF* and AF** are normal subgroups of G.
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Therefore we may assume that G possesses a unique minimal normal subgroup N
which is an elementary abelian p-group for a prime p, and, because ®(G) = 1, the
group G is primitive. Since G' can be assumed non-nilpotent, A or B is a p-group con-
taining N = F while the other is a p/-group by Lemma 3.2.5. If N = F < A, then
A< C,(F)=F and thus A = F, proving that AF = F < G.

There remains the case when F' < B. Then the p’-group F,/F = F(G/F) is contained
in the Hall p’-subgroup AF/F of G/F and therefore AF, < AF. The other inclusion
AF < AF, is trivial, and by the minimality of G, the subgroup AF,/F = AF/F is
normal in G/F; or equivalently, AF' < G. This final contradiction proves (i).

(ii) follows directly from the fact that the series

1< F(G)QAF(G) QG

has nilpotent factors. The same result about n(G) can be obtained as described in the
remark after Theorem 4.4.1, observing that we have dy,(A) < 1 and d3(A) < 1 since A
is abelian.

The remaining statements follow from the remark after Theorem 4.4.10. O

4.5 Properties of the Fitting quotient group

4.5.1 Proposition. Let the finite group G be the product of its nilpotent subgroups A
and B. Then:
(i) G/[A, B] is nilpotent. The factorizer of [A, B] is AN BY = (AN BY)(B N AY).
(ii) Let Ay = A, By = B and Gy = G and for all i > 0, define A,,, = A, N B
and B, = B;N AS . Then G, = A, B, is a factorized subgroup of G for all i and
G, 2 G, moreover G, /G, is nilpotent. If n is the smallest integer such that
G, =G, then G, = AN B. Thus the series

G=G,> G >--->G,=ANDB

consists of factorized subnormal subgroups of G such that G;/G, , is a nilpotent

group.

Proof. (i) First observe that [A, B] < (A, B) for arbitrary subgroups A and B
of G. Now A% = A[A, B] and BY = B[A, B] which shows that G/[A, B] is the product
of the normal nilpotent subgroups A[A, B]/[A, B] and B[A, B|/[A, B] and is therefore
nilpotent. By Lemma 1.2.1, the factorizer of [A, B] is A[A, B]N B[A, B] = A“ N B¢ =
(AN BY)(BN A%).
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(ii) Suppose by finite induction that G, = A,;B; where A, < A and B; < B. (This is
clearly true if i = 0). Then G, satisfies the hypothesis of the preceding part; therefore
G,/G;,, is a nilpotent group, G, = A, B,y and A, ,NB; , =A,NB,=ANDB. as
required.

Now suppose that G,, = G,, ;. Since G,,,; = AS" N BS", we must have AS" = G,, and
BS" = G, and so neither A, nor B,, is contained in a proper normal subgroup of G,,.
So it follows from Proposition 3.1.8 that G,, = A, = B, andso G, = A, N B, <ANDB
proving that G,, = AN B. O

Recall that in Example 3.4.4, we have shown that the subgroup [A, B] above is not
necessarily prefactorized.

4.5.2 Corollary. Let the finite group G be the product of its nilpotent subgroups A
and B. If n s the length of the series defined in Proposition 4.5.1, then G has Fitting
length at most n + 1 and derived length at most

n - max{d(A),d(B)} + min{d(A),d(B)}.

Proof. The series
G=G,>G >--->G,=ANBD>1

introduced in Proposition 4.5.1 has nilpotent factors (clearly also A N B is nilpotent)
and its length is n 4 1. This is clearly an upper bound for the Fitting length of G.

To obtain the bound on the derived length, consider the factor group G,;/G, , for
some i: G, = A;B; = A% B;; thus

Gi/AzGi = Bi/Bz' N Az‘Gi - Bz'/Bz'Jrl

whose derived length is < d(B) and G,/BY = A;/A,,, which has derived length <
d(A). Since G, = AS" N By, it follows that d(G;/G,,,) < max{d(A),d(B)}. Clearly,
d(An B) <min{d(A),d(B)} and also the second statement follows. O

We have already proved in Proposition 3.1.2 that if GG is the product of its nilpotent
subgroups A and B, then the commutator subgroups [Ap, Bp] are subnormal p-subgroups
and are therefore contained in the Fitting subgroup of GG. Therefore the next proposition
applies in particular when F(G) < N:

4.5.3 Proposition. Suppose that the group G is the product of its finite nilpotent
subgroups A and B. Suppose that N is a normal subgroup of G such that G /N is nilpo-
tent and that N contains [A,, B)] for every prime p dividing |G/N|. Then the subgroups
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A_N/N and B,N/N are normal subgroups of G/N for every set of primes w. In partic-
ular, AN/N and BN/N are normal subgroups of G. If moreover N is factorized, then
G is the direct product of AN/N and BN/N,
G/N = AN/N x BN/N
= X AN/Nx X B,N/N.
pELFP pELFP

Proof. Consider the Sylow p-subgroup A,N/N of AN/N. Since G//N is nilpotent,
A,N/N is centralized by the normal p-complement of GG/N; moreover [A,, B,] < N by
hypothesis; therefore also B,N/N centralizes A ,N/N which shows that A,N/N < G/N.
Therefore also A, N/N =X A N/N is a normal subgroup of G.

If N is factorized, then N = AN N BN and therefore AN/N N BN/N = 1, showing
that G/N = AN/N x BN/N. The rest of the statement follows. O

4.5.4 Corollary. Let G = AB where A and B are finite and nilpotent. If M 1 G
and N < M such that M /N is nilpotent, if moreover N contains [Ap, Bp] for all primes p
dividing |M /N|, then AN "M and BN N M are normal subgroups of M. If M contains
AN N BN, then (ANNM)(ANNM)=(ANM)(BNM).

Proof. Let X = AM N BM be the factorizer of M. Then X/N is nilpotent by
Corollary 3.5.2 and therefore AN N X < X and BN N X < X. Hence AN N M =
ANNMNX and BN N M are normal subgroups of M.

If M contains AN N BN, also M* = (AN N M)(AB N M) contains this intersection.
Thus, M*/N is a factorized subgroup of G/N, and M* is a factorized subgroup of G. O

Since by Theorem 3.1.5 the Fitting subgroup and therefore every term of the Fitting

series of a product of two nilpotent subgroups is factorized, we obtain

4.5.5 Corollary. Let F) be the k-th term of the Fitting series of G = AB where A
and B are finite nilpotent subgroups of G. If k > 1, then F,_/F}, is the direct product
of (ANF 1) F/F, and (BN F,)F,/F,.

In this context, also the following Proposition is of interest:

4.5.6 Proposition (Heineken [29]). Let the group G be the product of its finite nilpo-
tent subgroups A and B. If F), = F,.(G) denotes the k-th term of the Fitting series of G,
then for all k > 1, we have that (AN F,,)F,/F, and (BN Fy,,,)F,/F), are normal
subgroups of G.

Proof. Since the setting is symmetrical in A and B, it clearly suffices to show that
(ANF, )F, 4 G. Since (AN F,,)F, = AF, N F,_, by the modular law and G/F}, =
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(AF,)(BF,), we may in addition pass to the quotient group G/F)_,, hence it remains
to show that (F, N A)F = AF N F, is normal in G where F' = F(G) (= F}).

Suppose by induction on |G| that the proposition is true for all groups of smaller
order; in view of F/®(G) = F(G/$(G)), we may also assume that &(G) = 1.

Next, consider the case when G contains two distinct minimal normal subgroups N*
and N**. Now let F*/N* = F(G/N*), F**/N** = F(G/N**) and Fy/F* = F(G/F~),
Fy*/F* = F(G/F**) then we have F' = [* N F** and F, = F; N F;* by Lemma 1.3.5,
observing that the classes of nilpotent and metanilpotent groups form Fitting forma-
tions. So we have AF = A(F*N F*) = AF* N AF* by Lemma 1.1.9. Now by in-
duction hypothesis, AF* N Fy and AF** N F;* are normal subgroups of G and thus
AF*NFy NAF*NFy = AFNF, = (AN F,)F is a normal subgroup of G as required.

There remains the case when G has a unique minimal normal subgroup; let p denote
its exponent. Since also ¢(G) = 1, we conclude that G is primitive. But in this case, by
Lemma 3.2.5, A is either a p-group and AN F, = F whence F = (AN F,))F <G or A
is a Hall p/-group whence F, is contained in AF' and therefore AF N F, =F, JG. O

Next, we report a result of Heineken which will allow to relate products of finite

nilpotent subgroups to other classes of groups.

4.5.7 Proposition (Heineken [28]). Assume that the group G is the product of two
finite nilpotent subgroups A and B. Then G/F(G) € rRoX where X is the class of finite
groups whose order is divisible only by two primes one of which divides the order of A
while the other divides the order of B.

Indeed, from Heineken’s proof of the above proposition, a stronger result can be ob-

tained.

4.5.8 Proposition. Let the group G be the product of its finite nilpotent subgroups A
and B. If H/K is a principal factor of G such that F(G) < K, then |G/Cn(H/K)| is
divisible at most by one prime divisor of |A| and one of | B|; moreover one of these prime

divisors is the exponent of H/ K.

Proof. Suppose that the proposition is true for all groups of smaller order than G:
this includes, of course, the case when G is nilpotent. Observe also that C¢ /v (H/K) =
Cy(H/K)/N for every normal subgroup N of G with N < K.

As a first case, assume that G possesses two distinct minimal normal subgroups N*
and N**. Let F*/N* and F**/N** denote the Fitting subgroups of G/N* and G/N**
respectively, then F'* N F** = F' = F(G) by Lemma 1.3.5. Refine the series

1< F*/F QG/F



4.5 Properties of the Fitting quotient group 7

to a chief series of G. Then by the Jordan-Holder theorem, H/K is G-isomorphic with a
factor of that chief series; therefore we may assume that H/K itself belongs to that chief
series. Now if F* < K, then H/K is already a chief factor of G/F* and the result follows
from the fact that C;(H/K)/N* = Cg/n-(H/K). If H/K is a chief factor of F™*/F', then
since F*/F =, F*F*/F* the chief factor H/K is G-isomorphic with a chief factor
of G/F** and the result follows again.

Hence we may assume that G has a unique minimal normal subgroup N. If (G) > 1,
we have F//?(G) = F(G)/?(G) and the result follows by induction.

Therefore there remains the case when G is primitive and non-nilpotent. As before,
we may assume that H/K is a principal factor of the chief series of G/F obtained by

refining

1< F,<G/F,

where F,/F = F(G/F); by finite induction, we may also exclude the case when F, <
K < H < G. Now by Lemma 3.2.5, we may w.l.o.g. assume that A is a Sylow p-group
containing F' and that B is a Hall p’-group of G, we also have F,/F < BF/F. From the
last statement, it follows that H/K < B, K/K where q is the exponent of H/K. Now
since B is nilpotent, B, is centralized by B, and therefore B, < C;(H/K). Since B,
is a Hall {p, q}/—subgroup of G, the order of G/C,(H/K) can be divisible by p and ¢
only. O

From this, Proposition 4.5.7 follows with the help of the characterization of the Fitting
subgroup of a finite group as the intersection of the centralizers of all principal factors
of G.

Following Huppert [30], a finite group G is called a group with many Sylow bases if
set of Sylow subgroups of G' containing exactly one Sylow subgroup for every prime p is
a Sylow basis of GG, or equivalently, if every Sylow p-subgroup of G permutes with every
Sylow g-subgroup of G when p # ¢. !

Of course, the groups of order p®¢® (where p and ¢ are primes) are examples of groups
with many Sylow bases. In the following, we will denote the class of all such groups
by 9; clearly

Q= U 6{1941}‘

p,qELFP

The class B of all finite groups with many Sylow bases can be characterized as follows:

! These groups were first termed ‘Gruppen mit vielen Sylowsystemen’ by Huppert [30] who used the
term ‘Sylowsystem’ for what we call a Sylow basis.
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4.5.9 Theorem (Huppert [30]). The following statements about the finite group G
are equivalent:
(i) G is a group with many Sylow bases.
(ii) G is soluble; if H/K is a principal factor of G of exponent p, then there are a
prime q and nonnegative integers a and B such that the order of G/Cn(H/K) is
.
(iii) G is contained in the smallest formation that contains all groups whose order is

divisible by at most two primes.

A proof of this can also be found in [31], VI, § 3.

In the following, we will denote the class of groups with many Sylow bases with ‘B;
we also recall that this class is s-closed. Furthermore, by (ii) and the characterization of
primitive soluble groups in Lemma 3.2.3 as those groups in which the unique minimal
normal subgroup is self-centralized, it is clear that the primitive B-groups are precisely
the primitive groups whose order is divisible by at most two primes.

There follows that primitive 2B-groups are products of their nilpotent subgroups since
in fact every Q-group is the product of its Sylow subgroups. As a consequence of this,
B is clearly contained in the smallest Schunck class that comprises all groups that are
the product of two finite nilpotent subgroups. To simplify notation, we will for the rest
of this section to denote the class of finite groups that are the product of two nilpotent
subgroups by 9.

Now proposition can be used to show that 9t C 9B in the following

4.5.10 Proposition. Let MB be the class of groups G that possess a normal sub-
group N such that N € M and G/N € B. Then

(i) B is a saturated formation;

(i) MB = {G | G/F(G) € B} and

(iii) 21 C NB.

Proof. Since M, the class of all finite nilpotent groups, is s,-closed, MN§ equals the
formation product of M and § and so it is a formation by [13], IV.1.8.

If G € 9B and N is a nilpotent normal subgroup of G such that G/N € B, we
have N < F(G) € M. On the other hand, G/F(G) is an epimorphic image of G/N and
therefore G/F(G) € @B = B. This shows that

NB = {G | G/F(G) € B}.

From this and the fact that F(G)/®(G) = F(G/®(G)) for all finite groups G, it
follows immediately that 9B is saturated. This proves (i) and (ii).
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(iii) Let G € 9. Then by Proposition 4.5.8, the chief factors of G/F(G) are of the
form described in Theorem 4.5.9, (ii) and so G/F(G) € B, hence G € MNB. 0

4.5.11 Example. Let p be an odd prime that is not a Fermat prime. Suppose that
N is a cyclic group of order p, and let G be the semidirect product of N with its
automorphism group. Then C,(N) = N, and since G is soluble, G is primitive by
Lemma 3.2.3. Now the order of G is divisible by more than two primes (namely by p
and by all prime divisors of p — 1 which is divisible by 2 and some other prime < p since
p is not a Fermat prime). So by the remark after Theorem 4.5.9, G does not belong to
the class of groups with many Sylow bases. But obviously, G is the product of N and a
subgroup of order p — 1 both of which are abelian.

The next example shows that a group G such that G/F(G) is a group with many

Sylow bases is not necessarily the product of two nilpotent subgroups.

4.5.12 Example. Let G and p be as in Example 4.5.11. Now let H = G "L C' where
C' is cyclic of order r where r is a prime # p such that r does not divide p — 1. Then H
is primitive by [13], A.18.5 since H is non-abelian and primitive. If H were the product
of two nilpotent subgroups, then one of them would have to be a Hall p’-subgroup of H
by Lemma 3.2.5, and since the Sylow p-subgroup of H equals its Fitting subgroup F,
the quotient group G/F is isomorphic with a Hall p’-subgroup of G. On the other hand,
G/F is isomorphic with the regular wreath product of a group of order p — 1 with a
cyclic group of order r. But such a group is not nilpotent since its Sylow r-subgroup does
not centralize the Hall »’-part. This shows that H is not the product of two nilpotent
subgroups. But since the Sylow g-subgroups of G/F' are normal for all primes g # r, the
factor group G/ F is clearly a B-group.

The last example also shows that P, the smallest Schunck class containing 90, is

properly contained in JUB.

Question. Is 9B the smallest formation (saturated formation) containing all prod-
ucts of two finite nilpotent groups?

If the answer to the first question is negative, is it true that the class 991 of finite groups
which are factorized by two nilpotent subgroups closed with respect to subgroups? This
would imply that 9 is itself a formation since 90t is Dy-closed and q-closed. Moreover,
every group with many Sylow bases would be the product of two nilpotent groups.
(Observe that in order to prove that 90 is s-closed, it would suffice to show that a
maximal normal subgroup of a product of two finite nilpotent groups is the product of

two finite nilpotent groups, for by Corollary 3.3.6, every nonnormal maximal subgroup
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SDeM = s PQIN = PQ(M N V)

The ordering of the classes 9, 20, 9t and 9B

of G has a conjugate which is factorized and thus every nonnormal maximal subgroup

is the product of two nilpotent subgroups.)

In [30], Huppert also shows that if G € % and p # ¢ are prime divisors of |G|, then G
has a normal {p, q}—subgroup N such that a Hall {p, q}—subgroup of G/N is nilpotent.
It is easy to see that this last property of G is equivalent to the property that G/O_(G)
has a nilpotent Hall 7w-subgroup for every set 7w of primes. Thus Huppert’s statement is

equivalent to the second statement of the following

4.5.13 Proposition. Let 20 be the class of finite groups G such that G/O_(G) has
a nilpotent Hall m-subgroup for every set of primes w. Then
(i) W is a subgroup-closed formation of finite soluble groups;
(i) B C 2;
(ili) 20 C reX and
(iv) 20 and M contain the same primitive groups, hence the smallest Schunck classes

containing 20 and M coincide.

Proof. (i) Let G € 20 and let 7 be a set of primes. If G_/O,.(G) is a Hall subgroup
of G/O,(G), then clearly G is a Hall subgroup of G. Therefore G' possesses Hall -
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subgroups for all sets of primes 7, hence is soluble. Since all Hall subgroups of the
soluble group G are isomorphic, all Hall m-subgroups of G/O, (G) are nilpotent.

If N 4 G and 7 is a set of primes, then clearly O _(G)N/N < O_(G/N). There-
fore (G,/N)/O,.(G/N) is an epimorphic image of G, /N, hence is a nilpotent Hall -
subgroup of G/N, showing that G/N € 20. Therefore 20 is q-closed. To see that it
is s-closed, let S < G. Then O_(G) NS < O,(S), whence S/O_(S) is an epimorphic
image of S/SNO_(G) = SO_(G)/O,(G). Now a Hall w-subgroup of SO_(G)/O,.(G) is
contained in a Hall m-subgroup of G/O,_(G), hence is nilpotent. Therefore S € 20 and
27 is s-closed.

Now let M, N € 20 and put G = M x N. If 7 is any set of primes and M_ and N, are
Hall m-subgroups of M and N respectively, then G = M_ x N_ is a Hall w-subgroup
of G. Since O_(G) contains (even equals) O_(M) x O_(N), the group G./O_(G) is an
epimorphic image of M_/O,_(M) x N,/O.(N) which is nilpotent. Therefore G € 20 and
thus 27 is also Do-closed, hence is a subgroup-closed formation.

(ii) Since clearly Q C 20 and ‘B is the smallest formation containing 9, it follows that
B C 2.

(iii) Let G € 20. Then G//O,,(G) is the product of one of its Sylow p-subgroup and a
nilpotent Hall p-subgroup, hence G//O,,(G) € M. Since (,p Oy (G) = 1, it follows
that G' € RN

(iv) Let G be a primitive 20-group. Since G is soluble, G has a unique minimal normal
subgroup N of prime exponent p, say. Then O, (G) = 1 and therefore G has a nilpotent
Hall p’-subgroup. Since G is the product of a Hall p’-subgroup and a Sylow p-subgroup,
we have G € 9. Conversely, let G be a primitive M-group, let p be the exponent of
the unique minimal normal subgroup N of G and let m be a set of primes. If p € 7,
then N < O,(G) and therefore O (G/N) = O,(G)/N. Now N = F(G) and thus
G/N € B C 20 which shows that (G/N)/O,(G/N) has a nilpotent Hall m-subgroup
and by an isomorphism theorem, the same is true for G. If p ¢ 7, then a Hall m-subgroup
of G is contained in a Hall p’-subgroup of G which is nilpotent by Lemma 3.2.5. Hence
G/O,(G) has a nilpotent Hall m-subgroup for all sets 7 of primes. O

Remark. Since the class 9 is Do-closed by Lemma 1.3.2, it follows that rR,9 C
sDeIN = 9. Therefore every B-group and also every 20-group is a subgroup of a group
which is the product of two nilpotent subgroups. On the other hand, if G € 91, then
G/F(G) € B C 20, and since F(G) < O,..(G) for every set of primes, it follows that
G/0,..(G) has a nilpotent Hall m-subgroup for every set of primes 7.



List of symbols

In general, uppercase Latin letters denote groups (A, B, G, H, ...) or sets, lowercase

(Latin) letters symbolize elements of sets or groups. Uppercase Fraktur stands for classes

of groups while script is used for sets of groups. Lowercase Greek letters usually denote

homomorphisms of groups («, 3, ...) or sets of primes (7, o, 7 ...).

In the following, G and H will be groups, A and B are subgroups of G and g, h € G.

Q2 will be a set acting on G via endomorphisms (the action is written exponentially).

Integers are denoted by k, m and n, a prime by p.

G~2H
G x H
G'UH
(X)

(xy,Tq, ...

Xw
XQ

9, w]
[A, B]
Ng(X)
Co(X)

the set of positive integers

the set of nonnegative integers

the finite field of order p™

the greatest common divisor of the integers m and n
the set of primes

complement of the set 7 of primes in £F¥P

= {p} = +P\ {p}

G is isomorphic with H

the direct product of G and H

the regular wreath product of G and H

the subgroup of G generated by the elements of X C G

the subgroup generated by the set {xl, To, . . }

the action of h on G: ¢" = h='gh

the set {2* |z € X'}

the subgroup of G generated by the set {:c“’ |lze X, we Q}

Xg = ﬂweﬂ X

the commutator of g and w; [g,w] = g~ 'g¥

the subgroup of G generated by all [a, b] where a € A and b € B
normalizer of the set X: No(X) = {w e Q| [z,w] € X for all z € X}
centralizer of the set X: C(X) = {w € Q| [z,w]=1forall z € X}
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centre of the group G; Z(G) = Cy(G).

n-th derived subgroup of G defined recursively by G = G

and G =[G G™] for n > 0

=G0, GO

Fitting subgroup of GG, the subgroup generated by the normal nilpotent
subgroups of G

n-th term of the Fitting series of G defined recursively by F,(G) =1
and F,(G)/F,(G) = F(G/F,(G)) for every n >0

Frattini-subgroup of G, the intersection of all maximal subgroups of G
defined recursively; O™ (G) is the m-residual of G, i.e. the intersection of
all normal subgroups N of G with G/N a m-group

and O™k (G) = Ok (0”1”2'“”’“—1(G)) if k> 1.

defined recursively: O, (G) is the m-radical of G, i.e. the subgroup of G
generated by all subnormal 7-subgroups of G

and O, ., . (G)/O G)=0,, (G/Omm...wk,l(G» if k> 1.

a Hall m-subgroup of the group G

if G is the product of two subgroups, the factorizer X(H) of H is the
unique smallest factorized subgroup of G that contains H;

7'('171'2...71']@,1(

G satisfies C (conjugacy) if it satisfies C and all Hall m-subgroups of G
are conjugate

G satisfies D_ (dominance) G satisfies C_ and every m-subgroup is con-
tained in some Hall m-subgroup of G

G satisfies the property E_ (existence) if it possesses a Hall m-subgroup.

the cardinality of the set G

the set of primes dividing the order of some element of G if GG is finite,
this equals the set of prime divisors of the group order |G]|.

the nilpotency class of the nilpotent group G

the least integer k such that G*) =1

(@

the nilpotency class of a Sylow p-subgroup of G

) = |P| where P is a Sylow p-subgroup of G

the derived length of a Sylow p-subgroup of GG
p(@ is the exponent of a Sylow p-subgroup of G
= max,., b,(G)

= max,, ¢,(G)

pET P

= max, .. d (G)

pET P



List of symbols

= max,, ¢,(G)
Fitting length of G; the least integer k such that F(G) = G
m-length of G; the number of nontrivial m-factors in the series

1 <0(G) <0, (G)<O0., (G)<.. <G
= 1 (G)

/!

the class of all finite nilpotent groups
the class of all finite soluble groups

the class of all soluble 7-groups
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