
Burkhard Höfling

IRRED
SOL

Version 1.4.dev

A library
of irreducible soluble matrix groups

over finite fields
and of primitive soluble groups

Contents

Copyright 3

1 Overview 4

2 Accessing the data library 5

2.1 Design of the group library 5

2.2 Low level access functions 6

2.3 Finding matrix groups with given
properties 7

2.4 Loading and unloading group data
manually 9

3 Recognition of matrix groups 10

3.1 Identification of irreducible groups . . 10

3.2 Compatibility with other data libraries . 11

3.3 Loading and unloading recognition data
manually 12

4 Additional functionality for matrix
groups 13

4.1 Basic attributes for matrix groups . . 13

4.2 Irreducibility and maximality of matrix
groups 14

4.3 Primitivity of matrix groups 14

4.4 Conjugating matrix groups into smaller
fields 16

5 Primitive soluble groups 17

5.1 Converting between irreducible soluble
matrix groups and primitive soluble groups 17

5.2 Finding primitive pc groups with given
properties 18

5.3 Finding primitive soluble permutation
groups with given properties 19

5.4 Recognising primitive soluble groups . 20

5.5 Obsolete functions 21

A Version History 22

Bibliography 24

Index 25

Copyright

The GAP package IRREDSOL is Copyright 2003 – 2017 Burkhard Höfling.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

(1) Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

(2) Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the fol-
lowing disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1 Overview
The package IRREDSOL provides a library of irreducible soluble subgroups of matrix groups over finite fields and a
corresponding library of primitive soluble groups.

Currently, IRREDSOL contains all subgroups, up to conjugacy, of GL(n, q), where n is a positive integer and q is a
prime power satisfying qn ≤ 224−1 = 16 777 215. The underlying data base consists of 921 371 absolutely irreducible
groups of degree n > 1 amounting to 1 089 136 irreducible groups of degree n > 1. See Section 2.1 for details.

The groups in the IRREDSOL library can be accessed one at a time (see Section 2.2). In addition, there are functions
which allow to search the library for groups with given properties (see Section 2.3). Moreover, given an irreducible
soluble matrix group G, it is possible to identify the group in the library to which G is conjugate, including a conju-
gating matrix, if desired. See Section 3.1.

Apart from this, the IRREDSOL package provides additional functionality for matrix groups, such as the computation
of imprimitivity systems; see Chapter 4.

It is well-known that there is a bijection between the irreducible soluble subgroups of GL(n, p), where p is a prime,
and the conjugacy classes, or equivalently the isomorphism types, of primitive soluble subgroups of Sym(pn). The
IRREDSOL package contains functions to translate between irreducible soluble matrix groups and primitive groups,
to search for primitive soluble groups with given properties, and functions to recognise them, up to isomorphism (or,
equivalently, up to conjugacy in Sym(pn)). See Sections 5.1, 5.3, and 5.4, respectively.

Note that GAP contains another library consisting of all 372 irreducible soluble subgroups of GL(n, p), where n > 1,
p is a prime, and pn < 28. This library was originally created by Mark Short [Sho92], and two omissions in GL(2, 13)
were added later; see PrimGrp reference manual , 2.1. All of these groups are, of course, also part of the IRREDSOL
data base, and the IRREDSOL package provides functions to identify the groups in the GAP library in IRREDSOL
and viceversa. See Section 3.2.

The groups in the IRREDSOL data base were constructed using the Aschbacher classification [Asc84] of maximal
subgroups of linear groups. Further details can be found in [EH03], where the construction of all irreducible soluble
subgroups of GL(n, q) with qn < 38 is described.

For a historical account of the classification of irreducible matrix groups and primitive permutation groups, the reader
is referred to [Sho92] and, for more recent developments, to [EH03].

2 Accessing the
data library

This chapter describes the design of the IRREDSOL group library (see Section 2.1) and the various ways of accessing
groups in the data library. It is possible to construct individual groups in the group library (see Section 2.2), or to search
for groups with certain properties (see Section 2.3). Finally, there are functions for loading and unloading group data
manually (see Section 2.4).

2.1 Design of the group library

To avoid redundancy, the package IRREDSOL does not actually store lists of irreducible subgroups of GL(n, q) but
only has lists An,q of subgroups of GL(n, q) such that

• each group in An,q is absolutely irreducible and soluble

• An,q contains a conjugate of each absolutely irreducible soluble subgroup of GL(n, q)

• no two groups in An,q are conjugate in GL(n, q)

• each group in An,q has trace field Fq.

(For n = 1, such lists are not actually stored but are computed when required.)

We will briefly say that An,q contains, up to conjugacy, all absolutely irreducible soluble subgroups of GL(n, q) with
trace field Fq. Here, the trace field of a subgroup G of GL(n, q) is the field generated by the traces of the elements of G.
By a theorem of Brauer, an irreducible subgroup of GL(n, q) with trace field Fq0 has a conjugate lying in GL(n, q0).
See also TraceField (4.4.1) and ConjugatingMatTraceField (4.4.2).

Note that by the Deuring-Noether theorem, two subgroups of GL(n, q0) are conjugate in GL(n, q0) if, and only if,
they are conjugate in GL(n, q). Therefore, we obtain, up to conjugacy, all absolutely irreducible soluble subgroups of
GL(n, q) by forming the union of the An,q0 , where Fq0 runs over all subfields of Fq.

The lists An,q are also sufficient to reconstruct lists of all irreducible soluble subgroups of GL(n, q). Let d be a divisor
of n, and let G be an absolutely irreducible subgroup of GL(n/d, qd). By regarding the underlying Fqd -vector space
of G as an Fq-vector space, we obtain an irreducible subgroup G∗ of GL(n, q) with splitting field Fqd . Up to conjugacy,
all irreducible subgroups of GL(n, q) arise in that way. If two subgroups G1 and G2 of GL(n, q) are constructed from
subgroups G∗1 and G∗2 of GL(n/d, qd), then G1 and G2 are conjugate if, and only if, there exists a Galois automophism
σ of Fqd/Fq such that (G∗1)

σ and G∗2 are conjugate in GL(n/d, qd). See, e. g., [DH92], Theorem B 5.15. The latter
information has been precomputed and is also part of the IRREDSOL library.

Note that all of the arguments above apply to nonsoluble groups as well.

6 Chapter 2. Accessing the data library

2.2 Low level access functions

The access functions described in this section allow to check for the availability of data and to construct irreducible
groups in the IRREDSOL group library.

1 I IsAvailableIrreducibleSolubleGroupData(n, q) F
I IsAvailableIrreducibleSolvableGroupData(n, q) F

This function tests whether the irreducible soluble subgroups of GL(n, q) with trace field Fq are part of the IRRED-
SOL library.

2 I IndicesIrreducibleSolubleMatrixGroups(n, q, d) F
I IndicesIrreducibleSolvableMatrixGroups(n, q, d) F

Let n and d be positive integers and q a prime power. This function returns a set of integers parametrising the groups in
the IRREDSOL library which are subgroups of GL(n, q) with trace field Fq and splitting field Fqd . This set is empty
unless d divides n. An error is raised if the relevant data is not available, cf. 2.2.1.

gap> IndicesIrreducibleSolubleMatrixGroups(6, 2, 2);

[1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12]

3 I IrreducibleSolubleMatrixGroup(n, q, d, k) F
I IrreducibleSolvableMatrixGroup(n, q, d, k) F

Let n, d and k be positive integers and q a prime power. This function returns the irreducible soluble subgroup of
GL(n, q) with trace field Fq, splitting field Fqd , and index k. An error is raised if the relevant data is not available, or if
k is not in IndicesIrreducibleSolubleMatrixGroups(n, q, d); cf. 2.2.1 and 2.2.2. The groups returned have the
attributes and properties described in Chapter 4 set to their appropriate values.

4 I IsAvailableAbsolutelyIrreducibleSolubleGroupData(n, q) F
I IsAvailableAbsolutelyIrreducibleolvableGroupData(n, q) F

This function tests whether the absolutely irreducible soluble subgroups of GL(n, q) with trace field Fq are in the
IRREDSOL library.

5 I IndicesMaximalAbsolutelyIrreducibleSolubleMatrixGroups(n, q) F
I IndicesMaximalAbsolutelyIrreducibleSolvableMatrixGroups(n, q) F

Let n be a positive integer and q a prime power. This function returns a set of integers parametrising those subgroups
of GL(n, q) in the IRREDSOL library that are maximal among the absolutely irreducible soluble subgroups with
trace field Fq and that are maximal with respect to being soluble. An error is raised if the relevant data is not available
(see 2.2.4 for information how to check this first). An integer k in the list return corresponds to IrreducibleSol-

ubleMatrixGroup(n, q, 1, k), which is the same group as AbsolutelyIrreducibleSolubleMatrixGroup(n, q,
k).

gap> inds := IndicesMaximalAbsolutelyIrreducibleSolubleMatrixGroups(2,3);

[2]

gap> IrreducibleSolubleMatrixGroup(2,3,1,2) = GL(2,3); # it is the whole GL

true

6 I IndicesAbsolutelyIrreducibleSolubleMatrixGroups(n, q) F
I AbsolutelyIrreducibleSolubleMatrixGroup(n, q, k) F

These functions are deprecated. Please use IndicesIrreducibleSolubleMatrixGroups(n, q, 1) and Irreduci-

bleSolubleMatrixGroup(n, q, 1, k) instead.

Section 3. Finding matrix groups with given properties 7

2.3 Finding matrix groups with given properties

This section describes three functions (AllIrreducibleSolubleMatrixGroups, OneIrreducibleSolubleMa-
trixGroup, IteratorIrreducibleSolubleMatrixGroups) which allow to find matrix groups with prescribed
properties. Using these functions can be more efficient than to construct each group in the library using the functions
in Section 2.2 because they can access additional information about a group in the IRREDSOL library before actually
constructing the group. See the discussion following the description of AllIrreducibleSolubleMatrixGroups for
details.

1 I AllIrreducibleSolubleMatrixGroups(func 1, arg 1, func 2, arg 2, . . .) F
I AllIrreducibleSolvableMatrixGroups(func 1, arg 1, func 2, arg 2, . . .) F
I AllIrredSolMatGroups(func 1, arg 1, func 2, arg 2, . . .) F

This function returns a list of all irreducible soluble matrix groups G in the IRREDSOL library for which the return
value of func i(G) lies in arg i. The arguments func 1, func 2, . . . , must be GAP functions which take a matrix
group as their only argument and return a value, and arg 1, arg 2, . . . , must be lists. If arg i is not a list, arg i is
replaced by the list [arg i]. The functions DegreeOfMatrixGroup and FieldOfMatrixGroup (or their equivalents,
see below) must be among the func i. TraceField). Note that all groups in the data library have the property that
TraceField(G) = FieldOfMatrixGroup(G); see Section 2.1 for details.

Note that there is also a function IteratorIrreducibleSolubleMatrixGroups (see 2.3.3) which allows to run
through the list produced by AllIrreducibleSolubleMatrixGroups without having to store all of the groups
simultaneously.

The following functions func i are handled particularly efficiently, because the return values of these functions can be
read off the IRREDSOL library without actually constructing the relevant matrix group. For the definitions of these
functions, see Chapter 4.

• DegreeOfMatrixGroup (or Degree, Dimension, DimensionOfMatrixGroup),

• CharacteristicOfField (or Characteristic)

• FieldOfMatrixGroup (or Field or TraceField)

• Order (or Size)

• IsMaximalAbsolutelyIrreducibleSolubleMatrixGroup

• IsAbsolutelyIrreducibleMatrixGroup (or IsAbsolutelyIrreducible)

• MinimalBlockDimensionOfMatrixGroup (or MinimalBlockDimension)

• IsPrimitiveMatrixGroup (or IsPrimitive, IsLinearlyPrimitive)

The groups G passed to the func i and the groups returned have the attributes and properties described in Chapter 4 set
to their appropriate values. Note that you may speed up computations in G by using an isomorphic copy of G, which
can be obtained via RepresentationIsomorphism (see 4.1.6).

get just those groups with trace field GF(9)

gap> l := AllIrreducibleSolubleMatrixGroups(Degree, 1, Field, GF(9));;

gap> List(l, Order);

[4, 8]

get all irreducible subgroups

gap> l := AllIrreducibleSolubleMatrixGroups(Degree, 1, Field, Subfields(GF(9)));;

gap> List(l, Order);

[1, 2, 4, 8]

8 Chapter 2. Accessing the data library

get only maximal absolutely irreducible ones

gap> l := AllIrreducibleSolubleMatrixGroups(Degree, 4, Field, GF(3),

> IsMaximalAbsolutelyIrreducibleSolubleMatrixGroup, true);;

gap> SortedList(List(l, Order));

[320, 640, 2304, 4608]

get only absolutely irreducible groups

gap> l := AllIrreducibleSolubleMatrixGroups(Degree, 4, Field, GF(3),

> IsAbsolutelyIrreducibleMatrixGroup, true);;

gap> Collected(List(l, Order));

[[20, 1], [32, 7], [40, 2], [64, 10], [80, 2], [96, 6],

[128, 9], [160, 3], [192, 9], [256, 6], [288, 1], [320, 2],

[384, 4], [512, 1], [576, 3], [640, 1], [768, 1], [1152, 4],

[2304, 3], [4608, 1]]

2 I OneIrreducibleSolubleMatrixGroup(func 1, arg 1, func 2, arg 2, . . .) F
I OneIrreducibleSolvableMatrixGroup(func 1, arg 1, func 2, arg 2, . . .) F
I OneIrredSolMatGroup(func 1, arg 1, func 2, arg 2, . . .) F

This function returns a matrix group G from the IRREDSOL library such that func i(G) lies in arg i, or fail if no
such group exists. The arguments func 1, func 2, . . . , must be GAP functions taking one argument and returning a
value, and arg 1, arg 2, . . . , must be lists. If arg i is not a list, arg i is replaced by the list [arg i]. The functions
DegreeOfMatrixGroup and FieldOfMatrixGroup (or their equivalents, see below) must be among the func i.
Note that all groups in the data library have the property that TraceField(G) = FieldOfMatrixGroup(G); see
Section 2.1 for details. The groups passed to the func i and the groups returned have the attributes and properties
described in Chapter 4 set to their appropriate values.

To use this function efficiently, please see the comments in 2.3.1.

3 I IteratorIrreducibleSolubleMatrixGroups(func 1, arg 1, func 2, arg 2, . . .) F
I IteratorIrreducibleSolvableMatrixGroups(func 1, arg 1, func 2, arg 2, . . .) F
I IteratorIrredSolMatGroups(func 1, arg 1, func 2, arg 2, . . .) F

This function returns an iterator which runs through the list of all matrix groups G in the IRREDSOL library such that
func i(G) lies in arg i. The arguments func 1, func 2, . . . , must be GAP functions taking one argument and returning
a value, and arg 1, arg 2, . . . , must be lists. If arg i is not a list, arg i is replaced by the list [arg i]. The functions
DegreeOfMatrixGroup and FieldOfMatrixGroup (or their equivalents, see below) must be among the func i.

Using

IteratorIrreducibleSolubleMatrixGroups(func 1, arg 1, func 2, arg 2, . . .))

is functionally equivalent to

Iterator(AllIrreducibleSolubleMatrixGroups(func 1, arg 1, func 2, arg 2, . . .))

(see Section GAP Reference Manual, 30.8 in the GAP reference manual for details) but, unlike AllIrreducibleS-
olubleMatrixGroups, does not store all relevant matrix groups at the same time. This may save a considerable
amount of memory.

To use this function efficiently, please see the comments in 2.3.1.

Section 4. Loading and unloading group data manually 9

2.4 Loading and unloading group data manually

The data required by the IRREDSOL library is loaded into GAP’s workspace automatically whenever required, but
is never unloaded automatically. The functions described in this and the following section describe how to load and
unload this data manually. They are only relevant if timing or conservation of memory is an issue.

1 I LoadAbsolutelyIrreducibleSolubleGroupData(n, q) F
I LoadAbsolutelyIrreducibleSolvableGroupData(n, q) F
I LoadAbsoIrredSolGroupData(n, q) F

This function loads the data for GL(n, q) into the GAP workspace and does some pre-processing. If the data is already
loaded, the function does nothing. This function is called automatically when you access the IRREDSOL library, so
most users will not need this function.

2 I LoadedAbsolutelyIrreducibleSolubleGroupData() F
I LoadedAbsolutelyIrreducibleSolvableGroupData() F
I LoadedAbsoIrredSolGroupData(n, q) F

This function returns a list. Each entry consists of an integer n and a set l. The set l contains all prime powers q such
that the group data for GL(n, q) is currently in memory.

3 I UnloadAbsolutelyIrreducibleSolubleGroupData([n [, q]]) F
I UnloadAbsolutelyIrreducibleSolvableGroupData([n [, q]]) F
I UnloadAbsoIrredSolGroupData(n, q) F

This function can be used to delete data for GL(n, q) from the GAP workspace. If no argument is given, all data will
be deleted. If only n is given, all data for degree n (and any q) will be deleted. If n and q are given, only the data for
GL(n, q) will be deleted from the GAP workspace. Use this function if you run out of GAP workspace. The data is
automatically re-loaded when required.

3 Recognition of
matrix groups

This chapter describes some functions which, given an irreducible matrix group, identify a group in the IRREDSOL
library which is conjugate to that group, see Section 3.1. Moreover, Section 3.2 describes how to translate between
groups in the IRREDSOL library and the GAP library of irreducible soluble groups. Section 3.3 describes some
functions which allow to load and unload the recognition data in the IRREDSOL package manually.

3.1 Identification of irreducible groups
1 I IsAvailableIdIrreducibleSolubleMatrixGroup(G) F
I IsAvailableIdIrreducibleSolvableMatrixGroup(G) F

This function returns true if IdIrreducibleSolubleMatrixGroup (see 3.1.3) will work for the irreducible matrix
group G, and false otherwise.

2 I IsAvailableIdAbsolutelyIrreducibleSolubleMatrixGroup(G) F
I IsAvailableIdAbsolutelyIrreducibleSolvableMatrixGroup(G) F

This function returns true if IdIrreducibleSolubleMatrixGroup (see 3.1.3) will work for the absolutely irre-
ducible matrix group G, and false otherwise.

3 I IdIrreducibleSolubleMatrixGroup(G) A
I IdIrreducibleSolvableMatrixGroup(G) A

If the matrix group G is soluble and irreducible over F = FieldOfMatrixGroup(G), (see GAP Reference Manual,
44.2.3), and a conjugate in GL(n,F) of G belongs to the data base of irreducible soluble groups in IRREDSOL, this
function returns a list [n, q, d, k] such that G is conjugate to IrreducibleSolubleMatrixGroup(n, q, d, k) (see
2.2.3).

gap> G := IrreducibleSolubleMatrixGroup(12, 2, 3, 52)^RandomInvertibleMat(12, GF(2));;

<matrix group of size 2340 with 6 generators>

gap> IdIrreducibleSolubleMatrixGroup(G);

[12, 2, 3, 52]

4 I RecognitionIrreducibleSolubleMatrixGroup(G[, wantmat[, wantgroup[,wantiso]]]) F
I RecognitionIrreducibleSolubleMatrixGroupNC(G[, wantmat[, wantgroup[,wantiso]]]) F
I RecognitionIrreducibleSolvableMatrixGroup(G[, wantmat[, wantgroup[,wantiso]]]) F
I RecognitionIrreducibleSolvableMatrixGroupNC(G[, wantmat[, wantgroup[,wantiso]]]) F

Let G be an irreducible soluble matrix group over a finite field, and let wantmat and wantmat be true or false. These
functions identify a conjugate H of G group in the library. They return a record which has the following entries:

id

contains the id of H (and thus of G); cf. IdIrreducibleSolubleMatrixGroup (3.1.3)

mat (present if wantmat is true)
a matrix x such that Gx = H

group (present if wantgroup is true)
the group H

Section 2. Compatibility with other data libraries 11

iso (present if wantiso is true)
a group isomorphism from the source of RepresentationIsomorphism(G) to the source of Representa-
tionIsomorphism(H).

Note that in most cases, RecognitionIrreducibleSolubleMatrixGroup and RecognitionIrreducibleSol-

vableMatrixGroupNC are much slower if wantmat is set to true.

RecognitionIrreducibleSolubleMatrixGroupNC does not check its arguments. If the group G is beyond the
scope of the IRREDSOL library (see 3.1.1), RecognitionIrreducibleSolubleMatrixGroupNC returns fail,
while RecognitionIrreducibleSolubleMatrixGroup raises an error.

gap> G := IrreducibleSolubleMatrixGroup(6, 2, 3, 5) ^

> RandomInvertibleMat(6, GF(4));

<matrix group of size 42 with 3 generators>

gap> r := RecognitionIrreducibleSolubleMatrixGroup(G, true, false);;

gap> r.id;

[6, 2, 3, 5]

gap> G^r.mat = CallFuncList(IrreducibleSolubleMatrixGroup, r.id);

true

5 I IdAbsolutelyIrreducibleSolubleMatrixGroup(G) A
I RecognitionAbsolutelyIrreducibleSolubleMatrixGroup(G, wantmat, wantgroup) F
I RecognitionAbsolutelyIrreducibleSolubleMatrixGroupNC(G, wantmat,wantgroup) F
I IdAbsolutelyIrreducibleSolvableMatrixGroup(G) A
I RecognitionAbsolutelyIrreducibleSolubleMatrixGroup(G, wantmat, wantgroup) F
I RecognitionAbsolutelyIrreducibleSolvableMatrixGroupNC(G, wantmat,wantgroup) F

These functions are no longer available. These functions have been replaced by the functions IdIrreducibleSol-
ubleMatrixGroup (3.1.3), RecognitionIrreducibleSolubleMatrixGroup (3.1.4), or RecognitionIrredu-
cibleSolubleMatrixGroupNC (3.1.4).

Note that the ids returned by the functions for absolutely irreducible groups was a triple [n, d, k], while the replace-
ment functions use ids of the form [n, d, d, k], where d = 1 in the absolutely irreducible case.

3.2 Compatibility with other data libraries

A library of irreducible soluble subgroups of GL(n, p), where p is a prime and pn ≤ 255 already exists in GAP, see
PrimGrp reference manual , 2.1. The following functions allow one to translate between between that library and the
IRREDSOL library.

1 I IdIrreducibleSolubleMatrixGroupIndexMS(n, p, k) F

This function returns the id (see 3.1.3) of G, where G is IrreducibleSolubleGroupMS(n, p, k) (see PrimGrp
reference manual “primgrp:‘irreduciblesolvablegroupms”’) .

gap> IdIrreducibleSolubleMatrixGroupIndexMS(6, 2, 5);

[6, 2, 2, 4]

gap> G := IrreducibleSolubleGroupMS(6,2,5);

<matrix group of size 27 with 2 generators>

gap> H := IrreducibleSolubleMatrixGroup(6, 2, 2, 4);

<matrix group of size 27 with 3 generators>

gap> G = H;

false

groups in the libraries need not be the same

gap> r := RecognitionIrreducibleSolubleMatrixGroup(G, true, false);;

gap> G^r.mat = H;

true

12 Chapter 3. Recognition of matrix groups

2 I IndexMSIdIrreducibleSolubleMatrixGroup(n, q, d, k) F

This function returns a triple [n, p, l] such that IrreducibleSolubleGroupMS(n, p, l) (see PrimGrp reference
manual “primgrp:‘irreduciblesolvablegroupms”’) is conjugate to IrreducibleSolubleMatrixGroup(n, q, d, k) (see
2.2.3).

gap> IndexMSIdIrreducibleSolubleMatrixGroup(6, 2, 2, 7);

[6, 2, 13]

gap> G := IrreducibleSolubleGroupMS(6,2,13);

<matrix group of size 63 with 3 generators>

gap> H := IrreducibleSolubleMatrixGroup(6, 2, 2, 7);

<matrix group of size 63 with 3 generators>

gap> G = H;

false

gap> r := RecognitionIrreducibleSolubleMatrixGroup(G, true, false);;

gap> G^r.mat = H;

true

3.3 Loading and unloading recognition data manually

The data required by the IRREDSOL library is loaded into GAP’s workspace automatically whenever required, but
is never unloaded automatically. The functions described in this and the previous section describe how to load and
unload this data manually. They are only relevant if timing or conservation of memory is an issue.

1 I LoadAbsolutelyIrreducibleSolubleGroupFingerprints(n, q) FThis function loads the fingerprint data
required for the recognition of absolutely irreducible soluble subgroups of GL(n, q).

2 I LoadedAbsolutelyIrreducibleSolubleGroupFingerprints() F

This function returns a list. Each entry consists of an integer n and a set l. The set l contains all prime powers q such
that the recognition data for GL(n, q) is currently in memory.

3 I UnloadAbsolutelyIrreducibleSolubleGroupFingerprints([n [,q]]) F

This function can be used to delete recognition data for irreducible groups from the GAP workspace. If no argument
is given, all data will be deleted. If only n is given, all data for degree n (and any q) will be deleted. If n and q are
given, only the data for GL(n, q) will be deleted from the GAP workspace. Use this function if you run out of GAP
workspace. The data is automatically re-loaded when required.

4
Additional

functionality for
matrix groups

This chapter explains some attributes, properties, and operations which may be useful for working with matrix groups.
Some of these are part of the GAP library and are listed for the sake of completeness, and some are provided by
the package IRREDSOL. Note that groups constructed by functions in IRREDSOL already have the appropriate
properties and attributes.

4.1 Basic attributes for matrix groups

1 I DegreeOfMatrixGroup(G) A
I Degree(G) O
I DimensionOfMatrixGroup(G) A
I Dimension(G) A

This is the degree of the matrix group or, equivalently, the dimension of the natural underlying vector space. See also
GAP Reference Manual, 44.2.1.

2 I FieldOfMatrixGroup(G) A

This is the field generated by the matrix entries of the elements of G. See also GAP Reference Manual, 44.2.3.

3 I DefaultFieldOfMatrixGroup(G) A

This is a field containing all matrix entries of the elements of G. See also GAP Reference Manual, 44.2.2.

4 I SplittingField(G) A

Let G be an irreducible subgroup of GL(n,F), where F = FieldOfMatrixGroup(G) is a finite field. This attribute
stores the splitting field E for G, that is, the (unique) smallest field E containing F such that the natural EG-module
En is the direct sum of absolutely irreducible EG- submodules. The number of these absolutely irreducible summands
equals the dimension of E as an F-vector space.

5 I CharacteristicOfField(G) A
I Characteristic(G) O

This is the characteristic of FieldOfMatrixGroup(G) (see 4.1.2).

6 I RepresentationIsomorphism(G) A

This attribute stores an isomorphism H → G, where H is a group in which computations can be carried out more
efficiently than in G, and the isomorphism can be evaluated easily. Every group in the IRREDSOL library has such a
representation isomorphism from a pc group H to G.

In this way, computations which only depend on the isomorphism type of G can be carried out in the group H and
translated back to the group G via the representation isomorphism. Possible applications are the conjugacy classes of

14 Chapter 4. Additional functionality for matrix groups

G, Sylow subgroups, composition and chief series, normal subgroups, group theoretical properties of G, and many
more.

The concept of a representation isomorphism is related to nice monomorphisms; see Section GAP Reference Manual,
40.5. However, unlike nice monomorphisms, RepresentationIsomorphism need not be efficient for computing
preimages (and, indeed, will not usually be, in the case of the groups in the IRREDSOL library).

4.2 Irreducibility and maximality of matrix groups

1 I IsIrreducibleMatrixGroup(G) P
I IsIrreducibleMatrixGroup(G, F) O
I IsIrreducible(G [, F]) O

The matrix group G of degree d is irreducible over the field F if no subspace of Fd is invariant under the action of G.
If F is not specified, FieldOfMatrixGroup(G) is used as F.

gap> G := IrreducibleSolubleMatrixGroup(4, 2, 2, 3);

<matrix group of size 10 with 2 generators>

gap> IsIrreducibleMatrixGroup(G);

true

gap> IsIrreducibleMatrixGroup(G, GF(2));

true

gap> IsIrreducibleMatrixGroup(G, GF(4));

false

2 I IsAbsolutelyIrreducibleMatrixGroup(G) P
I IsAbsolutelyIrreducible(G) O

If present, this operation returns true if G is absolutely irreducible, i. e., irreducible over any extension field of Field-
OfMatrixGroup(G).

gap> G := IrreducibleSolubleMatrixGroup(4, 2, 2, 3);

<matrix group of size 10 with 2 generators>

gap> IsAbsolutelyIrreducibleMatrixGroup(G);

false

3 I IsMaximalAbsolutelyIrreducibleSolubleMatrixGroup(G) P
I IsMaximalAbsolutelyIrreducibleSolvableMatrixGroup(G) P

This property, if present, is true if, and only if, G is absolutely irreducible and maximal among the soluble subgroups
of GL(d,F), where d is DegreeOfMatrixGroup(G) and F equals FieldOfMatrixGroup(G).

4.3 Primitivity of matrix groups

1 I MinimalBlockDimensionOfMatrixGroup(G) A
I MinimalBlockDimensionOfMatrixGroup(G, F) O
I MinimalBlockDimension(G [, F]) O

Let G be a matrix group of degree d over the field F. A decomposition V1 ⊕ · · · ⊕ Vk of Fd into F-subspaces Vi is a
block system of G if the Vi are permuted by the natural action of G. Obviously, all Vi have the same dimension; this is
the dimension of the block system V1 ⊕ · · · ⊕ Vk. The function MinimalBlockDimensionOfMatrixGroup returns
the minimum of the dimensions of all block systems of G. If F is not specified, FieldOfMatrixGroup(G) is used as
F. At present, only methods for groups which are irreducible over F are available.

Section 3. Primitivity of matrix groups 15

gap> G := IrreducibleSolubleMatrixGroup(2,3,1,4);;

gap> MinimalBlockDimension(G, GF(3));

2

gap> MinimalBlockDimension(G, GF(9));

1

2 I IsPrimitiveMatrixGroup(G) P
I IsPrimitiveMatrixGroup(G, F) O
I IsPrimitive(G [, F]) O
I IsLinearlyPrimitive(G [, F]) O

An irreducible matrix group G of degree d is primitive over the field F if it only has the trivial block system Fd or,
equivalently, if MinimalBlockDimensionOfMatrixGroup(G,F) = d. If F is not specified, it is assumed that F is
FieldOfMatrixGroup(G).

gap> G := IrreducibleSolubleMatrixGroup(2,2,1,1);;

gap> IsPrimitiveMatrixGroup(G, GF(2));

true

gap> IsIrreducibleMatrixGroup(G, GF(4));

true

gap> IsPrimitiveMatrixGroup(G, GF(4));

false

3 I ImprimitivitySystems(G [, F]) O

This function returns the list of all imprimitivity systems of the irreducible matrix group G over the field F. If F is not
given, FieldOfMatrixGroup(G) is used. Each imprimitivity system is given by a record with the following entries:

bases

a list of the bases of the subspaces which form the imprimitivity system. Note that a basis here is just a list
of vectors, not a basis in the sense of GAP (see GAP Reference Manual, 61.5.2). Each basis is in Hermite
normal form so that the action of G on the imprimitivity system can be determined by OnSubspacesBy-

CanonicalBasis

stab1

the subgroup of G stabilizing the subspace W spanned by bases[1]

min

is true if the imprimitivity system is minimal, that is, if stab1 acts primitively on W, and false otherwise

gap> G := IrreducibleSolubleMatrixGroup(6, 2, 1, 9);

<matrix group of size 54 with 4 generators>

gap> impr := ImprimitivitySystems(G, GF(2));;

gap> List(ImprimitivitySystems(G, GF(2)), r -> Length(r.bases));

[3, 3, 1]

gap> List(ImprimitivitySystems(G, GF(4)),

> r -> Action(G, r.bases, OnSubspacesByCanonicalBasis));

[Group([(), (1,2)(3,6)(4,5), (1,3,4)(2,5,6), (1,4,3)(2,6,5)]),

Group([(1,2,4)(3,5,6), (1,3)(2,5)(4,6), (), ()]),

Group([(1,2,4)(3,5,6), (1,3)(2,5)(4,6), (1,2,4)(3,6,5), (1,4,2)(3,5,6)]),

Group([(1,2,4)(3,5,6), (1,3)(2,5)(4,6), (1,4,2)(3,5,6), (1,2,4)(3,6,5)]),

Group([(), (1,2), (), ()]), Group([(1,2,3), (), (), ()]),

Group([(), (2,3), (1,2,3), (1,3,2)]),

Group([(), (2,3), (1,2,3), (1,3,2)]),

Group([(), (2,3), (1,2,3), (1,3,2)]), Group(())]

16 Chapter 4. Additional functionality for matrix groups

4.4 Conjugating matrix groups into smaller fields

1 I TraceField(G) A

This is the field generated by the traces of the elements of the matrix group G. If G is an irreducible matrix group over
a finite field then, by a theorem of Brauer, G has a conjugate which is a matrix group over TraceField(G).

gap> repeat

> G := IrreducibleSolubleMatrixGroup(8, 2, 2, 7)^RandomInvertibleMat(8, GF(8));

> until FieldOfMatrixGroup(G) = GF(8);

gap> TraceField(G);

GF(2)

2 I ConjugatingMatTraceField(G) A

If bound, this is a matrix x over FieldOfMatrixGroup(G) such that Gx is a matrix group over TraceField(G).
Currently, there are only methods available for irreducible matrix groups G over finite fields and certain trivial cases.
The method for absolutely irreducible groups is described in [GH97]. Note that, for matrix groups over infinite fields,
such a matrix x need not exist.

gap> repeat

> G := IrreducibleSolubleMatrixGroup(8, 2, 2, 7) ^

> RandomInvertibleMat(8, GF(8));

> until FieldOfMatrixGroup(G) = GF(8);

gap> FieldOfMatrixGroup(G^ConjugatingMatTraceField(G));

GF(2)

5 Primitive
soluble groups

An abstract finite group G is called primitive if it has a maximal subgroup M with trivial core. Note that the permutation
action of G on the cosets of M is faithful and primitive. Conversely, if G is a primitive permutation group, then a point
stabilizer M of G is a maximal subgroup with trivial core. However, a permutation group which is primitive as an
abstract group need not be primitive as a permutation group.

Now assume that G is primitive and soluble. Then there exists a unique conjugacy class of such maximal subgroups M;
the index of M in G is called the degree of G. Moreover, M complements the socle N of G. THe socle N coincides
with the Fitting subgroup of G; it is the unique minimal normal subgroup N of G. Therefore, the index of M in G
is a prime power, pn, say. Regarding N as a Fp-vector space, M acts as an irreducible subgroup of GL(n, p) on N.
Conversely, if M is an irreducible soluble subgroup of GL(n, p), and V = Fn

p, then the split extension of V by M is
a primitive soluble group. This establishes a well known bijection between the isomorphism types (or, equivalently,
the Sym(pn)-conjugacy classes) of primitive soluble permutation groups of degree pn and the conjugacy classes of
irreducible soluble subgroups of GL(n, p).

The IRREDSOL package provides functions for translating between primitive soluble groups and irreducible soluble
matrix groups, which are described in Section 5.1. Moreover, there are functions for finding primitive soluble groups
with given properties, see Sections 5.2 and 5.3.

5.1 Converting between irreducible soluble matrix groups and primitive sol-
uble groups

1 I PrimitivePcGroup(n,p,d,k) F
I PrimitiveSolublePermGroup(n,p,d,k) F
I PrimitiveSolvablePermGroup(n,p,d,k) F

These functions return the primitive soluble pc group resp. primitive soluble permutation group obtainewd as the
natural split extension of V = Fn

p by IrreducibleSolubleMatrixGroup(n,p,d,k). Here, n is a positive integer, p is
a prime, d divides n and k occurs in the list IndicesIrreducibleSolubleMatrixGroups(n,p,d) (see 2.2.2).

As long as the relevant group data is not unloaded manually (see 2.4.3), the functions PrimitivePcGroup and
PrimitiveSolublePermGroup will return the same group when called multiple times with the same arguments.

2 I PrimitivePcGroupIrreducibleMatrixGroup(G) F
I PrimitivePcGroupIrreducibleMatrixGroupNC(G) F

For a given irreducible soluble matrix group G over a prime field, this function returns a primitive pc group H which
is the split extension of G with its natural underlying vector space V . The NC version does not check whether G is
over a prime field, or whether G is irreducible. The group H has an attribute Socle (see GAP Reference Manual,
39.12.10), corresponding to V . If the package CRISP is loaded, then the attribute SocleComplement (see CRISP
reference manual , 4.3.2) is set to a subgroup of H isomorphic with G.

gap> PrimitivePcGroupIrreducibleMatrixGroup(

> IrreducibleSolubleMatrixGroup(4,2,2,3));

<pc group of size 160 with 6 generators>

18 Chapter 5. Primitive soluble groups

3 I PrimitivePermGroupIrreducibleMatrixGroup(G) F
I PrimitivePermGroupIrreducibleMatrixGroupNC(G) F

For a given irreducible soluble matrix group G over a prime field, this function returns a primitive permutation
group H, representing the affine action of G on its natural vector space V . The NC version does not check whether G
is over a prime field, or whether G is irreducible. The group H has an attribute Socle (see GAP Reference Manual,
39.12.10), corresponding to V . If the package CRISP is loaded, then the attribute SocleComplement (see , 4.3.2 in
the CRISP manual) is set to a subgroup of H isomorphic with G.

gap> PrimitivePermGroupIrreducibleMatrixGroup(

> IrreducibleSolubleMatrixGroup(4,2,2,3));

<permutation group of size 160 with 6 generators>

4 I IrreducibleMatrixGroupPrimitiveSolubleGroup(G) F
I IrreducibleMatrixGroupPrimitiveSolvableGroupNC(G) F

For a given primitive soluble group G, this function returns a matrix group obtained from the conjugation action of
G on its unique minimal normal subgroup N, regarded as a vector space over Fp, where p is the exponent of N. The
Fp-basis of N is chosen arbitrarily, so that the matrix group returned is unique only up to conjugacy in the relevant
GL(n, p). The NC version does not check whether G is primitive and soluble.

gap> IrreducibleMatrixGroupPrimitiveSolubleGroup(SymmetricGroup(4));

Group([<an immutable 2x2 matrix over GF2>,

<an immutable 2x2 matrix over GF2>])

5.2 Finding primitive pc groups with given properties

1 I AllPrimitivePcGroups(func 1, arg 1, func 2, arg 2, . . .) F

This function returns a list of all primitive soluble pc groups G in the IRREDSOL library for which the return value
of func i(G) lies in arg i. The arguments func 1, func 2, . . . , must be GAP functions which take a pc group as their
only argument and return a value, and arg 1, arg 2, . . . , must be lists. If arg i is not a list, arg i is replaced by the list
[arg i]. One of the functions must be Degree or one of its equivalents, see below.

The following functions func i are handled particularly efficiently.

– Degree, NrMovedPoints, LargestMovedPoint

– Order, Size

Note that there is also a function IteratorPrimitivePcGroups (see 5.2.3) which allows one to run through the list
produced by AllPrimitivePcGroups without having to store all the groups in the list simultaneously.

gap> AllPrimitivePcGroups(Degree, [1..255], Order, [168]);

[<pc group of size 168 with 5 generators>]

2 I OnePrimitivePcGroup(func 1, arg 1, func 2, arg 2, . . .) F

This function returns one primitive soluble pc group G in the IRREDSOL library for which the return value of
func i(G) lies in arg i, or fail if no such group exists. The arguments func 1, func 2, . . . , must be GAP functions
which take a pc group as their only argument and return a value, and arg 1, arg 2, . . . , must be lists. If arg i is not a list,
arg i is replaced by the list [arg i]. One of the functions must be Degree or one of its, equivalents, NrMovedPoints
or LargestMovedPoint.

For a list of functions which are handled particularly efficiently, see 5.2.1.

gap> OnePrimitivePcGroup(Degree, [256], Order, [256*255]);

<pc group of size 65280 with 11 generators>

Section 3. Finding primitive soluble permutation groups with given properties 19

3 I IteratorPrimitivePcGroups(func 1, arg 1, func 2, arg 2, . . .) F

This function returns an iterator which runs through the list of all primitive soluble pc groups G in the IRREDSOL
library such that func i(G) lies in arg i. The arguments func 1, func 2, . . . , must be GAP functions taking a pc
group as their only argument and returning a value, and arg 1, arg 2, . . . , must be lists. If arg i is not a list, arg i
is replaced by the list [arg i]. One of the functions must be Degree or one of its, equivalents, NrMovedPoints or
LargestMovedPoint. For a list of functions which are handled particularly efficiently, see 5.2.1.

Using

IteratorPrimitivePcGroups(func 1, arg 1, func 2, arg 2, . . .))

is functionally equivalent to

Iterator(AllPrimitivePcGroups(func 1, arg 1, func 2, arg 2, . . .))

(see GAP Reference Manual, 30.8 for details) but does not compute all relevant pc groups at the same time. This may
save some memory.

5.3 Finding primitive soluble permutation groups with given properties

1 I AllPrimitiveSolublePermGroups(func 1, arg 1, func 2, arg 2, . . .) F
I AllPrimitiveSolvablePermGroups(func 1, arg 1, func 2, arg 2, . . .) F

This function returns a list of all primitive soluble permutation groups G corresponding to irreducible matrix groups
in the IRREDSOL library for which the return value of func i(G) lies in arg i. The arguments func 1, func 2, . . . ,
must be GAP functions which take a permutation group as their only argument and return a value, and arg 1, arg 2,
. . . , must be lists. If arg i is not a list, arg i is replaced by the list [arg i]. One of the functions must be Degree or
one of its equivalents, see below.

The following functions func i are handled particularly efficiently.

– Degree, NrMovedPoints, LargestMovedPoint

– Order, Size

Note that there is also a function IteratorPrimitivePermGroups (see 5.3.3) which allows one to run through the
list produced by AllPrimitivePcGroups without having to store all of the groups simultaneously.

gap> AllPrimitiveSolublePermGroups(Degree, [1..100], Order, [72]);

[Group([(1,4,7)(2,5,8)(3,6,9), (1,2,3)(4,5,6)(7,8,9), (2,4)(3,7)(6,8),

(2,3)(5,6)(8,9), (4,7)(5,8)(6,9)]),

Group([(1,4,7)(2,5,8)(3,6,9), (1,2,3)(4,5,6)(7,8,9), (2,5,3,9)(4,8,7,6),

(2,7,3,4)(5,8,9,6), (2,3)(4,7)(5,9)(6,8)]),

Group([(1,4,7)(2,5,8)(3,6,9), (1,2,3)(4,5,6)(7,8,9), (2,5,6,7,3,9,8,4)])]

gap> List(last, IdGroup);

[[72, 40], [72, 41], [72, 39]]

2 I OnePrimitiveSolublePermGroup(func 1, arg 1, func 2, arg 2, . . .) F
I OnePrimitiveSolvablePermGroup(func 1, arg 1, func 2, arg 2, . . .) F

This function returns one primitive soluble permutation group G corresponding to irreducible matrix groups in the IR-
REDSOL library for which the return value of func i(G) lies in arg i, or fail if no such group exists. The arguments
func 1, func 2, . . . , must be GAP functions which take a permutation group as their only argument and return a value,
and arg 1, arg 2, . . . , must be lists. If arg i is not a list, arg i is replaced by the list [arg i]. One of the functions must
be Degree or one of its, equivalents, NrMovedPoints or LargestMovedPoint.

For a list of functions which are handled particularly efficiently, see 5.3.1.

20 Chapter 5. Primitive soluble groups

gap> OnePrimitiveSolublePermGroup(Degree, [1..100], Size, [123321]);

fail

3 I IteratorPrimitivePermGroups(func 1, arg 1, func 2, arg 2, . . .) F

This function returns an iterator which runs through the list of all primitive soluble groups G in the IRREDSOL
library such that func i(G) lies in arg i. The arguments func 1, func 2, . . . , must be GAP functions taking a pc
group as their only argument and returning a value, and arg 1, arg 2, . . . , must be lists. If arg i is not a list, arg i
is replaced by the list [arg i]. One of the functions must be Degree or one of its, equivalents, NrMovedPoints or
LargestMovedPoint. For a list of functions which are handled particularly efficiently, see 5.3.1.

Using

IteratorPrimitiveSolublePermGroups(func 1, arg 1, func 2, arg 2, . . .))

is functionally equivalent to

Iterator(AllPrimitiveSolublePermGroups(func 1, arg 1, func 2, arg 2, . . .))

(see GAP Reference Manual, 30.8 for details) but does not compute all relevant permutation groups at the same time.

5.4 Recognising primitive soluble groups

1 I IdPrimitiveSolubleGroup(G) F
I IdPrimitiveSolubleGroupNC(G) F
I IdPrimitiveSolvableGroup(G) F
I IdPrimitiveSolvableGroupNC(G) F

returns the id of the primitive soluble group G. This is the same as the id of IrreducibleMatrixGroupPrimi-
tiveSolubleGroup(G), see 5.1.4 and 3.1.3. Note that two primitive soluble groups are isomorphic if, and only if,
their ids returned by IdPrimitivePcGroup are the same. The NC version does not check whether G is primitive and
soluble.

gap> G := SmallGroup(432, 734);

<pc group of size 432 with 7 generators>

gap> IdPrimitiveSolubleGroup(G);

[2, 3, 1, 2]

gap> G := AlternatingGroup(4);

Alt([1 .. 4])

gap> IdPrimitiveSolubleGroup(G);

[2, 2, 2, 1]

2 I RecognitionPrimitiveSolubleGroup(G,wantiso) F
I RecognitionPrimitiveSolvableGroup(G,wantiso) F

This function returns a record r which identifies the primitive soluble group G. The component id is always present
and contains the id of G. if wantiso is true, then the component iso is bound to an isomorphism from G into a
primitive pc group.

Section 5. Obsolete functions 21

5.5 Obsolete functions

1 I PrimitiveSolublePermutationGroup(n,q,d,k) F
I PrimitiveSolvablePermutationGroup(n,q,d,k) F
I PrimitivePermutationGroupIrreducibleMatrixGroup(G) F
I PrimitivePermutationGroupIrreducibleMatrixGroupNC(G) F
I AllPrimitiveSolublePermutationGroups(func 1, arg 1, func 2, arg 2, . . .) F
I AllPrimitiveSolvablePermutationGroups(func 1, arg 1, func 2, arg 2, . . .) F
I IteratorPrimitivePermutationGroups(func 1, arg 1, func 2, arg 2, . . .) F
I OnePrimitiveSolublePermutationGroup(func 1, arg 1, func 2, arg 2, . . .) F
I OnePrimitiveSolvablePermutationGroup(func 1, arg 1, func 2, arg 2, . . .) F

These functions have been renamed from . . . PermutationGroup. . . to . . . PermGroup. . . . The above function names
are deprecated.

A Version History

The following list summarises the most important changes between different versions of IRREDSOL.

Version 1.4.3
improve compatibility with upcoming versions of GAP

Version 1.4.2
improve compatibility with upcoming versions of GAP

Version 1.4.1
documentation improvements, better compatibility with GAP 4.9 and later, now requires GAP 4.9

Version 1.4
adds groups with 221 ≤ qn ≤ 224 − 1 = 16 777 215, improved fingerprints for faster group recognition

Version 1.3.1
adds version history

Version 1.3
adds groups with 1 000 000 ≤ qn ≤ 221 − 1 = 2 097 151, faster recognition, faster computation of block
systems, fixes performance regression due to changes in GAP 4.8

Version 1.2.4
adds LICENSE file, copyright notice

Version 1.2.3
adds BSD license

Version 1.2.2
changes method name in accordance with GAP

Version 1.2.1
adds missing subgroup of GL(4, 9), documents IsAvailableIrreducibleSolvableGroupData

Version 1.2.0
adds groups with 216 ≤ qn ≤ 1 000 000, recognition of primitive permutation groups, adds missing groups
in GL(6, 5) and GL(8, 3), changed web address

Version 1.1.2
changes package status to “accepted”.

Version 1.1.1
omits resource fork files from distribution archive

Version 1.1
fixed bug reporting obviously wrong group ids.

Version 1.0.9
added recognition of irreducible but not absolutely irreducible groups, new fingerprint file format

Version 1.0.2
fixes wrong URL in PackageInfo.g

23

Version 1.0.1
status changed to “deposited”

Version 1.0
first development version of IRREDSOL

Bibliography

[Asc84] M. Aschbacher. On the maximal subgroups of the finite classical groups. Invent. Math., 76:469 – 514, 1984.

[DH92] K. Doerk and T. Hawkes. Finite soluble groups. DeGruyter, Berlin, New York, 1992.

[EH03] Bettina Eick and Burkhard Höfling. The solvable primitive permutation groups of degree at most 6560.
LMS J. Comput. Math., 6:29–39, 2003.

[GH97] S. P. Glasby and R. B. Howlett. Writing representations over minimal fields. Comm. Alg., 25:1703–1711,
1997.

[Sho92] Mark W. Short. The Primitive Soluble Permutation Groups of Degree less than 256, volume 1519 of Lecture
Notes in Math. Springer, 1992.

Index
This index covers only this manual. A page number in italics refers to a whole section which is devoted to the
indexed subject. Keywords are sorted with case and spaces ignored, e.g., “PermutationCharacter” comes before
“permutation group”.

A
AbsolutelyIrreducibleSolubleMatrixGroup, 6
AllIrredSolMatGroups, 7
AllIrreducibleSolubleMatrixGroups, 7
AllIrreducibleSolvableMatrixGroups, 7
AllPrimitivePcGroups, 18
AllPrimitiveSolublePermGroups, 19
AllPrimitiveSolublePermutationGroups, 21
AllPrimitiveSolvablePermGroups, 19
AllPrimitiveSolvablePermutationGroups, 21
attributes, basic, for matrix groups, 13

C
Characteristic, for matrix groups, 13
CharacteristicOfField, 13
compatibility, with other data libraries, 11
ConjugatingMatTraceField, 16
copyright, 3

D
DefaultFieldOfMatrixGroup, 13
Degree, for matrix groups, 13
DegreeOfMatrixGroup, 13
Dimension, for matrix groups, 13
DimensionOfMatrixGroup, 13

F
FieldOfMatrixGroup, 13
find, matrix group, 7

primitive pc group, 18
primitive permutation group, 19

G
group, primitive soluble, 17

I
IdAbsolutelyIrreducibleSolubleMatrixGroup,

11

IdAbsolutelyIrreducibleSolvableMatrixGroup,
11

identification, of matrix groups, 10
of primitive pc group, 20
of primitive permutation group, 20

IdIrreducibleSolubleMatrixGroup, 10
IdIrreducibleSolubleMatrixGroupIndexMS, 11
IdIrreducibleSolvableMatrixGroup, 10
IdPrimitiveSolubleGroup, 20
IdPrimitiveSolubleGroupNC, 20
IdPrimitiveSolvableGroup, 20
IdPrimitiveSolvableGroupNC, 20
ImprimitivitySystems, 15
IndexMSIdIrreducibleSolubleMatrixGroup, 12
IndicesAbsolutelyIrreducibleSoluble\

MatrixGroups, 6
IndicesIrreducibleSolubleMatrixGroups, 6
IndicesIrreducibleSolvableMatrixGroups, 6
IndicesMaximalAbsolutelyIrreducibleSoluble\

MatrixGroups, 6
IndicesMaximalAbsolutelyIrreducible\

SolvableMatrixGroups, 6
IRREDSOL, 4

accessing low level data, 6
database design, 5

irreducibility, of matrix group, 14
IrreducibleMatrixGroupPrimitive\

SolubleGroup, 18
IrreducibleMatrixGroupPrimitive\

SolvableGroupNC, 18
IrreducibleSolubleMatrixGroup, 6
IrreducibleSolvableMatrixGroup, 6
IsAbsolutelyIrreducible, 14
IsAbsolutelyIrreducibleMatrixGroup, 14
IsAvailableAbsolutelyIrreducibleSoluble\

GroupData, 6
IsAvailableAbsolutelyIrreducibleolvable\

GroupData, 6

26 Index

IsAvailableIdAbsolutelyIrreducibleSoluble\

MatrixGroup, 10
IsAvailableIdAbsolutelyIrreducibleSolvable\

MatrixGroup, 10
IsAvailableIdIrreducibleSolubleMatrixGroup,

10
IsAvailableIdIrreducibleSolvable\

MatrixGroup, 10
IsAvailableIrreducibleSolubleGroupData, 6
IsAvailableIrreducibleSolvableGroupData, 6
IsIrreducible, for matrix groups, 14
IsIrreducibleMatrixGroup, 14
IsLinearlyPrimitive, 15
IsMaximalAbsolutelyIrreducibleSoluble\

MatrixGroup, 14
IsMaximalAbsolutelyIrreducibleSolvable\

MatrixGroup, 14
IsPrimitive, for matrix groups, 15
IsPrimitiveMatrixGroup, 15
IteratorIrredSolMatGroups, 8
IteratorIrreducibleSolubleMatrixGroups, 8
IteratorIrreducibleSolvableMatrixGroups, 8
IteratorPrimitivePcGroups, 19
IteratorPrimitivePermGroups, 20
IteratorPrimitivePermutationGroups, 21

L
LoadAbsoIrredSolGroupData, 9
LoadAbsolutelyIrreducibleSolubleGroupData, 9
LoadAbsolutelyIrreducibleSolubleGroup\

Fingerprints, 12
LoadAbsolutelyIrreducibleSolvableGroupData,

9
LoadedAbsoIrredSolGroupData, 9
LoadedAbsolutelyIrreducibleSoluble\

GroupData, 9
LoadedAbsolutelyIrreducibleSolubleGroup\

Fingerprints, 12
LoadedAbsolutelyIrreducibleSolvable\

GroupData, 9
loading, of group data, 9

of recognition data, 12

M
matrix group, basic attributes, 13

conjugating into smaller fieldss, 16
irreducibility, 14

maximality, 14
primitivity, 14
with given properties, 7

maximality, of matrix group, 14
MinimalBlockDimension, for matrix groups, 14
MinimalBlockDimensionOfMatrixGroup, 14

O
obsolete functions, for primitive soluble permutation

groups, 21
OneIrredSolMatGroup, 8
OneIrreducibleSolubleMatrixGroup, 8
OneIrreducibleSolvableMatrixGroup, 8
OnePrimitivePcGroup, 18
OnePrimitiveSolublePermGroup, 19
OnePrimitiveSolublePermutationGroup, 21
OnePrimitiveSolvablePermGroup, 19
OnePrimitiveSolvablePermutationGroup, 21

P
permutation group, primitive soluble, 17
primitive pc group, identification, 20

recognition, 20
with given properties, 18

primitive permutation group, identification, 20
recognition, 20
with given properties, 19

primitive soluble groups, 17
PrimitivePcGroup, 17
PrimitivePcGroupIrreducibleMatrixGroup, 17
PrimitivePcGroupIrreducibleMatrixGroupNC, 17
PrimitivePermGroupIrreducibleMatrixGroup, 18
PrimitivePermGroupIrreducibleMatrixGroupNC,

18
PrimitivePermutationGroupIrreducible\

MatrixGroup, 21
PrimitivePermutationGroupIrreducible\

MatrixGroupNC, 21
PrimitiveSolublePermGroup, 17
PrimitiveSolublePermutationGroup, 21
PrimitiveSolvablePermGroup, 17
PrimitiveSolvablePermutationGroup, 21
primitivity, of matrix group, 14

R
recognition, of matrix groups, 10

of primitive pc group, 20

Index 27

of primitive permutation group, 20
RecognitionAbsolutelyIrreducibleSoluble\

MatrixGroup, 11
RecognitionAbsolutelyIrreducibleSoluble\

MatrixGroupNC, 11
RecognitionAbsolutelyIrreducibleSolvable\

MatrixGroupNC, 11
RecognitionAbsolutelyIrreducibleSolvable\

MatrixGroup, 11
RecognitionIrreducibleSolubleMatrixGroup, 10
RecognitionIrreducibleSolubleMatrixGroupNC,

10
RecognitionIrreducibleSolvableMatrixGroup,

10
RecognitionIrreducibleSolvable\

MatrixGroupNC, 10
RecognitionPrimitiveSolubleGroup, 20
RecognitionPrimitiveSolvableGroup, 20
RepresentationIsomorphism, 13

S
soluble primitive groups, 17

SplittingField, 13
structure of IRREDSOL, 4

T
TraceField, 16

U
UnloadAbsoIrredSolGroupData, 9
UnloadAbsolutelyIrreducibleSoluble\

GroupData, 9
UnloadAbsolutelyIrreducibleSolubleGroup\

Fingerprints, 12
UnloadAbsolutelyIrreducibleSolvable\

GroupData, 9
unloading, of group data, 9

of recognition data, 12

W
workspace, running out of, 9, 12

	Contents
	Copyright
	Overview
	Accessing the data library
	Design of the group library
	Low level access functions
	Finding matrix groups with given properties
	Loading and unloading group data manually

	Recognition of matrix groups
	Identification of irreducible groups
	Compatibility with other data libraries
	Loading and unloading recognition data manually

	Additional functionality for matrix groups
	Basic attributes for matrix groups
	Irreducibility and maximality of matrix groups
	Primitivity of matrix groups
	Conjugating matrix groups into smaller fields

	Primitive soluble groups
	Converting between irreducible soluble matrix groups and primitive soluble groups
	Finding primitive pc groups with given properties
	Finding primitive soluble permutation groups with given properties
	Recognising primitive soluble groups
	Obsolete functions

	Version History
	Bibliography
	Index
	A
	C
	D
	F
	G
	I
	L
	M
	O
	P
	R
	S
	T
	U
	W

