
GAP
Release 4.4.12

17 December 2008

Extending GAP

The GAP Group

http://www.gap-system.org

Acknowledgement

We would like to thank the many people who have made contributions of

various kinds to the development of GAP since 1986, in particular:

Isabel M. Araújo, Robert Arthur, Hans Ulrich Besche, Thomas Bischops,

Oliver Bonten, Thomas Breuer, Frank Celler, Gene Cooperman, Bettina Eick,

Volkmar Felsch, Franz Gähler, Greg Gamble, Willem de Graaf,

Burkhard Höfling, Jens Hollmann, Derek Holt, Erzsébet Horváth,

Alexander Hulpke, Ansgar Kaup, Susanne Keitemeier, Steve Linton,

Frank Lübeck, Bohdan Majewski, Johannes Meier, Thomas Merkwitz,

Wolfgang Merkwitz, James Mitchell, Jürgen Mnich, Robert F. Morse,

Scott Murray, Joachim Neubüser, Max Neunhöffer,

Werner Nickel, Alice Niemeyer, Dima Pasechnik, Götz Pfeiffer,

Udo Polis, Ferenc Rákóczi, Sarah Rees, Edmund Robertson,

Colva Roney-Dougal, Ute Schiffer, Jack Schmidt, Martin Schönert,

Ákos Seress, Andrew Solomon, Heiko Theißen, Rob Wainwright,

Alex Wegner, Chris Wensley and Charles Wright.

The following list gives the authors, indicated by A, who designed the code in the first place as well as the current
maintainers, indicated by M of the various modules of which GAP is composed.

Since the process of modularization was started only recently, there might be omissions both in scope and in contrib-
utors. The compilers of the manual apologize for any such errors and promise to rectify them in future editions.

Kernel
Frank Celler (A), Steve Linton (AM), Frank Lübeck (AM), Werner Nickel (AM), Martin Schönert (A)

Automorphism groups of finite pc groups
Bettina Eick (A), Werner Nickel (M)

Binary Relations
Robert Morse (AM), Andrew Solomon (A)

Characters and Character Degrees of certain solvable groups
Hans Ulrich Besche (A), Thomas Breuer (AM)

Classes in nonsolvable groups
Alexander Hulpke (AM)

Classical Groups
Thomas Breuer (AM), Frank Celler (A), Stefan Kohl (AM), Frank Lübeck (AM), Heiko Theißen (A)

4 Acknowledgement

Congruences of magmas, semigroups and monoids
Robert Morse (AM), Andrew Solomon (A)

Cosets and Double Cosets
Alexander Hulpke (AM)

Cyclotomics
Thomas Breuer (AM)

Dixon-Schneider Algorithm
Alexander Hulpke (AM)

Documentation Utilities
Frank Celler (A), Heiko Theißen (A), Alexander Hulpke (A), Willem de Graaf (A), Steve Linton (A), Werner
Nickel (A), Greg Gamble (AM)

Factor groups
Alexander Hulpke (AM)

Finitely presented groups
Volkmar Felsch (A), Alexander Hulpke (AM), Martin Schoenert (A)

Finitely presented monoids and semigroups
Isabel Araújo (A), Derek Holt (A), Alexander Hulpke (A), James Mitchell (M), Götz Pfeiffer (A), Andrew
Solomon (A)

GAP for MacOS
Burkhard Höfling (AM)

Group actions
Heiko Theißen (A) and Alexander Hulpke (AM)

Homomorphism search
Alexander Hulpke (AM)

Homomorphisms for finitely presented groups
Alexander Hulpke (AM)

Identification of Galois groups
Alexander Hulpke (AM)

Intersection of subgroups of finite pc groups
Frank Celler (A), Bettina Eick (A), Werner Nickel (M)

Irreducible Modules over finite fields for finite pc groups
Bettina Eick (AM)

Isomorphism testing with random methods
Hans Ulrich Besche (AM), Bettina Eick (AM)

Lie algebras
Thomas Breuer (A), Craig Struble (A), Juergen Wisliceny (A), Willem A. de Graaf (AM)

Monomiality Questions
Thomas Breuer (AM), Erzsébet Horváth (A)

Multiplier and Schur cover
Werner Nickel (AM), Alexander Hulpke (AM)

One-Cohomology and Complements
Frank Celler (A) and Alexander Hulpke (AM)

Partition Backtrack algorithm
Heiko Theißen (A), Alexander Hulpke (M)

Acknowledgement 5

Permutation group composition series
Ákos Seress (AM)

Permutation group homomorphisms
Ákos Seress (AM), Heiko Theißen (A), Alexander Hulpke (M)

Permutation Group Pcgs
Heiko Theißen (A), Alexander Hulpke (M)

Possible Permutation Characters
Thomas Breuer (AM), Götz Pfeiffer (A)

Possible Class Fusions, Possible Power Maps Thomas Breuer (AM)

Primitive groups library
Heiko Theißen (A), Colva Roney-Dougal (AM)

Properties and attributes of finite pc groups
Frank Celler (A), Bettina Eick (A), Werner Nickel (M)

Random Schreier-Sims
Ákos Seress (AM)

Rational Functions
Frank Celler (A) and Alexander Hulpke (AM)

Semigroup relations
Isabel Araujo (A), Robert F. Morse (AM), Andrew Solomon (A)

Special Pcgs for finite pc groups
Bettina Eick (AM)

Stabilizer Chains
Ákos Seress (AM), Heiko Theißen (A), Alexander Hulpke (M)

Strings and Characters
Martin Schönert (A), Frank Celler (A), Thomas Breuer (A), Frank Lübeck (AM)

Structure Descriptions for Finite Groups
Stefan Kohl (AM), Markus Püschel(A), Sebastian Egner(A)

Subgroup lattice
Martin Schönert (A), Alexander Hulpke (AM)

Subgroup lattice for solvable groups
Alexander Hulpke (AM)

Subgroup presentations
Volkmar Felsch (A), Werner Nickel (M)

The Help System
Frank Celler (A), Frank Lübeck (AM)

Tietze transformations
Volkmar Felsch (A), Werner Nickel (M)

Transformation semigroups
Isabel Araujo (A), Robert Arthur (A), Robert F. Morse (AM), Andrew Solomon (A)

Transitive groups library
Alexander Hulpke (AM)

Two-cohomology and extensions of finite pc groups
Bettina Eick (AM)

Contents

Copyright Notice 9

1 About: Extending GAP 10

2 The gapmacro.tex Manual Format 11

2.1 The Main File 11

2.2 Chapters and Sections 14

2.3 Suppressing Indexing and Labelling of a
Section and Resolving Label Clashes . 15

2.4 Labels and References 15

2.5 TeX Macros 16

2.6 TeX Macros for Domains 20

2.7 Examples, Lists, and Verbatim . . . 20

2.8 Tables, Displayed Mathematics and
Mathematics Alignments 23

2.9 Testing the Examples 24

2.10 Usage of the Percent Symbol 24

2.11 Catering for Plain Text and HTML Formats 25

2.12 Umlauts 26

2.13 Producing a Manual 26

2.14 Using buildman.pe 27

3 Library Files 32

3.1 File Types 32

3.2 File Structure 32

3.3 Finding Implementations in the Library 33

3.4 Undocumented Variables 33

4 Writing a GAP Package 35

4.1 The Files of a GAP Package 35

4.2 Writing Documentation 36

4.3 An Example of a GAP Package . . . 36

4.4 The WWW Homepage of a Package . 37

4.5 The PackageInfo.g File 37

4.6 Requesting one GAP Package from within
Another 37

4.7 Declaration and Implementation Part . 38

4.8 Standalone Programs in a GAP Package 38

4.9 Installation of GAP Package Binaries . 38

4.10 Test for the Existence of GAP Package
Binaries 39

4.11 Calling of and Communication with
External Binaries 39

4.12 Package Completion 40

4.13 DeclareAutoreadableVariables . . . 40

4.14 Version Numbers 40

4.15 Wrapping Up a GAP Package . . . 41

5 Interface to the GAP Help System 42

5.1 Installing a Help Book 42

5.2 The manual.six File 42

5.3 The Help Book Handler 43

5.4 Introducing new Viewer for the Online
Help 44

6 Function-Operation-Attribute Triples 45

6.1 Key Dependent Operations 45

6.2 In Parent Attributes 46

6.3 Operation Functions 47

Contents 7

7 Weak Pointers 50

7.1 Weak Pointer Objects 50

7.2 WeakPointerObj 50

7.3 Low Level Access Functions for Weak
Pointer Objects 51

7.4 Accessing Weak Pointer Objects as Lists 51

7.5 Copying Weak Pointer Objects . . . 52

7.6 The GASMAN Interface for Weak Pointer
Objects 52

8 Stabilizer Chains (preliminary) 53

8.1 Generalized Conjugation Technique . 53

8.2 The General Backtrack Algorithm with
Ordered Partitions 54

8.3 Stabilizer Chains for Automorphisms
Acting on Enumerators 60

Bibliography 64

Index 65

Copyright Notice

Copyright c© (1987–2004) by the GAP Group,

incorporating the Copyright c© 1999, 2000 by School of Mathematical and Computational Sciences, University of
St Andrews, North Haugh, St Andrews, Fife KY16 9SS, Scotland

being the Copyright c© 1992 by Lehrstuhl D für Mathematik, RWTH, 52056 Aachen, Germany, transferred to St An-
drews on July 21st, 1997.

except for files in the distribution, which have an explicit different copyright statement. In particular, the copyright of
packages distributed with GAP is usually with the package authors or their institutions.

GAP is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. For
details, see the file GPL in the etc directory of the GAP distribution or see

http://www.gnu.org/licenses/gpl.html

If you obtain GAP please send us a short notice to that effect, e.g., an e-mail message to the address support@gap-system.org,
containing your full name and address. This allows us to keep track of the number of GAP users.

If you publish a mathematical result that was partly obtained using GAP, please cite GAP, just as you would cite
another paper that you used (see below for sample citation). Also we would appreciate if you could inform us about
such a paper.

Specifically, please refer to

[GAP] The GAP Group, GAP --- Groups, Algorithms, and Programming,

Version 4.4.12; 2012

(http://www.gap-system.org)

GAP is distributed by us without any warranty, to the extent permitted by applicable state law. We distribute GAP as
is without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose.

The entire risk as to the quality and performance of the program is with you. Should GAP prove defective, you assume
the cost of all necessary servicing, repair or correction.

In no case unless required by applicable law will we, and/or any other party who may modify and redistribute GAP
as permitted above, be liable to you for damages, including lost profits, lost monies or other special, incidental or
consequential damages arising out of the use or inability to use GAP.

You are permitted to modify and redistribute GAP, but you are not allowed to restrict further redistribution. That is to
say proprietary modifications will not be allowed. We want all versions of GAP to remain free.

If you modify any part of GAP and redistribute it, you must supply a README document. This should specify what
modifications you made in which files. We do not want to take credit or be blamed for your modifications.

Of course we are interested in all of your modifications. In particular we would like to see bug-fixes, improvements
and new functions. So again we would appreciate it if you would inform us about all modifications you make.

1 About: Extending GAP

This is one of four parts of the GAP documentation, the others being the GAP Tutorial, a beginner’s introduction
to GAP, the GAP Reference Manual, which contains the official definitions of GAP, and Programming in GAP
which also provides information for those who want to write their own GAP extensions.

Extending GAP explains how to create files and functions that will work together with mechanisms built in GAP.

This manual is divided into chapters. Each chapter is divided into sections, and within each section, important defini-
tions are numbered. References therefore are triples.

The first chapters of this manual describe how to write documentation, how to interface packages and components, and
roughly describes the style used for writing the library. This is followed by chapters that explain advanced program-
ming techniques in GAP. Finally there are chapters (alas, at the moment there is only one due to a lack of manpower)
that describe how internal functions work and how to interface ones own code to these internal functions.

Pages are numbered consecutively in each of the four manuals. For manual conventions, see Section 1.1 in the Refer-
ence Manual.

2 The gapmacro.tex
Manual Format

The current GAP manual books and most of the GAP 4 package documentation is written in a restricted TEX format,
using a set of macros defined in the file GAPPATH/doc/gapmacro.tex. This chapter describes this format and how
to create the final documents (which can be printed or used by GAP’s online help) from it.

See 2.5 and 2.7 for details on the restricted set of available TEX commands.

The first sections 2.1 and 2.2 describe the general layout of the files in case you need to write your own package
documentation.

If you are planning to write new documentation for a GAP package you can either use the format described in this
chapter or use an alternative approach. For example some packages have started to use the GAPDoc package for their
documentation, see Chapter “gapdoc:introduction and example” in the GAPDoc manual or type

gap> ?GAPDoc:chapters

in GAP’s online help for a table of contents, or (if it is not available in your installation) see:

http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc/

If you want to use yet another document format you must provide certain information to the interface of GAP’s online
help. This is described in chapter 5.

2.1 The Main File

The main TEX file is called manual.tex. This file should contain the following commands:

\input ../gapmacro

\Package{package-name}
\BeginningOfBook{name-of-book}
\UseReferences{book1}
...

\UseReferences{bookn}
\TitlePage{title}
\Colophon{text}
\TableOfContents

\FrontMatter

\immediate\write\citeout{\bs bibdata{mybibliography}}
\Input{file1}
...

\Input{filen}
\Chapters

\Input{file1}
...

\Input{filen}
\Appendices

\Input{file1}
...

12 Chapter 2. The gapmacro.tex Manual Format

\Input{filen}
\Bibliography

\Index

\EndOfBook

Now we describe what these commands do:

\input path/gapmacro.tex
inputs the GAP “style” and macros file gapmacro.tex. If you are writing a GAP package either copy this
file or use a relative path. The former method will always work but requires you to keep the file consistent
with the system while the latter forces users to change the manual.tex file if they are installing a package
in a private location. See also Section 9.2 in the Reference Manual.

\Package{package-name}
defines a macro \package-name so that when you type {\package-name} (please include the curly braces)
the text package-name is typeset in the right way for GAP packages, e.g. if you are writing a package
MyPackage then you should include the line

\Package{MyPackage}

in your manual.tex file and then in your chapter files use {\MyPackage} when you refer to MyPackage
by name. There is also the command \package{pkg} when you wish to refer to other GAP packages; don’t
confuse the two i.e. \Package{package-name} defines a macro \package-name but produces no text, and
\package{pkg} produces pkg set in the font that is right for GAP packages.

\BeginningOfBook{name-of-book}
starts the book name-of-book. It is used for cross-references, see 2.4. If you are writing a GAP package use
the name of your package here.

\UseReferences{booki}
If your manual cross-refers to another manual, \UseReferences can be used to load the labels of the other
books in case cross-references occur. booki should be the path of the directory containing the book whose
references you want to load. If you are writing a GAP package and you need to reference the main GAP
manual, use \UseReferences for each book you want to reference. However, as said above this requires
changes to the manual.tex file if the package is not installed in the standard location.
If your manual.tex file lives in pkg/qwer/doc and you want to use references to the tutorial use

\UseReferences{../../../doc/tut}

You may also cross-refer to other package manuals and even GapDoc-produced manuals. Just ensure you
get the path to the other manual’s directory correct relative to the directory in which your manual resides,
and if it’s a GapDoc-produced manual that you are cross-referring to, use \UseGapDocReferences instead
of \UseReferences.

\TitlePage

produces a page containing the title. Please see the example.

\Colophon

\Colophon produces a page following the title that can be used for more explicit author information, ac-
knowledgements, dedications or whatsoever.

\TableOfContents

produces a table of contents in double-column format. For short manuals, the double-column format may be
inappropriate; in this case, use \OneColumnTableOfContents instead.

\FrontMatter

starts the front matter chapters such as a copyright notice or a preface.
The line

Section 1. The Main File 13

\immediate\write\citeout{\bs bibdata{mybibliography}}

is for users of BibTEX. It will use the file mybibliography.bib to fetch bibliography information.

\Chapters

starts the chapters of the manual, which are included via \Input. \Input{filei} inputs the file filei.tex,
i.e. filei should be the name of the file without the .tex extension. For the chapter format, see Section 2.2.

\Appendices

starts the appendices, i.e. it modifies the \Chapter command to use uppercase letters to number chapters.

\Bibliography

produces a bibliography, i.e. it reads and typesets the manual.bbl file produced by BibTEX.

\Index

produces an index, i.e. it reads and typesets the manual.ind file produced by the external manualindex
program.

\EndOfBook

Finally \EndOfBook closes the book.

Example

Assume you have a GAP package qwert with two chapters Qwert and Extending Qwert, a copyright notice, a
preface, no exercises, then your manual.tex would basically look like:

\input ../../../doc/gapmacro % The right path from pkg/qwert/doc

\Package{Qwert} % Defines macro {\Qwert}

\BeginningOfBook{qwert}

\TitlePage{

\centerline{\titlefont Qwert}\medskip % Package name

\centerline{\titlefont ---}\medskip

\centerline{\titlefont A GAP4 Package}\bigskip\bigskip

\centerline{\secfont Version 1.0}\medskip

% If the package interfaces with an external program ...

\centerline{\secfont Based on qwert Standalone Version 3.14}\vfill

\centerline{\secfont by}\vfill

\centerline{\secfont Q. Mustermensch}\medskip % Author

\centerline{Department of Mathematics}\medskip % Affiliation

\centerline{University of Erewhon}\medskip

\centerline{\secfont email: qmuster@erewhon.uxyz.edu.ut} % Email address

\vfill

\centerline{\secfont{\Month} \Year}

}

\TableOfContents

\FrontMatter

\Input{copyright}

\Input{preface}

\Chapters

\Input{qwert}

\Input{extend}

\Appendices

\Index

\EndOfBook

Occasionally there will be the need for additional commands over and above those shown above. The ones described
below should be the only exceptions.

14 Chapter 2. The gapmacro.tex Manual Format

– There may be other packages that are referred to a lot, so that it’s worthwhile to add more \Package commands.
(There’s nothing special about \Package, you can use it to define macros for other packages besides the package
being documented.)

– Besides the macros {\Month} and {\Year}, which typeset the current month (as an English word) and the year
(all four digits), respectively, there are also {\Day} and {\Today} which are mainly intended for drafts. {\Day}
typesets the day of the month as a number and {\Today} is equivalent to: {\Day} {\Month} {\Year}.

– Sometimes one desires a chapter to be unnumbered in the TEX-produced manuals, e.g. the Tutorial manual has
GAP’s Copyright Notice as an unnumbered chapter. To achieve this one inputs the file containing the chapter via
TEX’s \input command rather than \Input. However, neither the on-line help browser nor the HTML converter
“sees” such chapters. Thus if it is desired that the on-line help browser and the HTML manuals should also have
such chapters, they must be “input” again via the \PseudoInput command (not necessarily in the same manual).

– For chapters that should only appear via the on-line help browser or in the HTML manuals, one may use the
\PseudoInput command. Any \PseudoInput commands should come after all \Input commands; failure to
do this will result in different numbering of \Input chapters for TEX-produced and HTML manuals. The syntax
of this command is as follows:

\PseudoInput{filename}{six-entry}{chaptername}

where filename is the name of the file containing the chapter without the .tex extension, as for the \Input

command, six-entry is the section-index-entry for the chapter (written to the manual.six file) and chaptername
is the actual argument of the \Chapter command that appears at the beginning of filename.tex. The argument
six-entry enables the on-line text browser to reference the chapter by a name other than chaptername. Thus a
copyright chapter for the book with name name-of-book might have chaptername “Copyright Notice” but
six-entry “Copyright”, which would enable one to access the chapter “Copyright Notice” via ?name-of-
book:copyright via the on-line browser. The HTML converter adds an index entry for both six-entry and
chaptername.

Note
Usage of the commands \input and \PseudoInput in the way described above will necessitate special treatment
of references to such chapters. For such purposes, there is a special variant of the %display environment (see 2.11),
e.g. a copyright notice appearing via \input at the beginning of a TEX-produced manual and appearing in the non-
TEX manuals – the on-line help browser or HTML manual – via a \PseudoInput command as described above, may
be referenced via

%display{tex}

See the copyright notice at the beginning of this book.

%display{nontex}

%See "Copyright".

%enddisplay

2.2 Chapters and Sections

The contents of each chapter must be in its own .tex file. The command \Chapter{chaptername} starts a new chap-
ter named chaptername; it should constitute the first non-comment (and non-blank) line of the file containing a chapter.
A chapter begins with an introduction to the chapter and is followed by sections created with the \Section{secname}
command. The strings chaptername and secname are automatically available as references (see Section 2.4).

There must be no further commands on the same line as the \Chapter or \Section line, and there must be an
empty line after a \Chapter or \Section command. This means that \index commands referring to the chapter or
section can be placed only after this empty line.

Finally, the HTML converter requires that each \Section line is preceded by a line starting with at least 16 percentage
signs (conventionally, one actually types a full line of percentage signs). The HTML converter stops converting a

Section 4. Labels and References 15

section whenever it hits such a line; therefore do not add lines starting with 16 or more % signs which are not just
before a \Section command. Failure to include the line of percentage signs before a \Section line will cause the
converter to crash, due to the discovery of what it sees as two \Section commands within the one section.

2.3 Suppressing Indexing and Labelling of a Section and Resolving Label
Clashes

Sometimes one does not wish a section to be indexed. To suppress the indexing of a section, simply add the macro
\null after the \Section command, e.g.

\Section{section-name}\null

and then section-name will still generate a label (so that you can still refer to it via Section~"section-name"), but
section-name will not appear in the index.

Occasionally, one has a dedicated section for the description of a single function. If the label generated for the section
coincides with the label for a subsection (generated by a \> command) a multiply defined label results. In these cases,
one would generally rather that the section did not generate a label or an index entry. To suppress the generation of
both the label and the index entry of such a section, simply add the macro \nolabel immediately after the \Section
command, e.g. for a section dedicated to the function func:

\Section{func}\nolabel

Note: Labels are generated by converting to lowercase and removing whitespace. So coincidences can occur when
you might not have expected it. An alternative to index suppression to resolve label clashes is to include a sub-label
for the function in the \> command (see Section 2.5).

2.4 Labels and References

Each \Chapter, \Section and \> command generates a (short) label label, which is extended by name-of-book (the
argument of \BeginningOfBook mentioned earlier in Section 2.1), to create a “long label” long-label, and emitted
to a file manual.lab. The construction of long-label is name-of-book:label, where the label generated by either of
the commands \Chapter or \Section is just its chaptername or secname argument. For \>, there are a few cases to
consider, and we’ll consider them in Section 2.5, where we meet the various forms of the \> command. To see how to
resolve problems with label clashes see Section 2.3.

A reference to a label any-label (long or short) is made by enclosing any-label in a pair of double quotation marks:
"any-label"; it is replaced by the number of the \Chapter, \Section or \> command that generated any-label in the
first place. Generally, one only needs to make references to long labels when referring to other manuals. For references
within the same manual, short labels are sufficient, except when the short label itself contains a colon.

Example

Since the \BeginningOfBook command for this manual defines name-of-book to be ext, the long label for the current
section is ext:Labels and References and so a reference to this section within this manual might be: Section
"Labels and References" (which is typeset as: Section 2.4). From another manual, a long label reference is
required.

Another example

The first chapter of this manual has the title “About: Extending GAP”, which contains a colon. Hence, to refer to that
chapter, one must use a long label:

Chapter "ext:About: Extending GAP"

produces: Chapter 1.

Note

16 Chapter 2. The gapmacro.tex Manual Format

In actual fact long labels are first sanitised by conversion to lower case and removal of superfluous white space
(multiple blanks and new lines are converted to a single space). The same sanitisation process is applied to references.
Thus,

Chapter "ext:about: extending

Gap"

also produces: Chapter 1. So, don’t worry about references to labels being broken over lines and think of them as being
case-insensitive, except that the HTML converter requires that one respects case for the name-of-book component of
a long label.

2.5 TeX Macros

As the manual pages are also used as on-line help, and are automatically converted to HTML, the use of special TEX
commands should be avoided. The following macros can be used to structure the text, the mentioned fonts are used
when printing the manual, however the on-line help and HTML are free to use other fonts or even colour. Since, the
plain text on-line help, doesn’t have special fonts, it leaves in much of the markup, including the left and right quotes
that surround something intended to be displayed in typewriter type, the angle brackets that surround something
intended to appear in italics, and the dollar-signs enclosing mathematics; you will need to keep that in mind when
reading the following section.

‘text’
sets text in typewriter style. This is typically used to denote GAP keywords such as for and false or
variables that are not arguments to a function, e.g., ‘for’ produces for. See also <text>. Use \< to get a
“less than” sign.

‘‘text’’
encloses text in double quotes, e.g., ‘‘double-quoted text’’ produces “double-quoted text”. In particu-
lar, ‘‘text’’ does not set ‘text’ in typewriter style; use ‘{‘text’}’ to produce ‘text’. Double quotes are
mainly used to mark a phrase which will be defined later or is used in an uncommon way.

\lq

sets a single left quote: ‘. For a phrase text that is to be defined later or is used in an uncommon way, please
use ‘‘text’’ (which encloses text in double quotes rather than single quotes).

\rq, \pif
each set a single apostrophe (right quote): ’. For the HTML and on-line manuals \accent19{} also sets an
apostrophe; however the TEX-derived manuals produce an acute-d blankspace (what it in fact is).

\accent127

sets an umlaut, e.g. \accent127a produces ä. Do not use the shorthand \" (otherwise the HTML converter
will not translate it properly).

<text>
sets text in italics. This can also be used inside $...$ and ‘...’. Use \< to get a “less than” sign. <...>
is used to denote a variable which is an argument of a function; a typical application is the description of a
function:

\>Group(<gens>) F

The function ‘Group’ constructs a group generated by <gens>.

The F at the end of the first line in the above example indicates that Group is a function (see the \> entry,
below).

text
sets text in emphasized style.

Section 5. TeX Macros 17

$a.b$

Inside math mode, you can use . instead of \cdot (a centred multiplication dot). Use \. for a full stop inside
math mode. For example, $a.b$ produces a · b while $a\.b$ produces a.b.

\cite{...}

produces a reference to a bibliography entry (the \cite[...]{...} option of LaTEX is not supported).

"label"
produces a reference to label. Labels are generated by the commands \Chapter, \Section (see 2.4), and
\> commands (see below).

\index{index-entry}
defines an index entry index-entry. Besides appearing in the index, index-entry is also written to the section
index file manual.six used by the on-line help. An exclamation mark (!), if present, is used to partition
index-entry into main entry (left part) and subentry (right part) components, in the index. TEX converts index-
entry to lowercase and sets it in roman type, in the index. The HTML converter respects case and uses the
default font, in producing the HTML manual index. index-entry must be completely free of special characters
and font changing commands; if you need special fonts, characters or commands use one of \indextt or
\atindex.
Note that for the HTML converter to process indexing commands (\index, \indextt and \atindex) cor-
rectly they must be on lines of their own. There can be several indexing commands on the same line, but
there should be no horizontal whitespace before each indexing command, and if an indexing command needs
to be broken over lines place a % at the point of the break at the end of the line to mark a “continuation”.
For the HTML converter it works best to put indexing commands all together at the beginning of a paragraph,
rather than strewn between lines of a paragraph. However, for the TEX-produced manuals after a maths
display one gets a rogue space if you do this (this is a bug); you can work around the bug by putting at least
one word of the paragraph followed by your line(s) of indexing commands.
Note also that indexing commands do not produce labels for cross-references; they only produce entries for
the index. Labels are only produced by the chapter (\Chapter), section (\Section) and subsection (\>)
commands.

\indextt{index-entry}
is the same as \index{index-entry}, except that index-entry is set by TEX in typewriter style, respecting
case; the HTML converter sets index-entry in the default font. Again, index-entry should be completely free
of special characters and font changing commands, and ! may be used for sub-entries in the same way as
for \index. Note that a sub-entry component, if present, is not set in typewriter style for the TEX-produced
manuals; if you want that it is, use \atindex.

\atindex{sort-entry}{|indexit}
is simply a special form of the \index command that tells TEX to typeset the page number in italics.

\atindex{sort-entry}{@index-entry}
The HTML converter treats this command as if it was \index{index-entry}, except that it strips out any font
information and sets it in the default font, but nevertheless respects case. index-entry may have |indexit at
the end which is ignored by the HTML converter.
The TEX-produced manuals set the index entry as index-entry respecting font and case, and list it according
to sort-entry. If a sub-entry is required then it should be present behind a ! in both the sort-entry and index-
entry; the only difference between the sub-entry in sort-entry and that in index-entry, is that the sort-entry
sub-entry should be stripped of mark-up and font changing command. The index-entry component is ignored
when constructing the manual.six files, and is also ignored by the HTML converter. Anything after an !

in sort-entry is ignored when constructing the manual.idx file that is processed by MakeIndex. Macros
like {\GAP} are allowed in index-entry. However, any ‘ that appears in index-entry must be preceded by
\noexpand; sort-entry must be completely free of special characters and font changing commands.
In general, one should make sort-entry the same as index-entry modulo fonts and other mark-up, e.g.,

18 Chapter 2. The gapmacro.tex Manual Format

\atindex{Fred!Nerk}{@\noexpand‘Fred’!\noexpand‘Nerk’}

{\GAP}

typesets GAP.

\package{pkg}
typesets pkg in the font correct for GAP packages (respecting case). This is intended for cross-referencing
other GAP packages. There is also the command \Package{mypkg} command which defines a macro
\mypkg so that when you type {\mypkg} (please include the curly braces) the text mypkg is typeset in the
right way for GAP packages. The \Package command should normally be included in one’s manual.tex
file (see 2.1) and just allows one to type {\mypkg} rather than the longer \Package{mypkg} as one is fre-
quently likely to do when formulating one’s own GAP package documentation. So, just to be clear about the
difference between \Package and \package, \Package{mypkg} defines a macro \mypkg but produces no
text, and \package{pkg} produces pkg set in the font that is right for GAP packages.

\>

produces a subsection. The line following the \> entry must either contain another \> entry (in which case
the further entries are assumed to be variants and do not start a new subsection) or must be empty. The
description text will follow this empty line.
There are several forms of the \> command. In all forms, a label and index entry are generated; the HTML
converter uses the label to form an index entry, respecting case and setting in roman type. If the next non-
space character is not a left quote (‘) it is assumed that the subsection is for a “function”; we exhibit these
forms first.

\>func
While this form is supported; it is discouraged. If func is a 0-argument function, func should be followed by
an empty pair of brackets (see \>func(args) below). If func is actually a global variable then \>‘global-var’
V should be used instead (see below). In order for this form to be parsed correctly the remainder of the line
to the right of func must be empty. It generates func as both a label and index entry; func appears as is, in
typewriter type in the TEX-derived manual index.

\>func(args)
The macro uses the brackets after func to parse the arguments args. Thus, it is necessary for the function to
use brackets and for the arguments to have none. (We use the term “function” loosely here to mean “a GAP
command with arguments”; we really mean an object that GAP knows as a: “Function”, “Property”, “Oper-
ation”, “Category”, or “Representation” — but not “Variable”, since a “Variable” does not have arguments.)
The label and index entry generated consists of the text between the > and opening bracket. The index entry
is set as is (i.e. without conversion to lowercase) in typewriter type in the TEX-derived manual index. Here is
an example of how to use \>; the index entry is “Size” (in typewriter type, with mixed case preserved).

\>Size(<obj>) A

The A indicates that Size is an “Attribute”. Instead of A there can be F, P, O, C, or R which indicate that a
command is a “Function” (probably the most common), “Property”, “Operation”, “Category”, or “Represen-
tation”, respectively. For the forms of the \> command followed by a left quote, V indicating “Variable” (an
object without arguments), is also possible. (See Section 1.1 and Chapter 13 in the reference manual).

\>func(args)!{sub-entry}
This is a special form of the previous command, that forms a label func!sub-entry and an index entry with
main entry func (set in typewriter type and respecting case) and sub-entry sub-entry (set in roman type but
also respecting case).
The remaining forms of the command \> expect to be followed by a ‘.

\>‘command’{label}
works as \> without ‘...’, but will not use bracket matching; it simply displays command as a header,
which appears in typewriter type. It will use label as both the label and index entry, and the index entry is

Section 5. TeX Macros 19

set in roman type. Whenever label contains a !, it is used to partition label into main entry (left part) and
subentry (right part) components, in the index.

\>‘<a> + ’{addition}

\>‘Size(<obj>)’{size} A

In the first of the examples immediately above, the first form of \> cannot be used because no brackets occur.
Also, observe that there is no command type (it’s not appropriate here); TEX does not need it to correctly
parse a \> entry, in general. The second example differs from our previous Size example, in that the index
entry will be typeset as “size” (in roman type), rather than “Size”. Also, the index entry is always converted
to lowercase, no matter what case or mixed case was used.

\>‘command’{label}!{sub-entry}
is equivalent to: \>‘command’{label!sub-entry}.

\>‘command’{label}@{index-entry}
works as \>‘command’{label}, except that it uses label for sorting the index entry and the index entry itself
is printed as index-entry. References to the subsection use label. (Note that the HTML converter ignores
everything after an @ symbol in these commands, essentially treating the command as if it were \>‘com-
mand’{label}. However, the HTML converter also always preserves the case in a label.) Here are two
examples.

\>‘Size(<obj>)’{size}@{‘Size’} A

\>‘Size(GL(<n>, <q>))’{Size!GL(n, q)}@{‘Size’! ‘GL’(\noexpand<n>, \noexpand<q>)} A

The first of these examples is equivalent to “\>Size(<obj>)”. For the second example, it was necessary
to use ‘ and ’, since the argument contained brackets. Note that \noexpand is needed before < here, but
not needed before ‘ in the index-entry argument. Otherwise, the rules for sub-entries are the same as for
\atindex.

\>‘global-var’ V

This is actually a short-hand for: “\>‘global-var’{global-var}@{‘global-var’} V” to save you some typing
when creating subsections for global variables, i.e., global-var is the label and the index entry appears in
typewriter type, with mixed case preserved.

\){\fmark ...}

is like \> except that it produces no label and index entry. It is \fmark that produces the filled in right arrow.
Omitting it produces a line in typewriter type.

\){\kernttindent ...}

is useful for producing a line in typewriter type, that you might otherwise have typed between \begintt and
\endtt, but where you actually want the TEX macros and variables <...> to be interpreted.

\URL{url}
prints the WWW URL url. In the HTML version this will be a HREF link.

\Mailto{email}
prints the email address email. In the HTML version this will be a mailto link.

Note: When a TEX macro is followed by a space, TEX generally swallows up the space; one way, and it is the GAP-
preferred way, of preventing the space being swallowed up, is by enclosing the macro in {...}. When a macro is
often followed by a space, it’s a good habit to get into to always enclose that macro in {...} (the braces do nothing
when the macro is not followed by a space, and prevent TEX from swallowing up the space, otherwise). Thus the
macro for GAP should always be typed {\GAP}. Similarly, macros like \lq, \rq and \pif should probably always
appear in braces; moreover the word “don’t” typeset via “don{\pif}t” will actually be interpreted correctly by the
on-line browser.

20 Chapter 2. The gapmacro.tex Manual Format

2.6 TeX Macros for Domains

The following macros are required for the following common domains:

\N the natural numbers (you should probably indicate whether by your convention N includes zero or not, when
using this);

\Z the integers;

\Q the rational numbers;

\R the real numbers;

\C the complex numbers;

\F a field; and

\calR a general domain e.g. a ring.

2.7 Examples, Lists, and Verbatim

In order to produce a list of items with descriptions use the \beginitems, \enditems environment, i.e. this is a
“description” environment in the parlance of LaTEX and HTML.

For example, the following list describes base, knownBase, and reduced. The different item/description pairs must
be separated by blank lines.

\beginitems

‘base’ &

must be a list of points ...

‘knownBase’ &

If a base for <G> is known in advance ...

‘reduced’ (default ‘true’) &

If this is ‘true’ the resulting stabilizer chain will be ...

\enditems

This will be printed as

base

must be a list of points ...

knownBase

If a base for G is known in advance ...

reduced (default true)
If this is true the resulting stabilizer chain will be ...

In order to produce a list in a more compact format, use the \beginlist, \endlist environment.

An example is the following list.

Section 7. Examples, Lists, and Verbatim 21

\beginlist

\item{(a)}

first entry

\item{(b)}

second entry

\itemitem{--}

a sub-item of the second entry

\itemitem{--}

another sub-item of the second entry

\item{(c)}

third entry

\endlist

It is printed as follows.

(a) first entry

(b) second entry

– a sub-item of the second entry

– another sub-item of the second entry

(c) third entry

The above example will take advantage of the ordered and unordered list environments in the HTML version, with
the addition of slightly more mark-up. First, we present the example again with that additional mark-up, and then we
explain how it works.

\beginlist%ordered{a}

\item{(a)}

first entry

\item{(b)}

second entry

\itemitem{--}%unordered

a sub-item of the second entry

\itemitem{--}

another sub-item of the second entry

\item{(c)}

third entry

\endlist

It is printed as follows (of course, you should see no difference in the TEX-produced and on-line versions of this
manual).

(a) first entry

(b) second entry

– a sub-item of the second entry

– another sub-item of the second entry

(c) third entry

In the HTML version the above example is interpreted as a nested list. The outer list is interpreted as an ordered list.
The HTML standard provides 5 different types of ordered list, and these mirror the types provided by the enumerate
LaTEX package. To signify that the outer list was ordered the comment %ordered was added after \beginlist.

22 Chapter 2. The gapmacro.tex Manual Format

If there is no further markup the list is numbered in the default manner, namely with integers. Otherwise, following
%ordered there should be one of the following:

{1} indicates the list should be numbered with integers (the default obtained when there is nothing following %or-

dered);

{a} indicates the list should be numbered with lowercase letters (a, b, . . .);

{A} indicates the list should be numbered with uppercase letters (A, B, . . .);

{i} indicates the list should be numbered with lowercase roman numerals (i, ii, . . .); and finally

{I} indicates the list should be numbered with uppercase roman numerals (I, II, . . .).

The \beginlist of the above example was followed by %ordered{a} and so the list is numbered using lowercase
letters in the HTML version and using the ordered list environment (rather than the description environment).

Occasionally, it is necessary to break from a list, add some explanatory text and then restart the list, and resume
numbering the items from where you left off. To do this follow the comment mark-up already mentioned by an
integer in curly braces, i.e. if the outer list should actually start at c then you would need to have %ordered{a}{3}
after \beginlist because c is the 3rd letter of our alphabet. Note that, for an integer-numbered list not starting at 1,
you must have the full markup; you cannot omit the {1} after %ordered in this case.

The inner list of the above example is an unordered list (this corresponds to a plain itemize environment in LaTEX).
To indicate this the first \itemitem above was followed by %unordered.

Of course, to get an unordered outer list, one would start the list with \beginlist%ordered, and to get an ordered
inner list numbered with lowercase letters the first \itemitem would need to be followed by %ordered{a}, i.e. the
same syntax is used for the comment added after a \beginlist and after the first \itemitem in a sequence of
\itemitems.

Notes

1. Only lists to a maximum depth of two are supported.

2. You cannot change the type of a sublist halfway through. Only the comment after the first \itemitem in a
sequence is interpreted.

There are two types of verbatim environments. Example GAP sessions are typeset in typewriter style using the
\beginexample, \endexample environment.

\beginexample

gap> 1+2;

3

\endexample

typesets the example

gap> 1+2;

3

Examples whose output may vary should be introduced with %notest, e.g.

%notest

\beginexample

gap> Exec("date");

Sun Oct 7 16:23:45 CEST 2001

\endexample

typesets in all manual versions in the same way:

Section 8. Tables, Displayed Mathematics and Mathematics Alignments 23

gap> Exec("date");

Sun Oct 7 16:23:45 CEST 2001

but the automatic manual checker knows to treat the example differently.

Non-GAP examples are typeset in typewriter style using the \begintt, \endtt environment.

Notes

1. The manual style will automatically indent examples. It also will break examples which become too long to fit on
one page. If you want to encourage breaks at specific points in an example, end the example with \endexample

and immediately start a new example environment with \beginexample on the next line.

2. To typeset a pipe symbol | in the \begintt, \endtt environment or \beginexample, \endexample you need
to actually type ||.

2.8 Tables, Displayed Mathematics and Mathematics Alignments

Tables should normally be set using the \begintt, \endtt environment. This means that one should enter the appro-
priate white space so that columns line up. Note that to get a vertical line | in the \begintt, \endtt environment one
must actually type ||. The reason for setting tables this way is so that both the HTML converter and GAP’s built-in
text browser have no trouble in displaying them correctly.

The HTML converter when used with its -t option (which causes it to use TtH to translate mathematics) usually
does a reasonable job of converting mathematics displays and mathematics alignments. To help GAP’s built-in text
browser, however, one should follow a few rules:

– Place the $$s that begin and end the mathematics display on lines of their own. (If you don’t do this it will be
displayed in the same way as ordinary in-line mathematics.)

– Use only the \matrix{ .. } environment for mathematics alignments. The \matrix{ starting the alignment
should be on a line on its own, (flush left and no trailing whitespace). The } closing the environment should also
be on a line of its own. The built-in browser doesn’t do anything special to line things up; you must insert the
whitespace where it’s needed. Any \hfill macros you add to help the line things up in the TEX and HTML
formats is ignored by the GAP’s built-in text browser. The \matrix{ .. } environment should be used even
when one might like to use TEX’s \cases{ .. } environment.

The following example shows a typical usage of the \matrix{ .. } environment (in particular, it shows how one
can use it to avoid using the \cases{ .. } environment). Observe, how sufficient whitespace has been added in
order that alignment is maintained by GAP’s built-in text browser. (Recall that \right. which produces nothing is
required to match \left\{.)

From a theorem of Gauss we know that

$$

b_N = \left\{

\matrix{

\frac{1}{2}(-1+\sqrt{N}) &{\rm if} &N \equiv 1 &\pmod 4\cr

\frac{1}{2}(-1+i \sqrt{N}) &{\rm if} &N \equiv -1 &\pmod 4\cr

}

\right.

$$

The example produces . . .

From a theorem of Gauss we know that

bN =

{ 1
2 (−1 +

√
N) if N ≡ 1 (mod 4)

1
2 (−1 + i

√
N) if N ≡ −1 (mod 4)

24 Chapter 2. The gapmacro.tex Manual Format

2.9 Testing the Examples

For purposes of automatically checking the manual, the GAP examples in one chapter (the text between \beginex-

ample and \endexample) should produce the same output, up to line breaks and whitespace, whenever they are run in
the same order immediately after starting GAP (this will ensure that the global random number generator is initialized
to the same values). For more details, see the last paragraph of 2.1 in the Tutorial.

To permit this automatic running, examples that shall produce error messages should be put between \begintt and
\endtt such that they will not be seen by this automatic test.

The automatic test also requires that examples are not indented in the files; in the printed manual, the lines between
\beginexample and \endexample and the lines between \begintt and \endtt are automatically indented.

2.10 Usage of the Percent Symbol

The % symbol has a number of very specific uses. Take care that you use it correctly. These uses are:

1. A line beginning with 16 (or more) % symbols marks the end of a section, or the end of a chapter introduction
(which may be empty). Such a line must precede every \Section (see 2.2).

2. A % at the beginning of a line tells TEX that the line is a comment and is to be ignored by TEX, except in
the verbatim environments: \begintt..\endtt and \beginexample..\endexample. However, %display or
%enddisplay commands have special meaning for the on-line text help browser and for the HTML converter
and may temporarily alter the meaning of an initial % for these (see 2.11 for details); otherwise the meaning of
an initial % is the same as for TEX.

3. A % at the end of a line marks a “continuation”, except in the situation mentioned in item 4. A “continuation” may
be needed for lines of indexing commands (\index, \indextt or \atindex). Such commands must occur on
lines of their own (see 2.5), not mixed with text, and there must not be any superfluous whitespace (modulo the
next statement). Occasionally an indexing command is too long to easily fit on a line; this is where a continuation
is desirable; a % at the end of such a line indicates that the line is to be joined with the next line after removal of
the % symbol and any initial whitespace on the next line (this is what TEX does! . . . and we mimic this behaviour
for both the on-line text help browser and the HTML manuals).

A “continuation” may also be necessary for subsections, i.e. lines beginning with \> or \) (again see 2.5); the
usage is as for indexing line continuations.

4. A line ending with a % that is not an indexing command line or a subsection line that after any initial whitespace
is removed matches exactly {% or }%, or begins with {\ or \ and is followed by a letter, is ignored by both the
on-line browser and the HTML converter. This is intended to screen the on-line browser and HTML converter
from TEX commands such as \obeylines, \begingroup, \def etc., without having to resort to using the
%display{tex}..%enddisplay environment.

Warning. In view of items 3. and 4. above, avoid using a % at the end of a line unless you really need it, and it fits into
those categories. In particular, do not put a % at the end of an indexing command line that is immediately followed
by a line of text; otherwise, the text line will not appear in the HTML manual or on-line via the text help browser.
Similarly, do not put a % line at the end of a text line that is immediately followed by an indexing command line; this
causes the indexing command line to be ignored by the HTML converter. For the HTML converter it works best to
put indexing commands all together at the beginning of a paragraph, rather than strewn between lines of a paragraph.
However, for the TEX-produced manuals after a maths display one gets a rogue space if you do this (this is a bug);
you can work around the bug by putting at least one word of the paragraph followed by your lines(s) of indexing
commands.

Section 11. Catering for Plain Text and HTML Formats 25

2.11 Catering for Plain Text and HTML Formats
As described in 2.5, the use of macros should be restricted to the ones given in the previous sections. By doing so,
you should find that the documentation you write will still look ok in GAP’s on-line help (plain text format) and in
the translated HTML. However, in rare situations one might be forced to use other TEX macros, for example in order
to typeset a lattice. In this case you should provide an alternative for the on-line help, and possibly also for the HTML
version. This can be done by putting in guiding commands as TEX comments:

%display{tex}

TeX version (only used by TeX manual)

%display{html}

%HTML version (only used by HTML manual)

%display{text}

%Text version (only used by the built-in manual browser)

%enddisplay

Observe that the lines that should appear only in the TEX-produced manuals do not begin with a %. For the HTML
(resp. text) version the lines begin with a %; each line of a %display{html} (resp. %display{text}) environment
is printed verbatim, after removing the initial % symbol. The above example produces:
TeX version (only used by TeX manual)
(Note the above example will vary according to whether you are viewing it as a TEX-produced manual, or as an HTML
manual, or via the built-in manual browser — as it should!)
Sometimes one needs a %display environment to be not seen by TEX, but still interpreted normally (i.e. not printed
verbatim). The following variant of the above provides this capability.

%display{tex}

TeX version (only used by TeX manual)

%display{nontex}

%HTML and Text version (interpreted normally, after removing the \% symbol)

%enddisplay

The above example produces:
TeX version (only used by TeX manual)
It is permissible to abbreviate any of the above by omitting %display{tex}, %display{html}, or %display{text}
if that portion of the environment would be empty.
There are yet two more variants of conditional display. Firstly,

%display{nonhtml}

%Text version (interpreted normally by built-in browser, after removing the

%\% symbol)

%enddisplay

is normally used to ensure text only appears via the on-line help browser. If there is no initial % it also appears in the
TEX-produced manuals. The above example produces:
Finally, there is

%display{nontext}

%HTML version (interpreted normally by HTML converter, after removing the

%\% symbol)

%enddisplay

which excludes text from the on-line help browser. Like the %display{nonhtml} environment, if there is no initial
% it also appears in the TEX-produced manuals. The example produces:
However, the use of these special environments should be avoided as much as possible, since it is much more difficult
to maintain such pseudo-duplicated documentation.

26 Chapter 2. The gapmacro.tex Manual Format

2.12 Umlauts

To produce umlauts, use \accent127 and not the shorthand \" (otherwise the HTML converter will not translate it
properly).

2.13 Producing a Manual

To produce a manual you will need the following files:

manual.tex

contains the body of the manual (as described in Section 2.1) and an \Input command for each chap-
ter/appendix file.

file1.tex, file2.tex, . . .
the chapter/appendix files. There must be one file for each chapter or appendix, and each such file should
have a \Chapter or \PreliminaryChapter command. Alternatively, one can write .msk files and use
buildman.pe to generate the corresponding .tex files (see 2.14).

gapmacro.tex

contains the macros for the manual. It must be input by an \input statement (not and \Input statement,
which creates a Table of Contents entry) in manual.tex. You can either use the version in the doc directory
of GAP (use a relative path then) or make a copy.

manual.mst

is a “configure” file used by makeindexwhen processing index information in a TEX-generated and manualindex-
preprocessed manual.idx file. It must reside in your manual directory.

GAPDOCPATH/manualindex

is used to call makeindex. GAPDOCPATH is the path of the doc directory of your GAP distribution.

For bibliography information you will need a file manual.bbl. If you intend to create it with BibTEX, you will need
to indicate the appropriate .bib file (as described in section 2.1). Then after running TEX once over the manual, run
BibTEX to create the manual.bbl file.

Assuming that all necessary files are there (a manual.lab file for each book argument of a \UseReferences com-
mand, mrabbrev.bib and manualindex in the GAP doc directory), on a Unix system the following calls will
then produce a file manual.dvi as well as a file manual.six which is used by the GAP help functions. If you
are missing some of the needed files and don’t have CVS access to GAP, just send an email request for them to
support@gap-system.org.

Go to the directory holding the manual. Call

tex manual

to produce bibliography information. Unless you provide a manual.bbl file which is not produced by BibTEX, call

bibtex manual

to produce the manual.bbl file. Then run TEX twice over the manual to fill all references and produce a stable table
of contents:

tex manual

tex manual

If you have sections which are named like commands, you may get messages about redefined labels. At this point you
can ignore these.

Now it is time to produce the index. Call

Section 14. Using buildman.pe 27

GAPDOCPATH/manualindex manual

which preprocesses the manual.idx file and then runs makeindex. Provided that manual.mst exists, this produces
a file manual.ind. Finally, once again run

tex manual

to incorporate the index. The manual is ready.

2.14 Using buildman.pe

Rather than write the chapter/appendix .tex files directly, one may incorporate one’s documentation in comments in
one’s GAP code. To do it this way, there are four ingredients:

.gd files
GAP files with .gd suffixes that have the documentation in comments (actually files with .g or .gi or any
other extension are also possible, but files with extension .gd are the default);

.msk files
which are just like the .tex files, and must obey all the rules given for .tex files previously, but additionally
may have \FileHeader or \Declaration commands at places where text should be inserted from a .gd

file, and with {{variable}} patterns which are replaced by replacement when written to the .tex file, if the
configuration file configfile has a line of form: variable=replacement;

configfile
a file which defines msfiles (the list of .msk files), gdfiles (the list of .gd files), LIB (the directory
containing the .gd files), DIR (the directory in which to put the constructed .tex files, one .tex file for each
.msk file), and optionally a line check (see below) and variable=replacement lines; and

buildman.pe

a perl program (in the etc directory for those with CVS access to GAP), which strips the comments from
the .gd files according to the \FileHeader or \Declaration commands in the .msk files, translates any
{{variable}} patterns defined by the file configfile and constructs the .tex files.

If you don’t have CVS access and want to use buildman.pe, just email support@gap-system.org and ask
for it. Please note that there is no obligation for package authors to buildman.pe; nor does it attract the same level
of support as the rest of GAP; in general, bugs can be expected to be fixed (eventually), but no new features will be
added. Also, note that the GAPDoc package provides a similar facility.

The perl program buildman.pe is called as follows:

buildman.pe -f configfile

The form of configfile

There is no restriction on how to name configfile, but by convention it is of form config.something or build-
man.config; configfile should contain lines of form:

msfiles=msfile1,msfile2,...,msfilem;

gdfiles=gdfile1,gdfile2,...,gdfilen;
LIB=gdfile dir;
DIR=TeX dir;

Optionally, as mentioned above, one may also have:

check;

which says to construct a notfound file that lists missing expected data, and any number of lines of form

variable=replacement

28 Chapter 2. The gapmacro.tex Manual Format

The file configfile should obey the following syntactic rules:

– After msfiles= there should be a comma-separated and semicolon-terminated list of .msk files with the .msk

extensions removed; buildman.pe assumes that the .msk files are all in, or at least have path relative to, the
directory in which buildman.pe is called.

– Similar to the msfiles definition, after gdfiles= there should be a comma-separated and semicolon-terminated
list of “.gd” files. If a “.gd” file really does have a .gd extension, it may be listed without extension; otherwise
the extension must be included. All the “.gd” files must be listed with path relative to the directory defined by
LIB.

– For both the msfiles and gdfiles definitions, the lists following the = may continue over several lines if
necessary, and any whitespace, parentheses (round brackets) or double-quotes characters are ignored.

– The paths after LIB= and DIR= are assumed relative to the “current directory”, i.e. the directory in which build-

man.pe is executed. For each msfilei listed after the msfiles keyword, buildman.pe constructs from ms-
filei.msk a corresponding msfilei.tex in TeX dir. The LIB and DIR definitions must be on a single line.

– The terminating ; is optional on the lines containing the keywords LIB, DIR or check.

– Superfluous characters around any of the keywords msfiles, gdfiles, LIB, DIR or check, but before the = on
the lines where = is required, are ignored. Whitespace and double-quotes characters are ignored, everywhere.

– The variable=replacement lines (if there are any) should have no other punctuation or whitespace. These lines
direct buildman.pe to replace any string of form {{variable}} in a .msk file with replacement.

Special .msk file commands

Now we describe the special (non-TEX) commands that direct buildman.pe to extract text from “.gd” files.

\FileHeader[n]{gdfile}
This command is replaced by the text following a #n line (for positive integer n) in file gdfile.gd (or gdfile if
gdfile already contains a suffix). The argument [n] of \FileHeader is optional; if it is omitted n is taken to
be 1. See below for the typical form of a fileheader extracted by the \FileHeader command; the comments
in the example describe its required format.

\Declaration{func}[gdfile]{label}!{sub-entry}@{index-entry}
This command is replaced by a \> subsection declaration or block of \> declarations, and their description
extracted from a block in a “.gd” file that starts with a line matching #X func, for some letter X in F, M, A,
P, O, C, R or V. The line “matches” if there is a (, space, or newline after func. The argument func (in {..})
is the only mandatory argument.
If present, [gdfile], says that func is to be found in the file gdfile.gd (or gdfile if gdfile already contains a
suffix); it is required only if func appears in more than one of the “.gd” files listed in the file configfile. The
gdfile argument is typically required for distinguishing methods of operations.
The remaining arguments (if present) have exactly the purpose that they have in subsection declarations,
i.e. lines of the following forms:

\>func!{sub-entry}
\>‘command’{label}
\>‘command’!{sub-entry}
\>‘command’@{index-entry}

(see Section 2.5), and are used to build subsection declaration lines of these forms. Note that the label, sub-
entry and index-entry arguments, if needed, should follow the \Declaration command (and not be in the
“.gd” file #X func... lines, where they will be indistinguishable from comments). If in the “.gd” file the
#X func line is followed by other #Xi funci lines, then each \> subsection declaration formed has the same
label, sub-entry and index-entry arguments appended.

Corresponding to \FileHeader[n]{gdfile}, in the “.gd” file denoted by gdfile, there should be:

Section 14. Using buildman.pe 29

#n
Text for \FileHeader[n]{gdfile}. Each line

should have two # characters followed by 2 blank

space characters at the left margin. The text

can and should include any necessary {\TeX}

mark-up and indexing commands.

##

A fileheader may consist of any number of paragraphs.

It is terminated by a totally empty line (i.e.~a

line devoid even of # characters).

##

Corresponding to each \Declaration{func}... line of a .msk file there should be in one of the “.gd” files, a block
of form:

#X func(args) comment
#Y func2(args2) comment2
.

.

#Z funcn(argsn) commentn
##

description of func, func2, ..., funcn.
##

Declare...("func" ...);

Declare...("func2" ...);

.

.

Declare...("funcn" ...);

The above block should comply with the following syntactic rules. Below we use the term “function” in a general
sense to mean any one of function (in the strict sense), attribute, category, method, representation, operation, property
or variable.

– X,Y, . . . ,Z ∈ {A, C, F, M, R, O, P, V}. If the letter is V then no parentheses or arguments should follow the “function
name” funci.

– The letters, X, Y , . . . , Z are printed in the manual. If a letter is A or P, then also the letters S and T are printed if
the setter and the tester are available. If the letter is A, then the letter M is printed if the attribute is mutable.

– The comments comment, comment2, . . . , commentn (by convention starting with spaced dots) which do not
appear in the manual, are optional.

– The X, Y , . . . , Z “function name” lines must appear on consecutive lines, i.e. not intermingled with text lines.

– After the “function name” lines there should be text lines describing the “functions”. As with fileheader text
these text lines should contain any TEX mark-up and indexing commands that are necessary, and there should be
two blank space characters between the ## and the text. Lines starting with #T (or some other non-# character in
place of T) are ignored.

– It is assumed that for each “function name” func, func2, . . . , funcn there is a corresponding GAP declaration
(which need not be via a Declare... command, e.g. it might be BindGlobal) after the ## text lines (and
comment lines), and that they appear in the same order.

30 Chapter 2. The gapmacro.tex Manual Format

Example

The file lib/algebra.gd contains the following declaration:

###

##

#O DirectSumOfAlgebras(<A1>, <A2>)

#O DirectSumOfAlgebras(<list>)

##

is the direct sum of the two algebras <A1> and <A2> respectively of the

algebras in the list <list>.

##

If all involved algebras are associative algebras then the result is also

known to be associative.

If all involved algebras are Lie algebras then the result is also known

to be a Lie algebra.

##

All involved algebras must have the same left acting domain.

##

The default case is that the result is a structure constants algebra.

If all involved algebras are matrix algebras, and either both are Lie

algebras or both are associative then the result is again a

matrix algebra of the appropriate type.

##

DeclareOperation("DirectSumOfAlgebras", [IsDenseList]);

The file doc/build/algebra.msk contains the line:

\Declaration{DirectSumOfAlgebras}

The “config” file doc/build/config.alg:

@msfiles = ("algebra","algfp","alglie","mgmring");

@gdfiles = ("algebra","alghom","alglie","object","liefam","mgmring","algrep",

"lierep");

DIR = "../ref";

LIB = "../../lib";

specifies algebra.msk via the first entry of msfiles and lib/algebra.gd via the first entry of gdfiles and (its di-
rectory by) the definition of LIB. Observe that there are @ and " symbols, as well as parentheses and whitespace, in the
above “config” file; none of these is necessary, but they don’t do any harm either. Generally, one calls buildman.pe
in the same directory that contains the msfiles (which is why one doesn’t need to specify the directory containing
the msfiles) and the “config” file. Since DIR = "../ref", buildman.pe constructs algebra.tex from alge-

bra.msk in directory doc/ref. The subsection generated in algebra.tex by the above \Declaration command
starts with the header:

\>DirectSumOfAlgebras(<A1>, <A2>) O

\>DirectSumOfAlgebras(<list>) O

and is followed by its description, i.e. the lines beginning with two hashes and two blanks, but with the hashes and
blanks stripped away, so that when it is processed the resulting subsection appears as:

I DirectSumOfAlgebras(A1, A2) O
I DirectSumOfAlgebras(list) O

is the direct sum of the two algebras A1 and A2 respectively of the algebras in the list list.

Section 14. Using buildman.pe 31

If all involved algebras are associative algebras then the result is also known to be associative. If all involved algebras
are Lie algebras then the result is also known to be a Lie algebra.

All involved algebras must have the same left acting domain.

The default case is that the result is a structure constants algebra. If all involved algebras are matrix algebras, and
either both are Lie algebras or both are associative then the result is again a matrix algebra of the appropriate type.

Variable replacement

As mentioned above the “config” file may also contain lines that assign variables, e.g.

versionnumber=4.3

versionsuffix=4r3

Occurrences of these variables in double curly braces will be replaced by their value. For example the lines

When ‘unzoo -x’ is applied to {\GAP}~{{versionnumber}}’s ‘zoo’ file

‘gap{{versionsuffix}}.zoo’ a directory ‘gap{{versionsuffix}}’ is formed.

in a .msk file will be replaced by:

When ‘unzoo -x’ is applied to {\GAP}~4.3’s ‘zoo’ file

‘gap4r3.zoo’ a directory ‘gap4r3’ is formed.

in the corresponding .tex file. This feature is very handy for information that changes over time.

Final note

There is a document for version 0.0 of buildman.pe that describes features that have either never been used or have
since been disabled. Only the features described in this section can be relied upon to have currency.

3 Library Files

This chapter describes some of the conventions used in the GAP library files. These conventions are intended as a
help on how to read library files and how to find information in them. So everybody is recommended to follow these
conventions, although they do not prescribe a compulsory programming style – GAP itself will not bother with the
formatting of files.

Filenames have traditionally GAP adhered to the 8+3 convention (to make it possible to use the same filenames even
on a MS-DOS file system) and been in lower case (systems that do not recognize lower case in file names will convert
them automatically to upper case). It is no longer so important to adhere to these conventions, but at the very least
filenames should adhere to a 16+5 convention, and be distinct even after identifying upper and lower case. Directory
names of packages, however, must be in lower case (the LoadPackage command (see 74.2.1 in the Reference manual)
assumes this).

3.1 File Types

The GAP library consists of the following types of files, distinguished by their suffixes:

.g

Files which contain parts of the “inner workings” of GAP. These files usually do not contain mathematical
functionality, except for providing links to kernel functions.

.gd

Declaration files. These files contain declarations of all categories, attributes, operations, and global func-
tions. These files also contain the operation definitions in comments.

.gi

Implementation files. These files contain all installations of methods and global functions. Usually declara-
tions of representations are also considered to be part of the implementation and are therefore found in the
.gi files.
As a rule of thumb, all .gd files are read in before the .gi files are read. Therefore a .gi file usually may
use any operation or global function (it has been declared before), and no care has to be taken towards the
order in which the .gi files are read.

.co

Completion files. They are used only to speed up loading (see 3.5 in the Reference Manual).

3.2 File Structure

Every file starts with a header that lists the filename, copyright, a short description of the file contents and the original
authors of this file.

This is followed by a revision entry:

Revision.file_suf :=

"@(#)$Id: libform.tex,v 4.13.2.1 2004/01/27 11:37:59 stefan Exp $";

where file.suf is the file name. The revision control system used for the development will automatically append text
to the string “Id: ” which indicates the version number. The reason for these revision entries is to give the possibility

Section 4. Undocumented Variables 33

to check from within GAP for revision numbers of a file. (Do not mistake these revision numbers for the version
number of GAP itself.)

Global comments usually are indented by two hash marks and two blanks. If a section of such a comment is introduced
by a line containing a hash mark and a number it will be used for the manual (stripped of the hash marks and leading
two blanks; see Section 2.14).

Every declaration or method or function installation which is not only of local scope is introduced by a function header
of the following type.

###

##

#X ExampleFunction(<A>,)

##

This function does nothing.

The X in the example is one of the letters: F, A, P, O, C, R or V, and has the same meaning as at the end of a declaration
line in the Reference Manual (see 1.1 in the Reference Manual); it indicates whether the object declared will be a
function, attribute, property, operation, category, representation or variable, respectively. Additionally M is used in .gi

files for method installations. The line then gives a sample usage of the function. This is followed by a comment which
describes the identifier. This description will automatically be extracted to build the Reference Manual source, if there
is a \Declaration line in some .msk file together with an appropriate configuration file (see Section 2.14).

Indentation in functions and the use of decorative spaces in the code are left to the decision of the authors of each file.

The file ends with an

#E

comment section that may be used to store formatting descriptions for an editor.

3.3 Finding Implementations in the Library

There is no general browsing tool that would point you to the place in the library where a certain method or global
function is installed. However the following remarks might be of help:

You can use ApplicableMethod (see 7.2.1 in the reference manual) to get the function which implements a method
for specific arguments. Setting its print level higher will also give you the installation string for this method.

To find the occurrence of functions and methods in the library, one can use the grep tool under UNIX. To find a
function, search for the function name in the .gd files (as it is declared only once, only one file will show up), the
function installation is likely to occur in the corresponding .gi file.

To find a method search for Method((this catches InstallMethod and InstallOtherMethod) and the installation
string or the operation name.

3.4 Undocumented Variables

For several global variables in GAP, no information is available via the help system (see Section 2.8 in the Tutorial, for
a quick overview of the help system, or Chapter 2 in the reference manual, for details). There are various reasons for
“hiding” a variable from the user; namely, the variable may be regarded as of minor importance (for example, it may
be a function called by documented GAP functions that first compute many input parameters for the undocumented
function), or it belongs to a part of GAP that is still experimental in the sense that the meaning of the variable has not
yet been fixed or even that it is not clear whether the variable will vanish in a more developed version.

As a consequence, it is dangerous to use undocumented variables because they are not guaranteed to exist or to behave
the same in future versions of GAP.

34 Chapter 3. Library Files

Conversely, for documented variables, the definitions in the GAP manual can be relied on for future GAP versions
(unless they turn out to be erroneous); if the GAP developers find that some piece of minor, but documented func-
tionality is an insurmountable obstacle to important developments, they may make the smallest possible incompatible
change to the functionality at the time of a major release. However, in any such case it will be announced clearly in
the GAP Forum what has been changed and why.

So on the one hand, the developers of GAP want to keep the freedom of changing undocumented GAP code. On the
other hand, users may be interested in using undocumented variables.

In this case, whenever you write GAP code involving undocumented variables, and want to make sure that this code
will work in future versions of GAP, you may ask at support@gap-system.org for documentation about
the variables in question. The GAP developers then decide whether these variables shall be documented or not, and if
yes, what the definitions shall be.

In the former case, the new documentation is added to the GAP manual, this means that from then on, this definition
is protected against changes.

In the latter case (which may occur for example if the variables in question are still experimental), you may add the
current values of these variables to your private code if you want to be sure that nothing will be broken later due to
changes in GAP.

4 Writing a
GAP Package

This chapter explains the basics of how to write a GAP package so that it interfaces properly to GAP. For the role of
GAP packages and the ways to load them, see Chapter 74 in the GAP Reference Manual.

There are two basic aspects of creating a GAP package. First, it is a convenient possibility to load additional func-
tionality into GAP including a smooth integration of the package documentation. And secondly, a package is a way to
make your code available to other GAP users. The GAP Team provides some help with the distribution of packages.
In particular, a package can be submitted to a refereeing process. Check out the GAP Web pages

http://www.gap-system.org for more details.

We start this chapter with a description how the directory structure of a GAP package must look like and then add
remarks on certain aspects of creating a package, some of these only apply to some packages.

4.1 The Files of a GAP Package

All files of a GAP package must be collected in a single directory. To use the package with GAP this directory must
be a subdirectory of a pkg directory in (one of) the GAP root directories (see 9.2 in the GAP Reference Manual).
(For example, if GAP is installed in /usr/local/gap4 then put the files of your package MyPack in the directory
/usr/local/gap4/pkg/mypack.) Let us call this directory the home directory of the package.

There are three file names with a special meaning in the home directory of a package: PackageInfo.g and init.g

which must be present and read.g which is optional.

The file PackageInfo.g contains meta-information about the package (package name, version, author(s), relations
to other packages, homepage, download archives, banner, ...). This is used by the package loading mechanism and
also for the distribution of a package to other users. The content of this file is explained via a template file below (see
4.5).

The init.g is read when the package is loaded (see 74.2.1 in the GAP Reference Manual). In principle this file
could contain the whole GAP code of a package, but usually it contains mainly Read or ReadPackage statements for
reading further files of the package. For many packages it may be useful to have declaration and implementation parts
in different files, see 4.7 below for more details. In that case it can be useful to read in only the declaration parts from
the init.g file and to add

a file read.g which contains the ReadPackage statements for the implementation parts.

There is one further rule for the location of kernel library modules or external programs which is explained in 4.9
below.

All other files can be organized as you like. But we suggest that you have a look at existing packages and use a
similar scheme. For example, collect your GAP code in files in a subdirectory lib or gap, put the documentation in
a subdirectory doc, put source code for compilation in src, data libraries in extra subdirectories and so on.

36 Chapter 4. Writing a GAP Package

4.2 Writing Documentation

If you intend to make your package available to other users it is essential to include a documentation how to install
and use your programs.

Concerning the installation you should produce a file README which gives a short description of the purpose of the
package and contains proper instructions how to install your package. Again, check out some existing packages to get
an idea how this could look like.

Concerning the documentation of the use of the package there are currently two recognised ways of producing GAP
package documentation. There is the method that has been used to produce the main manuals for GAP which requires
the documentation to be written in TEX according to the format described in Chapter 2. There is also an XML-based
documentation format that is defined in and can be used with the GAPDoc package (see “gapdoc:introduction and
example”).

In principle it is also possible to use some completely different documentation format. In that case you need to study
the Chapter 5 to learn how to make your documentation available to the GAP help system. There should be at least a
text version of your documenation provided for use in the terminal running GAP and some nicely printable version in
.dvi and/or .pdf format. Many GAP users like to browse the documentation in HTML-format via their Web-browser.

4.3 An Example of a GAP Package

We illustrate the creation of a GAP package by an example of a basic package.

Create the following directories in your home area: pkg and pkg/test. Inside the directory test create an empty file
init.g, and a file PackageInfo.g with the following contents.

SetPackageInfo(rec(

PackageName := "test",

Version := "1.0",

AvailabilityTest := ReturnTrue,

Autoload := false,

BannerString := Concatenation([

"#I loading the GAP package ‘‘test’’ in version ",

~.Version, "\n"]),

PackageDoc := rec(

BookName := "test",

SixFile := "doc/manual.six",

Autoload := true)));

This file declares the GAP package with name “test” in version 1.0. There are no requirements that have to be tested,
so ReturnTrue (see 5.3.1 in the GAP Reference Manual) is used as test function. The package is not autoloaded,
and it has its individual banner string. The package documentation consists of one autoloaded book; the SixFile

component is needed by the GAP help system.

Now start GAP with the command

gap -l "./;"

(the -l "./;" option adds the current directory to the GAP root directories and allows GAP to find the packages
installed in the ./pkg directory.

gap> LoadPackage("test");

#I loading the GAP package ‘‘test’’ in version 1.0

true

This GAP package is too simple to be useful, but we have succeeded in loading it via LoadPackage.

Section 6. Requesting one GAP Package from within Another 37

4.4 The WWW Homepage of a Package

If you want to distribute your package you should create a WWW homepage containing some basic information,
archives for download and the README file with installation instructions, and maybe a copy of the packages Pack-
ageInfo.g file.

The responsibility for this WWW homepage is with the package authors/maintainers.

If you tell us about your package (say, by mail to support@gap-system.org) we may agree to add a link to your
package homepage from the GAP website and to redistribute the current version of your package via the GAP down-
load sites. We can also provide some service for producing several archive formats from the archive you provide (e.g.,
you produce a .tar.gz version of your archive and we produce also a .tar.bz2, a .zoo and a -win.zip version
from this).

Please, consider to submit your package to the GAP package refereeing process.

4.5 The PackageInfo.g File

We suggest to create a PackageInfo.g file for your package by copying the one in the Example package, distributed
with GAP, and to adjust it for your package. Within GAP you can look at that file by

Pager(StringFile(Filename(DirectoriesLibrary(),

"../pkg/example/PackageInfo.g")));

As a first step the example in 4.3 shows the information needed for the package loading mechanism of a simple
package. If your package depends on the functionality of other packages, the component Dependencies given in the
PackageInfo.g file becomes important, see 4.6 below.

The other entries become relevant if you want to distribute your package: they contain lists of authors and/or main-
tainers including contact information, URLs of the package archives and README files, status information, text for
a package overview Web page, and so on. See the mentioned template file for a list and explanation of all recognized
entries.

Once you have created the PackageInfo.g file for your package, you can test its validity with the command Vali-

datePackageInfo(filename);.

4.6 Requesting one GAP Package from within Another

It is possible for one GAP package A, say, to require another package B. For that, one simply adds the name and the
(least) version number of the package B to the NeededOtherPackages component of the Dependencies component
of the PackageInfo.g file of the package A. In this situation, loading the package A forces that also the package B is
loaded, and that A cannot be loaded if B is not available.

If B is not essential for A but should be loaded if it is available (for example because B provides some improvements
of the main system that are useful for A) then the name and the (least) version number of B should be added to the
SuggestedOtherPackages component of the PackageInfo.g file of A. In this situation, loading A forces an attempt
to load also B, but A is loaded even if B is not available.

38 Chapter 4. Writing a GAP Package

4.7 Declaration and Implementation Part

When GAP packages require each other in a circular way, a “bootstrapping” problem arises of defining functions
before they are called. The same problem occurs in the GAP library, it is resolved there by separating declarations
(which define global variables such as filters and operations) and implementations (which install global functions and
methods) in different files. Any implementation file may use global variables defined in any declaration file. GAP
initially reads all declaration files (in the library they have a .gd suffix) and afterwards reads all implementation files
(which have a .gi suffix).

Something similar is possible for GAP packages: If a file read.g exists in the home directory of the package, this
file is read only after all the init.g files of all (implicitly) required GAP packages are read. Thus one can separate
declaration and implementation for a GAP package in the same way as done for the GAP library, by creating a
file read.g, restricting the ReadPackage statements in init.g to only load those files of the package that provide
declarations, and to load the implementation files from read.g.

See Section 3.18 in the Programmers’ Tutorial which discusses further the commands that should appear in the dec-
laration part (i.e., in the files read with ReadPackage from init.g) and in the implementation part (i.e., in the files
read with ReadPackage from read.g) of a package.

4.8 Standalone Programs in a GAP Package

GAP packages that involve stand-alone programs are fundamentally different from GAP packages that consist entirely
of GAP code.

This difference is threefold: A user who installs the GAP package must also compile (or install) the package’s binaries,
the package must check whether the binaries are indeed available, and finally the GAP code of the package has to
start the external binary and to communicate with it. We will treat these three points in the following sections.

If the package does not solely consist of an interface to an external binary and if the external program called is not just
special-purpose code, but a generally available program, chances are high that sooner or later other GAP packages
might also require this program.

We therefore strongly suggest to provide a documented GAP function that will call the external binary. We also
suggest to create actually two GAP packages; the first providing only the binary and the interface and the second
(requiring the first, see 4.6) being the actual GAP package.

4.9 Installation of GAP Package Binaries

The scheme for the installation of package binaries which is described further on is intended to permit the installation
on different architectures which share a common file system (and share the architecture independent file).

A GAP package which includes external binaries contains a bin subdirectory. This subdirectory in turn contains
subdirectories for the different architectures on which the GAP package binaries are installed. The names of these
directories must be the same as the names of the architecture dependent subdirectories of the main bin directory.
Unless you use a tool like autoconf yourself, you must obtain the correct name of the binary directory from the main
GAP branch. To help with this, the main GAP directory contains a file sysinfo.gap which assigns the shell variable
GAParch to the proper name as determined by GAP’s configure process. For example on a Linux system, the file
sysinfo.gap may look like this:

GAParch=i586-unknown-linux2.0.31-gcc

We suggest that your GAP package contains a file configure which is called with the path of the GAP root directory
as parameter. This file then will read sysinfo.gap and set up everything for compiling under the given architecture
(for example creating a Makefile from Makefile.in.

The standard GAP distribution contains a GAP package “example” whose installation script shows an example way
of how to do this.

Section 11. Calling of and Communication with External Binaries 39

4.10 Test for the Existence of GAP Package Binaries

If an external binary is essential for the workings of a GAP package, the function stored in the component Avail-
abilityTest of the PackageInfo.g file of the package should test whether the program has been compiled on the
architecture (and inhibit package loading if this is not the case). This is especially important if the package is loaded
automatically.

The easiest way to accomplish this is to use Filename (see 9.4.1 in the GAP Reference Manual) for checking for the
actual binaries in the path given by DirectoriesPackagePrograms (see 74.3.5 in the GAP Reference Manual) for
the respective package. For example the “example” GAP package could use the following commands to test whether
the binary hello has been compiled; they issue a warning if not and will only load if it is indeed available.

...

AvailabilityTest := function()

local path,file;

test for existence of the compiled binary

path:=DirectoriesPackagePrograms("example");

file:=Filename(path,"hello");

if file=fail then

Info(InfoWarning,1,

"Package ‘‘example’’: The program ‘hello’ is not compiled");

Info(InfoWarning,1,

"‘HelloWorld()’ is thus unavailable");

Info(InfoWarning,1,

"See the installation instructions; ",

"type: ?Installing the Example package");

fi;

return file<>fail;

end,

...

(In fact the AvailabilityTest function that is actually used in the “example” package always returns true, just
the warnings are printed if the binary is not available. This means that the binary is not regarded as essential for this
package.)

You might also have to cope with the situation that external binaries will only run under UNIX (and not, say on a
Macintosh). See 3.6 in the GAP Reference Manual for information on how to test for the architecture.

4.11 Calling of and Communication with External Binaries

There are two reasons for this: the input data has to be passed on to the stand-alone program and the stand-alone
program has to be started from within GAP.

There are two principal ways of doing this.

The first possibility is to write all the data for the stand-alone to one or several files, then start the stand-alone with
Process or Exec (see 11.1.1 and 11.2.1 in the GAP Reference Manual) which then writes the output data to file, and
finally read in the standalone’s output file.

The second way is interfacing via iostreams (see Section 10.8 in the GAP Reference Manual). The support for this is
in its infancy.

40 Chapter 4. Writing a GAP Package

4.12 Package Completion

Reading a larger package can take a few moments and will take up user workspace. This might be a nuisance to users,
especially if the package is loaded automatically. The same problem of course affects the GAP library, the problem
there is solved using completion files (see 3.5 in the GAP Reference Manual).

Completion files make it possible to read only short function headers initially which are completed to full functions
only when the functions are actually called. This section explains how to set up completion for a GAP package.

Completion works for those files which are read (using ReadPackage) from the read.g file. (This is no real restriction
as completion affects only the implementation part.) To create completion files, load the GAP package, and then use
the following command.

1 I CreateCompletionFilesPackage(pkgname)

This will create a new file read.co in the home directory of the loaded version of the GAP package pkgname (so
you must have write permissions there). When the GAP package is loaded, this file is used in place of read.g, and
automatically takes care of completion.

When you change files which are completed, GAP will complain about non-matching CRC files and will not load
them. In this case simply remove the read.co file and create it anew.

As a GAP package author you should consider including a completion file with the package.

If you start GAP with the command line option -D, it displays information about reading and completion, the com-
mand line option -N turns completion off (as if all .co files were erased). (Section 3.2 in the GAP Reference Manual
describes the options -D and -N.)

4.13 DeclareAutoreadableVariables

Package files containing method installations must be read when the package is loaded. Note that the completion
mechanism used in the main GAP library (see Section “ext:completion files” in the GAP Reference Manual) cannot
be used for packages.

For package files not containing method installations –this applies to many data files– another mechanism allows one
to delay reading such files until the data are actually accessed.

1 I DeclareAutoreadableVariables(pkgname, filename, varlist)

Let pkgname be the name of a package, let filename be the name of a file relative to the home directory of this
package, and let varlist be a list of strings that are the names of global variables which get bound when the file is
read. DeclareAutoreadableVariables notifies the names in varlist such that the first attempt to access one of the
variables causes the file filename to be read.

4.14 Version Numbers

A version number is a string which contains nonnegative integers separated by non-numeric characters. Examples of
valid version numbers are for example:

"1.0" "3.141.59" "2-7-8.3" "5 release 2 patchlevel 666"

Version numbers are interpreted as lists of integers and are compared in that way. Thus version "2-3" is larger than
version "2-2-5" but smaller than "11.0".

It is possible for code to require GAP packages in certain versions. In this case, all versions, whose number is equal or
larger than the requested number are acceptable. It is the task of the package author to provide upwards compatibility.

Loading a specific version of a package (that is, not one with a larger version number) can be achieved by prepending
= to the desired version number. For example, LoadPackage("example", "=1.0") will load version "1.0" of

Section 15. Wrapping Up a GAP Package 41

the package “ext:example”, even if version "1.1" is avaiable. As a consequence, version numbers must not start with
=, so "=1.0" is not a valid version number.

The global variable GAPInfo.Version contains the version number of the version of GAP and also can be checked
against (using CompareVersionNumbers, see 74.3.6 in the GAP Reference Manual).

Package authors should choose a version numbering scheme that admits a new version number even after tiny changes
to the package. The automatic update of package archives in the GAP distribution will only work if a package has a
new version number.

4.15 Wrapping Up a GAP Package

The releases of GAP packages are independent of releases of GAP. Therefore GAP packages should be wrapped up
in separate files that can be installed onto any version of GAP. Similarly a GAP package can be upgraded any time
without the need to wait for new releases of GAP.

Because it is independent of the version of GAP a GAP package should be archived from the GAP pkg directory,
that is all files are archived with the path starting the package’s name.

The archive of a GAP package should contain all files necessary for the package to work. In particular there should be
a compiled documentation, which includes the manual.six, manual.toc and manual.lab file in the documentation
subdirectory which are created by TEXing the documentation, if you use the gapmacro.tex or GAPDoc document
formats. (The first two are needed by the GAP help system, and the manual.lab file is needed if the main manual is
referring to your package. Use the command GAPDocManualLab(packagename); to create this file for your help
books if you use GAPDoc.)

Currently, the GAP distribution provides archives in four different formats.

- .tar.gz, a standard UNIX tar archive, compressed with gzip

- .tar.bz2, a standard UNIX tar archive, compressed with bzip2

- .zoo, a special version of zoo archives, that can essentially be used on all operating systems with the unzoo

utility provided with the GAP distribution

- -win.zip, an archive in zip format, where text files should have DOS/Windows style line breaks

For convenience of possible users it is sensible that you archive your package also in one or several of these formats.

For packages which are redistributed via the GAP Web site, we offer an automatic conversion of any of the formats
listed above to all the others.

5 Interface to the
GAP Help System

In this chapter we describe which information the help system needs about a manual book and how to tell it this
information. The code which implements this interface can be found in lib/helpbase.gi.

If you are intending to use a documentation format that is already used by some other help book you probably don’t
need to know anything from this chapter. However, if you want to create a new format and make it available to GAP
then hopefully you will find the necessary information here.

The basic idea of the help system is as follows: One tells GAP a directory which contains a file manual.six, see 5.1.
When the GAP help is asked something about this book it reads in some basic information from the file manual.six:
strings like section headers, function names, and index entries to be searched by the online help; information about the
available formats of this book like text, html, dvi, and pdf; the actual files containing the documentation, corresponding
section numbers, and page numbers: and so on. See 5.2 for a description of the format of the manual.six file.

It turns out that there is almost no restriction on the format of the manual.six file, except that it must provide a string,
say "myownformat" which identifies the format of the help book. Then the basic actions on a help book are delegated
by the help system to handler functions stored in a record HELP BOOK HANDLER.myownformat. See 5.3 for informa-
tion which functions must be provided by the handler and what they are supposed to do. The main work to teach GAP
to use a new document format is to write these handler functions and to produce an appropriate manual.six file.

5.1 Installing a Help Book
1 I HELP ADD BOOK(short, long, dir)

This command tells GAP that in directory dir (given as either a string describing the path relative to the GAP root di-
rectory GAPInfo.RootPaths[1] or as directory object) contains the basic information about a help book. The string
short is used as an identifying name for that book by the online help. The string long should be a short explanation of
the content of the book. Both strings together should easily fit on a line, since they are displayed with ?books.

It is possible to reinstall a book with different strings short, long; (for example, documentation of a not-loaded GAP
package indicates this in the string short and if you later load the package, GAP quietly changes the string short as it
reinstalls its documentation).

The only condition necessary to make the installation of a book valid is that the directory dir must contain a file
manual.six. The next section explains how this file must look.

5.2 The manual.six File
If a manual.six file for a help book is not in the format of the gapmacro.tex macros, explained in chapter The
gapmacro.tex Manual Format (see 2), the first non-empty line of manual.six must be of the form

#SIXFORMAT myownformat

where myownformat is an identifying string for this format. The reading of the (remainder of the) file is then delegated
to the function HELP BOOK HANDLER.myownformat.ReadSix which must exist. Thus there are no further regulations
for the format of the manual.six file, other that what you yourself impose. If such a line is missing then it is assumed
that the manual.six file complies with the gapmacro.tex documentation format which is the default format.

The next section explains what the return value of HELP BOOK HANDLER.myownformat.ReadSix should look like
and which further function should be contained in HELP BOOK HANDLER.myownformat.

Section 3. The Help Book Handler 43

5.3 The Help Book Handler

For each document format myownformat there must be a record HELP BOOK HANDLER.myownformat of functions
with the following names and functionality.

An implementation example of such a set of handler functions is the default format, which is the format name used
for the gapmacro.tex documentation format, and this is contained in the file lib/helpdef.gi.

The package GapDoc (see Chapter “gapdoc:introduction and example”) also defines a format (as it should) which is
called: GapDocGAP (the case is significant).

As you can see by the above two examples, the name for a document format can be anything, but it should be in some
way meaningful.

ReadSix(stream)

For an input text stream stream to a manual.six file, this must return a record info which has at least the
following two components: bookname which is the short identifying name of the help book, and entries.
Here info.entries must be a list with one entry per search string (which can be a section header, function
name, index entry, or whatever seems sensible to be searched for matching a help query). A match for the
GAP help is a pair (info, i) where i refers to an index for the list info.entries and this corresponds to a
certain position in the document. There is one further regulation for the format of the entries of info.entries.
They must be lists and the first element of such a list must be a string which is printed by GAP for example
when several matches are found for a query (so it should essentially be the string which is searched for
the match, except that it may contain upper and lower case letters or some markup). There may be other
components in info which are needed by the functions below, but their names and formats are not prescribed.
The stream argument is typically generated using InputTextFile (see 10.5.1), e.g.

gap> dirs := DirectoriesLibrary("doc/ref");;

gap> file := Filename(dirs, "manual.six");;

gap> stream := InputTextFile(file);;

ShowChapters(info)

This must return a text string or list of text lines which contains the chapter headers of the book info.bookname.

ShowSection(info)

This must return a text string or list of text lines which contains the section (and chapter) headers of the book
info.bookname.

SearchMatches(info, topic, frombegin)

This function must return a list of indices of info.entries for entries which match the search string topic. If
frombegin is true then those parts of topic which are separated by spaces should be considered as the begin-
nings of words to decide the matching. It frombegin is false, a substring search should be performed. The
string topic can be assumed to be already normalized (transformed to lower case, and whitespace normal-
ized). The function must return a list with two entries [exact, match] where exact is the list of indices
for exact matches and match a list of indices of the remaining matches.

MatchPrevChap(info, i)

This should return the match [info, j] which points to the beginning of the chapter containing match [info,
i], respectively to the beginning of the previous chapter if [info, i] is already the beginning of a chapter.
(Corresponds to ?<<.)

MatchNextChap(info, i)

Like the previous function except that it should return the match for the beginning of the next chapter.
(Corresponds to ?>>.)

MatchPrev(info, i)

This should return the previous section (or appropriate portion of the document). (Corresponds to ?<.)

44 Chapter 5. Interface to the GAP Help System

MatchNext(info, i)

Like the previous function except that it should return the next section (or appropriate portion of the docu-
ment). (Corresponds to ?>.)

HelpData(info, i, type)

This returns for match [info, i] some data whose format depends on the string type, or fail if these data are
not available. The values of type which currently must be handled and the corresponding result format are
described in the list below.

The HELP BOOK HANDLER.myownformat.HelpData function must recognize the following values of the type argu-
ment.

"text"

This must return a corresponding text string in a format which can be fed into the Pager, see 2.4.1.

"url"

If the help book is available in HTML format this must return an URL as a string (Probably a file:// URL
containing a label for the exact start position in that file). Otherwise it returns fail.

"dvi"

If the help book is available in dvi-format this must return a record of form rec(file := filename, page

:= pagenumber). Otherwise it returns fail.

"pdf"

Same as case "dvi", but for the corresponding pdf-file.

"secnr"

This must return a pair like [[3,3,1], "3.3.1"] which gives the section number as chapter number, sec-
tion number, subsection number triple and a corresponding string (a chapter itself is encoded like [[4,0,0],
"4."]). Useful for cross-referencing between help books.

5.4 Introducing new Viewer for the Online Help

There is a record HELP VIEWER INFO which contains one component for each help viewer. Such a record contains
two components.

The component .type refers to one of the types recognized by the HelpData handler function explained in the
previous section (currently one of "text", "url", "dvi", or "pdf").

The component .show is a function which gets as input the result of a corresponding HelpData handler call, if it was
not fail. This function has to perform the actual display of the data. (E.g., by calling a function like Pager or by
starting up an external viewer program.)

6
Function-

Operation-Attribute
Triples

GAP is eager to maintain information that it has gathered about an object, possibly by lengthy calculations. The most
important mechanism for information maintenance is the automatic storage and look-up that takes place for attributes;
and this was already mentioned in section 8.1 in the tutorial. In this chapter we will describe further mechanisms that
allow storage of results that are not values of attributes.

The idea which is common to all sections is that certain operations, which are not themselves attributes, have an at-
tribute associated with them. To automatically delegate tasks to the attribute, GAP knows, in addition to the operation
and the attributes also a function, which is “wrapped around” the other two. This “wrapper function” is called by the
user and decides whether to call the operation or the attribute or possibly both. The whole function-operation-attribute
triple (or FOA triple) is set up by a single GAP command which writes the wrapper function and already installs
some methods, e.g., for the attribute to fall back on the operation. The idea is then that subsequent methods, which
perform the actual computation, are installed only for the operation, whereas the wrapper function remains unaltered,
and in general no additional methods for the attribute are required either.

6.1 Key Dependent Operations

There are several functions that require as first argument a domain, e.g., a group, and as second argument something
much simpler, e.g., a prime. SylowSubgroup is an example. Since its value depends on two arguments, it cannot be
an attribute, yet one would like to store Sylow subgroups once they have been computed.

The idea is to provide an attribute of the group, called ComputedSylowSubgroups, and to store the groups in this
list. The name implies that the value of this attribute may change in the course of a GAP session, whenever a newly-
computed Sylow subgroup is put into the list. Therefore, this is a mutable attribute (see 3.3 in “Programming in
GAP”). The list contains primes in each bound odd position and a corresponding Sylow subgroup in the following
even position. More precisely, if p = ComputedSylowSubgroups(G)[even - 1] then ComputedSylowSub-

groups(G)[even] holds the value of SylowSubgroup(G, p). The pairs are sorted in increasing order of p,
in particular at most one Sylow p subgroup of G is stored for each prime p. This attribute value is maintained by the
operation SylowSubgroup, which calls the operation SylowSubgroupOp(G, p) to do the real work, if the prime
p cannot be found in the list. So methods that do the real work should be installed for SylowSubgroupOp and not for
SylowSubgroup.

The same mechanism works for other functions as well, e.g., for PCore, but also for HallSubgroup, where the second
argument is not a prime but a set of primes.

1 I KeyDependentOperation(name, dom-req, key-req, key-test)

declares at the same time all three: two operations with names name and nameOp, respectively, and an attribute with
name and the attribute as described above, with names name, nameOp, and Computednames. dom-req and key-req
specify the required filters for the first and second argument of the operation nameOp, which are needed to create
this operation with NewOperation (see 3.5.1). dom-req is also the required filter for the corresponding attribute

46 Chapter 6. Function-Operation-Attribute Triples

Computednames. The fourth argument key-test is in general a function to which the second argument info of name(
D, info) will be passed. This function can perform tests on info, and raise an error if appropriate.

For example, to set up the three objects SylowSubgroup, SylowSubgroupOp, and ComputedSylowSubgroups to-
gether, the declaration file “lib/grp.gd” contains the following line of code.

KeyDependentOperation("SylowSubgroup", IsGroup, IsPosInt, "prime");

In this example, key-test has the value "prime", which is silently replaced by a function that tests whether its argument
is a prime.

gap> s4 := Group((1,2,3,4),(1,2));;

gap> SylowSubgroup(s4, 5);; ComputedSylowSubgroups(s4);

[5, Group(())]

gap> SylowSubgroup(s4, 2);; ComputedSylowSubgroups(s4);

[2, Group([(3,4), (1,4)(2,3), (1,3)(2,4)]), 5, Group(())]

gap> SylowSubgroup(s4, 6);

Error, SylowSubgroup: <p> must be a prime called from

<compiled or corrupted call value> called from

<function>(<arguments>) called from read-eval-loop

Entering break read-eval-print loop ...

you can ’quit;’ to quit to outer loop, or

you can ’return;’ to continue

brk> quit;

Thus the prime test need not be repeated in the methods for the operation SylowSubgroupOp (which are installed to
do the real work). Note that no methods need be installed for SylowSubgroup and ComputedSylowSubgroups. If a
method is installed with InstallMethod for a wrapper operation such as SylowSubgroup then a warning is signalled
provided the InfoWarning level is at least 1. (Use InstallOtherMethod in order to suppress the warning.)

6.2 In Parent Attributes

This section describes how you can add new “in parent attributes” (see 30.8 and 30.7 in the Reference Manual). As
an example, we describe how Index and its related functions are implemented.

There are two operations Index and IndexOp, and an attribute IndexInParent. They are created together as shown
below, and after they have been created, methods need be installed only for IndexOp. In the creation process, Index-
InParent already gets one default method installed (in addition to the usual system getter of each attribute, see 13.5
in the Reference Manual), namely D -> IndexOp(Parent(D), D).

The operation Index proceeds as follows.

• If it is called with the two arguments super and sub, and if HasParent(sub) and IsIdenticalObj(super,
Parent(sub)) are true, IndexInParent is called with argument sub, and the result is returned.

• Otherwise, IndexOp is called with the same arguments that Index was called with, and the result is returned.

(Note that it is in principle possible to install even Index and IndexOp methods for a number of arguments different
from two, with InstallOtherMethod, see 3.3 in “Programming in GAP”).

1 I InParentFOA(name, super-req, sub-req, DeclareAttribute)
I InParentFOA(name, super-req, sub-req, DeclareProperty)

declares the operations and the attribute as described above, with names name, nameOp, and nameInParent. super-
req and sub-req specify the required filters for the first and second argument of the operation nameOp, which are
needed to create this operation with NewOperation (see 3.5.1). sub-req is also the required filter for the correspond-
ing attribute nameInParent; note that HasParent is not required for the argument U of nameInParent, because

Section 3. Operation Functions 47

even without a parent stored, Parent(U) is legal, meaning U itself (see 30.7 in the Reference Manual). The fourth
argument is DeclareProperty if nameInParent takes only boolean values (for example in the case IsNormalIn-
Parent), and DeclareAttribute otherwise.

For example, to set up the three objects Index, IndexOp, and IndexInParent together, the declaration file “lib/domain.gd”
contains the following line of code.

InParentFOA("Index", IsGroup, IsGroup, DeclareAttribute);

Note that no methods need be installed for Index and IndexInParent.

6.3 Operation Functions

Chapter 39 of the Reference Manual and, in particular, the Section 39.1 explain that certain operations such as Orbits
(see 39.3), besides their usual usage with arguments G, D, and opr, can also be applied to an external set (G-set), in
which case they can be interpreted as attributes. Moreover, they can also be interpreted as attributes for permutation
group, meaning the natural action on the set of its moved points.

The definition of Orbits says that a method should be a function with arguments G, D, gens, oprs, and opr, as in the
case of the operation ExternalSet when specified via gens and oprs (see 39.11 in the Reference Manual). All other
syntax variants allowed for Orbits (e.g., leaving out gens and oprs) are handled by default methods.

The default methods for Orbits support the following behaviour.

1. If the only argument is an external set xset and the attribute tester HasOrbits(xset) returns true, the stored
value of that attribute is returned.

2. If the only argument is an external set xset and the attribute value is not known, the default arguments are obtained
from the data of xset.

3. If gens and oprs are not specified, gens is set to Pcgs(G) if CanEasilyComputePcgs(G) is true, and to
GeneratorsOfGroup(G) otherwise; oprs is set to gens.

4. The default value of opr is OnPoints.

5. In the case of an operation of a permutation group G on MovedPoints(G) via OnPoints, if the attribute
tester HasOrbits(G) returns true, the stored attribute value is returned.

6. The operation is called as result:= Orbits(G, D, gens, oprs, opr).

7. In the case of an external set xset or a permutation group G in its natural action, the attribute setter is called to
store result.

8. result is returned.

The declaration of operations that match the above pattern is done as follows.

1 I OrbitsishOperation(name, reqs, usetype, NewAttribute) F
I OrbitsishOperation(name, reqs, usetype, NewProperty) F

declares an attribute op as described above, with name name. The second argument reqs specifies the list of required
filters for the usual (five-argument) methods that do the real work.

If the third argument usetype is true, the function call op(xset) will — if the value of op for xset is not yet known
— delegate to the five-argument call of op with second argument xset rather than with D (cf. step 6 above). This allows
certain methods for op to make use of the type of xset, in which the types of the external subsets of xset and of the
external orbits in xset are stored. (This is used to avoid repeated calls of NewType in functions like ExternalOrbits(
xset), which call ExternalOrbit(xset, pnt) for several values of pnt.)

For property testing functions such as IsTransitive, the fourth argument is NewProperty, otherwise it is NewAt-
tribute.

For example, to set up the operation Orbits, the declaration file “lib/oprt.gd” contains the following line of code:

48 Chapter 6. Function-Operation-Attribute Triples

OrbitsishOperation("Orbits", OrbitsishReq, false, NewAttribute);

The variable OrbitsishReq contains the standard requirements

OrbitsishReq := [IsGroup, IsList,

IsList,

IsList,

IsFunction];

which are usually entered in calls to OrbitsishOperation.

A similar mechanism is provided for operations such as Orbit that do not have an associated attribute but still need a
wrapper function to standardize the arguments for the associated operation.

2 I OrbitishFO(name, reqs, famrel, usetype) F

declares a wrapper function and its operation, with names name and nameOp. The second argument reqs specifies the
list of required filters for the operation nameOp.

The third argument famrel is used to test the family relation between the second and third argument of name(G, D,

elm). For example, in the call Orbit(G, D, pnt), pnt must be an element of D, so famrel = IsCollsElms

is appropriate, and in the call Blocks(G, D, seed), seed must be a subset of D, and the family relation is
IsIdenticalObj. The fourth argument usetype serves the same purpose as in the case of OrbitsishOperation.

For example, to setup the function Orbit and its operation OrbitOp, the declaration file “lib/oprt.gd” contains the
following line of code:

OrbitishFO("Orbit", OrbitishReq, IsCollsElms, false);

The variable OrbitishReq contains the standard requirements

OrbitishReq := [IsGroup, IsList, IsObject,

IsList,

IsList,

IsFunction];

which are usually entered in calls to OrbitishFO.

The relation test via famrel is used to provide a uniform construction of the wrapper functions created by OrbitishFO,
in spite of the different syntax of the specific functions. For example, Orbit admits the calls Orbit(G, D, pnt,
opr) and Orbit(G, pnt, opr), i.e., the second argument D may be omitted; Blocks admits the calls Blocks(
G, D, seed, opr) and Blocks(G, D, opr), i.e., the third argument may be omitted. The translation to the
appropriate call of OrbitOp or BlocksOp, for either operation with five or six arguments, is handled via famrel.

As a consequence, there must not only be methods for OrbitOp with the six arguments corresponding to Or-

bitishReq, but also methods for only five arguments (i.e., without D). Plenty of examples are contained in the
implementation file “lib/oprt.gi”.

In order to handle a few special cases (currently Blocks and MaximalBlocks), also the following form is supported.

OrbitishFO(name, reqs, famrel, attr) F

The functions in question depend upon an argument seed, so they cannot be regarded as attributes. However, they
are most often called without giving seed, meaning “choose any minimal resp. maximal block system”. In this case,
the result can be stored as the value of the attribute attr that was entered as fourth argument of OrbitishFO. This
attribute is considered by a call Blocks(G, D, opr) (i.e., without seed) in the same way as Orbits considers
OrbitsAttr.

To set this up, the declaration file “lib/oprt.gd” contains the following lines:

Section 3. Operation Functions 49

DeclareAttribute("BlocksAttr", IsExternalSet);

OrbitishFO("Blocks",

[IsGroup, IsList, IsList,

IsList,

IsList,

IsFunction], IsIdenticalObj, BlocksAttr);

And this extraordinary FOA triple works as follows:

gap> s4 := Group((1,2,3,4),(1,2));; Blocks(s4, MovedPoints(s4), [1,2]);

[[1, 2, 3, 4]]

gap> Tester(BlocksAttr)(s4);

false

gap> Blocks(s4, MovedPoints(s4));

[[1, 2, 3, 4]]

gap> Tester(BlocksAttr)(s4); BlocksAttr(s4);

true

[[1, 2, 3, 4]]

7 Weak Pointers
This chapter describes the use of the kernel feature of weak pointers. This feature is intended for use only in GAP
internals, and is not recommended for use in GAP packages, user code, or at the higher levels of the library.
The GASMAN garbage collector is the part of the kernel that manages memory in the users workspace. It will
normally only reclaim the storage used by an object when the object cannot be reached as a subobject of any GAP
variable, or from any reference in the kernel. We say that any link to object a from object b “keeps object a alive”,
as long as b is alive. It is occasionally convenient, however to have a link to an object which does not keep it alive,
and this is a weak pointer. The most common use is in caches, and similar structures, where it is only necessary to
remember how to solve problem x as long as some other link to x exists.
The following section 7.1 describes the semantics of the objects that contain weak pointers. Following sections de-
scribe the functions available to manipulate them.

7.1 Weak Pointer Objects
A weak pointer object is similar to a mutable plain list, except that it does not keep its subobjects alive during a
garbage collection. From the GAP viewpoint this means that its entries may become unbound, apparently sponta-
neously, at any time. Considerable care is therefore needed in programming with such an object.

7.2 WeakPointerObj
1 I WeakPointerObj(list)

WeakPointerObj returns a weak pointer object which contains the same subobjects as list, that is it returns a shallow
weak copy of list.

gap> w := WeakPointerObj([1, , [2,3], fail, rec(a := 1)]);

WeakPointerObj([1, , [2, 3], fail, rec(a := 1)])

gap> GASMAN("collect");

gap> w;

WeakPointerObj([1, , , fail])

Note that w has failed to keep its list and record subobjects alive during the garbage collection. Certain subobjects,
such as small integers and elements of small finite fields, are not stored in the workspace, and so are not subject to
garbage collection, while certain other objects, such as the Boolean values, are always reachable from global variables
or the kernel and so are never garbage collected.
Subobjects reachable without going through a weak pointer object do not evaporate, as in:

gap> l := [1,2,3];;

gap> w[1] := l;;

gap> w;

WeakPointerObj([[1, 2, 3], , , fail])

gap> GASMAN("collect");

gap> w;

WeakPointerObj([[1, 2, 3], , , fail])

Note also that the global variables last, last2 and last3 will keep things alive – this can be confusing when
debugging.

Section 4. Accessing Weak Pointer Objects as Lists 51

7.3 Low Level Access Functions for Weak Pointer Objects
1 I SetElmWPObj(wp,pos,val)
I UnbindElmWPObj(wp,pos)
I ElmWPObj(wp, pos)
I IsBOundElmWPObj(wp,pos)
I LengthWPObj(wp)

The functions SetElmWPObj(wp,pos,val) and UnbindElmWPObj(wp,pos) set and unbind entries in a weak pointer
object.

The function ElmWPObj(wp, pos) returns the element at position pos of the weak pointer object wp, if there is one,
and fail otherwise. A return value of fail can thus arise either because (a) the value fail is stored at position pos,
or (b) no value is stored at position pos. Since fail cannot vanish in a garbage collection, these two cases can safely
be distinguished by a subsequent call to IsBoundElmWPObj(wp,pos), which returns true if there is currently a
value bound at position pos of wp and false otherwise.

Note that it is not safe to write: if IsBoundElmWpObj(w,i) then x:= ElmWPObj(w,i); fi; and treat x as
reliably containing a value taken from w, as a badly timed garbage collection could leave x containing fail. Instead
use x := ElmWPObj(w,i); if x <> fail or IsBoundElmWPObj(w,i) then

gap> w := WeakPointerObj([1, , [2,3], fail, rec()]);

WeakPointerObj([1, , [2, 3], fail, rec()])

gap> SetElmWPObj(w,5,[]);

gap> w;

WeakPointerObj([1, , [2, 3], fail, []])

gap> UnbindElmWPObj(w,1);

gap> w;

WeakPointerObj([, , [2, 3], fail, []])

gap> ElmWPObj(w,3);

[2, 3]

gap> ElmWPObj(w,1);

fail

gap> 2;;3;;4;;GASMAN("collect"); # clear last etc.

gap> ElmWPObj(w,3);

fail

gap> w;

WeakPointerObj([, , , fail])

gap> ElmWPObj(w,4);

fail

gap> IsBoundElmWPObj(w,3);

false

gap> IsBoundElmWPObj(w,4);

true

7.4 Accessing Weak Pointer Objects as Lists

Weak pointer objects are members of ListsFamily and the categories IsList and IsMutable. Methods based
on the low-level functions in the previous section, are installed for the list access operations, enabling them to be
used as lists. However, it is not recommended that these be used in programming. They are supplied mainly as a
convenience for interactive working, and may not be safe, since functions and methods for lists may assume that after
IsBound(w[i]) returns true, access to w[i] is safe.

52 Chapter 7. Weak Pointers

7.5 Copying Weak Pointer Objects

A ShallowCopy method is installed, which makes a new weak pointer object containing the same objects as the
original.

It is possible to apply StructuralCopy to a weak pointer object, obtaining a new weak pointer object containing
copies of the objects in the original. This may not be safe if a badly timed garbage collection occurs during copying.

Applying Immutable to a weak pointer object produces an immutable plain list containing immutable copies of the
objects contained in the weak pointer object. An immutable weak pointer object is a contradiction in terms.

7.6 The GASMAN Interface for Weak Pointer Objects

The key support for weak pointers is in gasman.c and gasman.h. This document assumes familiarity with the rest
of the operation of GASMAN. A kernel type (tnum) of bags which are intended to act as weak pointers to their
subobjects must meet three conditions. Firstly, the marking function installed for that tnum must use MarkBagWeakly
for those subbags, rather than MARK BAG. Secondly, before any access to such a subbag, it must be checked with
IS WEAK DEAD BAG. If that returns true, then the subbag has evaporated in a recent garbage collection and must not
be accessed. Typically the reference to it should be removed. Thirdly, a sweeping function must be installed for that
tnum which copies the bag, removing all references to dead weakly held subbags.

The files weakptr.c and weakptr.h use this interface to support weak pointer objects. Other objects with weak
behaviour could be implemented in a similar way.

8 Stabilizer Chains
(preliminary)

This chapter contains some rather technical complements to the material handled in the chapters 40 and 41 of the
reference manual.

8.1 Generalized Conjugation Technique

The command ConjugateGroup(G, p) (see 37.2.5 in the reference manual) for a permutation group G with
stabilizer chain equips its result also with a stabilizer chain, namely with the chain of G conjugate by p. Conjugating
a stabilizer chain by a permutation p means replacing all the points which appear in the orbit components by their
images under p and replacing every permutation g which appears in a labels or transversal component by its
conjugate gp. The conjugate gp acts on the mapped points exactly as g did on the original points, i.e., (pnt · p) · gp =
(pnt · g) · p. Since the entries in the translabels components are integers pointing to positions of the labels list,
the translabels lists just have to be permuted by p for the conjugated stabilizer. Then generators is reconstructed
as labels{ genlabels } and transversal{ orbit } as labels{ translabels{ orbit } }.

This conjugation technique can be generalized. Instead of mapping points and permutations under the same permu-
tation p, it is sometimes desirable (e.g., in the context of permutation group homomorphisms) to map the points with
an arbitrary mapping map and the permutations with a homomorphism hom such that the compatibility of the actions
is still valid: map(pnt) · hom(g) = map(pnt · g). (Of course the ordinary conjugation is a special case of this, with
map(pnt) = pnt · p and hom(g) = gp.)

In the generalized case, the “conjugated” chain need not be a stabilizer chain for the image of hom, since the “preim-
age” of the stabilizer of map(b) (where b is a base point) need not fix b, but only fixes the preimage map−1(map(b))
setwise. Therefore the method can be applied only to one level and the next stabilizer must be computed explicitly.
But if map is injective, we have map(b) · hom(g) = map(b) ⇐⇒ b · g = b, and if this holds, then g = w(g1, . . . , gn)
is a word in the generators g1, . . . , gn of the stabilizer of b and hom(g) =∗ w(hom(g1), . . . , hom(gn)) is in the “conju-
gated” stabilizer. If, more generally, hom is a right inverse to a homomorphism ϕ (i.e., ϕ(hom(g)) = g ∀g), equality
∗ holds modulo Ker ϕ; in this case the “conjugated” chain can be made into a real stabilizer chain by extending each
level with the generators Ker ϕ and appending a proper stabilizer chain of Ker ϕ at the end. These special cases will
occur in the algorithms for permutation group homomorphisms (see 38 in the reference manual).

To “conjugate” the points (i.e., orbit) and permutations (i.e., labels) of the Schreier tree, a loop is set up over the
orbit list constructed during the orbit algorithm, and for each vertex b with unique edge a(l)b ending at b, the label
l is mapped with hom and b with map. We assume that the orbit list was built w.r.t. a certain ordering of the labels,
where l′ < l means that every point in the orbit was mapped with l′ before it was mapped with l. This shape of the
orbit list is guaranteed if the Schreier tree is extended only by AddGeneratorsExtendSchreierTree, and it is
then also guaranteed for the “conjugated” Schreier tree. (The ordering of the labels cannot be read from the Schreier
tree, however.)

In the generalized case, it can happen that the edge a(l)b bears a label l whose image is “old”, i.e., equal to the image
of an earlier label l′ < l. Because of the compatibility of the actions we then have map(b) = map(a) · hom(l)−1 =
map(a) · hom(l′)−1 = map(al′−1), so map(b) is already equal to the image of the vertex al′−1. This vertex must have
been encountered before b = al−1 because l′ < l. We conclude that the image of a label can be “old” only if the vertex
at the end of the corresponding edge has an “old” image, too, but then it need not be “conjugated” at all. A similar
remark applies to labels which map under hom to the identity.

54 Chapter 8. Stabilizer Chains (preliminary)

8.2 The General Backtrack Algorithm with Ordered Partitions

Section 41.11 in the reference manual describes the basic functions for a backtrack search. The purpose of this section
is to document how the general backtrack algorithm is implemented in GAP and which parts you have to modify if
you want to write your own backtrack routines.

Internal representation of ordered partitions. GAP represents an ordered partition as a record with the
following components.

points

a list of all points contained in the partition, such that the points of each cell from lie consecutively,

cellno

a list whose ith entry is the number of the cell which contains the point i,

firsts

a list such that points[firsts[j]] is the first point in points which is in cell j,

lengths

a list of the cell lengths.

Some of the information is redundant, e.g., the lengths could also be read off the firsts list, but since this need not
be increasing, it would require some searching. Similar for cellno, which could be replaced by a systematic search
of points, keeping track of what cell is currently being traversed. With the above components, the mth cell of a
partition P is expressed as P.points [P.firsts[m] .. P.firsts[m] + P.lengths[m] - 1] . The most
important operations, however, to be performed upon P are the splitting of a cell and the reuniting of the two parts.
Following the strategy of J. Leon, this is done as follows:

(1) The points which make up the cell that is to be split are sorted so that the ones that remain inside occupy positions
[P.firsts[m] .. last] in the list P.points (for a suitable value of last).

(2) The points at positions [last + 1 .. P.firsts[m] + P.lengths[m] - 1] will form the additional cell.
For this new cell requires additional entries are added to the lists P.firsts (namely, last+1) and P.lengths
(namely, P.firsts[m] + P.lengths[m] - last - 1).

(3) The entries of the sublist P.cellno [last+1 .. P.firsts[m] + P.lengths[m]-1] must be set to the
number of the new cell.

(4) The entry P.lengths[m] must be reduced to last - P.firsts[m] + 1.

Then reuniting the two cells requires only the reversal of steps 2 to 4 above. The list P.points need not be rearranged.

Functions for setting up an R-base. This subsection explains some GAP functions which are local to the
library file lib/stbcbckt.gi which contains the code for backtracking in permutation groups. They are mentioned
here because you might find them helpful when you want to implement you own backtracking function based on the
partition concept. An important argument to most of the functions is the R-base R, which you should regard as a black
box. We will tell you how to set it up, how to maintain it and where to pass it as argument, but it is not necessary for
you to know its internal representation. However, if you insist to learn the whole story: Here are the record components
from which an R-base is made up:

domain

the set Ω on which the group G operates

base

the sequence (a1, . . . , ar) of base points

partition

an ordered partition, initially Π0, this will be refined to Π1, . . . ,Πr during the backtrack algorithm

Section 2. The General Backtrack Algorithm with Ordered Partitions 55

where

a list such that ai lies in cell number where[i] of Πi

rfm

a list whose ith entry is a list of refinements which take Σi to Σi+1; the structure of a refinement is described
below

chain

a (copy of a) stabilizer chain for G (not if G is a symmetric group)

fix

only if G is a symmetric group: a list whose i entry contains Fixcells(Πi)

level

initially equal to chain, this will be changed to chains for the stabilizers Ga1...ai for i = 1, . . . , r during the
backtrack algorithm; if G is a symmetric group, only the number of moved points is stored for each stabilizer

lev

a list whose ith entry remembers the level entry for Ga1...ai−1

level2, lev2
a similar construction for a second group (used in intersection calculations), false otherwise. This second
group H activated if the R-base is constructed as EmptyRBase([G, H], Ω, Π0) (if G = H, GAP
sets level2 = true instead).

nextLevel

this is described below

As our guiding example, we present code for the function Centralizer which calculates the centralizer of an element
g in the group G. (The real code is more general and has a few more subtleties.)

1 Π0 := TrivialPartition(Ω);

2 R := EmptyRBase(G, Ω, Π0);

3 R.nextLevel := function(Π, rbase)

4 local fix, p, q, where;
5 NextRBasePoint(Π, rbase);

6 fix := Fixcells(Π);

7 for p in fix do

8 q := p ^ g;
9 where := IsolatePoint(Π, q);

10 if where <> false then

12 Add(fix, q);

13 ProcessFixpoint(R, q);

14 AddRefinement(R, "Centralizer", [Π.cellno[p], q, where]);

15 if Π.lengths[where] = 1 then

16 p := FixpointCellNo(Π, where);

17 ProcessFixpoint(R, p);

18 AddRefinement(R, "ProcessFixpoint", [p, where]);

19 fi;

20 fi;

21 od;

22 end;

23 return PartitionBacktrack(

24 G,

25 c -> g ^ c = g,
26 false,

27 R,

56 Chapter 8. Stabilizer Chains (preliminary)

28 [Π0, g],

29 L, R);

The list numbers below refer to the line numbers of the code above.

1. Ω is the set on which G acts and Π0 is the first member of the decreasing sequence of partitions mentioned in
41.11 in the reference manual. We set Π0 = (Ω), which is constructed as TrivialPartition(Ω)), but we
could have started with a finer partition, e.g., into unions of g-cycles of the same length.

2. This statement sets up the R-base in the variable R.

3. – 21. These lines define a function R.nextLevel which is called whenever an additional member in the
sequence Π0 ≥ Π1 ≥ . . . of partitions is needed. If Πi does not yet contain enough base points in one-point cells,
GAP will call R.nextLevel(Πi, R), and this function will choose a new base point ai+1, refine Πi to Πi+1
(thereby changing the first argument) and store all necessary information in R.

5. This statement selects a new base point ai+1, which is not yet in a one-point cell of Π and still moved by the
stabilizer Ga1...ai of the earlier base points. If certain points of Ω should are preferred as base point (e.g., because
they belong to long cycles of g), a list of points starting with the most wanted ones, can be given as an optional
third argument to NextRBasePoint (actually, this is done in the real code for Centralizer).

6. Fixcells(Π) returns the list of points in one-point cells of Π (ordered as the cells are ordered in Π).

7. For every point p ∈ fix, if we know the image p ^ g under c ∈ CG(e), we also know (p ^ g) ^ c = (p ^

c) ^ g. We therefore want to isolate these extra points in Π.

9. This statement puts point q in a cell of its own, returning in where the number of the cell of Π from which q was
taken. If q was already the only point in its cell, where = false instead.

12. This command does the necessary bookkeeping for the extra base point q: It prescribes q as next base in the
stabilizer chain for G (needed, e.g., in line 5) and returns false if q was already fixed the stabilizer of the
earlier base points (and true otherwise; this is not used here). Another call to ProcessFixpoint like this was
implicitly made by the function NextRBasePoint to register the chosen base point. By contrast, the point q was
not chosen this way, so ProcessFixpoint must be called explicitly for q.

13. This statement registers the function which will be used during the backtrack search to perform the corresponding
refinements on the “image partition” Σi (to yield the refined Σi+1). After choosing an image bi+1 for the base point
ai+1, GAP will compute Σi∧ ({bi+1},Ω−{bi+1}) and store this partition in I .partition, where I is a black
box similar to R, but corresponding to the current “image partition” (hence it is an “R-image” in analogy to the R-
base). Then GAP will call the function Refinements.Centralizer(R, I , Π.cellno[p], p, where
), with the then current values of R and I , but where Π.cellno[p], p, where still have the values they have
at the time of this AddRefinement command. This function call will further refine I .partition to yield Σi+1
as it is programmed in the function Refinements.Centralizer, which is described below. (The global variable
Refinements is a record which contains all refinement functions for all backtracking procedures.)

14. – 19. If the cell from which q was taken out had only two points, we now have an additional one-point cell. This
condition is checked in line 13 and if it is true, this extra fixpoint p is taken (line 15), processed like q before
(line 16) and is then (line 17) passed to another refinement function Refinements.ProcessFixpoint(R,

I , p, where), which is also described below.

23. – 29. This command starts the backtrack search. Its result will be the centralizer as a subgroup of G. Its arguments
are

24. the group we want to run through,

25. the property we want to test, as a GAP function,

Section 2. The General Backtrack Algorithm with Ordered Partitions 57

26. false if we are looking for a subgroup, true in the case of a representative search (when the result would be
one representative),

27. the R-base,

28. a list of data, to be stored in I .data, which has in position 1 the first member Σ0 of the decreasing sequence
of “image partitions” mentioned in 41.11 in the reference manual. In the centralizer example, position 2 contains
the element that is to be centralized. In the case of a representative search, i.e., a conjugacy test g ^ c ?= h, we
would have h instead of g here, and possibly a Σ0 different from Π0 (e.g., a partition into unions of h-cycles of
same length).

29. two subgroups L ≤ CG(g) and R ≤ CG(h) known in advance (we have L = R in the centralizer case).

Refinement functions for the backtrack search. The last subsection showed how the refinement process
leading from Πi to Πi+1 is coded in the function R.nextLevel, this has to be executed once the base point ai+1. The
analogous refinement step from Σi to Σi+1 must be performed for each choice of an image bi+1 for ai+1, and it will
depend on the corresponding value of Σi ∧ ({bi+1},Ω−{bi+1}). But before we can continue our centralizer example,
we must, for the interested reader, document the record components of the other black box I , as we did above for the
R-base black box R. Most of the components change as GAP walks up and down the levels of the search tree.

data

this will be mentioned below

depth

the level i in the search tree of the current node Σi

bimg

a list of images of the points in R.base

partition

the partition Σi of the current node

level

the stabilizer chain R.lev[i] at the current level

perm

a permutation mapping Fixcells(Πi) to Fixcells(Σi) (this implies mapping (a1, . . . , ai) to (b1, . . . , bi))

level2, perm2
a similar construction for the second stabilizer chain, false otherwise (and true if R.level2 = true)

As declared in the above code for Centralizer, the refinement is performed by the function Refinement.Centralizer(
R, I , Π.cellno[p], p, where). The functions in the record Refinement always take two additional argu-
ments before the ones specified in the AddRefinement call (in line 13 above), namely the R-base R and the current
value I of the “R-image”. In our example, p is a fixpoint of Π = Πi ∧ ({ai+1},Ω − {ai+1}) such that where =

Π.cellno[p ^ g]. The Refinement functions must return false if the refinement is unsuccessful (e.g., because
it leads to Σi+1 having different cell sizes from Πi+1) and true otherwise. Our particular function looks like this.

1 Refinements.Centralizer := function(R, I , cellno, p, where)

2 local Σ, q;
3 Σ := I .partition;

4 q := FixpointCellNo(Σ, cellno) ^ I .data[2];

5 return IsolatePoint(Σ, q) = where and ProcessFixpoint(I , p, q);

6 end;

The list numbers below refer to the line numbers of the code immediately above.

3. The current value of Σi ∧ ({bi+1},Ω− {bi+1}) is always found in I .partition.

58 Chapter 8. Stabilizer Chains (preliminary)

4. The image of the only point in cell number cellno = Πi.cellno[p] in Σ under g = I .data[2] is cal-
culated.

5. The function returns true only if the image q has the same cell number in Σ as p had in Π (i.e., where) and if
q can be prescribed as an image for p under the coset of the stabilizer Ga1...ai+1 · c where c ∈ G is an (already
constructed) element mapping the earlier base points a1, . . . , ai+1 to the already chosen images b1, . . . , bi+1.
This latter condition is tested by ProcessFixpoint(I , p, q) which, if successful, also does the necessary
bookkeeping in I . In analogy to the remark about line 12 in the program above, the chosen image bi+1 for the
base point ai+1 has already been processed implicitly by the function PartitionBacktrack, and this processing
includes the construction of an element c ∈ G which maps Fixcells(Πi) to Fixcells(Σi) and ai+1 to
bi+1. By contrast, the extra fixpoints p and q in Πi+1 and Σi+1 were not chosen automatically, so they require an
explicit call of ProcessFixpoint, which replaces the element c by some c′ · c (with c′ ∈ Ga1...ai+1) which in
addition maps p to q, or returns false if this is impossible.

You should now be able to guess what Refinements.ProcessFixpoint(R, I , p, where) does: it simply
returns ProcessFixpoint(I , p, FixpointCellNo(I .partition, where)).

Summary. When you write your own backtrack functions using the partition technique, you have to supply an
R-base, including a component nextLevel, and the functions in the Refinements record which you need. Then you
can start the backtrack by passing the R-base and the additional data (for the data component of the “R-image”) to
PartitionBacktrack.

Functions for meeting ordered partitions. A kind of refinement that occurs in particular in the normalizer
calculation involves computing the meet of Π (cf. lines 6ff. above) with an arbitrary other partition Λ, not just with
one point. To do this efficiently, GAP uses the following two functions.

1 I StratMeetPartition(R, Π, Λ [, g])
I MeetPartitionStrat(R, I , Λ′ [, g′], strat)

Such a StratMeetPartition command would typically appear in the function call R.nextLevel(Π, R)

(during the refinement of Πi to Πi+1). This command replaces Π by Π ∧ Λ (thereby changing the second argument)
and returns a “meet strategy” strat. This is (for us) a black box which serves two purposes: First, it allows GAP
to calculate faster the corresponding meet Σ ∧ Λ′, which must then appear in a Refinements function (during the
refinement of Σi to Σi+1). It is faster to compute Σ ∧ Λ′ with the “meet strategy” of Π ∧ Λ because if the refinement
of Σ is successful at all, the intersection of a cell from the left hand side of the ∧ sign with a cell from the right hand
side must have the same size in both cases (and strat records these sizes, so that only non-empty intersections must be
calculated for Σ ∧ Λ′). Second, if there is a discrepancy between the behaviour prescribed by strat and the behaviour
observed when refining Σ, the refinement can immediately be abandoned.

On the other hand, if you only want to meet a partition Π with Λ for a one-time use, without recording a strategy, you
can simply type StratMeetPartition(Π, Λ) as in the following example, which also demonstrates some other
partition-related commands.

gap> P := Partition([[1,2],[3,4,5],[6]]);; Cells(P);

[[1, 2], [3, 4, 5], [6]]

gap> Q := Partition(OnTuplesTuples(last, (1,3,6)));; Cells(Q);

[[3, 2], [6, 4, 5], [1]]

gap> StratMeetPartition(P, Q);

[]

gap> # The ‘‘meet strategy’’ was not recorded, ignore this result.

gap> Cells(P);

[[1], [5, 4], [6], [2], [3]]

You can even say StratMeetPartition(Π, ∆) where ∆ is simple a subset of Ω, it will then be interpreted as
the partition (∆,Ω− ∆).

Section 2. The General Backtrack Algorithm with Ordered Partitions 59

GAP makes use of the advantages of a “meet strategy” if the refinement function in Refinements contains a Meet-
PartitionStrat command where strat is the “meet strategy” calculated by StratMeetPartition before. Such a
command replaces I .partition by its meet with Λ′, again changing the argument I . The necessary reversal of
these changes when backtracking from a node (and prescribing the next possible image for a base point) is automati-
cally done by the function PartitionBacktrack.

In all cases, an additional argument g means that the meet is to be taken not with Λ, but instead with Λ · g−1, where
operation on ordered partitions is meant cellwise (and setwise on each cell). (Analogously for the primed arguments.)

gap> P := Partition([[1,2],[3,4,5],[6]]);;

gap> StratMeetPartition(P, P, (1,6,3));; Cells(P);

[[1], [5, 4], [6], [2], [3]]

Note that P · (1, 3, 6) = Q.

Avoiding multiplication of permutations. In the description of the last subsections, the backtrack algorithm
constructs an element c ∈ G mapping the base points to the prescribed images and finally tests the property in question
for that element. During the construction, c is obtained as a product of transversal elements from the stabilizer chain
for G, and so multiplications of permutations are required for every c submitted to the test, even if the test fails (i.e.,
in our centralizer example, if g ^ c <> g). Even if the construction of c stops before images for all base points have
been chosen, because a refinement was unsuccessful, several multiplications will already have been performed by
(explicit or implicit) calls of ProcessFixpoint, and, actually, the general backtrack procedure implemented in GAP
avoids this.

For this purpose, GAP does not actually multiply the permutations but rather stores all the factors of the product in
a list. Specifically, instead of carrying out the multiplication in c 7→ c′ · c mentioned in the comment to line 5 of the
above program — where c′ ∈ Ga1...ai+1 is a product of factorized inverse transversal elements, see 41.8 in the reference
manual — GAP appends the list of these factorized inverse transversal elements (giving c′) to the list of factors already
collected for c. Here c′ is multiplied from the left and is itself a product of inverses of strong generators of G, but GAP
simply spares itself all the work of inverting permutations and stores only a “list of inverses”, whose product is then
(c′ · c)−1 (which is the new value of c−1). The “list of inverses” is extended this way whenever ProcessFixpoint is
called to improve c.

The product has to be multiplied out only when the property is finally tested for the element c. But it is often possible
to delay the multiplication even further, namely until after the test, so that no multiplication is required in the case of an
unsuccessful test. Then the test itself must be carried out with the factorized version of the element c. For this purpose,
PartitionBacktrack can be passed its second argument (the property in question) in a different way, not as a single
GAP function, but as a list like in lines 2–4 of the following alternative excerpt from the code for Centralizer.

1 return PartitionBacktrack(G,

2 [g, g,
3 OnPoints,

4 c -> c!.lftObj = c!.rgtObj],

5 false, R, [Π0, g], L, R);

The test for c to have the property in question is of the form opr(left, c) = right where opr is an operation
function as explained in 39.11 in the reference manual. In other words, c passes the test if and only if it maps a
“left object” to a “right object” under a certain operation. In the centralizer example, we have opr = OnPoints and
left = right = g, but in a conjugacy test, we would have right = h.

2. Two first two entries (here g and g) are the values of left and right.

3. The third entry (here OnPoints) is the operation opr.

4. The fourth entry is the test to be performed upon the mapped left object left and preimage of the right object opr(
right, c^-1). Here GAP operates with the inverse of c because this is the product of the permutations stored
in the “list of inverses”. The preimage of right under c is then calculated by mapping right with the factors of
c−1 one by one, without the need to multiply these factors. This mapping of right is automatically done by the

60 Chapter 8. Stabilizer Chains (preliminary)

ProcessFixpoint function whenever c is extended, the current value of right is always stored in c!.rgtObj.
When the test given by the fourth entry is finally performed, the element c has two components c!.lftObj =

left and c!.rgtObj = opr(right, c^-1), which must be used to express the desired relation as a function of
c. In our centralizer example, we simply have to test whether they are equal.

8.3 Stabilizer Chains for Automorphisms Acting on Enumerators

This section describes a way of representing the automorphism group of a group as permutation group, following
[Sim97]. The code however is not yet included in the GAP library.

In this section we present an example in which objects we already know (namely, automorphisms of solvable groups)
are equipped with the permutation-like operations ^ and / for action on positive integers. To achieve this, we must
define a new type of objects which behave like permutations but are represented as automorphisms acting on an
enumerator. Our goal is to generalize the Schreier-Sims algorithm for construction of a stabilizer chain to groups of
such new automorphisms.

An operation domain for automorphisms. The idea we describe here is due to C. Sims. We consider a group
A of automorphisms of a group G, given by generators, and we would like to know its order. Of course we could
follow the strategy of the Schreier-Sims algorithm (described in 41.5 in the reference manual) for A acting on G. This
would involve a call of StabChainStrong(EmptyStabChain([], One(A)), GroupGenerators(A)

) where StabChainStrong is a function as the one described in the pseudo-code below:

StabChainStrong := function(S, newgens)

Extend the Schreier tree of S with newgens.
for sch in Schreier generators do

if sch /∈ S.stabilizer then

StabChainStrong(S.stabilizer, [sch]);

fi;

od;

end;

The membership test sch /∈ S.stabilizer can be performed because the stabilizer chain of S.stabilizer is al-
ready correct at that moment. We even know a base in advance, namely any generating set for G. Fix such a generating
set (g1, . . . , gd) and observe that this base is generally very short compared to the degree |G| of the operation. The
problem with the Schreier-Sims algorithm, however, is then that the length of the first basic orbit g1 · A would already
have the magnitude of |G|, and the basic orbits at deeper levels would not be much shorter. For the advantage of a
short base we pay the high price of long basic orbits, since the product of the (few) basic orbit lengths must equal |A|.
Such long orbits make the Schreier-Sims algorithm infeasible, so we have to look for a longer base with shorter basic
orbits.

Assume that G is solvable and choose a characteristic series with elementary abelian factors. For the sake of sim-
plicity we assume that N < G is an elementary abelian characteristic subgroup with elementary abelian factor group
G/N. Since N is characteristic, A also acts as a group of automorphisms on the factor group G/N, but of course not
necessarily faithfully. To retain a faithful action, we let A act on the disjoint union G/N with G, and choose as base
(g1N, . . . , gdN, g1, . . . , gd). Now the first d basic orbits lie inside G/N and can have length at most [G : N]. Since
the base points g1N, . . . , gdN form a generating set for G/N, their iterated stabilizer A(d+1) acts trivially on the factor
group G/N, i.e., it leaves the cosets giN invariant. Accordingly, the next d basic orbits lie inside giN (for i = 1, . . . , d)
and can have length at most |N|.
Generalizing this method to a characteristic series G = N0 > N1 > . . . > Nl = {1} of length l > 2, we can always
find a base of length l · d such that each basic orbit is contained in a coset of a characteristic factor, i.e. in a set of the
form giNj−1/Nj (where gi is one of the generators of G and 1 ≤ j ≤ l). In particular, the length of the basic orbits is
bounded by the size of the corresponding characteristic factors. To implement a Schreier-Sims algorithm for such a
base, we must be able to let automorphisms act on cosets of characteristic factors giNj−1/Nj, for varying i and j. We

Section 3. Stabilizer Chains for Automorphisms Acting on Enumerators 61

would like to translate each such action into an action on {1, . . . , [Nj−1 : Nj]}, because then we need not enumerate the
operation domain

G/N1 ∪̇ G/N2 ∪̇ . . . ∪̇ G/Nl

as a whole. Enumerating it as a whole would result in basic orbits like orbit ⊆ {1001, . . . , 1100} with a transver-
sal list whose first 1000 entries would be unbound, but still require 4 bytes of memory each (see 41.8 in the reference
manual).

Identifying each coset giNj−1/Nj into {1, . . . , [Nj−1 : Nj]} of course means that we have to change the action of the
automorphisms on every level of the stabilizer chain. Such flexibility is not possible with permutations because their
effect on positive integers is “hardwired” into them, but we can install new operations for automorphisms.

Enumerators for cosets of characteristic factors. So far we have not used the fact that the characteristic
factors are elementary abelian, but we will do so from here on. Our first task is to implement an enumerator (see
28.2.7 and 21.23 in the reference manual) for a coset of a characteristic factor in a solvable group G. We assume that
such a coset gN/M is given by

(1) a pcgs for the group G (see 43.2.1 in the reference manual), let n = Length(pcgs);

(2) a range range = [start .. stop] indicating that N = 〈pcgs{ [start .. n] } 〉 and M = 〈pcgs{ [stop
+ 1 .. n] } 〉, i.e., the cosets of pcgs{ range } form a base for the vector space N/M;

(3) the representative g.

We first define a new representation for such enumerators and then construct them by simply putting these three pieces
of data into a record object. The enumerator should behave as a list of group elements (representing cosets modulo
M), consequently, its family will be the family of the pcgs itself.

IsCosetSolvableFactorEnumeratorRep := NewRepresentation

("isCosetSolvableFactorEnumerator", IsEnumerator,

["pcgs", "range", "representative"]);

EnumeratorCosetSolvableFactor := function(pcgs, range, g)

return Objectify(NewKind(FamilyObj(pcgs),

IsCosetSolvableFactorEnumeratorRep),

rec(pcgs := pcgs,

range := range,

representative := g));

end;

The definition of the operations Length, \[\] and Position is now straightforward. The code has sometimes been
abbreviated and is meant “cum grano salis”, e.g., the declaration of the local variables has been left out.

InstallMethod(Length, [IsCosetSolvableFactorEnumeratorRep],

enum -> Product(RelativeOrdersPcgs(enum!.pcgs){ enum!.range }));

InstallMethod(\[\], [IsCosetSolvableFactorEnumeratorRep,

IsPosRat and IsInt],

function(enum, pos)

elm := ();

pos := pos - 1;

for i in Reversed(enum!.range) do

p := RelativeOrderOfPcElement(enum!.pcgs, i);

elm := enum!.pcgs[i] ^ (pos mod p) * elm;

pos := QuoInt(pos, p);

od;

return enum!.representative * elm;

62 Chapter 8. Stabilizer Chains (preliminary)

end);

InstallMethod(Position, [IsCosetSolvableFactorEnumeratorRep,

IsObject, IsZeroCyc],

function(enum, elm, zero)

exp := ExponentsOfPcElement(enum!.pcgs,

LeftQuotient(enum!.representative, elm));

pos := 0;

for i in enum!.range do

pos := pos * RelativeOrderOfPcElement(pcgs, i) + exp[i];

od;

return pos + 1;

end);

Making automorphisms act on such enumerators. Our next task is to make automorphisms of the solv-
able group pcgs!.group act on [1 .. Length(enum)] for such an enumerator enum. We achieve this by
introducing a new representation of automorphisms on enumerators and by putting the enumerator together with the
automorphism into an object which behaves like a permutation. Turning an ordinary automorphism into such a special
automorphism requires then the construction of a new object which has the new kind. We provide an operation PermO-
nEnumerator(model, aut) which constructs such a new object having the same kind as model, but representing
the automorphism aut. So aut can be either an ordinary automorphism or one which already has an enumerator in its
kind, but perhaps different from the one we want (i.e. from the one in model).

IsPermOnEnumerator := NewCategory("IsPermOnEnumerator",

IsMultiplicativeElementWithInverse and IsPerm);

IsPermOnEnumeratorDefaultRep := NewRepresentation

("IsPermOnEnumeratorDefaultRep",

IsPermOnEnumerator and IsAttributeStoringRep,

["perm"]);

PermOnEnumerator := NewOperation("PermOnEnumerator",

[IsEnumerator, IsObject]);

InstallMethod(PermOnEnumerator,

[IsEnumerator, IsObject],

function(enum, a)

SetFilterObj(a, IsMultiplicativeElementWithInverse);

a := Objectify(NewKind(PermutationsOnEnumeratorsFamily,

IsPermOnEnumeratorDefaultRep),

rec(perm := a));

SetEnumerator(a, enum);

return a;

end);

InstallMethod(PermOnEnumerator,

[IsEnumerator, IsPermOnEnumeratorDefaultRep],

function(enum, a)

a := Objectify(TypeObj(a), rec(perm := a!.perm));

SetEnumerator(a, enum);

return a;

end);

Section 3. Stabilizer Chains for Automorphisms Acting on Enumerators 63

Next we have to install new methods for the operations which calculate the product of two automorphisms, because
this product must again have the right kind. We also have to write a function which uses the enumerators to apply such
an automorphism to positive integers.

InstallMethod(*, IsIdenticalObj,

[IsPermOnEnumeratorDefaultRep, IsPermOnEnumeratorDefaultRep],

function(a, b)

perm := a!.perm * b!.perm;

SetIsBijective(perm, true);

return PermOnEnumerator(Enumerator(a), perm);

end);

InstallMethod(\^,

[IsPosRat and IsInt, IsPermOnEnumeratorDefaultRep],

function(p, a)

return PositionCanonical(Enumerator(a),

Enumerator(a)[p] ^ a!.perm);

end);

How the corresponding methods for p / aut and aut ^ n look like is obvious.

Now we can formulate the recursive procedure StabChainStrong which extends the stabilizer chain by adding in
new generators newgens. We content ourselves again with pseudo-code, emphasizing only the lines which set the
EnumeratorDomainPermutation. We assume that initially S is a stabilizer chain for the trivial subgroup with a
level for each pair (range, g) characterizing an enumerator (as described above). We also assume that the identity

element at each level already has the kind corresponding to that level.

StabChainStrong := function(S, newgens)

for i in [1 .. Length(newgens)] do

newgens[i] := AutomorphismOnEnumerator(S.identity, newgens[i]);

od;

Extend the Schreier tree of S with newgens.
for sch in Schreier generators do

if sch /∈ S.stabilizer then

StabChainStrong(S.stabilizer, [sch]);

fi;

od;

end;

Bibliography

[Sim97] Charles C. Sims. Computing with subgroups of automorphism groups of finite groups. In Wolfgang Küchlin,
editor, Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation, pages
40–403. The Association for Computing Machinery, ACM Press, 1997.

Index
This index covers only this manual. A page number in italics refers to a whole section which is devoted to the
indexed subject. Keywords are sorted with case and spaces ignored, e.g., “PermutationCharacter” comes before
“permutation group”.

., 16
%, 24
%display, 25
%enddisplay, 25
\., 16
\>, 16
\Appendices, 11, 13
\BeginningOfBook, 11, 12
\Bibliography, 11, 13
\C, 20
\Chapter, 14
\Chapters, 11, 13
\Colophon, 11, 12
\Day, 13
\Declaration, 27
\EndOfBook, 11, 13
\F, 20
\FileHeader, 27
\FrontMatter, 11, 12
\Index, 11, 13
\Mailto, 16
\Month, 13
\N, 20
\OneColumnTableOfContents, 11, 12
\Package, 11, 12, 16
\PseudoInput, 13
\Q, 20
\R, 20
\Section, 14
\TableOfContents, 11, 12
\TitlePage, 11, 12
\Today, 13
\URL, 16
\UseGapDocReferences, 12
\UseReferences, 11, 12
\Year, 13
\Z, 20
\accent127, 16

\atindex, 16
\beginexample, 22

indicating unstable output, 22
\beginitems, 20
\beginlist, 20
\begintt, 22
\calR, 20
\endexample, 22
\enditems, 20
\endlist, 20
\endtt, 22
\fmark, 16
\index, 16
\indextt, 16
\item, 20
\itemitem, 20
\kernttindent, 16
\lq, 16
\matrix, 23
\nolabel, use in index and label suppression, 15
\null, use in index suppression, 15
\package, 11, 16
\pif, 16
\rq, 16

A
A, Attribute mark-up, 16
Accessing Weak Pointer Objects as Lists, 51
An Example of a GAP Package, 36

B
bibtex, 26
buildman.pe, 27

C
C, Category mark-up, 16
Calling of and Communication with External Binaries,

39
Catering for Plain Text and HTML Formats, 25
Chapters and Sections, 14

66 Index

command mark-up, 16
continuation, 24
Copying Weak Pointer Objects, 52
CreateCompletionFilesPackage, 40

D
Declaration and Implementation Part, 38
DeclareAutoreadableVariables, 40
DeclareAutoreadableVariables, 40
document formats, for help books, 43

E
ElmWPObj, 51
Examples, Lists, and Verbatim, 20
ExternalSet, 47

F
F, Function mark-up, 16
File Structure, 32
File Types, 32
Finding Implementations in the Library, 33
foa triples, 45

G
G-sets, 47
GAPDocManualLab, 41
GAPInfo.Version, 40
gapmacro.tex, 11
Generalized Conjugation Technique, 53
generalized conjugation technique, 53

H
HELP ADD BOOK, 42

I
indexing commands, 16
init.g, for a GAP package, 38
In Parent Attributes, 46
InParentFOA, 46
Installation of GAP Package Binaries, 38
Installing a Help Book, 42
Introducing new Viewer for the Online Help, 44
IsBOundElmWPObj, 51

K
KeyDependentOperation, 45
Key Dependent Operations, 45

L
Labels and References, 15
LengthWPObj, 51
list environment, compact description, 20

description, 20
ordered, 21
unordered, 21

Low Level Access Functions for Weak Pointer Objects,
51

M
makeindex, 26
manual.bbl, 26
manual.bib, 26
manual.dvi, 26
manual.lab, 26
manual.mst, 26
manual.six, 26
manual.tex, 26
manualindex, 26
mathematics alignments, 23
mathematics displays, 23
MeetPartitionStrat, 58
meet strategy, 58

O
O, Operation mark-up, 16
Operation Functions, 47
OrbitishFO, 48
Orbits, 47
OrbitsishOperation, 47
ordered partitions, 54

P
P, Property mark-up, 16
Package Completion, 40
Producing a Manual, 26

R
R, Representation mark-up, 16
read.g, for a GAP package, 38
README, for a GAP package, 36
reference to a label, 15
Requesting one GAP Package from within Another, 37

S
SetElmWPObj, 51
Stabilizer Chains for Automorphisms Acting on

Enumerators, 60
Standalone Programs in a GAP Package, 38
StratMeetPartition, 58
subsection mark-up, 16
Suppressing Indexing and Labelling of a Section and

Resolving Label Clashes, 15

Index 67

T
tables, 23
Tables, Displayed Mathematics and Mathematics

Alignments, 23
Test for the Existence of GAP Package Binaries, 39
Testing the Examples, 24
TeX Macros, 16
TeX Macros for Domains, 20
The Files of a GAP Package, 35
The GASMAN Interface for Weak Pointer Objects, 52
The General Backtrack Algorithm with Ordered

Partitions, 54
The Help Book Handler, 43
The Main File, 11
The manual.six File, 42
The PackageInfo.g File, 37
The WWW Homepage of a Package, 37

U
Umlauts, 26

UnbindElmWPObj, 51
Undocumented Variables, 33
Usage of the Percent Symbol, 24
Using buildman.pe, 27

V
V, (global) Variable mark-up, 16
verbatim environments, 22
Version Numbers, 40

W
WeakPointerObj, 50
WeakPointerObj, 50
Weak Pointer Objects, 50
Wrapping Up a GAP Package, 41
Writing Documentation, 36

Z
zoo, 41

	
	Acknowledgement
	Contents
	Copyright Notice
	About: Extending GAP
	The gapmacro.tex Manual Format
	The Main File
	Chapters and Sections
	Suppressing Indexing and Labelling of a Section and Resolving Label Clashes
	Labels and References
	TeX Macros
	TeX Macros for Domains
	Examples, Lists, and Verbatim
	Tables, Displayed Mathematics and Mathematics Alignments
	Testing the Examples
	Usage of the Percent Symbol
	Catering for Plain Text and HTML Formats
	Umlauts
	Producing a Manual
	Using buildman.pe

	Library Files
	File Types
	File Structure
	Finding Implementations in the Library
	Undocumented Variables

	Writing a GAP Package
	The Files of a GAP Package
	Writing Documentation
	An Example of a GAP Package
	The WWW Homepage of a Package
	The PackageInfo.g File
	Requesting one GAP Package from within Another
	Declaration and Implementation Part
	Standalone Programs in a GAP Package
	Installation of GAP Package Binaries
	Test for the Existence of GAP Package Binaries
	Calling of and Communication with External Binaries
	Package Completion
	DeclareAutoreadableVariables
	Version Numbers
	Wrapping Up a GAP Package

	Interface to the GAP Help System
	Installing a Help Book
	The manual.six File
	The Help Book Handler
	Introducing new Viewer for the Online Help

	Function-Operation-Attribute Triples
	Key Dependent Operations
	In Parent Attributes
	Operation Functions

	Weak Pointers
	Weak Pointer Objects
	WeakPointerObj
	Low Level Access Functions for Weak Pointer Objects
	Accessing Weak Pointer Objects as Lists
	Copying Weak Pointer Objects
	The GASMAN Interface for Weak Pointer Objects

	Stabilizer Chains (preliminary)
	Generalized Conjugation Technique
	The General Backtrack Algorithm with Ordered Partitions
	Stabilizer Chains for Automorphisms Acting on Enumerators

	Bibliography
	Index
	
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W
	Z

