GAP

Release 4.4.12
17 December 2008

Programming in GAP 4

The GAP Group

http://www.gap-system.org

Acknowledgement

We would like to thank the many people who have made contributions of

various kinds to the development of GAP since 1986, in particular:

Isabel M. Aradjo, Robert Arthur, Hans Ulrich Besche, Thomas Bischops,
Oliver Bonten, Thomas Breuer, Frank Celler, Gene Cooperman, Bettina Eick,
Volkmar Felsch, Franz Géhler, Greg Gamble, Willem de Graaf,
Burkhard Hofling, Jens Hollmann, Derek Holt, Erzsébet Horvéth,
Alexander Hulpke, Ansgar Kaup, Susanne Keitemeier, Steve Linton,
Frank Liibeck, Bohdan Majewski, Johannes Meier, Thomas Merkwitz,
Wolfgang Merkwitz, James Mitchell, Jiirgen Mnich, Robert F. Morse,
Scott Murray, Joachim Neubiiser, Max Neunhoffer,

Werner Nickel, Alice Niemeyer, Dima Pasechnik, Gotz Pfeiffer,

Udo Polis, Ferenc Rakoczi, Sarah Rees, Edmund Robertson,

Colva Roney-Dougal, Ute Schiffer, Jack Schmidt, Martin Schonert,
Akos Seress, Andrew Solomon, Heiko Theiflen, Rob Wainwright,

Alex Wegner, Chris Wensley and Charles Wright.

The following list gives the authors, indicated by A, who designed the code in the first place as well as the current
maintainers, indicated by M of the various modules of which GAP is composed.

Since the process of modularization was started only recently, there might be omissions both in scope and in contrib-
utors. The compilers of the manual apologize for any such errors and promise to rectify them in future editions.

Kernel
Frank Celler (A), Steve Linton (AM), Frank Liibeck (AM), Werner Nickel (AM), Martin Schonert (A)

Automorphism groups of finite pc groups
Bettina Eick (A), Werner Nickel (M)

Binary Relations
Robert Morse (AM), Andrew Solomon (A)

Characters and Character Degrees of certain solvable groups
Hans Ulrich Besche (A), Thomas Breuer (AM)

Classes in nonsolvable groups
Alexander Hulpke (AM)

Classical Groups
Thomas Breuer (AM), Frank Celler (A), Stefan Kohl (AM), Frank Liibeck (AM), Heiko Theiflen (A)

4 Acknowledgement

Congruences of magmas, semigroups and monoids
Robert Morse (AM), Andrew Solomon (A)

Cosets and Double Cosets
Alexander Hulpke (AM)

Cyclotomics
Thomas Breuer (AM)

Dixon-Schneider Algorithm
Alexander Hulpke (AM)

Documentation Utilities
Frank Celler (A), Heiko Theiflen (A), Alexander Hulpke (A), Willem de Graaf (A), Steve Linton (A), Werner
Nickel (A), Greg Gamble (AM)

Factor groups
Alexander Hulpke (AM)

Finitely presented groups
Volkmar Felsch (A), Alexander Hulpke (AM), Martin Schoenert (A)

Finitely presented monoids and semigroups
Isabel Aradjo (A), Derek Holt (A), Alexander Hulpke (A), James Mitchell (M), Gotz Pfeiffer (A), Andrew
Solomon (A)

GAP for MacOS
Burkhard Hofling (AM)

Group actions
Heiko Theiflen (A) and Alexander Hulpke (AM)

Homomorphism search
Alexander Hulpke (AM)

Homomorphisms for finitely presented groups
Alexander Hulpke (AM)

Identification of Galois groups
Alexander Hulpke (AM)

Intersection of subgroups of finite pc groups
Frank Celler (A), Bettina Eick (A), Werner Nickel (M)

Irreducible Modules over finite fields for finite pc groups
Bettina Eick (AM)

Isomorphism testing with random methods
Hans Ulrich Besche (AM), Bettina Eick (AM)

Lie algebras
Thomas Breuer (A), Craig Struble (A), Juergen Wisliceny (A), Willem A. de Graaf (AM)

Monomiality Questions
Thomas Breuer (AM), Erzsébet Horvath (A)

Multiplier and Schur cover
Werner Nickel (AM), Alexander Hulpke (AM)

One-Cohomology and Complements
Frank Celler (A) and Alexander Hulpke (AM)

Partition Backtrack algorithm
Heiko Theiflen (A), Alexander Hulpke (M)

Acknowledgement

Permutation group composition series
Akos Seress (AM)

Permutation group homomorphisms
Akos Seress (AM), Heiko TheiBen (A), Alexander Hulpke (M)

Permutation Group Pcgs
Heiko Theiflen (A), Alexander Hulpke (M)

Possible Permutation Characters
Thomas Breuer (AM), Gotz Pfeiffer (A)

Possible Class Fusions, Possible Power Maps Thomas Breuer (AM)
Primitive groups library
Heiko Theiflen (A), Colva Roney-Dougal (AM)

Properties and attributes of finite pc groups
Frank Celler (A), Bettina Eick (A), Werner Nickel (M)

Random Schreier-Sims
Akos Seress (AM)

Rational Functions
Frank Celler (A) and Alexander Hulpke (AM)

Semigroup relations
Isabel Araujo (A), Robert F. Morse (AM), Andrew Solomon (A)

Special Pcgs for finite pc groups
Bettina Eick (AM)

Stabilizer Chains
Akos Seress (AM), Heiko TheiB3en (A), Alexander Hulpke (M)

Strings and Characters
Martin Schonert (A), Frank Celler (A), Thomas Breuer (A), Frank Liibeck (AM)

Structure Descriptions for Finite Groups
Stefan Kohl (AM), Markus Piischel(A), Sebastian Egner(A)

Subgroup lattice
Martin Schonert (A), Alexander Hulpke (AM)

Subgroup lattice for solvable groups
Alexander Hulpke (AM)

Subgroup presentations
Volkmar Felsch (A), Werner Nickel (M)

The Help System
Frank Celler (A), Frank Liibeck (AM)

Tietze transformations
Volkmar Felsch (A), Werner Nickel (M)

Transformation semigroups
Isabel Araujo (A), Robert Arthur (A), Robert F. Morse (AM), Andrew Solomon (A)

Transitive groups library
Alexander Hulpke (AM)

Two-cohomology and extensions of finite pc groups
Bettina Eick (AM)

2.1
22
23
24
2.5
2.6
2.7
2.8

3.1
32
33
34
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

Copyright Notice

About Programming in GAP
Method Selection

Operations and Methods

Method Installation

Applicable Methods and Method Selection

Partial Methods

Redispatching .

Immediate Methods

Logical Implications

Operations and Mathematical Terms
Creating New Objects

Creating Categories

Creating Representations

Creating Attributes and Properties
Creating Other Filters

Creating Operations

Creating Families

Creating Types

Creating Objects

Component Objects

Positional Objects

Implementing New List Objects
Example — Constructing Enumerators

Example — Constructing Iterators

10
11
11
11
12
13
13
13
14
14
16
16
17
17
18
18
18
20
20
21
22
23
24
26

3.14

3.15
3.16
3.17
3.18

4.1
4.2

4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

4.12

5.1

52
53

Contents

Arithmetic Issues in the Implementation of

New Kinds of Lists 27
External Representation 28
Mutability and Copying 29
Global Variables in the Library . . . 31
Declaration and Implementation Part . 33
Examples of Extending the System 34
Addition of a Method 34
Extending the Range of Definition of an
Existing Operation 35
Enforcing Property Tests 36
Adding a new Operation 36
Adding a new Attribute e 37
Adding a new Representation .o 38
Components versus Attributes . . . 39
Adding new Concepts 39
Example: M-groups 40
Example: Groups with a word length . 40
Example: Groups with a decomposition as
semidirect product 41
Creating Own Arithmetic Objects . . 41
An Example — Residue Class Rings 44
A First Attempt to Implement Elements of
Residue Class Rings Ce e 44
Why Proceed in a Different Way? . . 45

A Second Attempt to Implement Elements
of Residue Class Rings 46

Contents

54

5.5

6.1

6.2

Compatibility of Residue Class Rings with
Prime Fields

Further Improvements in Implementing
Residue Class Rings

An Example — Designing Arithmetic
Operations

New Arithmetic Operations vs. New
Objects

Designing new Multiplicative Objects
Bibliography

Index

55

61

62

62
63
68
69

Copyright Notice

Copyright ©) (1987-2004) by the GAP Group,

incorporating the Copyright (©) 1999, 2000 by School of Mathematical and Computational Sciences, University of
St Andrews, North Haugh, St Andrews, Fife KY16 9SS, Scotland

being the Copyright (©) 1992 by Lehrstuhl D fiir Mathematik, RWTH, 52056 Aachen, Germany, transferred to St An-
drews on July 21st, 1997.

except for files in the distribution, which have an explicit different copyright statement. In particular, the copyright of
packages distributed with GAP is usually with the package authors or their institutions.

GARP is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. For
details, see the file GPL in the etc directory of the GAP distribution or see

http://www.gnu.org/licenses/gpl.html

If you obtain GAP please send us a short notice to that effect, e.g., an e-mail message to the address support@gap-system.org,J]
containing your full name and address. This allows us to keep track of the number of GAP users.

If you publish a mathematical result that was partly obtained using GAP, please cite GAP, just as you would cite
another paper that you used (see below for sample citation). Also we would appreciate if you could inform us about
such a paper.

Specifically, please refer to

[GAP] The GAP Group, GAP --- Groups, Algorithms, and Programming,
Version 4.4.12; 2012
(http://www.gap-system.org)

GARP is distributed by us without any warranty, to the extent permitted by applicable state law. We distribute GAP as
is without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose.

The entire risk as to the quality and performance of the program is with you. Should GAP prove defective, you assume
the cost of all necessary servicing, repair or correction.

In no case unless required by applicable law will we, and/or any other party who may modify and redistribute GAP
as permitted above, be liable to you for damages, including lost profits, lost monies or other special, incidental or
consequential damages arising out of the use or inability to use GAP.

You are permitted to modify and redistribute GAP, but you are not allowed to restrict further redistribution. That is to
say proprietary modifications will not be allowed. We want all versions of GAP to remain free.

If you modify any part of GAP and redistribute it, you must supply a README document. This should specify what
modifications you made in which files. We do not want to take credit or be blamed for your modifications.

Of course we are interested in all of your modifications. In particular we would like to see bug-fixes, improvements
and new functions. So again we would appreciate it if you would inform us about all modifications you make.

About Programming
in GAP

This is one of four parts of the GAP documentation, the others being the GAP Tutorial, a beginner’s introduction to
GAP, the GAP Reference Manual, which contains the official definitions of GAP, and Extending GAP, which
explains how to create files and functions that will work together with mechanisms built in GAP, how to write
documentation, and so on.

This manual is divided into chapters. Each chapter is divided into sections, and within each section, important defini-
tions are numbered. References therefore are triples.

The chapters 2 and 3 of this manual describe how the knowledge about GAP objects is used by the system, via the
so-called method selection mechanism, and how such knowledge resp. objects with such knowledge can be created.

Chapter 4 gives some simple examples of how to add new functionality to the system.

A more involved example for the design of new GAP objects can be found in Chapter 5. In particular, see Sections 5.1
and 5.2 for finding out whether this manual is useful for you at all. One more example is discussed in Chapter 6.

Pages are numbered consecutively in each of the four manuals. For manual conventions, see Section 1.1 in the Refer-
ence Manual.

Method Selection

This chapter explains how GAP decides which function to call for which types of objects. It assumes that you have
read the chapters about objects (Chapter 12) and types (Chapter 13) in the Reference Manual.

An operation is a special GAP function that bundles a set of functions, its methods.
All methods of an operation compute the same result. But each method is installed for specific types of arguments.
If an operation is called with a tuple of arguments, one of the applicable methods is selected and called.

Special cases of methods are partial methods, immediate methods, and logical implications.

2.1 Operations and Methods

Operations are functions in the category IsOperation (see 5.4.2 in the Reference Manual).

So on the one hand, operations are GAP functions, that is, they can be applied to arguments and return a result or
cause a side-effect.

On the other hand, operations are more. Namely, an operation corresponds to a set of GAP functions, called the
methods of the operation.

Each call of an operation causes a suitable method to be selected and then called. The choice of which method to select
is made according to the types of the arguments, the underlying mechanism is described in the following sections.

Examples of operations are the binary infix operators =, + etc., and Print0b]j is the operation that is called for each
argument of Print.

Also all attributes and properties are operations. Each attribute has a special method which is called if the attribute
value is already stored; this method of course simply returns this value.

The setter of an attribute is called automatically if an attribute value has been computed. Attribute setters are opera-
tions, too. They have a default method that ignores the request to store the value. Depending on the type of the object,
there may be another method to store the value in a suitable way, and then set the attribute tester for the object to
true.

2.2 Method Installation

In order to describe what it means to select a method of an operation, we must describe how the methods are connected
to their operations.

InstallMethod(oprl,infol [,famp] ,args-filts[,vall ,method) F

installs a function method method for the operation opr; args-filts should be a list of requirements for the arguments,
each entry being a filter; if supplied info should be a short but informative string that describes for what situation the
method is installed, famp should be a function to be applied to the families of the arguments, and val should be an
integer that measures the priority of the method.

The default values for info, famp, and val are the empty string, the function ReturnTrue, and the integer zero,
respectively.

The exact meaning of the arguments famp, args-filts, and val is explained in Section 2.3.

2»

12 Chapter 2. Method Selection

opr expects its methods to require certain filters for their arguments. For example, the argument of a method for the
operation Zero must be in the category IsAdditiveElementWithZero. It is not possible to use InstallMethod to
install a method for which the entries of args-filts do not imply the respective requirements of the operation opr. If
one wants to override this restriction, one has to use InstallOtherMethod instead.

InstallOtherMethod(oprl,infol [,famp] ,args-filts[,vall ,method) F

installs a function method method for the operation opr, in the same way as for InstallMethod (see 2.2.1), but
without the restriction that the number of arguments must match the declaration of opr and without the restriction that
args-filts imply the respective requirements of the operation opr.

For attributes and properties there is InstallImmediateMethod (see 2.6.1).
For declaring that a filter is implied by other filters there is InstallTrueMethod (see 2.7.1).

2.3 Applicable Methods and Method Selection

A method installed as above is applicable for an arguments tuple if the following conditions are satisfied.

The number of arguments equals the length of the list args-filts, the i-th argument lies in the filter args-filts [i], and
famp returns true when applied to the families of the arguments. The maximal number of arguments supported for
methods is six, one gets an error message if one tries to install a method with at least seven arguments.

So args-filt describes conditions for each argument, and famp describes a relation between the arguments.

For unary operations such as attributes and properties, there is no such relation to postulate, famp is ReturnTrue
for these operations, a function that always returns true. For binary operations, the usual value of famp is IsIden-
ticalObj (see 12.5.1 in the Reference Manual), which means that both arguments must lie in the same family.

Note that any properties which occur among the filters in the filter list will not be tested by the method selection if
they are not yet known. (More exact: if prop is a property then the filter implicitly uses not prop but Hasprop and
prop.) If this is desired you must explicitly enforce a test (see section 2.5) below.

If no method is applicable, the error message no method found is signaled.

Otherwise, the applicable method with highest rank is selected and then called. This rank is given by the sum of the
ranks of the filters in the list args-filt, including involved filters, plus the number val used in the call of Install-
Method. So the argument val can be used to raise the priority of a method relative to other methods for opr.

Note that from the applicable methods, an efficient one shall be selected. This is a method that needs only little time
and storage for the computations.

It seems to be impossible for GAP to select an optimal method in all cases. The present ranking of methods is based
on the assumption that a method installed for a special situation shall be preferred to a method installed for a more
general situation.

For example, a method for computing a Sylow subgroup of a nilpotent group is expected to be more efficient than
a method for arbitrary groups. So the more specific method will be selected if GAP knows that the group given as
argument is nilpotent.

Of course there is no obvious way to decide between the efficiency of incommensurable methods. For example, take an
operation with one method for permutation groups, another method for nilpotent groups, but no method for nilpotent
permutation groups, and call this operation with a permutation group known to be nilpotent.

1»

1»

Section 6. Immediate Methods 13

2.4 Partial Methods
TryNextMethod ()

After a method has been selected and called, the method may recognize that it cannot compute the desired result, and
give up by calling TryNextMethod ().

In effect, the execution of the method is terminated, and the method selection calls the next method that is applicable
w.r.t. the original arguments. In other words, the applicable method is called that is subsequent to the one that called
TryNextMethod, according to decreasing rank of the methods.

For example, since every finite group of odd order is solvable, one may install a method for the property IsSolv-
ableGroup that checks whether the size of the argument is an odd integer, returns true if so, and gives up otherwise.

Care is needed if a partial method might modify the type of one of its arguments, for example by computing an attribute
or property. If this happens, and the type has really changed, then the method should not exit using TryNextMethod ()
but should call the operation again, as the new information in the type may cause some methods previously judged
inapplicable to be applicable. For example, if the above method for IsSolvableGroup actually computes the size,
(rather than just examining a stored size), then it must take care to check whether the type of the group has changed.

2.5 Redispatching

As mentioned above the method selection will not test unknown properties. In situations, in which algorithms are only
known (or implemented) under certain conditions, however such a test might be actually desired.

One way to achieve this would be to install the method under weaker conditions and explicitly test the properties first,
exiting via TryNextMethod (see 2.4.1) if some of them are not fulfilled. A problem of this approach however is that
such methods then automatically are ranked lower and that the code does not look nice.

A much better way is to use redispatching: Before deciding that no method has been found one tests these properties
and if they turn out to be true the method selection is started anew (and will then find a method).

This can be achieved via the following function:
RedispatchOnCondition(oper, fampred, reqs, cond, val) F

This function installs a method for the operation oper under the conditions fampred and regs which has absolute
value val; that is, the value of the filters regs is disregarded. cond is a list of filters. If not all the values of properties
involved in these filters are already known for actual arguments of the method, they are explicitly tested and if they are
fulfilled and stored after this test, the operation is dispatched again. Otherwise the method exits with TryNextMethod
(see 2.4.1). This can be used to enforce tests like IsFinite in situations when all existing methods require this
property. The list cond may have unbound entries in which case the corresponding argument is ignored for further
tests.

2.6 Immediate Methods

Usually a method is called only if its operation has been called and if this method has been selected.

For attributes and properties, one can install also immediate methods. An immediate method is called automatically
as soon as it is applicable to an object, provided that the value is not yet known. Afterwards the attribute setter is called
in order to store the value.

Note that in such a case GAP executes a computation for which it was not explicitly asked by the user. So one should
install only those methods as immediate methods that are extremely cheap. To emphasize this, immediate methods
are also called zero cost methods. The time for their execution should really be approximately zero.

An immediate method method for the attribute or property artr with requirement req is installed via
InstallImmediateMethod(attr, req, val, method)

where val is an integer value that measures the priority of method among the immediate methods for attr.

14 Chapter 2. Method Selection

Note the difference to InstallMethod (see 2.2.1) that no family predicate occurs because attr expects only one
argument, and that req is not a list of requirements but the argument requirement itself.

For example, the size of a permutation group can be computed very cheaply if a stabilizer chain of the group is known.
So it is reasonable to install an immediate method for Size with requirement IsGroup and Tester(stab), where
stab is the attribute corresponding to the stabilizer chain.

Another example would be the implementation of the conclusion that every finite group of prime power order is nilpo-
tent. This could be done by installing an immediate method for the attribute IsNilpotentGroup with requirement
IsGroup and Tester(Size). This method would then check whether the size is a finite prime power, return
true in this case and otherwise call TryNextMethod () (see 2.4.1). But this requires factoring of an integer, which
cannot be guaranteed to be very cheap, so one should not install this method as an immediate method.

Immediate methods are thought of as a possibility for objects to gain useful knowledge. They must not be used to force
the storing of “defining information” in an object. In other words, GAP should work even if all immediate methods
are invalidated.

2.7 Logical Implications

It may happen that a filter newfil shall be implied by another filter filt, which is usually a meet of other properties, or
the meet of some properties and some categories. Such a logical implication can be installed as an immediate method
for newfil that requires filt and that always returns true. It should be installed via

InstallTrueMethod(newfil, filt)

This has the effect that newfil becomes an implied filter of filt, see 13.2 in the Reference Manual.

For example, each cyclic group is abelian, each finite vector space is finite dimensional, and each division ring is
integral. The first of these implications is installed as follows.

InstallTrueMethod(IsCommutative, IsGroup and IsCyclic);

Contrary to other immediate methods, logical implications cannot be switched off. This means that after the above
implication has been installed, one can rely on the fact that every object in the filter IsGroup and IsCyclic will
also be in the filter IsCommutative.

2.8 Operations and Mathematical Terms

Usually an operation stands for a mathematical concept, and the name of the operation describes this uniquely. Ex-
amples are the property IsFinite and the attribute Size. But there are cases where the same mathematical term is
used to denote different concepts, for example Degree is defined for polynomials, group characters, and permutation
actions, and Rank is defined for matrices, free modules, p-groups, and transitive permutation actions.

It is in principle possible to install methods for the operation Rank that are applicable to the different types of argu-
ments, corresponding to the different contexts. But this is not the approach taken in the GAP library. Instead there are
operations such as RankMat for matrices and Degree0OfCharacter (in fact these are attributes) which are installed
as methods of the “ambiguous” operations Rank and Degree.

The idea is to distinguish between on the one hand different ways to compute the same thing (e.g. different methods for
\=, Size, etc.), and on the other hand genuinely different things (such as the degree of a polynomial and a permutation
action).

The former is the basic purpose of operations and attributes. The latter is provided as a user convenience where
mathematical usage forces it on us and where no conflicts arise. In programming the library, we use the underlying
mathematically precise operations or attributes, such as RankMat and RankOperation. These should be attributes
if appropriate, and the only role of the operation Rank is to decide which attribute the user meant. That way, stored
information is stored with “full mathematical precision” and is less likely to be retrieved for a wrong purpose later.

Section 8. Operations and Mathematical Terms 15

One word about possible conflicts. A typical example is the mathematical term “centre”, which is defined as {x €
M|a*xx = x*aVa € M} for amagma M, and as {x € L|/*xx = OVI € L} for a Lie algebra L. Here it is not possible to
introduce an operation Centre that delegates to attributes Centre0OfMagma and CentreOfLieAlgebra, depending
on the type of the argument. This is because any Lie algebra in GAP is also a magma, so both Centre0fMagma and
Centre0fLieAlgebra would be defined for a Lie algebra, with different meaning if the characteristic is 2. So we
cannot achieve that one operation in GAP corresponds to the mathematical term “centre”.

“Ambiguous” operations such as Rank are declared in the library file overload.g.

2»

3>

3 Creating New Objects

This chapter is divided into three parts.

In the first part, it is explained how to create filters (see 3.1, 3.2, 3.3, 3.4), operations (see 3.5), families (see 3.6), types
(see 3.7), and objects with given type (see 3.8).

In the second part, first a few small examples are given, for dealing with the usual cases of component objects (see 3.9)
and positional objects (see 3.10), and for the implementation of new kinds of lists (see 3.11 and 3.14). Finally, the
external representation of objects is introduced (see 3.15), as a tool for representation independent access to an object.

The third part deals with some rules concerning the organization of the GAP library; namely, some commands for
creating global variables are explained (see 3.17) that correspond to the ones discussed in the first part of the chapter,
and the idea of distinguishing declaration and implementation part of GAP packages is outlined (see 3.18).

See also Chapter 5 for examples how the functions from the first part are used, and why it is useful to have a declaration
part and an implementation part.

3.1 Creating Categories
NewCategory(name, super)

NewCategory returns a new category cat that has the name name and is contained in the filter super, see 13.2 in the
Reference Manual. This means that every object in cat lies automatically also in super. We say also that super is an
implied filter of cat.

For example, if one wants to create a category of group elements then super should be IsMultiplicativeElemen-—
tWithInverse or a subcategory of it. If no specific supercategory of cat is known, super may be IsObject.

@ZEventually tools will be provided to display hierarchies of categories etc., which will help to choose super
appropriately. @

The incremental rank (see 13.2 in the Reference Manual) of cat is 1.
Two functions that return special kinds of categories are of importance.

CategoryCollections(cat)

For a category cat, CategoryCollections returns the collections category of cat. This is a category in that all
collections of objects in cat lie.

For example, a permutation lies in the category IsPerm, and every dense list of permutations and every domain of
permutations lies in the collections category of IsPerm.

CategoryFamily(cat)
For a category cat, CategoryFamily returns the family category of cat. This is a category in that all families lie that
know from their creation that all their elements are in the category cat, see 3.6.

For example, a family of tuples is in the category CategoryFamily(IsTuple), and one can distinguish such a
family from others by this category. So it is possible to install methods for operations that require one argument to be
a family of tuples.

CategoryFamily is quite technical, and in fact of minor importance.

1»

1»

Section 3. Creating Attributes and Properties 17

3.2 Creating Representations
NewRepresentation(name, super, slots)

NewRepresentation returns a new representation rep that has the name name and is a subrepresentation of the
representation super. This means that every object in rep lies automatically also in super. We say also that super is an
implied filter of rep.

Each representation in GAP is a subrepresentation of exactly one of the four representations IsInternalRep, Is-
DataObjectRep, IsComponentObjectRep, IsPositionalObjectRep. The data describing objects in the former
two can be accessed only via GAP kernel functions, the data describing objects in the latter two is accessible also in
library functions, see 3.9 and 3.10 for the details.

The third argument slots is a list either of integers or of strings. In the former case, rep must be IsPositionalObjec—
tRep or a subrepresentation of it, and slots tells what positions of the objects in the representation rep may be bound.
In the latter case, rep must be IsComponentObjectRep or a subrepresentation of, and slots lists the admissible names
of components that objects in the representation rep may have. The admissible positions resp. component names of
super need not be be listed in slots.

The incremental rank (see 13.2 in the Reference Manual) of rep is 1.

Note that for objects in the representation rep, of course some of the component names and positions reserved via
slots may be unbound.

Examples for the use of NewRepresentation can be found in 3.9, 3.10, and also in 5.3.

3.3 Creating Attributes and Properties

NewAttribute(name, filt)
NewAttribute(name, filt, rank)

NewAttribute returns a new attribute attr with name name (see also 13.5 in the Reference Manual). The filter filt
describes the involved filters of attr (see 13.2 in the Reference Manual). That is, the argument for attr is expected to
lie in filt.

Each method for attr that does not require its argument to lie in filf must be installed using InstallOtherMethod.

Contrary to the situation with categories and representations, the tester of attr does not imply filt. This is exactly
because of the possibility to install methods that do not require filt.

For example, the attribute Size was created with second argument a list or a collection, but there is also a method for
Size that is applicable to a character table, which is neither a list nor a collection.

The optional third argument rank denotes the incremental rank (see 13.2 in the Reference Manual) of the tester of
attr, the default value is 1.

NewAttribute(name, filt, "mutable")
NewAttribute(name, filt, "mutable", rank)

If the third argument is the string "mutable", the stored values of the new attribute are not forced to be immutable.
This is useful for an attribute whose value is some partial information that may be completed later. For example,
there is an attribute ComputedSylowSubgroups for the list holding those Sylow subgroups of a group that have been
computed already by the function SylowSubgroup, and this list is mutable because one may want to enter groups into
it as they are computed.

NewProperty(name, filt)
NewProperty(name, filt, rank)

NewProperty returns a new property prop with name name (see also 13.7 in the Reference Manual). The filter filt
describes the involved filters of prop. As in the case of attributes, filf is not implied by prop.

1»

18 Chapter 3. Creating New Objects

The optional third argument rank denotes the incremental rank (see 13.2 in the Reference Manual) of the property
prop itself, i.e. not of its tester, the default value is 1.

Each method that is installed for an attribute or a property via InstallMethod must require exactly one argument,
and this must lie in the filter filr that was entered as second argument of NewAttribute resp. NewProperty.

As for any operation (see 3.5), for attributes and properties one can install a method taking an argument that does not
lie in filt via InstallOtherMethod, or a method for more than one argument; in the latter case, clearly the result
value is not stored in any of the arguments.

3.4 Creating Other Filters

NewFilter (name)
NewFilter(name, rank)

NewFilter returns a simple filter with name name (see 13.8 in the Reference Manual). The optional second argument
rank denotes the incremental rank (see 13.2 in the Reference Manual) of the filter, the default value is 1.

In order to change the value of filt for an object 0bj, one can use logical implications (see 2.7) or the functions

SetFilterObj(obj, filt)
ResetFilter0Obj(obj, filt)

SetFilter0bj sets the value of filt (and of all filters implied by filt) for obj to true,

ResetFilterQbj sets the value of filt for obj to false (but implied filters of filt are not touched. This might create
inconsistent situations if applied carelessly).

The default value of filt for each object is false.

3.5 Creating Operations
NewOperation(name, args-filts)

NewOperation returns an operation opr with name name. The list args-filts describes requirements about the argu-
ments of opr, namely the number of arguments must be equal to the length of args-filts, and the i-th argument must
lie in the filter args-filts [i].

Each method that is installed for opr via InstallMethod must require that the i-th argument lies in the filter args-

Sfilts [i].

One can install methods for other arguments tuples via InstallOtherMethod, this way it is also possible to install
methods for a different number of arguments than the length of args-filts.

3.6 Creating Families

Families are probably the least obvious part of the GAP type system, so some remarks about the role of families are
necessary. When one uses GAP as it is, one will (better: should) not meet families at all. The two situations where
families come into play are the following.

First, since families are used to describe relations between arguments of operations in the method selection mechanism
(see Chapter 2 in this manual, and also Chapter 13 in the Reference Manual), one has to prescribe such a relation in
each method installation (see 2.2); usual relations are ReturnTrue (which means that any relation of the actual
arguments is admissible), IsIdenticalObj (which means that there are two arguments that lie in the same family),
and IsCollsElms (which means that there are two arguments, the first being a collection of elements that lie in the
same family as the second argument).

Second —and this is the more complicated situation— whenever one creates a new kind of objects, one has to decide
what its family shall be. If the new object shall be equal to existing objects, for example if it is just represented in a
different way, there is no choice: The new object must lie in the same family as all objects that shall be equal to it. So

vy

2»

Section 6. Creating Families 19
only if the new object is different (w.r.t. the equality “=") from all other GAP objects, we are likely to create a new
family for it. Note that enlarging an existing family by such new objects may be problematic because of implications
that have been installed for all objects of the family in question. The choice of families depends on the applications one
has in mind. For example, if the new objects in question are not likely to be arguments of operations for which family
relations are relevant (for example binary arithmetic operations), one could create one family for all such objects,
and regard it as “the family of all those GAP objects that would in fact not need a family”. On the other extreme,
if one wants to create domains of the new objects then one has to choose the family in such a way that all intended
elements of a domain do in fact lie in the same family. (Remember that a domain is a collection, see Chapter 12.4 in
the Reference Manual, and that a collection consists of elements in the same family, see Chapter 28 and Section 13.1
in the Reference Manual.)

Let us look at an example. Suppose that no permutations are available in GAP, and that we want to implement
permutations. Clearly we want to support permutation groups, but it is not a priori clear how to distribute the new
permutations into families. We can put all permutations into one family; this is how in fact permutations are imple-
mented in GAP. But it would also be possible to put all permutations of a given degree into a family of their own; this
would for example mean that for each degree, there would be distinguished trivial permutations, and that the stabilizer
of the point 5 in the symmetric group on the points 1,2,...,5 is not regarded as equal to the symmetric group on
1,2, 3, 4. Note that the latter approach would have the advantage that it is no problem to construct permutations and
permutation groups acting on arbitrary (finite) sets, for example by constructing first the symmetric group on the set
and then generating any desired permutation group as a subgroup of this symmetric group.

So one aspect concerning a reasonable choice of families is to make the families large enough for being able to form
interesting domains of elements in the family. But on the other hand, it is useful to choose the families small enough
for admitting meaningful relations between objects. For example, the elements of different free groups in GAP lie in
different families; the multiplication of free group elements is installed only for the case that the two operands lie in
the same family, with the effect that one cannot erroneously form the product of elements from different free groups.
In this case, families appear as a tool for providing useful restrictions.

As another example, note that an element and a collection containing this element never lie in the same family, by
the general implementation of collections; namely, the family of a collection of elements in the family Fam is the
collections family of Fam (see 3.6.2). This means that for a collection, we need not (because we cannot) decide about
its family.

NewFamily(name)

NewFamily(name, req)

NewFamily(name, req, imp)
NewFamily(name, req, imp, famfilter)

NewFamily returns a new family fam with name name. The argument req, if present, is a filter of which fam shall be
a subset. If one tries to create an object in fam that does not lie in the filter req, an error message is printed. Also the
argument imp, if present, is a filter of which fam shall be a subset. Any object that is created in the family fam will lie
automatically in the filter imp.

The filter famfilter, if given, specifies a filter that will hold for the family fam (not for objects in fam).

Families are always represented as component objects (see 3.9). This means that components can be used to store and
access useful information about the family.

There are a few functions in GAP that construct families. As an example, consider (see also 28.1 in the Reference
Manual)

CollectionsFamily(fam)
CollectionsFamily is an attribute that takes a family fam as argument, and returns the family of all collections over
fam, that is, of all dense lists and domains that consist of objects in fam.

The NewFamily call in the standard method of CollectionsFamily is executed with second argument IsCol-
lection, since every object in the collections family must be a collection, and with third argument the collections
categories of the involved categories in the implied filter of fam.

3

1»

2»

20 Chapter 3. Creating New Objects

If fam is a collections family then

ElementsFamily(fam)

returns the unique family with collections family fam; note that by definition, all elements in a collection lie in the
same family, so ElementsFamily (fam) is the family of each element in any collection that has the family fam.

3.7 Creating Types

NewType(fam, filt)
NewType(fam, filt, data)

NewType returns the type given by the family fam and the filter filr. The optional third argument data is any object that
denotes defining data of the desired type.

For examples where NewType is used, see 3.9, 3.10, and the example in Chapter 5.

3.8 Creating Objects
Objectify(type, data) F

New objects are created by Objectify. data is a list or a record, and fype is the type that the desired object shall have.
Objectify turns data into an object with type type. That is, data is changed, and afterwards it will not be a list or a
record unless fype is of type list resp. record.

If data is a list then Objectify turns it into a positional object, if data is a record then Objectify turns it into a
component object (for examples, see 3.9 and 3.10).

Objectify does also return the object that it made out of data.
For examples where Objectify is used, see 3.9, 3.10, and the example in Chapter 5.

Attribute assignments will change the type of an object. If you create many objects, code of the form

o:=0bjectify(type,rec());
SetMyAttribute (o,value);

will take a lot of time for type changes. You can avoid this by setting the attributes immediately while the object is
created, via:

ObjectifyWithAttributes (obj,type,Attrl ,vall [,Attr2 ,val2. ..]) F

which changes the type of object 0bj to type type and sets attribute Artrl to vall, sets attribute Attr2 to val2 and so
forth.

If the filter list of fype includes that these attributes are set (and the properties also include values of the properties)
and if no special setter methods are installed for any of the involved attributes then they are set simultaneously without
type changes which can produce a substantial speedup.

If the conditions of the last sentence are not fulfilled, an ordinary Objectify with subsequent Setter calls for the
attributes is performed, instead.

1»

Section 9. Component Objects 21

3.9 Component Objects

A component object is an object in the representation IsComponentObjectRep or a subrepresentation of it. Such
an object cobj is built from subobjects that can be accessed via cobj! . name, similar to components of a record. Also
analogously to records, values can be assigned to components of cobj via cobj! .name:= val. For the creation of
component objects, see 3.8.

Names0fComponents (comobj) F

For a component object comobj, Names0OfComponents returns a list of strings, which are the names of components
currently bound in comobj.

One must be very careful when using the ! . operator, in order to interpret the component in the right way, and even
more careful when using the assignment to components using ! ., in order to keep the information stored in cobj
consistent.

First of all, in the access or assignment to a component as shown above, name must be among the admissible com-
ponent names for the representation of cobj, see 3.2. Second, preferably only few low level functions should use ! .,
whereas this operator should not occur in “user interactions”.

Note that even if cobj claims that it is immutable, i.e., if cobj is not in the category IsMutable, access and assignment
via !'. work. This is necessary for being able to store newly discovered information in immutable objects.

The following example shows the implementation of an iterator (see 28.7 in the Reference Manual) for the domain
of integers, which is represented as component object. See 3.10 for an implementation using positional objects. (In
practice, such an iterator can be implemented more elegantly using IteratorByFunctions, see 3.13 and 28.7.8 in
the GAP Reference Manual.)

The used succession of integers is 0,1,—1,2,—2,3,=3,..., that is, a, = n/2 if n is even, and a, = (1 — n)/2
otherwise.
IsIntegersIteratorCompRep := NewRepresentation("IsIntegersIteratorRep",

IsComponentObjectRep, ["counter"]);

The above command creates a new representation (see 3.2.1) IsIntegersIteratorCompRep, as a subrepresentation
of IsComponentObjectRep, and with one admissible component counter. So no other components than counter
will be needed.

InstallMethod(Iterator,

"method for ‘Integers’",

[IsIntegers],

function(Integers)

return Objectify(NewType(IteratorsFamily,

IsIterator
and IsIntegersIteratorCompRep),
rec(counter :=0));
end);

After the above method installation, one can already ask for Iterator(Integers). Note that exactly the domain
of integers is described by the filter IsIntegers.

By the call to NewType, the returned object lies in the family containing all iterators, which is IteratorsFamily,
it lies in the category IsIterator and in the representation IsIntegersIteratorCompRep; furthermore, it has the
component counter with value 0.

What is missing now are methods for the two basic operations of iterators, namely IsDoneIterator and NextIter-
ator. The former must always return false, since there are infinitely many integers. The latter must return the next
integer in the iteration, and update the information stored in the iterator, that is, increase the value of the component
counter.

22 Chapter 3. Creating New Objects

InstallMethod(IsDonelterator,
"method for iterator of ‘Integers’",
[IsIterator and IsIntegersIteratorCompRep],
ReturnFalse);

InstallMethod(NextIterator,
"method for iterator of ‘Integers’",
[IsIntegersIteratorCompRep],
function(iter)
iter!.counter:= iter!.counter + 1;
if iter!.counter mod 2 = 0 then
return iter!.counter / 2;
else
return (1 - iter!.counter) / 2;
fi;
end);

3.10 Positional Objects

A positional object is an object in the representation IsPositionalObjectRep or a subrepresentation of it. Such an
object pobj is built from subobjects that can be accessed via pobj! [pos], similar to positions in a list. Also analogously
to lists, values can be assigned to positions of pobj via pobj! [pos] := val. For the creation of positional objects,
see 3.8.

One must be very careful when using the ! [] operator, in order to interpret the position in the right way, and even
more careful when using the assignment to positions using ! [], in order to keep the information stored in pobj
consistent.

First of all, in the access or assignment to a position as shown above, pos must be among the admissible positions
for the representation of pobj, see 3.2. Second, preferably only few low level functions should use ! [], whereas this
operator should not occur in “user interactions”.

Note that even if pobj claims that it is immutable, i.e., if pobj is not in the category IsMutable, access and assignment
via ! [1 work. This is necessary for being able to store newly discovered information in immutable objects.

The following example shows the implementation of an iterator (see 28.7 in the Reference Manual) for the domain of
integers, which is represented as positional object. See 3.9 for an implementation using component objects, and more
details.

IsIntegersIteratorPosRep := NewRepresentation("IsIntegersIteratorRep",
IsPositionalObjectRep, [1]);

The above command creates a new representation (see 3.2.1) IsIntegersIteratorPosRep, as a subrepresentation
of IsComponent0ObjectRep, and with only the first position being admissible for storing data.

InstallMethod(Iterator,

"method for ‘Integers’",

[IsIntegers 1],

function(Integers)

return Objectify(NewType(IteratorsFamily,

IsIterator
and IsIntegersIteratorRep),
L01);
end);

After the above method installation, one can already ask for Iterator(Integers). Note that exactly the domain
of integers is described by the filter IsIntegers.

Section 11. Implementing New List Objects 23

By the call to NewType, the returned object lies in the family containing all iterators, which is IteratorsFamily,
it lies in the category IsIterator and in the representation IsIntegersIteratorPosRep; furthermore, the first
position has value 0.

What is missing now are methods for the two basic operations of iterators, namely IsDoneIterator and NextIter-
ator. The former must always return false, since there are infinitely many integers. The latter must return the next
integer in the iteration, and update the information stored in the iterator, that is, increase the value stored in the first
position.

InstallMethod(IsDonelterator,
"method for iterator of ‘Integers’",
[IsIterator and IsIntegersIteratorPosRep],
ReturnFalse);

InstallMethod(NextIterator,
"method for iterator of ‘Integers’",
[IsIntegersIteratorPosRep],
function(iter)
iter![1]:= iter![1] + 1;
if iter![1] mod 2 = O then

return iter![1] / 2;
else

return (1 - iter![1]) / 2;
fi;
end);

It should be noted that one can of course install both the methods shown in Section 3.9 and 3.10. The call Iterator(
Integers) will cause one of the methods to be selected, and for the returned iterator, which will have one of the
representations we constructed, the right NextIterator method will be chosen.

3.11 Implementing New List Objects

This section gives some hints for the quite usual situation that one wants to implement new objects that are lists. More
precisely, one either wants to deal with lists that have additional features, or one wants that some objects also behave
as lists. An example can be found in 3.12.

A list in GAP is an object in the category IsList. Basic operations for lists are Length, \ [\], and IsBound\ [\]
(see 21.2 in the Reference Manual).

Note that the access to the position pos in the list list via list [pos] is handled by the call \[\] (list, pos) to the
operation \ [\]. To explain the somewhat strange name \ [\] of this operation, note that non-alphanumeric characters
like [and] may occur in GAP variable names only if they are escaped by a \ character.

Analogously, the check IsBound (list[pos]) whether the position pos of the list /ist is bound is handled by the call
IsBound\ [\] ([list, pos) to the operation IsBound\ [\].

For mutable lists, also assignment to positions and unbinding of positions via the operations \ [\]\:\= and Un-
bind\ [\] are basic operations. The assignment /list [pos] := val is handled by the call \[\]I\:\=(list, pos, val
), and Unbind (list[pos]) is handled by the call Unbind\ [\] (list, pos).

All other operations for lists, e.g., Add, Append, Sum, are based on these operations. This means that it is sufficient to
install methods for the new list objects only for the basic operations.

So if one wants to implement new list objects then one creates them as objects in the category IsList, and installs
methods for Length, \ [\], and IsBound\ [\]. If the new lists shall be mutable, one needs to install also methods for
\[\1\:\= and Unbind\ [\].

24 Chapter 3. Creating New Objects

One application for this is the implementation of enumerators for domains. An enumerator for the domain D is a
dense list whose entries are in bijection with the elements of D. If D is large then it is not useful to write down all
elements. Instead one can implement such a bijection implicitly. This works also for infinite domains.

In this situation, one implements a new representation of the lists that are already available in GAP, in particular the
family of such a list is the same as the family of the domain D.
But it is also possible to implement new kinds of lists that lie in new families, and thus are not equal to lists that were

available in GAP before. An example for this is the implementation of matrices whose multiplication via “*” is the
Lie product of matrices.

In this situation, it makes no sense to put the new matrices into the same family as the original matrices. Note that
the product of two Lie matrices shall be defined but not the product of an ordinary matrix and a Lie matrix. So it
is possible to have two lists that have the same entries but that are not equal w.r.t. “=" because they lie in different
families.

3.12 Example — Constructing Enumerators

When dealing with countable sets, a usual task is to define enumerations, i.e., bijections to the positive integers. In
GAP, this can be implemented via enumerators (see 21.23 in the GAP Reference Manual). These are lists containing
the elements in a specified ordering, and the operations Position and list access via \ [\] define the desired bijection.
For implementing such an enumerator, one mainly needs to install the appropriate functions for these operations.

A general setup for creating such lists is given by EnumeratorByFunctions (see 28.2.4 in the GAP Reference
Manual).

If the set in question is a domain D for which a Size method is available then all one has to do is to write down
the functions for computing the n-th element of the list and for computing the position of a given GAP object in the
list, to put them into the components ElementNumber and NumberElement of a record, and to call Enumerator-
ByFunctions with the domain D and this record as arguments. For example, the following lines of code install an
Enumerator method for the case that D is the domain of rational integers. (Note that IsIntegers is a filter that
describes exactly the domain of rational integers.)

InstallMethod(Enumerator,
"for integers",
[IsIntegers],
Integers -> EnumeratorByFunctions(Integers, rec(
ElementNumber := function(e, n) ... end,
NumberElement := function(e, x) ... end)));

The bodies of the functions have been omitted above; here is the code that is actually used in GAP. (The ordering
coincides with that for the iterators for the domain of rational integers that have been discussed in 3.9 and 3.10.)

gap> enum:= Enumerator(Integers);
<enumerator of Integers>
gap> Print(enum!.NumberElement, "\n");
function (e, x)
local pos;
if not IsInt(x) then
return fail;
elif 0 < x then
pos 2 * x;
else

pos := -2 *x x + 1;
fi;
return pos;

Section 12. Example — Constructing Enumerators

end

gap> Print(enum!.ElementNumber, "\n");
function (e, n)
if n mod 2 = 0 then
return n / 2;

else

return (1 - n) / 2;

fi;

return;

end

25

The situation becomes slightly more complicated if the set S in question is not a domain. This is because one must
provide also at least a method for computing the length of the list, and because one has to determine the family in
which it lies (see 3.8). The latter should usually not be a problem since either S is nonempty and all its elements lie
in the same family —in this case one takes the collections family of any element in S— or the family of the enumerator
must be ListsFamily.

An example in the GAP library is an enumerator for the set of k-tuples over a finite set; the function is called Enu-
meratorOfTuples

gap> Print(EnumeratorOfTuples, "\n");
function (set, k)

loca

1 enum;

if IsEmpty(set) then

return Immutable([]);
elif k = 0 then
return Immutable([[1]);

fi;
enum

:= EnumeratorByFunctions(CollectionsFamily(FamilyObj(set)), rec(

ElementNumber := function (enum, n)
local nn, t, i;
nn :=n - 1;
t:=[1;
for i in [1 .. enum!.k] do

end,

t[i] := RemInt(nn, Length(enum!.set)) + 1;

nn := QuoInt(nn, Length(enum!.set));
od;
if nn <> 0 then

Error("<enum>[", n, "] must have an assigned value");

fi;

nn := enum!.set{Reversed(t)};
MakeImmutable(nn);

return nn;

NumberElement := function (enum, elm)

local n, i;
if not IsList(elm) then
return fail;

fi;
elm := List(elm, function (x)
return Position(enum!.set, x);
end);

if fail in elm or Length(elm) <> enum!.k then

26 Chapter 3. Creating New Objects

return fail;

for i in [1 .. enum!.k] do
n := Length(enum!.set) * n + elm[i] - 1;
od;
return n + 1;
end,
Length := function (enum)
return Length(enum!.set) ~ enum!.k;
end,
PrintObj := function (enum)
Print("EnumeratorOfTuples(", enum!.set, ", ", enum!.k, ")"
);
return;
end,
set := Set(set),
k :=k));
SetIsSSortedList(enum, true);
return enum;
end

We see that the enumerator is a homogeneous list that stores individual functions ElementNumber, NumberElement,
Length, and Print0Obj; besides that, the data components S and k are contained.

3.13 Example — Constructing lterators

Iterators are a kind of objects that is implemented for several collections in the GAP library and which might be
interesting also in other cases, see 28.7 in the GAP Reference Manual. A general setup for implementing new iterators
is provided by IteratorByFunctions.

All one has to do is to write down the functions for NextIterator, IsDoneIterator, and ShallowCopy, and to call
IteratorByFunctions with this record as argument. For example, the following lines of code install an Iterator
method for the case that the argument is the domain of rational integers.

(Note that IsIntegers is a filter that describes exactly the domain of rational integers.)

InstallMethod(Iterator,
"for integers",
[IsIntegers 1],
Integers -> IteratorByFunctions(rec(

NextIterator:= function(iter) ... end,
IsDonelterator := ReturnFalse,
ShallowCopy := function(iter) ... end)));

The bodies of two of the functions have been omitted above; here is the code that is actually used in GAP. (The
ordering coincides with that for the iterators for the domain of rational integers that have been discussed in 3.9
and 3.10.)

Section 14. Arithmetic Issues in the Implementation of New Kinds of Lists 27

gap> iter:= Iterator(Integers);
<iterator>
gap> Print(iter!.NextIterator, "\n");
function (iter)
iter!.counter := iter!.counter + 1;
if iter!.counter mod 2 = 0 then
return iter!.counter / 2;
else
return (1 - iter!.counter) / 2;
fi;
return;
end
gap> Print(iter!.ShallowCopy, "\n");
function (iter)
return rec(
counter := iter!.counter);
end

Note that the ShallowCopy component of the record must be a function that does not return an iterator but a record
that can be used as the argument of IteratorByFunctions in order to create the desired shallow copy.

3.14 Arithmetic Issues in the Implementation of New Kinds of Lists

When designing a new kind of list objects in GAP, defining the arithmetic behaviour of these objects is an issue.

There are situations where arithmetic operations of list objects are unimportant in the sense that adding two such
lists need not be represented in a special way. In such cases it might be useful either to support no arithmetics at all
for the new lists, or to enable the default arithmetic methods. The former can be achieved by not setting the filters
IsGeneralizedRowVector and IsMultiplicativeGeneralizedRowVector in the types of the lists, the latter
can be achieved by setting the filter IsListDefault. (for details, see 21.12 in the GAP Reference Manual). An
example for “wrapped lists” with default behaviour are vector space bases; they are lists with additional properties
concerning the computation of coefficients, but arithmetic properties are not important. So it is no loss to enable the
default methods for these lists.

However, often the arithmetic behaviour of new list objects is important, and one wants to keep these lists away from
default methods for addition, multiplication etc. For example, the sum and the product of (compatible) block matrices
shall be represented as a block matrix, so the default methods for sum and product of matrices shall not be applicable,
although the results will be equal to those of the default methods in the sense that their entries at corresponding
positions are equal.

So one does not set the filter IsListDefault in such cases, and thus one can implement one’s own methods for
arithmetic operations. (Of course “can” means on the other hand that one must implement such methods if one is
interested in arithmetics of the new lists.)

The specific binary arithmetic methods for the new lists will usually cover the case that both arguments are of the new
kind, and perhaps also the interaction between a list of the new kind and certain other kinds of lists may be handled if
this appears to be useful.

For the last situation, interaction between a new kind of lists and other kinds of lists, GAP provides already a setup.
Namely, there are the categories IsGeneralizedRowVector and IsMultiplicativeGeneralizedRowVector,
which are concerned with the additive and the multiplicative behaviour, respectively, of lists. For lists in these fil-
ters, the structure of the results of arithmetic operations is prescribed (see 21.13 and 21.14 in the GAP Reference
Manual).

For example, if one implements block matrices in IsMultiplicativeGeneralizedRowVector then automatically
the product of such a block matrix and a (plain) list of such block matrices will be defined as the obvious list of

28 Chapter 3. Creating New Objects

matrix products, and a default method for plain lists will handle this multiplication. (Note that this method will rely
on a method for computing the product of the block matrices, and of course no default method is available for that.)
Conversely, if the block matrices are not in IsMultiplicativeGeneralizedRowVector then the product of a block
matrix and a (plain) list of block matrices is not defined. (There is no default method for it, and one can define the
result and provide a method for computing it.)

Thus if one decides to set the filters IsGeneralizedRowVector and IsMultiplicativeGeneralizedRowVector
for the new lists, on the one hand one loses freedom in defining arithmetic behaviour, but on the other hand one gains
several default methods for a more or less natural behaviour.

If alistin the filter IsGeneralizedRowVector (IsMultiplicativeGeneralizedRowVector)liesin IsAttributeStor-|j
ingRep, the values of additive (multiplicative) nesting depth is stored in the list and need not be calculated for each
arithmetic operation. One can then store the value(s) already upon creation of the lists, with the effect that the default
arithmetic operations will access elements of these lists only if this is unavoidable. For example, the sum of two plain

lists of “wrapped matrices” with stored nesting depths are computed via the method for adding two such wrapped

lists, and without accessing any of their rows (which might be expensive). In this sense, the wrapped lists are treated

as black boxes.

3.15 External Representation

An operation is defined for elements rather than for objects in the sense that if the arguments are replaced by objects
that are equal to the old arguments w.r.t. the equivalence relation “=" then the result must be equal to the old result

_s

w.r.t. .

But the implementation of many methods is representation dependent in the sense that certain representation depen-
dent subobjects are accessed.

For example, a method that implements the addition of univariate polynomials may access coefficients lists of its
arguments only if they are really stored, while in the case of sparsely represented polynomials a different approach is
needed.

In spite of this, for many operations one does not want to write an own method for each possible representations of each
argument, for example because none of the methods could in fact take advantage of the actually given representations
of the objects. Another reason could be that one wants to install first a representation independent method, and then
add specific methods as they are needed to gain more efficiency, by really exploiting the fact that the arguments have
certain representations.

For the purpose of admitting representation independent code, one can define an external representation of objects
in a given family, install methods to compute this external representation for each representation of the objects, and
then use this external representation of the objects whenever they occur.

We cannot provide conversion functions that allow us to first convert any object in question to one particular “stan-
dard representation”, and then access the data in the way defined for this representation, simply because it may be
impossible to choose such a “standard representation” uniformly for all objects in the given family.

So the aim of an external representation of an object obj is a different one, namely to describe the data from which
obj is composed. In particular, the external representation of 0bj is not one possible (“standard”) representation of
obj, in fact the external representation of 0bj is in general different from obj w.r.t. “=", first of all because the external
representation of obj does in general not lie in the same family as obj.

For example the external representation of a rational function is a list of length two or three, the first entry being
the zero coefficient, the second being a list describing the coefficients and monomials of the numerator, and the
third, if bound, being a list describing the coefficients and monomials of the denominator. In particular, the external
representation of a polynomial is a list and not a polynomial.

The other way round, the external representation of obj encodes obj in such a way that from this data and the family
of obj, one can create an object that is equal to obj. Usually the external representation of an object is a list or a record.

Section 16. Mutability and Copying 29

Although the external representation of 0bj is by definition independent of the actually available representations for
obj, it is usual that a representation of 0bj exists for which the computation of the external representation is obtained
by just “unpacking” obj, in the sense that the desired data is stored in a component or a position of obj, if obj is a
component object (see 3.9) or a positional object (see 3.10).

To implement an external representation means to install methods for the following two operations.

ExtRep0£0bj (obj)
ObjByExtRep(fam, data)

ExtRep0£f0bj returns the external representation of its argument, and 0bjByExtRep returns an object in the family
fam that has external representation data.

Of course, ObjByExtRep(FamilyObj(obj), ExtRepO0f0bj(obj)) must be equal to obj. But it is not re-
quired that equal objects have equal external representations.

Note that if one defines a new representation of objects for which an external representation does already exist then
one must install a method to compute this external representation for the objects in the new representation.

3.16 Mutability and Copying

Any GAP Object is either mutable or immutable. This can be tested with the Operation IsMutable. The intended
meaning of (im)mutability is a mathematical one: an immutable Object should never change in such a way that it
represents a different Element. Objects may change in other ways, for instance to store more information, or represent
an element in a different way.

Immutability is enforced in different ways for built-in objects (like records, or lists) and for external objects (made
using Objectify).

For built-in objects which are immutable, the kernel will prevent you from changing them. Thus

gap> 1 := [1,2,4];

(1,2, 4]

gap> MakeImmutable(1);

[1, 2, 4]

gap> 1[3] := 5;

Lists Assignment: <list> must be a mutable list

For external Objects, the situation is different. An external Object which claims to be immutable (i.e. its Type does
not contain IsMutable) should not admit any Methods which change the Element it represents. The kernel does
not prevent the use of !. and ! [to change the underlying data structure. This is used for instance by the code that
stores Attribute values for reuse. In general, these ! operations should only be used in Methods which depend on
the Representation of the Object. Furthermore, we would not recommend users to install Methods which depend on
the Representations of Objects created by the library or by GAP packages, as there is certainly no guarantee of the
representations being the same in future versions of GAP.

Here we see an immutable Object (the group Sy4), in which we improperly install a new component.

gap> g := SymmetricGroup(IsPermGroup,4);

SymC [1 ..41)

gap> IsMutable(g);

false

gap> NamesOfComponents(g) ;

["GeneratorsOfMagmaWithInverses", "Size", "MovedPoints", "NrMovedPoints"]
gap> g!.silly := "rubbish";

"rubbish"

gap> NamesQ0fComponents(g) ;

["GeneratorsOfMagmaWithInverses", "Size", "MovedPoints", "NrMovedPoints",

30 Chapter 3. Creating New Objects

"Silly"]
gap> g!.silly;
"rubbish"

On the other hand, if we form an immutable externally represented list, we find that GAP will not let us change the
object.

gap> e := Enumerator(g);

<enumerator of perm group>

gap> IsMutable(e);

false

gap> IsList(e);

true

gap> el[3];

(1,2,4)

gap> e[3] := false;

Error, The list you are trying to assign to is immutable

When we consider copying Objects, another filter IsCopyable, enters the game and we find that ShallowCopy
and StructuralCopy behave quite differently. Objects can be divided for this purpose into three: mutable Objects,
immutable but copyable Objects, and non-copyable objects (called constants).

A mutable or copyable Object should have a Method for the Operation ShallowCopy, which should make a new
mutable Object, sharing its top-level subobjects with the original. The exact definition of top-level subobject may be
defined by the implementor for new kinds of Object.

ShallowCopy applied to a constant simply returns the constant.

StructuralCopy is expected to be much less used than ShallowCopy. Applied to a mutable object, it returns a new
mutable object which shares no mutable sub-objects with the input. Applied to an immutable Object (even a copyable
one), it just returns the object. It is not an Operation (indeed, it’s a rather special kernel function).

gap> el := StructuralCopy(e);

<enumerator of perm group>

gap> IsMutable(el);

false

gap> e2 := ShallowCopy(e);

[O, 1,9, 1,2,4), (1,3,4), (2,4, (1,4,2), (1,2), (1,3,4,2), (2,3,4),
(1,4,2,3), (1,2,3), (1,3)(2,4), (3,4), (1,4,3), (1,2,4,3), (1,3), (2,4,3),
(1,4,3,2), (1,2)(3,4), (1,3,2), (2,3), (1,4)(2,3), (1,2,3,4), (1,3,2,4)]

gap>

There are two other related functions: Immutable, which makes a new immutable object which shares no mutable
subobjects with its input and MakeImmutable which changes an object and its mutable subobjects in place to be
immutable. It should only be used on “new” Objects that you have just created, and which cannot share mutable
subobjects with anything else.

Both Immutable and MakeImmutable work on external objects by just resetting the IsMutable filter in the Object’s
type. This should make ineligible any methods that might change the Object. As a consequence, you must allow for
the possibility of immutable versions of any objects you create.

So, if you are implementing your own external Objects. The rules amount to the following:

1. You decide if your Objects should be mutable or copyable or constants, by fixing whether their Type includes
IsMutable or IsCopyable.

2. You install Methods for your objects respecting that decision:

1»

vvyyvyVvVvyy

4»

5»

Section 17. Global Variables in the Library 31

e for constants — no methods change the underlying elements;
e for copyables — you provide a method for ShallowCopy;

e for mutables — you may have methods that change the underlying elements and these should explicitly
require IsMutable.

3.17 Global Variables in the Library

Global variables in the GAP library are usually read-only in order to avoid their being overwritten accidentally.
BindGlobal (name, val) F

sets the global variable named by the string name to the value val, and makes it read-only. An error is given if the
global variable corresponding to name already had a value bound.

DeclareAttribute(name, filt[, "mutable"][, rank])
DeclareCategory(name, super)

DeclareFilter (name, rank)

DeclareProperty(name, filt[, rank])
DeclareRepresentation(name, super, slots)

jeslieviisviie s lies]

The different types of filters (see Sections 3.1, 3.2, 3.3, 3.4) that are used in the GAP library are assigned by the above
DeclareSomething functions which make the variable with name name (a string) automatically read-only. The only
other difference between NewSomething and DeclareSomething is that DeclareAttribute and DeclareProperty
also bind read-only global variables with names Hasname and Setname for the tester and setter of the attribute (see
Section 13.6 in the Reference Manual). For the meaning of the other arguments of DeclareSomething, see 3.3.1,
3.1.1,3.4.1,3.3.3,and 3.2.1.

DeclareOperation(name, args-filts) F
DeclareGlobalFunction(name) F

declare operations and other global functions used in the GAP library, respectively, are assigned to the read-only
variable with name name (a string). For the meaning of the other arguments of DeclareOperation, see 3.5.1.

GAP functions that are not operations and that are intended to be called by users should be notified to GAP in the
declaration part of the respective package (see Section 3.18) via DeclareGlobalFunction, which returns a function
that serves as a place holder for the function that will be installed later, and that will print an error message if it is
called. See also 3.17.7.

InstallGlobalFunction(gvar, func) F

A global function declared with DeclareGlobalFunction can be given its value func via InstallGlobalFunc-
tion; gvar is the global variable (not a string) named with the name argument of the call to DeclareGlobalFunc-
tion. For example, a declaration like

DeclareGlobalFunction("SumOfTwoCubes");

in the “declaration part” (see Section 3.18) might have a corresponding “implementation part” of:

InstallGlobalFunction(SumOfTwoCubes, function(x, y) return x°3 + y~3; end);

Note: func must be a function which has not been declared as a GlobalFunction itself. Otherwise completion files
(see 3.5 in the reference manual) get confused!

DeclareGlobalVariable(namel, description]) F

For global variables that are not functions, instead of using BindGlobal one can also declare the variable with
DeclareGlobalVariable which creates a new global variable named by the string name. If the second argument

7»

8 »

9»

32 Chapter 3. Creating New Objects

description is entered then this must be a string that describes the meaning of the global variable. DeclareGlobal-
Variable shall be used in the declaration part of the respective package (see 3.18), values can then be assigned to the
new variable with InstallValue or InstallFlushableValue, in the implementation part (again, see 3.18).

InstallValue(gvar, value) F
InstallFlushableValue(gvar, value) F

InstallValue assigns the value value to the global variable gvar. InstallFlushableValue does the same but
additionally provides that each call of FlushCaches (see 3.17.9) will assign a structural copy of value to gvar.

InstallValue does not work if value is an “immediate object” (i.e., an internally represented small integer or finite
field element). Furthermore, InstallFlushableValue works only if value is a list. (Note that InstallFlushabl-
eValue makes sense only for mutable global variables.)

DeclareSynonym(name, value) F

assigns the string name to a global variable as a synonym for value. Two typical intended usages are to declare an
“and-filter”, e.g.

DeclareSynonym("IsGroup", IsMagmaWithInverses and IsAssociative);

and (mainly for compatibility reasons) to provide a previously declared global function with an alternative name, e.g.

DeclareGlobalFunction("SizeOfSomething");

DeclareSynonym("OrderOfSomething", SizeOfSomething);
Note: Before using DeclareSynonym in the way of this second example, one should determine whether the synonym
is really needed. Perhaps an extra index entry in the documentation would be sufficient.

When declaring a synonym that is to be an attribute DeclareSynonymAttr should be used.
DeclareSynonymAttr(name, value) F

assigns the string name to an attribute global variable as a synonym for value. Two typical intended usages are to
provide a previously declared attribute or property with an alternative name, e.g.

DeclareAttribute("GeneratorsOfDivisionRing", IsDivisionRing);
DeclareSynonymAttr("GeneratorsOfField", GeneratorsOfDivisionRing);
and to declare an attribute that is an “and-filter”, e.g.

DeclareSynonymAttr("IsField", IsDivisionRing and IsCommutative);

Also see 3.17.7. (The comments made there also pertain to DeclareSynonymAttr.)
FlushCaches() o

FlushCaches resets the value of each global variable that has been declared with DeclareGlobalVariable and for
which the initial value has been set with InstallFlushableValue to this initial value.

FlushCaches should be used only for debugging purposes, since the involved global variables include for example
lists that store finite fields and cyclotomic fields used in the current GAP session, in order to avoid that these fields
are constructed anew in each call to GF and CF (see 57.3.1 and 58.1.1 in the Reference Manual).

Section 18. Declaration and Implementation Part 33

3.18 Declaration and Implementation Part

Each package of GAP code consists of two parts, the declaration part that defines the new categories and operations
for the objects the package deals with, and the implementation part where the corresponding methods are installed.
The declaration part should be representation independent, representation dependent information should be dealt with
in the implementation part.

GAP functions that are not operations and that are intended to be called by users should be notified to GAP in the
declaration part via DeclareGlobalFunction. Values for these functions can be installed in the implementation part
via InstallGlobalFunction.

Calls to the following functions belong to the declaration part.

DeclareAttribute, DeclareCategory, DeclareFilter, DeclareOperation, DeclareGlobalFunction, De-
clareSynonym, DeclareSynonymAttr, DeclareProperty, InstallTrueMethod.

See 3.17.2,3.17.2,3.17.2,3.17.3,3.17.3,3.17.7,3.17.8, 3.17.2, 2.7.1.
Calls to the following functions belong to the implementation part.

DeclareRepresentation, InstallGlobalFunction, InstallMethod, InstallImmediateMethod, Instal-
10therMethod, NewFamily, NewType, Objectify.

See 3.17.2,3.17.4,2.2.1,2.6.1,2.2.2,3.6.1,3.7.1, 3.8.1.

Whenever both a NewSomething and a DeclareSomething variant of a function exist (see 3.17), the use of De-
clareSomething is recommended because this protects the variables in question from being overwritten. Note that
there are no functions DeclareFamily and DeclareType since families and types are created dynamically, hence
usually no global variables are associated to them. Further note that DeclareRepresentation is regarded as belong-
ing to the implementation part, because usually representations of objects are accessed only in very few places, and all
code that involves a particular representation is contained in one file; additionally, representations of objects are often
not interesting for the user, so there is no need to provide a user interface or documentation about representations.

It should be emphasized that “declaration” means only an explicit notification of mathematical or technical terms or
of concepts to GAP. For example, declaring a category or property with name IsInteresting does of course not
tell GAP what this shall mean, and it is necessary to implement possibilities to create objects that know already that
they lie in IsInteresting in the case that it is a category, or to install implications or methods in order to compute
for a given object whether IsInteresting is true or false for it in the case that IsInteresting is a property.

Examples of
Extending the System

This chapter gives a few examples of how one can extend the functionality of GAP.

They are arranged in ascending difficulty. We show how to install new methods, add new operations and attributes and
how to implement new features using categories and representations. (As we do not introduce completely new kinds
of objects in these example it will not be necessary to declare any families.) Finally we show a simple way how to
create new objects with an own arithmetic.

The examples given are all very rudimentary — no particular error checks are performed and the user interface some-
times is quite clumsy.

Even more complex examples that create whole classes of objects anew will be given in the following two chapters 5
and 6.

4.1 Addition of a Method

The easiest case is the addition of a new algorithm as a method for an existing operation for the existing structures.

For example, assume we wanted to implement a better method for computing the exponent of a nilpotent group (it is
the product of the exponents of the Sylow subgroups).

The first task is to find which operation is used by GAP (it is Exponent) and how it is declared. We can find this in
the reference manual (in our particular case in section 37.16) and the declaration in the library file 1ib/grp.gd (The
easiest way to find the place of the declaration is usually to grep over all . gd and . g files, see section 3 of “Extending
Gap”.)

In our example the declaration in the library is:

DeclareAttribute ("Exponent",IsGroup) ;

Similarly we find that the filter IsNilpotentGroup represents the concept of being nilpotent.

We then write a function that implements the new algorithm which takes the right set of arguments and install it as a
method. In our example this installation would be:

InstallMethod (Exponent,"for nilpotent groups",
[IsGroup and IsNilpotent],

function(G)
[function body omitted]

end) ;

We have left out the optional rank argument of InstallMethod, which normally is a wise choice — GAP automati-
cally uses an internal ranking based on the filters that is only offset by the given rank. So our method will certainly
be “better” than a method that has been installed for mere groups or for solvable groups but will be ranked lower than
the library method for abelian groups.

That’s all. Using ApplicableMethod (see 7.2.1) we can check for an nilpotent group that indeed our new method
will be used.

Section 2. Extending the Range of Definition of an Existing Operation 35

When testing, remember that the method selection will not check for properties that are not known. (This is done
internally by checking the property tester first.) Therefore the method would not be applicable for the group g in the
following definition but only for the — mathematically identical but endowed with more knowledge by GAP — group
h. (Section 4.3 shows a way around this.)

gap> g:=Group((1,2),(1,3)(2,4));;

gap> h:=Group((1,2),(1,3)(2,4));;

gap> IsNilpotentGroup(h); # enforce test
true

gap> HasIsNilpotentGroup(g);

false

gap> HasIsNilpotentGroup(h);

true

Lets now look at a slightly more complicated example: We want to implement a better method for computing normal-
izers in a nilpotent permutation group. (Such an algorithm can be found for example in [LRW97].)

We already know IsNilpotentGroup, the filter IsPermGroup represent the concepts of being a group of permuta-
tions.

GAP uses Normalizer to compute normalizers, however the declaration is a bit more complicated. In the library we
find

InParentFOA("Normalizer", IsGroup, IsObject, NewAttribute);

The full mechanism of InParentFO0A is described in chapter 6 of “Extending GAP”, however for our purposes it
is sufficient to know that for such a function the actual work is done by an operation NormalizerOp (and all the
complications are just there to be able to remember certain results) and that the declaration of this operation is given
by the first arguments, it would be:

DeclareOperation("NormalizerOp", [IsGroup, IsObject]);

This time we decide to enter a non-default family predicate in the call to InstallMethod. We could just leave it out as
in the previous call; this would yield the default value, the function ReturnTrue of arbitrary many arguments which
always returns true. However, then the method might be called in some cases of inconsistent input (for example
matrix groups in different characteristics) that ought to fall through the method selection to raise an error.

In our situation, we want the second group to be a subgroup of the first, so necessarily both must have the same family
and we can use IsIdenticalObj as family predicate.

Now we can install the method. Again this manual is lazy and does not show you the actual code:

InstallMethod (NormalizerOp,"for nilpotent permutation groups",IsIdenticalObj,
[IsPermGroup and IsNilpotentGroup,
IsPermGroup and IsNilpotentGroup],

function(G,U)
[function body omitted]

end) ;

4.2 Extending the Range of Definition of an Existing Operation

It might be that the operation has been defined so far only for a set of objects that is too restrictive for our purposes (or
we want to install a method that takes another number of arguments). If this is the case, the call to InstallMethod
causes an error message. We can avoid this by using InstallOtherMethod instead of InstallMethod.

36 Chapter 4. Examples of Extending the System

4.3 Enforcing Property Tests

As mentioned above, GAP does not check unknown properties to test whether a method might be applicable. In
some cases one wants to enforce this, however, because the gain from knowing the property outweighs the cost of its
determination.

In this situation one has to install a method without the additional property (so it can be tried even if the property is
not yet known) and at high rank (so it will be used before other methods). The first thing to do in the actual function
then is to test the property and to bail out with TryNextMethod () (see 2.4.1) if it turns out to be false.

The above Exponent example thus would become:

InstallMethod (Exponent,"test abelianity", [IsGroupl],
50,# enforced high rank
function(G)
if not IsAbelian(G) then
TryNextMethod () ;
fi;
[remaining function body omitted]
end) ;

The value “50” used in this example is quite arbitrary. A better way is to use values that are given by the system
inherently: We want this method still to be ranked as high, as if it had the IsAbelian requirement. So we have GAP
compute the extra rank of this:

InstallMethod (Exponent,"test abelianity", [IsGroupl],
enforced absolute rank of ‘IsGroup and IsAbelian’ installation: Subtract
the rank of ‘IsGroup’ and add the rank of ‘IsGroup and IsAbelian’:
SIZE_FLAGS(FLAGS_FILTER(IsGroup and IsAbelian))
—-SIZE_FLAGS(FLAGS_FILTER(IsGroup)),

function(G)

the slightly complicated construction of addition and subtraction is necessary because IsGroup and IsAbelian might
imply the same elementary filters which we otherwise would count twice.

A somehow similar situation occurs with matrix groups. Most methods for matrix groups are only applicable if the
group is known to be finite.

However we should not enforce a finiteness test early (someone else later might install good methods for infinite
groups while the finiteness test would be too expensive) but just before GAP would give a “no method found” error.
This is done by redispatching, see 2.5. For example to enforce such a final finiteness test for normalizer calculations
could be done by:

RedispatchOnCondition(NormalizerOp,IsIdenticalObj,
[IsMatrixGroup,IsMatrixGroup], [IsFinite,IsFinite],0);

4.4 Adding a new Operation
The next step is to add own operations. As an example we take the Sylow normalizer in a group of a given prime. This
operation gets two arguments, the first has to be a group, the second a prime number.

There is a function IsPrimeInt, but no property for being prime (which would be pointless as integers cannot store
property values anyhow). So the second argument gets specified only as positive integer:

SylowNormalizer:=NewOperation("SylowNormalizer", [IsGroup,IsPosInt]);

(Note that we are using NewOperation (see 3.5.1) instead of DeclareOperation (see 3.17.3) as used in the library.
The only difference other than that DeclareOperation saves some typing, is that it also protects the variables against

Section 5. Adding a new Attribute 37

overwriting. When testing code (when one probably wants to change things) this might be restricting. If this does not
bother you, you can use

DeclareQOperation("SylowNormalizer", [IsGroup,IsPosInt]);

as well.)

The filters IsGroup and IsPosInt given are only used to test that InstallMethod (see 2.2.1) installs methods with
suitable arguments and will be completely ignored when using InstallOtherMethod (see 2.2.2). Technically one
could therefore simply use IsObject for all arguments in the declaration. The main point of using more specific
filters here is to help documenting with which arguments the function is to be used (so for example a call SylowNor-
malizer(5,G) would be invalid).

Of course initially there are no useful methods for newly declared operations; you will have to write and install them
yourself.

If the operation only takes one argument and has reproducible results without side effects, it might be worth declaring
it as an attribute instead; see the next section (4.5).

4.5 Adding a new Attribute

Now we look at an example of how to add a new attribute. As example we consider the set of all primes that divide
the size of a group.

First we have to declare the attribute:
PrimesDividingSize:=NewAttribute ("PrimesDividingSize",IsGroup) ;

(See 3.3.1). This implicitly declares attribute tester and setter, it is convenient however to assign these to variables as
well:

HasPrimesDividingSize:=Tester (PrimesDividingSize);
SetPrimesDividingSize:=Setter (PrimesDividingSize);

Alternatively, there is a declaration command DeclareAttribute (see 3.17.2) that executes all three assignments
simultaneously and protects the variables against overwriting:

DeclareAttribute("PrimesDividingSize",IsGroup) ;

Next we have to install method(s) for the attribute that compute its value. (This is not strictly necessary. We could use
the attribute also without methods only for storing and retrieving information, but calling it for objects for which the
value is not known would produce a “No method found” error.) For this purpose we can imagine the attribute simply
as an one-argument operation:

InstallMethod (PrimesDividingSize,"for finite groups",
[IsGroup and IsFinite],

function(G)
if Size(G)=1 then return [];
else return Set(Factors(Size(G)));fi;

end) ;

The function installed must always return a value (or call TryNextMethod; see 2.4.1). If the object is in the repre-
sentation IsAttributeStoringRep this return value once computed will be automatically stored and retrieved if the
attribute is called a second time. We don’t have to call setter or tester ourselves. (This storage happens by GAP inter-
nally calling the attribute setter with the return value of the function. Retrieval is by a high-ranking method which is
installed under the condition HasPrimesDividingSize. This method was installed automatically when the attribute
was declared.)

38 Chapter 4. Examples of Extending the System

4.6 Adding a new Representation

Next, we look at the implementation of a new representation of existing objects. In most cases we want to implement
this representation only for efficiency reasons while keeping all the existing functionality.

For example, assume we wanted (following [Wie69]) to implement permutation groups defined by relations.

Next, we have to decide a few basics about the representation. All existing permutation groups in the library are
attribute storing and we probably want to keep this for our new objects. Thus the representation must be a subrep-
resentation of IsComponentObjectRep and IsAttributeStoringRep. Furthermore we want each object to be a
permutation group and we can imply this directly in the representation.

We also decide that we store the degree (the largest point that might be moved) in a component degree and the defin-
ing relations in a component relations (we do not specify the format of relations here. In an actual implementation
one would have to design this as well, but it does not affect the declarations this chapter is about).

IsPermutationGroupByRelations:=NewRepresentation(
"IsPermutationGroupByRelations",
IsComponentObjectRep and IsAttributeStoringRep and IsPermGroup,
["degree","relations"]);

(If we wanted to implement sparse matrices we might for example rather settle for a positional object in which we
store a list of the nonzero entries.)

We can make the new representation a subrepresentation of an existing one. In such a case of course we have to
provide all structure of this “parent” representation as well.

Next we need to check in which family our new objects will be. This will be the same family as of every other
permutation group, namely the CollectionsFamily (PermutationsFamily) (where the family Permutations-
Family=FamilyObj((1,2,3)) has been defined already in the library).

Now we can write a function to create our new objects. Usually it is helpful to look at functions from the library
that are used in similar situations (for example GroupByGenerators in our case) to make sure we have not forgot-
ten any further requirements in the declaration we might have to add here. However in most cases the function is
straightforward:

PermutationGroupByRelations:=function(degree,relations)
local g
g:=0bjectify (NewType(CollectionsFamily(PermutationsFamily),
IsPermutationGroupByRelations),
rec(degree:=degree,relations:=relations));
end;

It also is a good idea to install a Print (possibly also a View) method — otherwise testing becomes quite hard:

InstallMethod (PrintObj,"for perm grps. given by relations",
[IsPermutationGroupByRelations],
function(G)
Print ("PermutationGroupByRelations(", G!.degree,",",G!.relations,")");
end) ;

Next we have to write enough methods for the new representation so that the existing algorithms can be used. In
particular we will have to implement methods for all operations for which library or kernel provides methods for the
existing (alternative) representations. In our particular case there are no such methods. (If we would have implemented
sparse matrices we would have had to implement methods for the list access and assignment functions, see 21.2 in the
reference manual.) However the existing way permutation groups are represented is by generators. To be able to use the
existing machinery we want to be able to obtain a generating set also for groups in our new representation. This can be
done (albeit not very effectively) by a stabilizer calculation in the symmetric group given by the degree component.

Section 8. Adding new Concepts 39

The operation function to use is probably a bit complicated and will depend on the format of the relations (we have
not specified in this example). In the following method we use operationfunction as a placeholder;

InstallMethod (Generators0fGroup,"for perm grps. given by relations",
[IsPermutationGroupByRelations],
function(G)
local S,U;
S:=SymmetricGroup(G!.degree);
U:=Stabilizer(S,G!.relations, operationfunction);
return Generators0fGroup(U);
end) ;

This is all we must do. Of course for performance reasons one might want to install methods for further operations as
well.

4.7 Components versus Attributes

In the last section we introduced two new components, G! .degree and G! .relations. Technically, we could have
used attributes instead. There is no clear distinction which variant is to be preferred: An attribute expresses part of
the functionality available to certain objects (and thus could be computed later and probably even for a wider class of
objects), a component is just part of the internal definition of an object.

So if the data is “of general interest”, if we want the user to have access to it, attributes are preferable. They provide
a clean interface and their immutability makes it safe to hand the data to a user who potentially could corrupt a
components entries.

On the other hand more “technical” data (say the encoding of a sparse matrix) is better hidden from the user in a
component, as declaring it as an attribute would not give any advantage.

Resource-wise, attributes need more memory (the attribute setter and tester are implicitly declared, and two filter bits
are required), the attribute access is one further function call in the kernel, thus components might be an immeasurable
bit faster.

4.8 Adding new Concepts

Finally we look how to implement a new concept for existing objects and fit this in the method selection. Three
examples that will be made more explicit below would be groups for which a “length” of elements (as a word in
certain generators) is defined, groups that can be decomposed as a semidirect product and M-groups.

In each case we have two possibilities for the declaration. We can either declare it as a property or as a category. Both
are eventually filter and in this way indistinguishable for the method selection. The distinction is rather conceptual
and mainly reflects whether we want existing objects to be part of our new concept or not.

Property:
Properties also are attributes: If a property value is not known for an object, GAP tries to find a method to
compute the property value. If no suitable method is found, an error is raised.

Category:
An object is in a category if it has been created in it. Testing the category for an object simply returns this
value. Existing objects cannot enter a new category later in life. This means that in most cases one has to
write own code to create objects in a new category.
If we want to implement a completely new concept so that new operations are defined only for the new
objects — for example bialgebras for which a second scalar multiplication is defined — usually a category is
chosen.
Technically, the behaviour of the category IsXYZ, declared as subcategory of IsABC is therefore exactly the
same as if we would declare IsXYZ to be a property for IsABC and install the following method:

40 Chapter 4. Examples of Extending the System

InstallMethod(IsXYZ,"return false if not known", [IsABC],ReturnFalse);

(The words category also has a well-defined mathematical meaning, but this does not need to concern us at

this point. The set of objects which is defined to be a (GAP)-category does not need to be a category in the

mathematical sense, vice versa not every mathematical category is declared as a (GAP) category.)
Eventually the choice between category and property often becomes a matter of taste or style.

Sometimes there is even a third possibility (if you have GAP 3 experience this might reflect most closely “an object
whose operations record is XYOps”): We might want to indicate this new concept simply by the fact that certain
attributes are set. In this case we could simply use the respective attribute tester(s).

The examples given below each give a short argument why the respective solution was chosen, but one could argue as
well for other choices.

4.9 Example: M-groups

M-groups are finite groups for which all irreducible complex representations are induced from linear representations
of subgroups, it turns out that they are all solvable and that every supersolvable group is an M-group. See [Isa76] for
further details.

Solvability and supersolvability both are testable properties. We therefore declare IsMGroup as a property for solvable
groups:
IsMGroup:=NewProperty ("IsMGroup",IsSolvableGroup) ;

The filter IsSolvableGroup in this declaration only means that methods for IsMGroup by default can only be
installed for groups that are (and know to be) solvable (though they could be installed for more general situations
using InstallOtherMethod). It does not yet imply that M-groups are solvable. We must do this deliberately via an
implication and we use the same technique to imply that every supersolvable group is an M-group.

InstallTrueMethod(IsSolvableGroup, IsMGroup) ;
InstallTrueMethod (IsMGroup, IsSupersolvableGroup) ;

Now we might install a method that tests for solvable groups whether they are M-groups:

InstallMethod (IsMGroup, "for solvable groups", [IsSolvableGroup],

function(G)
[... code omitted. The function must return ‘true’ or ‘false’ ...]
end) ;

4.10 Example: Groups with a word length

Our second example is that of groups for whose elements a word length is defined. (We assume that the word length
is only defined in the context of the group with respect to a preselected generating set but not for single elements alone.
However we will not delve into any details of how this length is defined and how it could be computed.)

Having a word length is a feature which enables other operations (for example a “word length” function). This is
exactly what categories are intended for and therefore we use one.

First, we declare the category. All objects in this category are groups and so we inherit the supercategory IsGroup:
DeclareCategory("IsGroupWithWordLength",IsGroup) ;
We also define the operation which is “enabled” by this category, the word length of a group element, which is defined

for a group and an element (remember that group elements are described by the category IsMultiplicativeEle-
mentWithInverse):

DeclareOperation("WordLengthOfElement", [IsGroupWithWordLength,
IsMultiplicativeElementWithInverse]);

We then would proceed by installing methods to compute the word length in concrete cases and might for example
add further operations to get shortest words in cosets.

Section 12. Creating Own Arithmetic Objects 41

4.11 Example: Groups with a decomposition as semidirect product

The third example is groups which have a (nontrivial) decomposition as a semidirect product. If this information
has been found out, we want to be able to use it in algorithms. (Thus we do not only need the fact that there is a
decomposition, but also the decomposition itself.)

We also want this to be applicable to every group and not only for groups which have been explicitly constructed via
SemidirectProduct.

Instead we simply declare an attribute SemidirectProductDecomposition for groups. (again, in this manual we
don’t go in the details of how such an decomposition would look like).

DeclareAttribute("SemidirectProductDecomposition",IsGroup) ;

If a decomposition has been found, it can be stored in a group using SetSemidirectProductDecomposition. (At
the moment all groups in GAP are attribute storing.)

Methods that rely on the existence of such a decomposition then get installed for the tester filter HasSemidirect-
ProductDecomposition.

4.12 Creating Own Arithmetic Objects

Finally let’s look at a way to create new objects with a user-defined arithmetic such that one can form for example
groups, rings or vector spaces of these elements. This topic is discussed in much more detail in chapter 6, in this
section we present a simple approach that may be useful to get started but does not permit you to exploit all potential
features.

The basic design is that the user designs some way to represent her objects in terms of GAPs built-in types, for
example as a list or a record. We call this the “defining data” of the new objects. Also provided are functions that
perform arithmetic on this “defining data”, that is they take objects of this form and return objects that represent the
result of the operation. The function ArithmeticElementCreator then is called to provide a wrapping such that
proper new GAP-objects are created which can be multiplied etc. with the default infix operations such as \ *.

ArithmeticElementCreator(spec) F

offers a simple interface to create new arithmetic elements by providing functions that perform addition, multiplication
and so forth, conforming to the specification spec. ArithmeticElementCreator creates a new category, representa-
tion and family for the new arithmetic elements being defined, and returns a function which takes the “defining data”
of an element and returns the corresponding new arithmetic element.

spec is a record with one or more of the following components:

ElementName
a string used to identify the new type of object. A global identifier IsElementName will be defined to indicate
a category for these now objects. (Therefore it is not clever to have blanks in the name). Also a collections
category is defined. (You will get an error message if the identifier IsElementName is already defined.)

Equality, LessThan, One, Zero, Multiplication, Inverse, Addition, AdditiveInverse
functions defining the arithmetic operations. The functions interface on the level of “defining data”, the
actual methods installed will perform the unwrapping and wrapping as objects. Components are optional,
but of course if no multiplication is defined elements cannot be multiplied and so forth.
There are default methods for Equality and LessThan which simply calculate on the defining data. If one
is defined, it must be ensured that the other is compatible (so that a < b implies not(a = b))

Print
a function which prints the object. By default, just the defining data is printed.

MathInfo
filters determining the mathematical properties of the elements created. A typical value is for example Is-
MultiplicativeElementWithInverse for group elements.

42 Chapter 4. Examples of Extending the System

RepInfo
filters determining the representational properties of the elements created. The objects created are always
component objects, so in most cases the only reasonable option is IsAttributeStoringRep to permit the
storing of attributes.

All components are optional and will be filled in with default values (though of course an empty record will not result
in useful objects).

Note that the resulting objects are not equal to their defining data (even though by default they print as only the
defining data). The operation UnderlyingElement can be used to obtain the defining data of such an element.

As the first example we look at subsets of {1...,4} and define an “addition” as union and “multiplication” as inter-
section. These operations are both commutative and we want the resulting elements to know this.

We therefore use the following specification:

gap> # the whole set

gap> w := [1,2,3,4];

[1, 2, 3,4]

gap> PosetElementSpec :=rec(

> # name of the new elements

> ElementName := "PosetOn4",

> # arithmetic operations

> One := a —> w,

> Zero := a -> [],

> Multiplication := function(a, b) return Intersection(a, b); end,
> Addition := function(a, b) return Union(a, b); end,

> AdditiveInverse := a -> Filtered(w, x->(not x in a)),

> # Mathematical properties of the elements

> MathInfo := IsCommutativeElement and IsAdditivelyCommutativeElement
>)55

gap> mkposet := ArithmeticElementCreator (PosetElementSpec);
function(x) ... end

Now we can create new elements, perform arithmetic on them and form domains:

gap> a := mkposet([1,2,3]);

[1, 2, 3]

gap> CategoriesOfObject(a);

["IsExtAElement", "IsNearAdditiveElement", "IsNearAdditiveElementWithZero",
"IsNearAdditiveElementWithInverse", "IsExtLElement", "IsExtRElement",
"IsMultiplicativeElement", "IsMultiplicativeElementWithOne",
"IsAdditivelyCommutativeElement", "IsCommutativeElement", "IsPosetOn4"]

gap> a=[1,2,3];

false

gap> UnderlyingElement(a)=[1,2,3];

true

gap> b:=mkposet([2,3,4]);

[2, 3, 4]

gap> atb;

[1, 2, 3, 4]

gap> axb;

[2, 3]

gap> s:=Semigroup(a,b);

<semigroup with 2 generators>

Section 12. Creating Own Arithmetic Objects 43

gap> Size(s);
3

The categories IsPoset0n4 and IsPoset0On4Collection can be used to install methods specific to the new objects.

gap> IsPosetOn4Collection(s);
true

An Example —
Residue Class Rings

In this chapter, we give an example how GAP can be extended by new data structures and new functionality. In order
to focus on the issues of the implementation, the mathematics in the example chosen is trivial. Namely, we will discuss
computations with elements of residue class rings Z/nZ.

The first attempt is straightforward (see Section 5.1), it deals with the implementation of the necessary arithmetic
operations. Section 5.2 deals with the question why it might be useful to use an approach that involves creating a new
data structure and integrating the algorithms dealing with these new GAP objects into the system. Section 5.3 shows
how this can be done in our example, and Section 5.4, the question of further compatibility of the new objects with
known GAP objects is discussed. Finally, Section 5.5 gives some hints how to improve the implementation presented
before.

5.1 A First Attempt to Implement Elements of Residue Class Rings

Suppose we want to do computations with elements of a ring Z/nZ, where n is a positive integer.

First we have to decide how to represent the element k + nZ in GAP. If the modulus # is fixed then we can use the
integer k. More precisely, we can use any integer kK’ such that k — k’ is a multiple of n. If different moduli are likely
to occur then using a list of the form [k, n], or a record of the form rec(residue := k, modulus := n) is more
appropriate. In the following, let us assume the list representation [, n] is chosen. Moreover, we decide that the residue
k in all such lists satisfies 0 < k < n, i.e., the result of adding two residue classes represented by [k, n] and [k, n] (of
course with same modulus n) will be [k, n] with k; + k, congruent to k modulo n and 0 < k < n.

Now we can implement the arithmetic operations for residue classes. Note that the result of the mod operator is
normalized as required. The division by a noninvertible residue class results in fail.

gap> resclass_sum := function(c1, c2)
> if c1[2] <> c2[2] then Error("different moduli"); fi;
> return [(c1[1] + c2[1]) mod c1[2], c1[2] 1;

> end;;
gap>
gap> resclass_diff := function(cl, c2)

> if c1[2] <> c2[2] then Error("different moduli"); fi;
> return [(c1[1] - c2[1]) mod c1[2], c1[2] 1;

> end;;
gap>
gap> resclass_prod := function(cl, c2)

> if c1[2] <> c2[2] then Error("different moduli"); fi;
> return [(c1[1] * c2[1]) mod c1[2], c1[2] 1;

> end;;

gap>

gap> resclass_quo := function(cl, c2)

> local quo;

> if c1[2] <> c2[2] then Error("different moduli"); fi;
> quo:= QuotientMod(c1[1], c2[1], c1[2]);

Section 2. Why Proceed in a Different Way? 45

if quo <> fail then
quo:= [quo, c1[2] 1;
fi;
return quo;
end;;

V V V Vv V

With these functions, we can in principle compute with residue classes.

gap> list:= List([0 .. 31, k > [k, 41);
tfo,41,[01,41,02,41,103,41]1
gap> resclass_sum(list[2], list[4]);

[0, 4]

gap> resclass_diff(list[1], list[2]);

[3, 4]

gap> resclass_prod(list[2], 1list[4]);

[3, 4]

gap> resclass_prod(list[3], list[4]);

[2, 4]

gap> List(list, x -> resclass_quo(list[2], x));
[fail, [1, 41, fail, [3, 41 1]

5.2 Why Proceed in a Different Way?

It depends on the computations we intended to do with residue classes whether or not the implementation described
in the previous section is satisfactory for us.

Probably we are mainly interested in more complex data structures than the residue classes themselves, for example
in matrix algebras or matrix groups over a ring such as Z/47Z. For this, we need functions to add, multiply, invert
etc. matrices of residue classes. Of course this is not a difficult task, but it requires to write additional GAP code.

And when we have implemented the arithmetic operations for matrices of residue classes, we might be interested in
domain operations such as computing the order of a matrix group over Z/4Z, a Sylow 2 subgroup, and so on. The
problem is that a residue class represented as a pair [k, n] is not regarded as a group element by GAP. We have not yet
discussed how a matrix of residue classes shall be represented, but if we choose the obvious representation of a list
of lists of our residue classes then also this is not a valid group element in GAP. Hence we cannot apply the function
Group to create a group of residue classes or a group of matrices of residue classes. This is because GAP assumes
that group elements can be multiplied via the infix operator * (equivalently, via the operation *). Note that in fact the
multiplication of two lists [k-1, n], [k-2, n] isdefined,butwehave [k.1, n] * [k2, n] = k.1 %
k.2 + n * n, the standard scalar product of two row vectors of same length. That is, the multiplication with * is not
compatible with the function reclass_prod introduced in the previous section. Similarly, ring elements are assumed
to be added via the infix operator +; the addition of residue classes is not compatible with the available addition of
row vectors.

What we have done in the previous section can be described as implementation of a “standalone” arithmetic for
residue classes. In order to use the machinery of the GAP library for creating higher level objects such as matrices,
polynomials, or domains over residue class rings, we have to “integrate” this implementation into the GAP library.
The key step will be to create a new kind of GAP objects. This will be done in the following sections; there we
assume that residue classes and residue class rings are not yet available in GAP; in fact they are available, and their
implementation is very close to what is described here.

46 Chapter 5. An Example — Residue Class Rings

5.3 A Second Attempt to Implement Elements of Residue Class Rings

Faced with the problem to implement elements of the rings Z/nZ, we must define the types of these elements as far
as is necessary to distinguish them from other GAP objects.

As is described in Chapter 13 in the Reference Manual, the type of an object comprises several aspects of information
about this object; the family determines the relation of the object to other objects, the categories determine what
operations the object admits, the representation determines how an object is actually represented, and the attributes
describe knowledge about the object.

First of all, we must decide about the family of each residue class. A natural way to do this is to put the elements of
each ring Z/nZ into a family of their own. This means that for example elements of Z /37 and Z/9Z lie in different
families. So the only interesting relation between the families of two residue classes is equality; binary arithmetic
operations with two residue classes will be admissible only if their families are equal. Note that in the naive approach
in Section 5.1, we had to take care of different moduli by a check in each function; these checks may disappear in the
new approach because of our choice of families.

Note that we do not need to tell GAP anything about the above decision concerning the families of the objects that
we are going to implement, that is, the declaration part (see 3.18) of the little GAP package we are writing contains
nothing about the distribution of the new objects into families. (The actual construction of a family happens in the
function MyZmodnZ shown below.)

Second, we want to describe methods to add or multiply two elements in Z/nZ, and these methods shall be not
applicable to other GAP objects. The natural way to do this is to create a new category in which all elements of all
rings Z/nZ lie. This is done as follows.

gap> DeclareCategory("IsMyZmodnZObj", IsScalar);

gap> cat:= CategoryCollections(IsMyZmodnZ0bj);;
gap> cat:= CategoryCollections(cat);;
gap> cat:= CategoryCollections(cat);;

So all elements in the rings Z/nZ will lie in the category IsMyZmodnZ0bj, which is a subcategory of IsScalar. The
latter means that one can add, subtract, multiply and divide two such elements that lie in the same family, with the
obvious restriction that the second operand of a division must be invertible. (The name IsMyZmodnZ0Obj is chosen
because IsZmodnZ0bj is already defined in GAP, for an implementation of residue classes that is very similar to the
one developed in this manual chapter. Using this different name, one can simply enter the GAP code of this chapter
into a GAP session, either interactively or by reading a file with this code, and experiment after each step whether the
expected behaviour has been achieved, and what is still missing.)

The next lines of GAP code above create the categories CategoryCollections(IsMyZmodnZObj) and two
higher levels of collections categories of this, which will be needed later; it is important to create these categories
before collections of the objects in IsMyZmodnZ0bj actually arise.

Note that the only difference between DeclareCategory and NewCategory is that in a call to DeclareCategory,
a variable corresponding to the first argument is set to the new category, and this variable is read-only (see 3.17). The
same holds for DeclareRepresentation and NewRepresentation etc.

There is no analogue of categories in the implementation in Section 5.1, since there it was not necessary to distinguish
residue classes from other GAP objects. Note that the functions there assumed that their arguments were residue
classes, and the user was responsible not to call them with other arguments. Thus an important aspect of types is to
describe arguments of functions explicitly.

Third, we must decide about the representation of our objects. This is something we know already from Section 5.1,
where we chose a list of length two. Here we may choose between two essentially different representations for the
new GAP objects, namely as “component object” (record-like) or “positional object” (list-like). We decide to store
the modulus of each residue class in its family, and to encode the element k + nZ by the unique residue in the range [
0 .. n-1] thatis congruent to kK modulo n, and the object itself is chosen to be a positional object with this residue
at the first and only position (see 3.10).

Section 3. A Second Attempt to Implement Elements of Residue Class Rings 47

gap> DeclareRepresentation("IsMyModulusRep", IsPositionalObjectRep, [1]);

The fourth ingredients of a type, attributes, are usually of minor importance for element objects. In particular, we do
not need to introduce special attributes for residue classes.

Having defined what the new objects shall look like, we now declare a global function (see 3.18), to create an element
when family and residue are given.

gap> DeclareGlobalFunction("MyZmodnZObj") ;

Now we have declared what we need, and we can start to implement the missing methods resp. functions; so the
following command belongs to the implementation part of our package (see 3.18).

The probably most interesting function is the one to construct a residue class.

gap> InstallGlobalFunction(MyZmodnZObj, function(Fam, residue)

> return Objectify(NewType(Fam, IsMyZmodnZ0Obj and IsMyModulusRep),
> [residue mod Fam! .modulus]);

> end);

Note that we normalize residue explicitly using mod; we assumed that the modulus is stored in Fam, so we must
take care of this below. If Fam is a family of residue classes, and residue is an integer, M\yZmodnZ0bj returns the
corresponding object in the family Fam, which lies in the category IsMyZmodnZ0bj and in the representation IsMy-
ModulusRep.

MyZmodnZ0bj needs an appropriate family as first argument, so let us see how to get our hands on this. Of course we
could write a handy function to create such a family for given modulus, but we choose another way. In fact we do not
really want to call MyZmodnZ0bj explicitly when we want to create residue classes. For example, if we want to enter
a matrix of residues then usually we start with a matrix of corresponding integers, and it is more elegant to do the
conversion via multiplying the matrix with the identity of the required ring Z/nZ; this is also done for the conversion
of integral matrices to finite field matrices. (Note that we will have to install a method for this.) So it is often sufficient
to access this identity, for example via One (MyZmodnZ(n)), where MyZmodnZ returns a domain representing the
ring Z /nZ when called with the argument n. We decide that constructing this ring is a natural place where the creation
of the family can be hidden, and implement the function. (Note that the declaration belongs to the declaration part,
and the installation belongs to the implementation part, see 3.18).

gap> DeclareGlobalFunction("MyZmodnZ");

gap>

gap> InstallGlobalFunction(MyZmodnZ, function(n)
> local F, R;

if not IsPosInt(n) then
Error("<n> must be a positive integer");
fi;

Construct the family of element objects of our ring.
F:= NewFamily(Concatenation("MyZmod", String(n), "Z"),
IsMyZmodnZ0bj) ;

Install the data.
F!.modulus:= n;

Make the domain.

R:= RingWithOneByGenerators([MyZmodnZObj(F, 1) 1);
SetIsWholeFamily(R, true);

SetName(R, Concatenation("(Integers mod ", String(n), ")"));

V VVVVVVVVVVYVVYVVYV

48 Chapter 5. An Example — Residue Class Rings

Return the ring.
return R;
end);

V V Vv V

Note that the modulus n is stored in the component modulus of the family, as is assumed by MyZmodnZ. Thus it is
not necessary to store the modulus in each element. When storing n with the ! . operator as value of the component
modulus, we used that all families are in fact represented as component objects (see 3.9).

We see that we can use RingWithOneByGenerators to construct a ring with one if we have the appropriate genera-
tors. The construction via RingWithOneByGenerators makes sure that IsRingWithOne (and IsRing) is true for
each output of MyZmodnZ. So the main problem is to create the identity element of the ring, which in our case suffices
to generate the ring. In order to create this element via MyZmodnZ0b j, we have to construct its family first, at each call
of MyZmodnZ.

Also note that we may enter known information about the ring. Here we store that it contains the whole family of
elements; this is useful for example when we want to check the membership of an element in the ring, which can be
decided from the type of the element if the ring contains its whole elements family. Giving a name to the ring causes
that it will be printed via printing the name. (By the way: This name (Integers mod n) looks like a call to \mod
with the arguments Integers and n; a construction of the ring via this call seems to be more natural than by calling
MyZmodnZ; later we shall install a \mod method in order to admit this construction.)

Now we can read the above code into GAP, and the following works already.

gap> R:= MyZmodnZ(4);

(Integers mod 4)

gap> IsRing(R);

true

gap> gens:= GeneratorsOfRingWithOne(R);
[<object> 1]

But of course this means just to ask for the information we have explicitly stored in the ring. Already the questions
whether the ring is finite and how many elements it has, cannot be answered by GAP. Clearly we know the answers,
and we could store them in the ring, by setting the value of the property IsFinite to true and the value of the
attribute Size to n (the argument of the call to MyZmodnZ). If we do not want to do so then GAP could only try to find
out the number of elements of the ring via forming the closure of the generators under addition and multiplication, but
up to now, GAP does not know how to add or multiply two elements of our ring.

So we must install some methods for arithmetic and other operations if the elements are to behave as we want.

We start with a method for showing elements nicely on the screen. There are different operations for this purpose. One
of them is Print0Obj, which is called for each argument in an explicit call to Print. Another one is ViewObj, which
is called in the read-eval-print loop for each object. ViewObj shall produce short and human readable information
about the object in question, whereas Print0bj shall produce information that may be longer and is (if reasonable)
readable by GAP. We cannot satisfy the latter requirement for a Print0bj method because there is no way to make a
family GAP readable. So we decide to display the expression (k mod n) for an object that is given by the residue
k and the modulus n, which would be fine as a ViewObj method. Since the default for ViewObj is to call Print0bj,
and since no other ViewObj method is applicable to our elements, we need only a PrintObj method.

gap> InstallMethod(Print0Obj,

> "for element in Z/nZ (ModulusRep)",

[IsMyZmodnZObj and IsMyModulusRep],

function(x)

Print("(", x![1], " mod ", FamilyObj(x)!.modulus, ")");
end);

V V V V

So we installed a method for the operation Print0bj (first argument), and we gave it a suitable information message
(second argument), see 7.2.1 and 7.3 for applications of this information string. The third argument tells GAP that the

Section 3. A Second Attempt to Implement Elements of Residue Class Rings 49

method is applicable for objects that lie in the category IsMyZmodnZ0bj and in the representation IsMyModulusRep.
and the fourth argument is the method itself. More details about InstallMethod can be found in 2.2.

Note that the requirement IsMyModulusRep for the argument x allows us to access the residue as x! [1]. Since the
family of x has the component modulus bound if it is constructed by MyZmodnZ, we may access this component. We
check whether the method installation has some effect.

gap> gens;
[(1 mod 4) 1]

Next we install methods for the comparison operations. Note that we can assume that the residues in the representation
chosen are normalized.

gap> InstallMethod(\=,

> "for two elements in Z/nZ (ModulusRep)",

> IsIdenticalObj,

> [IsMyZmodnZObj and IsMyModulusRep, IsMyZmodnZObj and IsMyModulusRep],
> function(x, y) return x![1] = y![1]; end);

gap>
gap> InstallMethod(\<,
> "for two elements in Z/nZ (ModulusRep)",

> IsIdenticalObj,
> [IsMyZmodnZObj and IsMyModulusRep, IsMyZmodnZObj and IsMyModulusRep],
> function(x, y) return x![1] < y![1]; end);

The third argument used in these installations specifies the required relation between the families of the arguments
(see 13.1 in the Reference Manual). This argument of a method installation, if present, is a function that shall be
applied to the families of the arguments. IsIdenticalObj means that the methods are applicable only if both argu-
ments lie in the same family. (In installations for unary methods, obviously no relation is required, so this argument is
left out there.)

Up to now, we see no advantage of the new approach over the one in Section 5.1. For a residue class represented as [
k, n 1], the way it is printed on the screen is sufficient, and equality and comparison of lists are good enough to define
equality and comparison of residue classes if needed. But this is not the case in other situations. For example, if we
would have decided that the residue £ need not be normalized then we would have needed functions in Section 5.1 that
compute whether two residue classes are equal, and which of two residue classes is regarded as larger than another.
Note that we are free to define what “larger” means for objects that are newly introduced.

Next we install methods for the arithmetic operations, first for the additive structure.

gap> InstallMethod(\+,

> "for two elements in Z/nZ (ModulusRep)",

> IsIdenticalObj,

> [IsMyZmodnZObj and IsMyModulusRep, IsMyZmodnZObj and IsMyModulusRep],
> function(x, y)

> return MyZmodnZObj(FamilyObj(x), x![1] + y![1]);

> end);

gap>

gap> InstallMethod(ZeroOp,

> "for element in Z/nZ (ModulusRep)",

> [IsMyZmodnZObj 1,
> x —> MyZmodnZ0bj(Family0Obj(x), 0));

gap>
gap> InstallMethod(AdditiveInverseOp,
> "for element in Z/nZ (ModulusRep)",

> [IsMyZmodnZObj and IsMyModulusRep 1,

50 Chapter 5. An Example — Residue Class Rings

> x => MyZmodnZ0bj(FamilyObj(x), AdditiveInverse(x![1])));

Here the new approach starts to pay off. The method for the operation \+ allows us to use the infix operator + for
residue classes. The method for ZeroOp is used when we call this operation or the attribute Zero explicitly, and
ZeroOp it is also used when we ask for 0 * rescl, where rescl is a residue class.

(Note that Zero and ZeroOp are distinguished because 0 * o0bj is guaranteed to return a mutable result whenever a
mutable version of this result exists in GAP —for example if 0bj is a matrix— whereas Zero is an attribute and therefore
returns immutable results; for our example there is no difference since the residue classes are always immutable,
nevertheless we have to install the method for ZeroOp. The same holds for AdditiveInverse, One, and Inverse.)

Similarly, AdditiveInverseOp can be either called directly or via the unary - operator; so we can compute the
additive inverse of the residue class rescl as -rescl.

It is not necessary to install methods for subtraction, since this is handled via addition of the additive inverse of the
second argument if no other method is installed.

Let us try what we can do with the methods that are available now.

gap> x:= gens[1]; y:= x + x;

(1 mod 4)

(2 mod 4)

gap> 0 * x; -x;

(0 mod 4)

(3 mod 4)

gap>y = -y; X =y; X<y; “X<YJ;
true

false

true

false

We might want to admit the addition of integers and elements in rings Z/nZ, where an integer is implicitly identified
with its residue modulo n. To achieve this, we install methods to add an integer to an object in IsMyZmodnZ0bj from
the left and from the right.

gap> InstallMethod(\+,
> "for element in Z/nZ (ModulusRep) and integer",

> [IsMyZmodnZObj and IsMyModulusRep, IsInt],

> function(%, y)

> return MyZmodnZObj(FamilyObj(x), x!'[1] + y);
> end);

gap>

gap> InstallMethod(\+,

> "for integer and element in Z/nZ (ModulusRep)",
> [IsInt, IsMyZmodnZObj and IsMyModulusRep],

> function(x, y)

> return MyZmodnZ0bj(FamilyObj(y), x + y![1]);
> end);

Now we can do also the following.
gap> 2 + x; 7T - X; y - 2;
(3 mod 4)

(2 mod 4)
(0 mod 4)

Similarly we install the methods dealing with the multiplicative structure. We need methods to multiply two of our
objects, and to compute identity and inverse. The operation One0Op is called when we ask for resc/~0, and InverseOp
is called when we ask for rescl”-1. Note that the method for InverseOp returns fail if the argument is not invertible.

Section 3. A Second Attempt to Implement Elements of Residue Class Rings 51

gap> InstallMethod(*,

> "for two elements in Z/nZ (ModulusRep)",

> IsIdenticalObj,

> [IsMyZmodnZObj and IsMyModulusRep, IsMyZmodnZObj and IsMyModulusRep],
> function(x, y)

> return MyZmodnZObj(FamilyObj(x), x!'[1] * y![1]);

>

end);
gap>
gap> InstallMethod(OneOp,
> "for element in Z/nZ (ModulusRep)",

> [IsMyZmodnZObj 1],

> elm -> MyZmodnZObj(FamilyObj(elm), 1));
gap>

gap> InstallMethod(InverseOp,

> "for element in Z/nZ (ModulusRep)",

> [IsMyZmodnZObj and IsMyModulusRep],

> function(elm)

> local residue;

> residue:= QuotientMod(1, elm![1], FamilyObj(elm)!.modulus);
> if residue <> fail then

> residue:= MyZmodnZObj(Family0bj(elm), residue);

> fi;

> return residue;

> end);

To be able to multiply our objects with integers, we need not (but we may, and we should if we are going for efficiency)
install special methods. This is because in general, GAP interprets the multiplication of an integer and an additive
object as abbreviation of successive additions, and there is one generic method for such a multiplication that uses only
additions and —in the case of a negative integer— taking the additive inverse. Analogously, there is a generic method
for powering by integers that uses only multiplications and taking the multiplicative inverse.

Note that we could also interpret the multiplication with an integer as a shorthand for the multiplication with the
corresponding residue class. We are lucky that this interpretation is compatible with the one that is already available.
If this would not be the case then of course we would get into trouble by installing a concurrent multiplication that
computes something different from the multiplication that is already defined, since GAP does not guarantee which of
the applicable methods is actually chosen (see 2.3).

Now we have implemented methods for the arithmetic operations for our elements, and the following calculations
work.

gap> y:= 2 * x; z:= (-5) * x;
(2 mod 4)

(3mod 4)

gap> y * z; y *y;
(2 mod 4)

(0 mod 4)

gap> y°-1; y~0;
fail

(1 mod 4)

gap> z"-1;

(3mod 4)

There are some other operations in GAP that we may want to accept our elements as arguments. An example is the
operation Int that returns, e.g., the integral part of a rational number or the integer corresponding to an element in a
finite prime field. For our objects, we may define that Int returns the normalized residue.

52 Chapter 5. An Example — Residue Class Rings

Note that we define this behaviour for elements but we implement it for objects in the representation IsMyModu-
lusRep. This means that if someone implements another representation of residue classes then this person must be
careful to implement Int methods for objects in this new representation compatibly with our definition, i.e., such that
the result is independent of the representation.

gap> InstallMethod(Int,

> "for element in Z/nZ (ModulusRep)",
> [IsMyZmodnZObj and IsMyModulusRep],
> z —> z![1]);

Another example of an operation for which we might want to install a method is \mod. We make the ring print itself
as Integers mod the modulus, and then it is reasonable to allow a construction this way, which makes the Print0Obj
output of the ring GAP readable.

gap> InstallMethod(Print0Obj,
> "for full collection Z/nZ",

> [CategoryCollections(IsMyZmodnZObj) and IsWholeFamily],
> function(R)

> Print("(Integers mod ",

> ElementsFamily(FamilyObj(R))!.modulus, ")");

> end);

gap>

gap> InstallMethod(\mod,

> "for ‘Integers’, and a positive integer",

> [IsIntegers, IsPosRat and IsInt 1,

> function(Integers, n) return MyZmodnZ(n); end);

Let us try this.

gap> Int(y);
2

gap> Integers mod 1789;
(Integers mod 1789)

Probably it is not necessary to emphasize that with the approach of Section 5.1, installing methods for existing opera-
tions is usually not possible or at least not recommended. For example, installing the function resclass_sum defined
in Section 5.1 as a \+ method for adding two lists of length two (with integer entries) would not be compatible with
the general definition of the addition of two lists of same length. Installing a method for the operation Int that takes
alist [k, n] and returns k would in principle be possible, since there is no Int method for lists yet, but it is not
sensible to do so because one can think of other interpretations of such a list where different Int methods could be
installed with the same right.

As mentioned in Section 5.2, one advantage of the new approach is that with the implementation we have up to now,
automatically also matrices of residue classes can be treated.

gap> r:= Integers mod 16;

(Integers mod 16)

gap> x:= One(r);

(1 mod 16)

gap> mat:= IdentityMat(2) * x;

[[(1mod 16), (Omod 16) I, [(O mod 16), (1 mod 16)]]
gap> mat[1] [2]:= x;;

gap> mat;

[[l (1mod 16), (1 mod 16) 1, [(O mod 16), (1 mod 16)]]
gap> Order(mat);

Section 3. A Second Attempt to Implement Elements of Residue Class Rings 53

16

gap> mat + mat;

[[(2mod 16), (2mod 16) 1, [(O mod 16), (2 mod 16)]]
gap> last™4;

[[l (Omod 16), (Omod 16) 1, [(O mod 16), (O mod 16)]]

Such matrices, if they are invertible, are valid as group elements. One technical problem is that the default algorithm
for inverting matrices may give up since Gaussian elimination need not be successful over rings containing zero
divisors. Therefore we install a simpleminded inversion method that inverts an integer matrix.

gap> InstallMethod(InverseQOp,
> "for an ordinary matrix over a ring Z/nZ",
[IsMatrix and IsOrdinaryMatrix
and CategoryCollections(CategoryCollections(IsMyZmodnZObj)) 1,
function(mat)
local one, modulus;

one:= One(mat[1][1]);
modulus:= FamilyObj(one)!.modulus;
mat:= InverseOp(List(mat, row -> List(row, Int)));
if mat <> fail then

mat:= (mat mod modulus) * one;
fi;
if not IsMatrix(mat) then

mat:= fail;
fi;
return mat;
end);

VvV V VVVVVVVVVYVVYVYVYV

Additionally we install a method for finding a domain that contains the matrix entries; this is used by some GAP
library functions.

gap> InstallMethod(DefaultFieldOfMatrixGroup,

> "for a matrix group over a ring Z/nZ",

> [IsMatrixGroup and CategoryCollections(CategoryCollections(

> CategoryCollections(IsMyZmodnZObj))) 1,

> G -> RingWithOneByGenerators([One(Representative(G)[11[1]) 1));

Now we can deal with matrix groups over residue class rings.

gap> mat2:= IdentityMat(2) * x;;
gap> mat2[2] [1]:= x;;

gap> g:= Group(mat, mat2);;

gap> Size(g);

3072

gap> Factors(last);
[2,2,2,2,2,2,2,2,2,2,3]
gap> syl3:= SylowSubgroup(g, 3);;
gap> gens:= Generators0fGroup(syl3);
[L[(1mod 16), (7mod 16) 1, [(11 mod 16), (14 mod 16) 1 1]
gap> Order(gens[1]);

3

It should be noted that this way more involved methods for matrix groups may not be available. For example, many
questions about a finite matrix group can be delegated to an isomorphic permutation group via a so-called “nice

54 Chapter 5. An Example — Residue Class Rings

monomorphism”; this can be controlled by the filter IsHandledByNiceMonomorphism (see 38.5.1 in the GAP Ref-
erence Manual).

By the way, also groups of (invertible) residue classes can be formed, but this may be of minor interest.

gap> g:= Group(x);; Size(g);

#I default ‘IsGeneratorsOfMagmaWithInverses’ method returns ‘true’ for
[(1 mod 16) 1]

1

gap> g:= Group(3*x);; Size(g);

#I default ‘IsGeneratorsOfMagmaWithInverses’ method returns ‘true’ for
[(3mod 16) 1]

4

(The messages above tell that GAP does not know a method for deciding whether the given elements are valid group
elements. We could add an appropriate IsGeneratorsOfMagmaWithInverses method if we would want.)

Having done enough for the elements, we may install some more methods for the rings if we want to use them as
arguments. These rings are finite, and there are many generic methods that will work if they are able to compute the
list of elements of the ring, so we install a method for this.

gap> InstallMethod(Enumerator,

> "for full collection Z/nZ",

[CategoryCollections(IsMyZmodnZObj) and IsWholeFamily],
function(R)

local F;

F:= ElementsFamily(FamilyObj(R));

return List([O .. Size(R) - 11, x -> MyZmodnZObj(F, x));
end);

V V V V V V

Note that this method is applicable only to full rings Z/nZ, for proper subrings it would return a wrong result.
Furthermore, it is not required that the argument is a ring; in fact this method is applicable also to the additive group
formed by all elements in the family, provided that it knows to contain the whole family.

Analogously, we install methods to compute the size, a random element, and the units of full rings Z/nZ.

gap> InstallMethod(Random,

> "for full collection Z/nZ",

> [CategoryCollections(IsMyZmodnZObj) and IsWholeFamily],
> R -> MyZmodnZObj(ElementsFamily(FamilyObj(R)),

> Random([O .. Size(R) - 11)));
gap>

gap> InstallMethod(Size,

> "for full ring Z/nZ",

> [CategoryCollections(IsMyZmodnZObj) and IsWholeFamily],
> R -> ElementsFamily(FamilyObj(R))!.modulus);

gap>
gap> InstallMethod(Units,
> "for full ring Z/nZ",

> [CategoryCollections(IsMyZmodnZObj)

> and IsWholeFamily and IsRing],

> function(R)

> local F;

> F:= ElementsFamily(FamilyObj(R));

> return List(PrimeResidues(Size(R)), x -> MyZmodnZ0Obj(F, x));
> end);

Section 4. Compatibility of Residue Class Rings with Prime Fields 55

The Units method has the disadvantage that the result is returned as a list (in fact this list is also strictly sorted). We
could improve the implementation by returning the units as a group; if we do not want to take the full list of elements
as generators, we can use the function GeneratorsPrimeResidues (see 15.1.4 in the Reference Manual).

gap> InstallMethod(Units,

> "for full ring Z/nZ",

[CategoryCollections(IsMyZmodnZObj)
and IsWholeFamily and IsRing],

function(R)

local G, gens;

gens:= GeneratorsPrimeResidues(Size(R)).generators;

if not IsEmpty(gens) and gens[1] = 1 then
gens:= gens{ [2 .. Length(gens)] };

fi;

gens:= Flat(gens) * One(R);

return GroupByGenerators(gens, One(R));

end);

V VV VYV V V VYV YVVYV

Each ring Z/nZ is finite, and we could install a method that returns true when IsFinite is called with Z/nZ as
argument. But we can do this more elegantly via installing a logical implication.

gap> InstallTrueMethod(IsFinite,
> CategoryCollections(IsMyZmodnZObj) and IsDomain);

In effect, every domain that consists of elements in IsMyZmodnZ0bj will automatically store that it is finite, even if
IsFinite is not called for it.

5.4 Compatibility of Residue Class Rings with Prime Fields

The above implementation of residue classes and residue class rings has at least two disadvantages. First, if p is a
prime then the ring Z/pZ is in fact a field, but the return values of MyZmodnZ are never regarded as fields because they
are not in the category IsMagmaWithInversesIfNonzero. Second, and this makes the example really interesting,
there are already elements of finite prime fields implemented in GAP, and we may want to identify them with elements
in Z/pZ.

To be more precise, elements of finite fields in GAP lie in the category IsFFE, and there is already a representation,
IsInternalRep, of these elements via discrete logarithms. The aim of this section is to make IsMyModulusRep an
alternative representation of elements in finite prime fields.

Note that this is only one step towards the desired compatibility. Namely, after having a second representation of
elements in finite prime fields, we may wish that the function GF (which is the usual function to create finite fields
in GAP) is able to return MyZmodnZ(p) when GF(p) is called for a prime p. Moreover, then we have to decide
about a default representation of elements in GF(p) for primes p for which both representations are available. Of
course we can force the new representation by explicitly calling MyZmodnZ and MyZmodnZ0bj whenever we want, but
it is not a priori clear in which situation which representation is preferable.

The same questions will occur when we want to implement a new representation for non-prime fields. The steps of
this implementation will be the same as described in this chapter, and we will have to achieve compatibility with both
the internal representation of elements in small finite fields and the representation IsMyModulusRep of elements in
arbitrary prime fields.

But let us now turn back to the task of this section. We first adjust the setup of the declaration part of the previous
section, and then repeat the installations with suitable modifications.

(We should start a new GAP session for that, otherwise GAP will complain that the objects to be declared are already
bound; additionally, the methods installed above may be not compatible with the ones we want.)

56 Chapter 5. An Example — Residue Class Rings

gap> DeclareCategory("IsMyZmodnZObj", IsScalar);

gap>

gap> DeclareCategory("IsMyZmodnZObjNonprime", IsMyZmodnZObj);
gap>

gap> DeclareSynonym("IsMyZmodpZ0Obj", IsMyZmodnZ0Obj and ISFFE);
gap>

gap> DeclareRepresentation("IsMyModulusRep", IsPositionalObjectRep, [1]);
gap>

gap> DeclareGlobalFunction("MyZmodnZObj");

gap>

gap> DeclareGlobalFunction("MyZmodnZ");

As in the previous section, all (newly introduced) elements of rings Z/nZ lie in the category IsMyZmodnZObj. But
now we introduce two subcategories, namely IsMyZmodnZ0bjNonprime for all elements in rings Z/nZ where n is
not a prime, and IsMyZmodpZ0bj for elements in finite prime fields. All objects in the latter are automatically known
to lie in the category IsFFE of finite field elements.

It would be reasonable if also those internally represented elements in the category IsFFE that do in fact lie in a prime
field would also lie in the category IsMyZmodnZ0bj (and thus in fact in IsMyZmodpZ0bj). But this cannot be achieved
because internally represented finite field elements do in general not store whether they lie in a prime field.

As for the implementation part, again let us start with the definitions of MyZmodnZ0bj and MyZmodnZ.

gap> InstallGlobalFunction(MyZmodnZObj, function(Fam, residue)
> if IsFFEFamily(Fam) then

> return Objectify(NewType(Fam, IsMyZmodpZObj

> and IsMyModulusRep),

> [residue mod Characteristic(Fam)]);
> else

> return Objectify(NewType(Fam, IsMyZmodnZObjNonprime
> and IsMyModulusRep),

> [residue mod Fam!.modulus]);

> fi;

> end);

gap> InstallGlobalFunction(MyZmodnZ, function(n)
local F, R;

if not (IsInt(n) and IsPosRat(n)) then
Error("<n> must be a positive integer");
elif IsPrimeInt(n) then
Construct the family of element objects of our field.
F:= FFEFamily(n);
Make the domain.
R:= FieldOverItselfByGenerators([MyZmodnZObj(F, 1) 1);
SetIsPrimeField(R, true);
else
Construct the family of element objects of our ring.
F:= NewFamily(Concatenation("MyZmod", String(n), "Z"),
IsMyZmodnZObjNonprime);
Install the data.
F!.modulus:= n;
Make the domain.
R:= RingWithOneByGenerators([MyZmodnZObj(F, 1) 1);

VvV VVVVVVVVVVVVVVYVYVYV

Section 4. Compatibility of Residue Class Rings with Prime Fields 57

SetIsWholeFamily(R, true);
SetName(R, Concatenation("(Integers mod ",String(n),")"));
fi;

Return the ring resp. field.
return R;
end);

V V V V V V VvV

Note that the result of MyZmodnZ with a prime as argument is a field that does not contain the whole family of its
elements, since all finite field elements of a fixed characteristic lie in the same family. Further note that we cannot
expect a family of finite field elements to have a component modulus, so we use Characteristic to get the modulus.
Requiring that Fam! .modulus works also if Fam is a family of finite field elements would violate the rule that an
extension of GAP should not force changes in existing code, in this case code dealing with families of finite field
elements.

gap> InstallMethod(PrintObj,
> "for element in Z/nZ (ModulusRep)",

> [IsMyZmodnZObjNonprime and IsMyModulusRep],

> function(x)

> Print("(", x![1], " mod ", FamilyObj(x)'.modulus, ")");
> end);

gap>

gap> InstallMethod(PrintObj,

> "for element in Z/pZ (ModulusRep)",

> [IsMyZmodpZObj and IsMyModulusRep 1,

> function(x)

> Print("(", x![1], " mod ", Characteristic(x), ")");
> end);

gap>

gap> InstallMethod(\=,

> "for two elements in Z/nZ (ModulusRep)",

> IsIdenticalObj,

> [IsMyZmodnZObj and IsMyModulusRep,

> IsMyZmodnZObj and IsMyModulusRep],

> function(x, y) return x![1] = y![1]; end);

The above method to check equality is independent of whether the arguments have a prime or nonprime modulus, so
we installed it for arguments in IsMyZmodnZ0bj. Now we install also methods to compare objects in IsMyZmodpZ0bj
with the “old” finite field elements.

gap> InstallMethod(\=,

> "for element in Z/pZ (ModulusRep) and internal FFE",

> IsIdenticalObj,

> [IsMyZmodpZObj and IsMyModulusRep, ISFFE and IsInternalRep],
> function(x, y)

> return DegreeFFE(y) = 1 and x![1] = IntFFE(y);

> end);

gap>

gap> InstallMethod(\=,

> "for internal FFE and element in Z/pZ (ModulusRep)",

> IsIdenticalObj,

> [ISFFE and IsInternalRep, IsMyZmodpZObj and IsMyModulusRep],
> function(x, y)

58 Chapter 5. An Example — Residue Class Rings

> return DegreeFFE(x) = 1 and IntFFE(x) = y![1];
> end);

The situation with the operation \< is more difficult. Of course we are free to define the comparison of objects in
IsMyZmodnZ0ObjNonprime, but for the finite field elements, the comparison must be compatible with the predefined
comparison of the “old” finite field elements. The definition of the \< comparison of internally represented finite field
elements can be found in Chapter 57 in the Reference Manual. In situations where the documentation does not provide
the required information, one has to look it up in the GAP code; for example, the comparison in our case can be found
in the appropriate source code file of the GAP kernel.

gap> InstallMethod(\<,

> "for two elements in Z/nZ (ModulusRep, nonprime)",
> IsIdenticalObj,

> [IsMyZmodnZObjNonprime and IsMyModulusRep,

> IsMyZmodnZObjNonprime and IsMyModulusRep],

> function(x, y) return x![1] < y![1]; end);

%
e}
\Y%

gap> InstallMethod(\<,

> "for two elements in Z/pZ (ModulusRep)",

> IsIdenticalObj,

> [IsMyZmodpZObj and IsMyModulusRep,

> IsMyZmodpZ0Obj and IsMyModulusRep],

> function(x, y)

> local p, r; # characteristic and primitive root
> if x![1] = 0 then

> return y![1] <> 0;

> elif y![1] = O then

> return false;

> else

> p:= Characteristic(x);

> r:= PrimitiveRootMod(p);

> return LogMod(x![1], r, p) < LogMod(y![1], r, p);
> fi;

> end);

gap>

gap> InstallMethod(\<,

> "for element in Z/pZ (ModulusRep) and internal FFE",

> IsIdenticalObj,

> [IsMyZmodpZObj and IsMyModulusRep, ISFFE and IsInternalRep],
> function(x, y)

> return x![1] * One(y) < y;

> end);

gap>

gap> InstallMethod(\<,

> "for internal FFE and element in Z/pZ (ModulusRep)",

> IsIdenticalObj,

> [ISFFE and IsInternalRep, IsMyZmodpZObj and IsMyModulusRep],
> function(x, y)

> return x < y![1] * One(x);

> end);

Now we install the same methods for the arithmetic operations \+, ZeroOp, AdditiveInverseOp, \-, *, and OneOp
as in the previous section, without listing them below. Also the same Int method is installed for objects in IsMyZ-

Section 4. Compatibility of Residue Class Rings with Prime Fields 59

modnZ0bj. Note that it is compatible with the definition of Int for finite field elements. And of course the same
method for \mod is installed.

We have to be careful, however, with the methods for InverseOp, \/, and \". These methods and the missing methods
for arithmetic operations with one argument in IsMyModulusRep and the other in IsInternalRep are given below.

gap> InstallMethod(\+,

> "for element in Z/pZ (ModulusRep) and internal FFE",

> IsIdenticalObj,

> [IsMyZmodpZObj and IsMyModulusRep, ISFFE and IsInternalRep],

> function(x, y) return x![1] + y; end);

gap>

gap> InstallMethod(\+,

> "for internal FFE and element in Z/pZ (ModulusRep)",

> IsIdenticalObj,
> [ISFFE and IsInternalRep, IsMyZmodpZObj and IsMyModulusRep],

> function(x, y) return x + y![1]; end);

gap>

gap> InstallMethod(*,

> "for element in Z/pZ (ModulusRep) and internal FFE",

> IsIdenticalObj,
> [IsMyZmodpZObj and IsMyModulusRep, ISFFE and IsInternalRep],

> function(x, y) return x![1] * y; end);

gap>

gap> InstallMethod(*,

> "for internal FFE and element in Z/pZ (ModulusRep)",

> IsIdenticalObj,
> [ISFFE and IsInternalRep, IsMyZmodpZObj and IsMyModulusRep],

> function(x, y) return x * y![1]; end);

gap>

gap> InstallMethod(InverseOp,

> "for element in Z/nZ (ModulusRep, nonprime)",

> [IsMyZmodnZObjNonprime and IsMyModulusRep],

> function(x)

> local residue;

> residue:= QuotientMod(1, x![1], FamilyObj(x)!.modulus);
> if residue <> fail then

> residue:= MyZmodnZObj(Family0bj(x), residue);
> fi;

> return residue;

> end);

gap>

gap> InstallMethod(InverseOp,

> "for element in Z/pZ (ModulusRep)",

> [IsMyZmodpZObj and IsMyModulusRep],

> function(x)

> local residue;

> residue:= QuotientMod(1, x![1], Characteristic(Family0Obj(x)));
> if residue <> fail then

> residue:= MyZmodnZObj(FamilyQObj(x), residue);
> fi;

> return residue;

> end);

60 Chapter 5. An Example — Residue Class Rings

The operation DegreeFFE is defined for finite field elements, we need a method for objects in IsMyZmodpZ0Obj. Note
that we need not require IsMyModulusRep since no access to representation dependent data occurs.

gap> InstallMethod(DegreeFFE,

> "for element in Z/pZ",
> [IsMyZmodpZObj 1],
> z ->1);

The methods for Enumerator, Random, Size, and Units, that we had installed in the previous section had all assumed
that their argument contains the whole family of its elements. So these methods make sense only for the nonprime
case. For the prime case, there are already methods for these operations with argument a field.

gap> InstallMethod(Enumerator,
> "for full ring Z/nZ",

> [CategoryCollections(IsMyZmodnZObjNonprime) and IsWholeFamily],
> function(R)

> local F;

> F:= ElementsFamily(FamilyObj(R));

> return List([0 .. Size(R) - 1], x -> MyZmodnZObj(F, x));

> end);

gap>

gap> InstallMethod(Random,

> "for full ring Z/nZ",

> [CategoryCollections(IsMyZmodnZObjNonprime) and IsWholeFamily],
> R -> MyZmodnZObj(ElementsFamily(FamilyObj(R)),

> Random([O .. Size(R) - 11)));
gap>

gap> InstallMethod(Size,

> "for full ring Z/nZ",

> [CategoryCollections(IsMyZmodnZObjNonprime) and IsWholeFamily],
> R -> ElementsFamily(FamilyObj(R))!.modulus);

gap>

gap> InstallMethod(Units,

> "for full ring Z/nZ",

> [CategoryCollections(IsMyZmodnZObjNonprime)
> and IsWholeFamily and IsRing],

> function(R)

> local G, gens;

>

> gens:= GeneratorsPrimeResidues(Size(R)).generators;
> if not IsEmpty(gens) and gens[1] = 1 then

> gens:= gens{ [2 .. Length(gens) 1 };

> fi;

> gens:= Flat(gens) * One(R);

> return GroupByGenerators(gens, One(R));

> end);

gap>

gap> InstallTrueMethod(IsFinite,
CategoryCollections(IsMyZmodnZObjNonprime) and IsDomain);

A\

Section 5. Further Improvements in Implementing Residue Class Rings 61

5.5 Further Improvements in Implementing Residue Class Rings

There are of course many possibilities to improve the implementation.

With the setup as described above, subsequent calls MyZmodnZ (n) with the same n yield incompatible rings in the
sense that elements of one ring cannot be added to elements of an other one. The solution for this problem is to keep
a global list of all results of MyZmodnZ in the current GAP session, and to return the stored values whenever possible.
Note that this approach would admit Print0bj methods that produce GAP readable output.

One can improve the Units method for the full ring in such a way that a group is returned and not only a list of its
elements; then the result of Units can be used, e. g., as input for the operation SylowSubgroup.

To make computations more efficient, one can install methods for \-, \/, and \~; one reason for doing so may be that
this avoids the unnecessary construction of the additive or multiplicative inverse, or of intermediate powers.

InstallMethod(\-, "two elements in Z/nZ (ModulusRep)", ...);
InstallMethod(\-, "Z/nZ-obj. (ModulusRep) and integer", ...);
InstallMethod(\-, "integer and Z/nZ-obj. (ModulusRep)", ...);
InstallMethod(\-, "Z/pZ-obj. (ModulusRep) and internal FFE", ...);
InstallMethod(\-, "internal FFE and Z/pZ-obj. (ModulusRep)", ...);
InstallMethod(*, "Z/nZ-obj. (ModulusRep) and integer", ...);
InstallMethod(*, "integer and Z/nZ-obj. (ModulusRep)", ...);
InstallMethod(\/, "two Z/nZ-objs. (ModulusRep, nonprime)", ...);
InstallMethod(\/, "two Z/pZ-objs. (ModulusRep)", ...);
InstallMethod(\/, "Z/nZ-obj. (ModulusRep) and integer", ...);
InstallMethod(\/, "integer and Z/nZ-obj. (ModulusRep)", ...);
InstallMethod(\/, "Z/pZ-obj. (ModulusRep) and internal FFE", ...);
InstallMethod(\/, "internal FFE and Z/pZ-obj. (ModulusRep)", ...);
InstallMethod(\~, "Z/nZ-obj. (ModulusRep, nonprime) & int.", ...);
InstallMethod(\~, "Z/pZ-obj. (ModulusRep), and integer", ...);

The call to NewType in MyZmodnZ0bj can be avoided by storing the required type, e.g., in the family. But note that
it is not admissible to take the type of an existing object as first argument of Objectify. For example, suppose
two objects in IsMyZmodnZ0bj shall be added. Then we must not use the type of one of the arguments in a call of
Objectify, because the argument may have knowledge that is not correct for the result of the addition. One may
think of the property IsOne that may hold for both arguments but certainly not for their sum.

For comparing two objects in IsMyZmodpZ0bj via “<”, we had to install a quite expensive method because of the
compatibility with the comparison of finite field elements that did already exist. In fact GAP supports finite fields
with elements represented via discrete logarithms only up to a given size. So in principle we have the freedom to
define a cheaper comparison via “<” for objects in IsMyZmodpZ0bj if the modulus is large enough. This is possi-
ble by introducing two categories IsMyZmodpZObjSmall and IsMyZmodpZ0ObjLarge, which are subcategories of
IsMyZmodpZ0Obj, and to install different \< methods for pairs of objects in these categories.

An Example —
Designing Arithmetic
Operations

In this chapter, we give a —hopefully typical- example of extending GAP by new objects with prescribed arithmetic
operations.

6.1 New Arithmetic Operations vs. New Objects

A usual procedure in mathematics is the definition of new operations for given objects; here are a few typical examples.
The Lie bracket defines an interesting new multiplicative structure on a given (associative) algebra. Forming a group
ring can be viewed as defining a new addition for the elements of the given group, and extending the multiplication
to sums of group elements in a natural way. Forming the exterior algebra of a given vector space can be viewed as
defining a new multiplication for the vectors in a natural way.

GAP does not support such a procedure. The main reason for this is that in GAP, the multiplication in a group, a
ring etc. is always written as *, and the addition in a vector space, a ring etc. is always written as +. Therefore it
is not possible to define the Lie bracket as a “second multiplication” for the elements of a given algebra; in fact,
the multiplication in Lie algebras in GAP is denoted by *. Analogously, constructing the group ring as sketched
above is impossible if an addition is already defined for the elements; note the difference between the usual addition
of matrices and the addition in the group ring of a matrix group! (See Chapter 63 in the Reference Manual for an
example.) Similarly, there is already a multiplication defined for row vectors (yielding the standard scalar product),
hence these vectors cannot be regarded as elements of the exterior algebra of the space.

In situations such as the ones mentioned above, GAP’s way to deal with the structures in question is the following.
Instead of defining new operations for the given objects, new objects are created to which the given arithmetic
operations * and + are then made applicable.

With this construction, matrix Lie algebras consist of matrices that are different from the matrices with associative
multiplication; technically, the type of a matrix determines how it is multiplied with other matrices (see 24.1.1 in the
Reference Manual). A matrix with the Lie bracket as its multiplication can be created with the function LieObject
from a matrix with the usual associative multiplication.

Group rings (more general: magma rings, see Chapter 63 in the Reference Manual) can be constructed with FreeMag-
maRing from a coefficient ring and a group. The elements of the group are not contained in such a group ring, one has
to use an embedding map for creating a group ring element that corresponds to a given group element.

It should be noted that the GAP approach to the construction of Lie algebras from associative algebras is generic in
the sense that all objects in the filter IsLieObject use the same methods for their addition, multiplication etc., by del-
egating to the “underlying” objects of the associative algebra, no matter what these objects actually are. Analogously,
also the construction of group rings is generic.

Section 2. Designing new Multiplicative Objects 63

6.2 Designing new Multiplicative Objects

The goal of this section is to implement objects with a prescribed multiplication. Let us assume that we are given a
field F, and that we want to define a new multiplication * on F' that is given by a * b = ab — a — b+ 2; here ab denotes
the ordinary product in F.

By the discussion in Section 6.1, we know that we cannot define a new multiplication on F itself but have to create
new objects.

We want to distinguish these new objects from all other GAP objects, in order to describe for example the situation
that two of our objects shall be multiplied. This distinction is made via the type of the objects. More precisely, we
declare a new filter, a function that will return true for our new objects, and false for all other GAP objects. This
can be done by calling DeclareFilter (see 3.17.2), but since our objects will know about the value already when
they are constructed, the filter can be created with DeclareCategory (see 3.17.2 and 3.1.1).

DeclareCategory("IsMyObject", IsObject);
The idea is that the new multiplication will be installed only for objects that “lie in the category IsMyObject”.

The next question is what internal data our new objects store, and how they are accessed. The easiest solution is
to store the “underlying” object from the field F. GAP provides two general possibilities how to store this, namely
record-like and list-like structures (for examples, see 3.9 and 3.10). We decide to store the data in a list-like structure,
at position 1. This representation is declared as follows.

DeclareRepresentation("IsMyObjectListRep", IsPositionalObjectRep, [1]);

Of course we can argue that this declaration is superfluous because all objects in the category IsMyObject will be
represented this ways; it is possible to proceed like that, but often (in more complicated situations) it turns out to be
useful that several representations are available for “the same element”.

For creating the type of our objects, we need to specify to which family (see 13.1 in the Reference Manual) the
objects shall belong. For the moment, we need not say anything about relations to other GAP objects, thus the only
requirement is that all new objects lie in the same family; therefore we create a new family. Also we are not interested
in properties that some of our objects have and others do not have, thus we need only one type, and store it in a global
variable.

MyType:= NewType(NewFamily("MyFamily"),
IsMyObject and IsMyObjectListRep);

The next step is to write a function that creates a new object. It may look as follows.
MyObject:= val -> Objectify(MyType, [Immutable(val)]);

Note that we store an immutable copy of the argument in the returned object; without doing so, for example if the
argument would be a mutable matrix then the corresponding new object would be changed whenever the matrix is
changed (see 12.6 in the Reference Manual for more details about mutability).

Having entered the above GAP code, we can create some of our objects.

gap> a:= MyObject(3); b:= MyObject(5);
<object>

<object>

gap> a![1]l; b![1];

3

5

But clearly a lot is missing. Besides the fact that the desired multiplication is not yet installed, we see that also the
way how the objects are printed is not satisfactory.

Let us improve the latter first. There are two GAP functions View and Print for showing objects on the screen. View
is thought to show a short and human readable form of the object, and Print is thought to show a not necessarily short

64 Chapter 6. An Example — Designing Arithmetic Operations

form that is GAP readable whenever this makes sense. We decide to show a as 3 by View, and to show the construction
MyObject(3) by Print; the methods are installed for the underlying operations ViewObj and Print0Obj.

InstallMethod(ViewObj,
"for object in ‘IsMyObject’",
[IsMyObject and IsMyObjectListRep 1,
function(obj)
Print("<", obj![1], ">");
end);

InstallMethod(PrintObj,
"for object in ‘IsMyObject’",
[IsMyObject and IsMyObjectListRep],
function(obj)
Print("MyObject(", obj![1], ")");
end);

This is the result of the above installations.

gap> a; Print(a, "\n");
<3>
MyObject(3)

And now we try to install the multiplication.

InstallMethod(*,
"for two objects in ‘IsMyObject’",
[IsMyObject and IsMyObjectListRep,
IsMyObject and IsMyObjectListRep],
function(a, b)
return MyObject(a![1] * b![1] - a![1] - b![1] + 2);
end);

When we enter the above code, GAP runs into an error. This is due to the fact that the operation * is declared for two
arguments that lie in the category IsMultiplicativeElement. One could circumvent the check whether the method
matches the declaration of the operation, by calling Install0therMethod instead of InstallMethod. But it would
make sense if our objects would lie in IsMultiplicativeElement, for example because some generic methods for
objects with multiplication would be available then, such as powering by positive integers via repeated squaring. So
we want that IsMyObject implies IsMultiplicativeElement. The easiest way to achieve such implications is to
use the implied filter as second argument of the DeclareCategory call; but since we do not want to start anew, we
can also install the implication afterwards.

InstallTrueMethod(IsMultiplicativeElement, IsMyObject);

Afterwards, installing the multiplication works without problems. Note that MyType and therefore also a and b are
not affected by this implication, so we construct them anew.

gap> MyType:= NewType(NewFamily("MyFamily"),

> IsMyObject and IsMyObjectListRep);;
gap> a:= MyObject(3);; b:= MyObject(5);;

gap> axb; a”27;

<9>

<134217729>

Powering the new objects by negative integers is not possible yet, because GAP does not know how to compute the
inverse of an element a, say, which is defined as the unique element @’ such that both aa’ and @'a are “the unique
multiplicative neutral element that belongs to a”.

Section 2. Designing new Multiplicative Objects 65

And also this neutral element, if it exists, cannot be computed by GAP in our current situation. It does, however, make
sense to ask for the multiplicative neutral element of a given magma, and for inverses of elements in the magma.

But before we can form domains of our objects, we must define when two objects are regarded as equal; note that
this is necessary in order to decide about the uniqueness of neutral and inverse elements. In our situation, equality is
defined in the obvious way. For being able to form sets of our objects, also an ordering via \< is defined for them.

InstallMethod(\=,
"for two objects in ‘IsMyObject’",
[IsMyObject and IsMyObjectListRep,
IsMyObject and IsMyObjectListRep],
function(a, b)
return a![1] = b![1];
end);

InstallMethod(\<,
"for two objects in ‘IsMyObject’",
[IsMyObject and IsMyObjectListRep,
IsMyObject and IsMyObjectListRep],
function(a, b)
return a![1] < b![1];
end);

Let us look at an example. We start with finite field elements because then the domains are finite, hence the generic
methods for such domains will have a chance to succeed.

gap> a:= MyObject(Z(7));

<Z(7)>

gap> m:= Magma(a);

<magma with 1 generators>

gap> e:= MultiplicativeNeutralElement(m);

<Z(7)"2>

gap> elms:= AsList(m);

[<Z2(7)>, <Z2(7)"2>, <Z(7)"5>]

gap> ForAll(elms, x -> ForAny(elms, y -> x*y = e and y*x = e));
true

gap> List(elms, x -> First(elms, y -> x*y = e and y*x = e));
[<Z(7)75>, <Z(7)~2>, <Z(7)>]

So a multiplicative neutral element exists, in fact all elements in the magma m are invertible. But what about the
following.

gap> b:= MyObject(Z(7)°0); m:= Magma(a, b);
<Z(7)"0>

<magma with 2 generators>

gap> elms:= AsList(m);

[<Z(7)70>, <Z(7)>, <Z(7)"2>, <Z(7)"°5>]

gap> e:= MultiplicativeNeutralElement(m);
<Z(7)"2>

gap> ForAll(elms, x -> ForAny(elms, y -> x*y = e and y*x = e));
false

gap> List(elms, x => b * x);

[<Z(7)70>, <Z(7)~0>, <Z(7)"0>, <Z(7)"0>]

Here we found a multiplicative neutral element, but the element b does not have an inverse. If an addition would be
defined for our elements then we would say that b behaves like a zero element.

66 Chapter 6. An Example — Designing Arithmetic Operations

When we started to implement the new objects, we said that we wanted to define the new multiplication for elements
of a given field F. In principle, the current implementation would admit also something like MyObject(2) *
MyObject (Z(7)). Butif we decide that our initial assumption holds, we may define the identity and the inverse of
the object <a> as <2xe> and <a/ (a-e) >, respectively, where e is the identity element in F and / denotes the division
in F; note that the element <e> is not invertible, and that the above definitions are determined by the multiplication
defined for our objects. Further note that after the installations shown below, also One (MyObject(1)) is defined.

(For technical reasons, we do not install the intended methods for the attributes One and Inverse but for the opera-
tions OneOp and InverseOp. This is because for certain kinds of objects —mainly matrices— one wants to support a
method to compute a mutable identity or inverse, and the attribute needs only a method that takes this object, makes
it immutable, and then returns this object. As stated above, we only want to deal with immutable objects, so this
distinction is not really interesting for us.)

A more interesting point to note is that we should mark our objects as likely to be invertible, since we add the

possibility to invert them. Again, this could have been part of the declaration of IsMyObject, but we may also
formulate an implication for the existing category.

InstallTrueMethod(IsMultiplicativeElementWithInverse, IsMyObject);

InstallMethod(OneOp,
"for an object in ‘IsMyObject’",
[IsMyObject and IsMyObjectListRep],
a -> MyObject(2 * One(a![1])));

InstallMethod(InverseOp,
"for an object in ‘IsMyObject’",
[IsMyObject and IsMyObjectListRep],
a —-> MyObject(a![1] / (a![1] - One(a![1]))));

Now we can form groups of our (nonzero) elements.

gap> MyType:= NewType(NewFamily("MyFamily"),

> IsMyObject and IsMyObjectListRep);;
gap>

gap> a:= MyObject(Z(7));

<Z(7)>

gap> b:= MyObject(0%Z(7)); g:= Group(a, b);
<0*Z(7)>

<group with 2 generators>
gap> Size(g);
6

We are completely free to define an addition for our elements, a natural one is given by <a> + = <a+b-1>. As
we did for the multiplication, we first change IsMyObject such that the additive structure is also known.

InstallTrueMethod(IsAdditiveElementWithInverse, IsMyObject);

Next we install the methods for the addition, and those to compute the additive neutral element and the additive
inverse.

InstallMethod(\+,
"for two objects in ‘IsMyObject’",
[IsMyObject and IsMyObjectListRep,
IsMyObject and IsMyObjectListRep],
function(a, b)
return MyObject(a![1] + b![1] - 1);
end);

Section 2. Designing new Multiplicative Objects 67

InstallMethod(ZeroOp,
"for an object in ‘IsMyObject’",
[IsMyObject and IsMyObjectListRep],
a -> MyObject(One(a![1])));

InstallMethod(AdditiveInverseOp,
"for an object in ‘IsMyObject’",
[IsMyObject and IsMyObjectListRep],
a -> MyObject(a![1] / (a![1] - One(a![1]))));

Let us try whether the addition works.

gap> MyType:= NewType(NewFamily("MyFamily"),

> IsMyObject and IsMyObjectListRep);;
gap> a:= MyObject(Z(7));; b:= MyObject(0%xZ(7));;
gap> m:= AdditiveMagma(a, b);

<additive magma with 2 generators>

gap> Size(m);

7

Similar as installing a multiplication automatically makes powering by integers available, multiplication with integers
becomes available with the addition.

gap> 2 * a;

<Z(7)°5>

gap> ata;

<Z(7)°5>

gap> MyObject(2*Z(7)°0) * a;
<z(7)>

In particular we see that this multiplication does not coincide with the multiplication of two of our objects, that is, an
integer cannot be used as a shorthand for one of the new objects in a multiplication.

(It should be possible to create a field with the new multiplication and addition. Currently this fails, due to missing
methods for computing several kinds of generators from field generators, for computing the characteristic in the case
that the family does not know this in advance, for checking with AsField whether a domain is in fact a field, for
computing the closure as a field.)

It should be emphasized that the mechanism described above may be not suitable for the situation that one wants to
consider many different multiplications “on the same set of objects”, since the installation of a new multiplication
requires the declaration of at least one new filter and the installation of several methods. But the design of GAP is not
suitable for such dynamic method installations.

Turning this argument the other way round, the implementation of the new arithmetics defined by the above multipli-
cation and addition is available for any field F', one need not repeat it for each field one is interested in.

Similar to the above situation, the construction of a magma ring RM from a coefficient ring R and a magma M is
implemented only once, since the definition of the arithmetic operations depends only on the given multiplication of
M and not on M itself. So the addition is not implemented for the elements in M or —more precisely— for an isomorphic
copy. In some sense, the addition is installed “for the multiplication”, and as mentioned in Section 6.1, there is only
one multiplication * in GAP.

Bibliography

[Isa76] 1. M. Isaacs. Character theory of finite groups, volume 69 of Pure and applied mathematics. Academic Press,
New York, 1976. xii+303 pp., ISBN 0-12-374550-0.

[LRW97] Eugene M. Luks, Ferenc Rakdczi, and Charles R. B. Wright. Some algorithms for nilpotent permutation
groups. J. Symbolic Comput., 23(4):335-354, 1997.

[Wie69] Helmut Wielandt. Permutation groups through invariant relations and invariant functions. Lecture notes,
Department of Mathematics, The Ohio State University, 1969.

Index

This index covers only this manual. A page number in italics refers to a whole section which is devoted to the
indexed subject. Keywords are sorted with case and spaces ignored, e.g., “PermutationCharacter” comes before

“permutation group”.

A

Adding a new Attribute, 37

Adding a new Operation, 36

Adding a new Representation, 38

Adding new Concepts, 39

Addition of a Method, 34

A First Attempt to Implement Elements of Residue Class
Rings, 44

Applicable Methods and Method Selection, /2

ArithmeticElementCreator, 41

Arithmetic Issues in the Implementation of New Kinds
of Lists, 27

A Second Attempt to Implement Elements of Residue
Class Rings, 46

BindGlobal, 31

C

CategoryCollections, 16

CategoryFamily, 16

CollectionsFamily, 19

Compatibility of Residue Class Rings with Prime Fields,
55

Component Objects, 21/

Components versus Attributes, 39

Creating Attributes and Properties, 17

Creating Categories, 16

Creating Families, /8

Creating Objects, 20

Creating Operations, /8

Creating Other Filters, /8

Creating Own Arithmetic Objects, 4/

Creating Representations, /7

Creating Types, 20

D
Declaration and Implementation Part, 33
DeclareAttribute, 31

example, 37, 41

DeclareCategory, 31
DeclareFilter, 31
DeclareGlobalFunction, 31
DeclareGlobalVariable, 31
DeclareQperation, 31
DeclareProperty, 31
DeclareRepresentation, 31
belongs to implementation part, 33
example, 38
DeclareSynonym, 32
DeclareSynonymAttr, 32
Designing new Multiplicative Objects, 63

E

ElementsFamily, 20

Enforcing Property Tests, 36

Example — Constructing Enumerators, 24

Example — Constructing Iterators, 26

Example: Groups with a decomposition as semidirect
product, 47

Example: Groups with a word length, 40

Example: M-groups, 40

Extending the Range of Definition of an Existing
Operation, 35

External Representation, 28

ExtRep0£f0bj, 29

F

FlushCaches, 32

Further Improvements in Implementing Residue Class
Rings, 61

G
Global Variables in the Library, 31/

|

Immediate Methods, 13
Implementing New List Objects, 23
InstallFlushableValue, 32
InstallGlobalFunction, 31

70

InstallImmediateMethod, 13
InstallMethod, 11
InstallOtherMethod, 12
InstallTrueMethod, 14
InstallValue, 32
IsAttributeStoringRep, 37, 38
IsComponentObjectRep, 38

L

Logical Implications, 14

M

method, 11

Method Installation, 71
Mutability and Copying, 29

N

NamesOfComponents, 21
New Arithmetic Operations vs. New Objects, 62
NewAttribute, 17

example, 37

mutable, 17
NewCategory, 16
NewFamily, 19
NewFilter, 18
NewOperation, 18
NewProperty, 17
NewRepresentation, 17

example, 38
NewType, 20

o)

ObjByExtRep, 29

Objectify, 20
ObjectifyWithAttributes, 20
operation, 11

Operations and Mathematical Terms, /4
Operations and Methods, 71

overload, 14

P
Partial Methods, /3
Positional Objects, 22

R

Redispatching, 13
RedispatchOnCondition, 13
ResetFilter0Obj, 18

S

SetFilterObj, 18
T

TryNextMethod, 13
w

Why Proceed in a Different Way?, 45

Index

	
	Acknowledgement
	Contents
	Copyright Notice
	About Programming in GAP
	Method Selection
	Operations and Methods
	Method Installation
	Applicable Methods and Method Selection
	Partial Methods
	Redispatching
	Immediate Methods
	Logical Implications
	Operations and Mathematical Terms

	Creating New Objects
	Creating Categories
	Creating Representations
	Creating Attributes and Properties
	Creating Other Filters
	Creating Operations
	Creating Families
	Creating Types
	Creating Objects
	Component Objects
	Positional Objects
	Implementing New List Objects
	Example -- Constructing Enumerators
	Example -- Constructing Iterators
	Arithmetic Issues in the Implementation of New Kinds of Lists
	External Representation
	Mutability and Copying
	Global Variables in the Library
	Declaration and Implementation Part

	Examples of Extending the System
	Addition of a Method
	Extending the Range of Definition of an Existing Operation
	Enforcing Property Tests
	Adding a new Operation
	Adding a new Attribute
	Adding a new Representation
	Components versus Attributes
	Adding new Concepts
	Example: M-groups
	Example: Groups with a word length
	Example: Groups with a decomposition as semidirect product
	Creating Own Arithmetic Objects

	An Example -- Residue Class Rings
	A First Attempt to Implement Elements of Residue Class Rings
	Why Proceed in a Different Way?
	A Second Attempt to Implement Elements of Residue Class Rings
	Compatibility of Residue Class Rings with Prime Fields
	Further Improvements in Implementing Residue Class Rings

	An Example -- Designing Arithmetic Operations
	New Arithmetic Operations vs. New Objects
	Designing new Multiplicative Objects

	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	N
	O
	P
	R
	S
	T
	W

