GAP

Release 4.4.12
17 December 2008

A Tutorial

The GAP Group

http://www.gap-system.org

Acknowledgement

We would like to thank the many people who have made contributions of

various kinds to the development of GAP since 1986, in particular:

Isabel M. Aradjo, Robert Arthur, Hans Ulrich Besche, Thomas Bischops,
Oliver Bonten, Thomas Breuer, Frank Celler, Gene Cooperman, Bettina Eick,
Volkmar Felsch, Franz Géhler, Greg Gamble, Willem de Graaf,
Burkhard Hofling, Jens Hollmann, Derek Holt, Erzsébet Horvéth,
Alexander Hulpke, Ansgar Kaup, Susanne Keitemeier, Steve Linton,
Frank Liibeck, Bohdan Majewski, Johannes Meier, Thomas Merkwitz,
Wolfgang Merkwitz, James Mitchell, Jiirgen Mnich, Robert F. Morse,
Scott Murray, Joachim Neubiiser, Max Neunhoffer,

Werner Nickel, Alice Niemeyer, Dima Pasechnik, Gotz Pfeiffer,

Udo Polis, Ferenc Rakoczi, Sarah Rees, Edmund Robertson,

Colva Roney-Dougal, Ute Schiffer, Jack Schmidt, Martin Schonert,
Akos Seress, Andrew Solomon, Heiko Theiflen, Rob Wainwright,

Alex Wegner, Chris Wensley and Charles Wright.

The following list gives the authors, indicated by A, who designed the code in the first place as well as the current
maintainers, indicated by M of the various modules of which GAP is composed.

Since the process of modularization was started only recently, there might be omissions both in scope and in contrib-
utors. The compilers of the manual apologize for any such errors and promise to rectify them in future editions.

Kernel
Frank Celler (A), Steve Linton (AM), Frank Liibeck (AM), Werner Nickel (AM), Martin Schonert (A)

Automorphism groups of finite pc groups
Bettina Eick (A), Werner Nickel (M)

Binary Relations
Robert Morse (AM), Andrew Solomon (A)

Characters and Character Degrees of certain solvable groups
Hans Ulrich Besche (A), Thomas Breuer (AM)

Classes in nonsolvable groups
Alexander Hulpke (AM)

Classical Groups
Thomas Breuer (AM), Frank Celler (A), Stefan Kohl (AM), Frank Liibeck (AM), Heiko Theiflen (A)

4 Acknowledgement

Congruences of magmas, semigroups and monoids
Robert Morse (AM), Andrew Solomon (A)

Cosets and Double Cosets
Alexander Hulpke (AM)

Cyclotomics
Thomas Breuer (AM)

Dixon-Schneider Algorithm
Alexander Hulpke (AM)

Documentation Utilities
Frank Celler (A), Heiko Theiflen (A), Alexander Hulpke (A), Willem de Graaf (A), Steve Linton (A), Werner
Nickel (A), Greg Gamble (AM)

Factor groups
Alexander Hulpke (AM)

Finitely presented groups
Volkmar Felsch (A), Alexander Hulpke (AM), Martin Schoenert (A)

Finitely presented monoids and semigroups
Isabel Aradjo (A), Derek Holt (A), Alexander Hulpke (A), James Mitchell (M), Gotz Pfeiffer (A), Andrew
Solomon (A)

GAP for MacOS
Burkhard Hofling (AM)

Group actions
Heiko Theiflen (A) and Alexander Hulpke (AM)

Homomorphism search
Alexander Hulpke (AM)

Homomorphisms for finitely presented groups
Alexander Hulpke (AM)

Identification of Galois groups
Alexander Hulpke (AM)

Intersection of subgroups of finite pc groups
Frank Celler (A), Bettina Eick (A), Werner Nickel (M)

Irreducible Modules over finite fields for finite pc groups
Bettina Eick (AM)

Isomorphism testing with random methods
Hans Ulrich Besche (AM), Bettina Eick (AM)

Lie algebras
Thomas Breuer (A), Craig Struble (A), Juergen Wisliceny (A), Willem A. de Graaf (AM)

Monomiality Questions
Thomas Breuer (AM), Erzsébet Horvath (A)

Multiplier and Schur cover
Werner Nickel (AM), Alexander Hulpke (AM)

One-Cohomology and Complements
Frank Celler (A) and Alexander Hulpke (AM)

Partition Backtrack algorithm
Heiko Theiflen (A), Alexander Hulpke (M)

Acknowledgement

Permutation group composition series
Akos Seress (AM)

Permutation group homomorphisms
Akos Seress (AM), Heiko TheiBen (A), Alexander Hulpke (M)

Permutation Group Pcgs
Heiko Theiflen (A), Alexander Hulpke (M)

Possible Permutation Characters
Thomas Breuer (AM), Gotz Pfeiffer (A)

Possible Class Fusions, Possible Power Maps Thomas Breuer (AM)
Primitive groups library
Heiko Theiflen (A), Colva Roney-Dougal (AM)

Properties and attributes of finite pc groups
Frank Celler (A), Bettina Eick (A), Werner Nickel (M)

Random Schreier-Sims
Akos Seress (AM)

Rational Functions
Frank Celler (A) and Alexander Hulpke (AM)

Semigroup relations
Isabel Araujo (A), Robert F. Morse (AM), Andrew Solomon (A)

Special Pcgs for finite pc groups
Bettina Eick (AM)

Stabilizer Chains
Akos Seress (AM), Heiko TheiB3en (A), Alexander Hulpke (M)

Strings and Characters
Martin Schonert (A), Frank Celler (A), Thomas Breuer (A), Frank Liibeck (AM)

Structure Descriptions for Finite Groups
Stefan Kohl (AM), Markus Piischel(A), Sebastian Egner(A)

Subgroup lattice
Martin Schonert (A), Alexander Hulpke (AM)

Subgroup lattice for solvable groups
Alexander Hulpke (AM)

Subgroup presentations
Volkmar Felsch (A), Werner Nickel (M)

The Help System
Frank Celler (A), Frank Liibeck (AM)

Tietze transformations
Volkmar Felsch (A), Werner Nickel (M)

Transformation semigroups
Isabel Araujo (A), Robert Arthur (A), Robert F. Morse (AM), Andrew Solomon (A)

Transitive groups library
Alexander Hulpke (AM)

Two-cohomology and extensions of finite pc groups
Bettina Eick (AM)

1.1
1.2
1.3
1.4
1.5

2.1
2.2
23
24
2.5
2.6
2.7
2.8
29

3.1
32
3.3
34
3.5
3.6
3.7
3.8

Copyright Notice

Preface

The GAP System

Authorship and Maintenance
Acknowledgements

Changes from Earlier Versions
Further Information about GAP
A First Session with GAP
Starting and Leaving GAP
Loading Source Code from a File
The Read Evaluate Print Loop
Constants and Operators
Variables versus Objects
Objects vs. Elements

About Functions

Help

Further Information introducing the System

Lists and Records
Plain Lists

Identical Lists
Immutability

Sets

Ranges

For and While Loops
List Operations

Vectors and Matrices

9
10
10
12
12
13
16
17
17
18
18
20
21
23
23
24

26
26
28
29
30
31
31
33
35

39
3.10

4.1
4.2
43
4.4
4.5

5.1
5.2
53
54
5.5
5.6

6.1
6.2
6.3

7.1
7.2
7.3
7.4

Contents

Plain Records

Further Information about Lists
Functions

Writing Functions

If Statements

Local Variables

Recursion

Further Information about Functions
Groups and Homomorphisms
Permutation groups

Actions of Groups

Subgroups as Stabilizers

Group Homomorphisms by Images .
Nice Monomorphisms

Further Information about Groups and
Homomorphisms .

Vector Spaces and Algebras
Vector Spaces

Algebras

Further Information about Vector Spaces

and Algebras
Domains

Domains as Sets
Algebraic Structure
Notions of Generation

Domain Constructors

36
37
38
38
39
39
40
41
42
42
45
48
51
54

55
56
56
58

64
65
65
66
66
67

Contents

7.5 Forming Closures of Domains . . . 67
7.6 Changing the Structure 67
7.7 Subdomains 68
7.8 Further Information about Domains . 68
8 Operations and Methods 69
8.1 Attributes 69
8.2 Properties and Filters 70
8.3 Immediate and True Methods S 71
8.4 Operations and Method Selection . . 72
9 Migrating to GAP 4 74
9.1 Changed Command Line Options . . 74
92 Fal 74
9.3 Changed Functionality 75
9.4 Changed Variable Names 76
9.5 Naming Conventions 76
9.6 Immutable Objects 77
9.7 Copy Ce e 77
9.8 Attributes vs. Record Components . . 78
9.9 Different Notions of Generation . . . 78
9.10 Operations Records 78
9.11 Operations vs. Dispatcher Functions . 79
9.12 Parents and Subgroups 79
9.13 Homomorphisms vs. General Mappings 80
9.14 Homomorphisms vs. Factor Structures 80
9.15 Isomorphisms vs. Isomorphic Structures 81
9.16 Elements of Finitely Presented Groups 81
9.17 Polynomials 81
9.18 The Info Mechanism e 82
9.19 Debugging 82
9.20 Compatibility Mode 83
Bibliography 87

Index 88

Copyright Notice

Copyright ©) (1987-2004) by the GAP Group,

incorporating the Copyright (©) 1999, 2000 by School of Mathematical and Computational Sciences, University of
St Andrews, North Haugh, St Andrews, Fife KY16 9SS, Scotland

being the Copyright (©) 1992 by Lehrstuhl D fiir Mathematik, RWTH, 52056 Aachen, Germany, transferred to St An-
drews on July 21st, 1997.

except for files in the distribution, which have an explicit different copyright statement. In particular, the copyright of
packages distributed with GAP is usually with the package authors or their institutions.

GARP is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. For
details, see the file GPL in the etc directory of the GAP distribution or see

http://www.gnu.org/licenses/gpl.html

If you obtain GAP please send us a short notice to that effect, e.g., an e-mail message to the address support@gap-system.org,J]
containing your full name and address. This allows us to keep track of the number of GAP users.

If you publish a mathematical result that was partly obtained using GAP, please cite GAP, just as you would cite
another paper that you used (see below for sample citation). Also we would appreciate if you could inform us about
such a paper.

Specifically, please refer to

[GAP] The GAP Group, GAP --- Groups, Algorithms, and Programming,
Version 4.4.12; 2012
(http://www.gap-system.org)

GARP is distributed by us without any warranty, to the extent permitted by applicable state law. We distribute GAP as
is without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose.

The entire risk as to the quality and performance of the program is with you. Should GAP prove defective, you assume
the cost of all necessary servicing, repair or correction.

In no case unless required by applicable law will we, and/or any other party who may modify and redistribute GAP
as permitted above, be liable to you for damages, including lost profits, lost monies or other special, incidental or
consequential damages arising out of the use or inability to use GAP.

You are permitted to modify and redistribute GAP, but you are not allowed to restrict further redistribution. That is to
say proprietary modifications will not be allowed. We want all versions of GAP to remain free.

If you modify any part of GAP and redistribute it, you must supply a README document. This should specify what
modifications you made in which files. We do not want to take credit or be blamed for your modifications.

Of course we are interested in all of your modifications. In particular we would like to see bug-fixes, improvements
and new functions. So again we would appreciate it if you would inform us about all modifications you make.

Preface

Welcome to GAP. This preface serves not only to introduce this manual, “the GAP Tutorial”, but also as an introduc-
tion to the system as a whole, and in particular to changes between the current and previous versions.

GAP stands for Groups, Algorithms and Programming. The name was chosen to reflect the aim of the system,
which is introduced in this tutorial manual. Since that choice, the system has become somewhat broader, and you
will also find information about algorithms and programming for other algebraic structures, such as semigroups and
algebras.

There are four further manuals in addition to this one: the “Reference Manual” containing detailed documentation
of the mathematical functionality of GAP; “Extending GAP” containing some tutorial material on various aspects of
GAP programming; ‘“Programming in GAP 4” containing detailed documentation of various aspects of the system
of interest mainly to programmers; and ‘“New Features for Developers” containing details of some newly introduced
features which we may wish to change in a future release and so do not want to include in the main reference manual.
Some of the functionality of the system and a number of contributed extensions are provided as “GAP packages” and
each of these has its own manual. This preface, however, serves as an introduction to the whole system.

Subsequent sections of this preface explain the structure of the system and the arrangements for the attribution of
credit for authorship and maintenance of the system; acknowledge those who have made particular contributions to
this and previous releases and outline the changes from earlier versions.

1.1 The GAP System

GAP is a free, open and extensible software package for computation in discrete abstract algebra. The terms “free”
and “open” describe the conditions under which the system is distributed — in brief, it is free of charge (except
possibly for the immediate costs of delivering it to you), you are free to pass it on within certain limits, and all of
the workings of the system are open for you to examine and change. Details of these conditions can be found in the
Copyright Notice of the previous page.

The system is “extensible” in that you can write your own programs in the GAP language, and use them in just the
same way as the programs which form part of the system (the “library”). Indeed, we actively support the contribution,
refereeing and distribution of extensions to the system, in the form of “GAP packages”. Further details of this can be
found in chapter 74 in the Reference Manual, and on our World Wide Web site.

Development of GAP began at Lehrstuhl D fiir Mathematik, RWTH-Aachen, under the leadership of Joachim Neubiiserf]
in 1985. Version 2.4 was released in 1988 and version 3.1 in 1992. In 1997 coordination of GAP development, now
very much an international effort, was transferred to St Andrews. A complete internal redesign and almost complete
rewrite of the system was completed over the following years and version 4.1 was released in July 1999.

A sign of the further internationalization of the project is this release, 4.4, which has been coordinated from Colorado
State University, Fort Collins.

More information on the motivation and development of GAP to date, can be found on our Web pages in a section
entitled “Release history and Prefaces”.

For those readers who have used an earlier version of GAP, an overview of the changes from GAP 4.3, and a brief
summary of changes from earlier versions is given in section 1.4 below.

Section 1. The GAP System 11

The system that you are getting now consists of a “core system” and a number of packages. The core system consists
of four main parts.

1. A kernel, written in C, which provides the user with
— automatic dynamic storage management, which the user needn’t bother about in his programming;

— aset of time-critical basic functions, e.g. “arithmetic”, operations for integers, finite fields, permutations and
words, as well as natural operations for lists and records;

— an interpreter for the GAP language, an untyped imperative programming language with functions as first
class objects and some extra built-in data types such as permutations and finite field elements. The language
supports a form of object-oriented programming, similar to that supported by languages like C++ and Java
but with some important differences.

— asmall set of system functions allowing the GAP programmer to handle files and execute external programs
in a uniform way, regardless of the particular operating system in use.

— aset of programming tools for testing, debugging, and timing algorithms.
— a “read-eval-view” style user interface.

2. A much larger library of GAP functions that implement algebraic and other algorithms. Since this is written
entirely in the GAP language, the GAP language is both the main implementation language and the user language
of the system. Therefore the user can as easily as the original programmers investigate and vary algorithms of
the library and add new ones to it, first for own use and eventually for the benefit of all GAP users.

3. A library of group theoretical data which contains various libraries of groups, including the library of small
groups (containing all groups of order at most 2000, except those of order 1024) and others. Large libraries of
ordinary and Brauer character tables and Tables of Marks are included as packages.

4. The documentation. This is available as on-line help, as printable files in various formats and as HTML for
viewing with a Web browser.

Also included with the core system are some test files and a few small utilities which we hope you will find useful.

GAP packages are self-contained extensions to the core system. A package contains GAP code and its own docu-
mentation and may also contain data files or external programs to which the GAP code provides an interface. These
packages may be loaded into GAP using the LoadPackage command, and both the package and its documentation are
then available just as if they were parts of the core system. Some packages may be loaded automatically, when GAP
is started, if they are present. Some packages, because they depend on external programs, may only be available on
the operating systems where those programs are available (usually UNIX). You should note that, while the packages
included with this release are the most recent versions ready for release at this time, new packages and new versions
may be released at any time and can be easily installed in your copy of GAP.

With GAP there are two packages (the library of ordinary and Brauer character tables, and the library of tables
of marks) which contain functionality developed from parts of the GAP core system. These have been moved into
packages for ease of maintenance and to allow new versions to be released independently of new releases of the
core system. (For technical reasons the library of tables of marks is still distributed in the main system archive.) The
library of small groups should also be regarded as a package, although it does not currently use the standard package
mechanism. Other packages contain functionality which has never been part of the core system.

12 Chapter 1. Preface

1.2 Authorship and Maintenance

Previous versions of GAP have simply included the increasingly long list of all of the authors of the system with
no indication as to who contributed what. With GAP 4.3 we have introduced a new concept: modules, to allow us to
report the authorship of the system in more detail. A module is a part of GAP which provides identifiable functionality
and has reasonably clean interfaces with the rest of the system (usually it consists of separate files). Each module has
its own lists of authors and maintainers, which are not necessarily the same. A preliminary list of modules and their
attributions appears in this manual. Note that we are still in the process of identifying modules within the system, so
large parts of the system do not yet fall into any module. Since also we all collaborate closely in designing, developing
and debugging the system, it should not be assumed that the list of modules in this manual represents all of everyone’s
contribution, or that it lists everyone who made any contribution at all to each module.

All GAP packages are also considered to be modules and have their own authors and maintainers. It should however
be noted that some packages provide interfaces between GAP and an external program, a copy of which is included for
convenience, and that, in these cases, we do not claim that the module authors or maintainers wrote, or maintain, this
external program. Similarly, some modules and packages include large data libraries that may have been computed by
many people. We try to make clear in each case what credit is attributable to whom.

We have, for some time, operated a refereeing system for contributed packages, both to ensure the quality of the
software we distribute, and to provide recognition for the authors. We now consider this to be a refereeing system for
modules, and we would note, in particular that, although it does not use the standard package interface, the library of
small groups has been refereed and accepted on exactly the same basis as the accepted packages.

We also include with this distribution a number of packages which have not (yet) gone through our refereeing process.
Some may be accepted in the future, in other cases the authors have chosen not to submit them. More information can
be found on our World Wide Web site, see section 1.5.

1.3 Acknowledgements

Very many people have worked on, and contributed to, GAP over the years since its inception. On our Web site you
will find the prefaces to the previous releases, each of which acknowledges people who have made special contri-
butions to that release. Even so, it is appropriate to mention here Joachim Neubiiser whose vision of a free, open
and extensible system for computational algebra inspired GAP in the first place, and Martin Schonert, who was the
technical architect of GAP 3 and GAP 4.

In the past years GAP development has become a more and more widely distributed operation, and increasingly
dependent on hard voluntary work by developers not solely or mainly employed to work on GAP.

Nevertheless, the development process has remained constructive and friendly, even when wrangling over difficult
technical decisions, or sensitive questions of attribution and credit and I must express our huge gratitude to everyone
involved for this.

The list of modules which appears in this manual now gives a partial idea of the contributions of different people, but
we would like to mention some people who have made important contributions to the development process over the
last years that do not show up there:

Steve Linton has been leading the GAP group in St Andrews over the last years and continues to be the main kernel
maintainer and developer. The group in St Andrews also maintains most of the development infrastructure and helps
with user support.

Thomas Breuer continues to develop many areas of the system, and to play a vital role in clarifying our underlying
concepts, despite now working in industry.

Frank Liibeck set up a new system for automatic handling of packages and helped with various kernel issues.

Bettina Eick and her research group in Braunschweig have contributed much functionality, mainly in the form of
packages.

Section 4. Changes from Earlier Versions 13

Max Neunhoffer has brought much fresh insight to bear on the design of crucial parts of the system, and also done
a lot of the ensuing work; Stefan Kohl and Volkmar Felsch have both brought enormous persistence to pointing
out errors and inconsistencies in code and documentation, improving error messages and generally polishing the
system; and very many others have contributed ideas, insight and hard work to produce this release. Senior colleagues,
especially Joachim Neubiiser, Edmund Robertson, and Charley Wright, continue to provide encouragement support
and constructive criticism.

1.4 Changes from Earlier Versions

The main changes between GAP 4.3 and GAP 4.4 are:
Potentially Incompatible Changes
— The mechanism for the loading of Packages has changed to allow easier updates independent of main GAP

releases. Packages require a file PackageInfo.g now. The new PackageInfo.g files are available for all Pack-
ages with the new version of GAP.

— IsSimple returns false now for the trivial group.

— PrimeBlocks: The output format has changed.

— Division Rings: These are implemented as IsRingWithOne now.

— DirectSumOfAlgebras: p-th power maps are compatible with the input now.

— The print order for polynomials has been changed.

These changes are, in some respects, departures from our policy of maintaining upward compatibility of documented
functions between releases. In the first case, we felt that the old behavior was sufficiently inconsistent, illogical, and
impossible to document that we had no alternative but to change it. In the case of the package interface, the change
was necessary to introduce new functionality. The planned and phased removal of a few unnecessary functions or
synonyms is needed to avoid becoming buried in “legacy” interfaces, but we remain committed to our policy of
maintaining upward compatibility whenever sensibly possible.

— Groebner Bases:
Buchberger’s algorithm to compute Groebner Bases has been implemented in GAP. (A. Hulpke)

— For large scale Groebner Basis computations there also is an interface to the Singular system available in the
Singular Package. (M. Costantini and W. de Graaf)

— New methods for factorizing polynomials over algebraic extensions of the rationals have been implemented in
GAP. (A. Hulpke)

— For more functionality to compute with algebraic number fields there is an interface to the Kant system available
in the Alnuth Package. (B. Assmann and B. Eick)

— A new functionality to compute the minimal normal subgroups of a finite group, as well as its socle, has been
installed. (B. Hofling)

— A fast method for recognizing whether a permutation group is symmetric or alternating is available now (A.
Seress)

— A method for computing the Galois group of a rational polynomial is available again. (A. Hulpke)

— The algorithm for BrauerCharacterValue has been extended to the case where the splitting field is not sup-
ported in GAP. (T. Breuer)

— Brauer tables of direct products can now be constructed from the known Brauer tables of the direct factors. (T.
Breuer)

— Basic support for vector spaces of rational functions and of uea elements is available now in GAP. (T. Breuer and
W. de Graaf)

14

Chapter 1. Preface

Various new functions for computations with integer matrices are available, such as methods for computing
normal forms of integer matrices as well as nullspaces or solutions systems of equations. (W. Nickel and F.
Gaehler)

New Packages

The following new Packages have been accepted.

Alnuth: Algebraic Number Theory and an interface to the Kant system. By B. Assmann and B. Eick

LAGUNA: Computing with Lie Algebras and Units of Group Algebras. By V. Bovdi, A. Konovalov, R. Ross-
manith, C. Schneider.

NQ: The ANU Nilpotent Quotient Algorithm. By W. Nickel.

KBMAG: Knuth-Bendix for Monoids and Groups. By D. Holt.

Polycyclic: Computation with polycyclic groups. By B. Eick and W. Nickel
QuaGroup: Computing with Quantized Enveloping Algebras. By W. de Graaf.

Performance Enhancements

The computation of irreducible representations and irreducible characters using the Baum-Clausen algorithm and
the implementation of the Dixon-Schneider algorithm have been speeded up.

The algorithm for PossibleClassFusions has been changed: the efficiency is improved and a new criterion is
used. The algorithm for PossibleFusionsCharTableTom has been speeded up. The method for PrimeBlocks
has been improved following a suggestion of H. Pahlings.

New improved methods for normalizer and subgroup conjugation in Sn have been installed and new improved
methods for IsNaturalSn/An have been implemented. These improve the available methods when groups of large
degrees are given.

The partition split method used in the permutation backtrack is now in the kernel. Transversal computations in
large permutation groups are improved. Homomorphisms from free groups into permutation groups now give
substantially shorter words for preimages.

The membership test in SP and SU has been improved using the invariant forms underlying these groups.

An improvement for the cyclic extension method for the computation of subgroup lattices has been implemented.
A better method for MinimalPolynomial for finite field matrices has been implemented.

The display has changed and the arithmetic of multivariate polynomials has been improved.

The LogMod function now uses Pollard’s tho method combined with the Pohlig/Hellmann approach.

Various functions for sets and lists have been improved following suggestions of L. Teirlinck. These include:
Sort, Sortex, SortParallel, SortingPerm, NrArrangements.

The methods for StructureConstantsTable and GapInputSCTable have been improved in the case of a
known (anti-) symmetry following a suggestion of M. Costantini.

The improvements listed in this Section have been implemented by T. Breuer and A. Hulpke.

New Programming and User Features

The 2GB limit for workspace size has been removed and version numbers for saved workspaces have been
introduced. (S. Linton and B. Hofling)

The limit on the total number of types created in a session has been removed. (S. Linton)

There is a new mechanism for loading packages available. Packages need a file PackageInfo.g now. (T. Breuer
and F. Liibeck)

Section 4. Changes from Earlier Versions 15

Finally, as always, a number of bugs have been fixed. This release thus incorporates the contents of all the bug fixes
which were released for GAP 4.3. It also fixes a number of bugs discovered since the last bug fix.

The most important changes between GAP 4.2 and GAP 4.3 were:

— The performance of several routines has been substantially improved.

The functionality in the areas of finitely presented groups, Schur covers and the calculation of Representations
has been extended.

The data libraries of transitive groups, finite integral matrix groups, character tables and tables of marks have
been extended.

The Windows installation has been simplified for the case where you are installing GAP in its standard location.

Many bugs have been fixed.

The most important changes between GAP 4.1 and GAP 4.2 were:

— A much extended and improved library of small groups as well as associated IdGroup routines.

— The primitive groups library has been made more independent of the rest of GAP, some errors were corrected.

New (and often much faster) infrastructure for orbit computation, based on a general “dictionary” abstraction.

New functionality for dealing with representations of algebras, and in particular for semisimple Lie algebras.

— New functionality for binary relations on arbitrary sets, magmas and semigroups.

Bidirectional streams, allowing an external process to be started and then controlled “interactively” by GAP

— A prototype implementation of algorithms using general subgroup chains.

Changes in the behavior of vectors over small finite fields.

A fifth book “New features for Developers™ has been added to the GAP manual.

Numerous bug fixes and performance improvements

The changes between the final release of GAP 3 (version 3.4.4) and GAP 4 are wide-ranging. The general philosophy
of the changes is two-fold. Firstly, many assumptions in the design of GAP 3 revealed its authors’ primary interest in
group theory, and indeed in finite group theory. Although much of the GAP 4 library is concerned with groups, the
basic design now allows extension to other algebraic structures, as witnessed by the inclusion of substantial bodies of
algorithms for computation with semigroups and Lie algebras. Secondly, as the scale of the system, and the number of
people using and contributing to it has grown, some aspects of the underlying system have proved to be restricting, and
these have been improved as part of comprehensive re-engineering of the system. This has included the new method
selection system, which underpins the library, and a new, much more flexible, GAP package interface.

Details of these changes can be found in chapter 9 of this manual. It is perhaps worth mentioning a few points here.

Firstly, much remains unchanged, from the perspective of the mathematical user:

— The syntax of that part of the GAP language that most users need for investigating mathematical problems.
— The great majority of function names.

— Data libraries and the access to them.

A number of visible aspects have changed:

— Some function names that need finer specifications now that there are more structures available in GAP.

— The access to information already obtained about a mathematical structure. In GAP 3 such information about a
group could be looked up by directly inspecting the group record, whereas in GAP 4 functions must be used to
access such information.

16 Chapter 1. Preface

Behind the scenes, much has changed:
— A new kernel, with improvements in memory management and in the language interpreter, as well as new features
such as saving of workspaces and the possibility of compilation of GAP code into C.

— A new structure to the library, based upon a new type and method selection system, which is able to support a
broader range of algebraic computation and to make the structure of the library simpler and more modular.

— New and faster algorithms in many mathematical areas.
— Data structures and algorithms for new mathematical objects, such as algebras and semigroups.

— A new and more flexible structure for the GAP installation and documentation, which means, for example, that
a GAP package and its documentation can be installed and be fully usable without any changes to the GAP
system.

Very few features of GAP 3 are not yet available in GAP 4.

— Not all of the GAP 3 packages have yet been converted for use with GAP 4 (although several new packages are
available only in GAP 4).

— The library of crystallographic groups which was present in GAP 3 is now part of a GAP 4 package crystcat.

1.5 Further Information about GAP

Information about GAP is best obtained from the GAP Web pages that you find on:
http://www.gap-system.org

and its mirror at:
http://www.math.rwth-aachen.de/~GAP

There you will find, amongst other things

— directions to the sites from which you can download the current GAP distribution, any bug-fixes, all accepted
GAP packages, and a selection of other contributions.

— the GAP manual and an archive of the gap-forum mailing list, formatted for reading with a Web browser, and
indexed for searching.

— information about GAP developers, and about the email addresses available for comment, discussion and support.

We would particularly ask you to note the following things:

— The GAP Forum — an email discussion forum for comments, discussions or questions about GAP. You must
subscribe to the list before you can post to it, see the Web page for details. In particular we will announce
bugfixes in this mailing list.

— The email address support@gap-system.org to which you are asked to send any questions or bug reports
which do not seem likely to be of interest to the whole GAP Forum. Section 73.9 in the Reference Manual tells
you what to include in a bug report.

— We also ask you to send a brief message to support@gap-system.org when you install GAP.

— The correct form of citation of GAP, which we ask you use whenever you publish scientific results obtained

using GAP.

It finally remains for me to wish you all pleasure and success in using GAP, and to invite your constructive comment
and criticism.

Fort Collins, March 2004 Alexander Hulpke

A First Session
with GAP

This tutorial introduces you to the GAP system. It is written with users in mind who have just managed to start
GAP for the first time on their computer and want to learn the basic facts about GAP by playing around with some
instructive examples. Therefore, this tutorial contains at many places several lines of input (which you should type on
your terminal) followed by the corresponding output (which GAP produces as an answer to your input).

This ‘‘session protocol’’ is indented and printed in typewriter style
(like this paragraph) in this tutorial and should look exactly as it
looks on your text terminal or text window.

This is to encourage you to actually run through these examples on your computer. This will support your feeling
for GAP as a tool, which is the leading aim of this tutorial. Do not believe any statement in it as long as you cannot
verify it for your own version of GAP. You will learn to distinguish between small deviations of the behavior of your
personal GAP from the printed examples and serious nonsense.

Since the printing routines of GAP are in some sense machine dependent you will for instance encounter a different
layout of the printed objects in different environments. But the contents should always be the same. In case you
encounter serious nonsense it is highly recommended that you send a bug report to support@gap-system.org.

The examples in this tutorial should explain everything you have to know in order to be able to use GAP. The reference
manual then gives a more systematic treatment of the various types of objects that GAP can manipulate. It seems
desirable neither to start this systematic course with the most elementary (and most boring) structures, nor to confront
you with all the complex data types before you know how they are composed from elementary structures. For this
reason this tutorial wants to provide you with a basic understanding of GAP objects, on which the reference manual
will then build when it explains everything in detail. So after having mastered this tutorial, you can immediately
plunge into the exciting parts of GAP and only read detailed information about elementary things (in the reference
manual) when you really need them.

Each chapter of this tutorial contains an overview of its sections at the beginning, and a section with references to the
reference manual at the end.

2.1 Starting and Leaving GAP

If the program is correctly installed then you usually start GAP by simply typing gap at the prompt of your operating
system followed by the return key, sometimes this is also called the newline key.

$ gap

GAP answers your request with its beautiful banner and then it shows its own prompt gap> asking you for further
input. (You can avoid the banner with the command line option -b; more command line options are described in
Section 3.1 in the reference manual.)

gap>

The usual way to end a GAP session is to type quit; at the gap> prompt. Do not omit the semicolon!

18 Chapter 2. A First Session with GAP

gap> quit;
$

On some systems you could type ctl-D to yield the same effect. In any situation GAP is ended by typing c#l-C twice
within a second. Here as always, a combination like ct/-D means that you have to press the D key while you hold down
the ctl key.

On some systems (for example the Apple Macintosh) minor changes might be necessary. This is explained in chapter
73 in the reference manual.

In most places whitespace characters (i.e. spaces, tabs and returns) are insignificant for the meaning of GAP in-
put. Identifiers and keywords must however not contain any whitespace. On the other hand, sometimes there must
be whitespace around identifiers and keywords to separate them from each other and from numbers. We will use
whitespace to format more complicated commands for better readability.

A comment in GAP starts with the symbol # and continues to the end of the line. Comments are treated like whites-
pace by GAP. We use comments in the printed examples in this tutorial to explain certain lines of input or output.

You should be able to reproduce the results of the examples of GAP sessions in this manual, in the following sense.
If you start the GAP session with the two commands

gap> SizeScreen([80,]); LogTo("logfilel");

(which are used to set the line length to 80 if this isn’t already your default line length and to save a listing of the
session on some file), then choose any chapter and rerun its examples in one continuous session and in the given
order, the GAP output should look like the output shown in the manual, except for a few lines of output which we
have edited a little bit with respect to blanks or line breaks in order to improve the readability. However, when random
processes are involved, you may get different results if you extract single examples and run them separately.

2.2 Loading Source Code from a File

The most convenient way of creating larger pieces of GAP code is to write them to some text file — for this purpose
you can simply use your favorite text editor. You can load such a file into GAP using the Read function:

gap> Read("../../GAPProgs/Example.g");

You can either give the full absolute path name of the source file or its relative path name from the GAP root directory
(the directory containing bin/, doc/, 1ib/, etc.).

2.3 The Read Evaluate Print Loop

GAP is an interactive system. It continuously executes a read evaluate print loop. Each expression you type at the
keyboard is read by GAP, evaluated, and then the result is shown.

The interactive nature of GAP allows you to type an expression at the keyboard and see its value immediately. You
can define a function and apply it to arguments to see how it works. You may even write whole programs containing
lots of functions and test them without leaving the program.

When your program is large it will be more convenient to write it on a file and then read that file into GAP. Preparing
your functions in a file has several advantages. You can compose your functions more carefully in a file (with your
favorite text editor), you can correct errors without retyping the whole function and you can keep a copy for later
use. Moreover you can write lots of comments into the program text, which are ignored by GAP, but are very useful
for human readers of your program text. GAP treats input from a file in the same way that it treats input from the
keyboard. Further details can be found in section 9.7.1 in the Reference Manual.

A simple calculation with GAP is as easy as one can imagine. You type the problem just after the prompt, terminate it
with a semicolon and then pass the problem to the program with the refurn key. For example, to multiply the difference
between 9 and 7 by the sum of 5 and 6, that is to calculate (9 — 7) * (5 4 6), you type exactly this last sequence of
symbols followed by ; and return.

Section 3. The Read Evaluate Print Loop 19

gap> (9 - 7) * (5 + 6);
22
gap>

Then GAP echoes the result 22 on the next line and shows with the prompt that it is ready for the next problem.
Henceforth, we will no longer print this additional prompt.

If you make a mistake while typing the line, but before typing the final return, you can use the delete key (or sometimes
backspace key) to delete the last typed character. You can also move the cursor back and forward in the line with ctl-
B and ctl-F and insert or delete characters anywhere in the line. The line editing commands are fully described in
section 6.9 of the reference manual.

If you did omit the semicolon at the end of the line but have already typed return, then GAP has read everything you
typed, but does not know that the command is complete. The program is waiting for further input and indicates this
with a partial prompt >. This problem is solved by simply typing the missing semicolon on the next line of input. Then
the result is printed and the normal prompt returns.

gap> (9 - 7) * (6 + 6)
>
22
So the input can consist of several lines, and GAP prints a partial prompt > in each input line except the first, until the
command is completed with a semicolon. (GAP may already evaluate part of the input when return is typed, so for
long calculations it might take some time until the partial prompt appears.) Whenever you see the partial prompt and
you cannot decide what GAP is still waiting for, then you have to type semicolons until the normal prompt returns. In
every situation the exact meaning of the prompt gap> is that the program is waiting for a new problem.

But even if you mistyped the command more seriously, you do not have to type it all again. Suppose you mistyped or
forgot the last closing parenthesis. Then your command is syntactically incorrect and GAP will notice it, incapable of
computing the desired result.

gap> (9 - 7) * (5 + 6;
Syntax error:) expected
(9 -7 % (5 + 6;

Instead of the result an error message occurs indicating the place where an unexpected symbol occurred with an
arrow sign ~ under it. As a computer program cannot know what your intentions really were, this is only a hint. But
in this case GAP is right by claiming that there should be a closing parenthesis before the semicolon. Now you can
type ctl-P to recover the last line of input. It will be written after the prompt with the cursor in the first position. Type
ctl-E to take the cursor to the end of the line, then ctl-B to move the cursor one character back. The cursor is now on
the position of the semicolon. Enter the missing parenthesis by simply typing). Now the line is correct and may be
passed to GAP by hitting the return key. Note that for this action it is not necessary to move the cursor past the last
character of the input line.

Each line of commands you type is sent to GAP for evaluation by pressing refurn regardless of the position of the
cursor in that line. We will no longer mention the refurn key from now on.

Sometimes a syntax error will cause GAP to enter a break loop. This is indicated by the special prompt brk>. If
another syntax error occurs while GAP is in a break loop, the prompt will change to brk_02>, brk_03> and so
on. You can leave the current break loop and exit to the next outer one by either typing quit; or by hitting c#/-D.
Eventually GAP will return to its normal state and show its normal prompt gap> again.

20 Chapter 2. A First Session with GAP

2.4 Constants and Operators

In an expression like (9 - 7) * (5 + 6) the constants 5, 6, 7, and 9 are being composed by the operators +, * and
- to result in a new value.

There are three kinds of operators in GAP, arithmetical operators, comparison operators, and logical operators. You
have already seen that it is possible to form the sum, the difference, and the product of two integer values. There
are some more operators applicable to integers in GAP. Of course integers may be divided by each other, possibly
resulting in noninteger rational values.

gap> 12345/25;
2469/5

Note that the numerator and denominator are divided by their greatest common divisor and that the result is uniquely
represented as a division instruction.

We haven’t met negative numbers yet. So consider the following self-explanatory examples.

gap> -3; 17 - 23;
-3
-6

The exponentiation operator is written as ~. This operation in particular might lead to very large numbers. This is no
problem for GAP as it can handle numbers of (almost) any size.

gap> 37132;
955004950796825236893190701774414011919935138974343129836853841

The mod operator allows you to compute one value modulo another.

gap> 17 mod 3;
2

Note that there must be whitespace around the keyword mod in this example since 17mod3 or 17mod would be inter-
preted as identifiers. The whitespace around operators that do not consist of letters, e.g., the operators * and -, is not
necessary.

GAP knows a precedence between operators that may be overridden by parentheses.

gap> (9 - 7) x5 =9 -7 x5;
false

Besides these arithmetical operators there are comparison operators in GAP. A comparison results in a boolean value
which is another kind of constant. The comparison operators =, <>, <, <=, > and >=, test for equality, inequality, less
than, less than or equal, greater than and greater than or equal, respectively.

gap> 1075 < 1074;
false

The boolean values true and false can be manipulated via logical operators, i. e., the unary operator not and the
binary operators and and or. Of course boolean values can be compared, too.

gap> not true; true and false; true or false;
false

false

true

gap> 10 > 0 and 10 < 100;

true

Another important type of constants in GAP are permutations. They are written in cycle notation and they can be
multiplied.

Section 5. Variables versus Objects 21

gap> (1,2,3);

(1,2,3)

gap> (1,2,3) * (1,2);
(2,3)

The inverse of the permutation (1,2,3) is denoted by (1,2,3) ~-1. Moreover the caret operator ~ is used to deter-
mine the image of a point under a permutation and to conjugate one permutation by another.

gap> (1,2,3)°-1;
(1,3,2)

gap> 2°(1,2,3);

3

gap> (1,2,3)°(1,2);
(1,3,2)

The various other constants that GAP can deal with will be introduced when they are used, for example there are
elements of finite fields such as Z(8), and complex roots of unity such as E(4).

The last type of constants we want to mention here are the characters, which are simply objects in GAP that represent
arbitrary characters from the character set of the operating system. Character literals can be entered in GAP by
enclosing the character in singlequotes °.

gap> ’a’;
’al
gap> '*’;
7*)

There are no operators defined for characters except that characters can be compared.

In this section you have seen that values may be preceded by unary operators and combined by binary operators placed
between the operands. There are rules for precedence which may be overridden by parentheses. A comparison results
in a boolean value. Boolean values are combined via logical operators. Moreover you have seen that GAP handles
numbers of arbitrary size. Numbers and boolean values are constants. There are other types of constants in GAP like
permutations. You are now in a position to use GAP as a simple desktop calculator.

2.5 Variables versus Objects

The constants described in the last section are specified by certain combinations of digits and minus signs (in the case
of integers) or digits, commas and parentheses (in the case of permutations). These sequences of characters always
have the same meaning to GAP. On the other hand, there are variables, specified by a sequence of letters and digits
(including at least one letter), and their meaning depends on what has been assigned to them. An assignment is done
by a GAP command sequence_of letters_and_digits := meaning, where the sequence on the left hand side is called
the identifier of the variable and it serves as its name. The meaning on the right hand side can be a constant like an
integer or a permutation, but it can also be almost any other GAP object. From now on, we will use the term object
to denote something that can be assigned to a variable.

There must be no whitespace between the : and the = in the assignment operator. Also do not confuse the assignment
operator with the single equality sign = which in GAP is only used for the test of equality.

gap> a:= (9 - 7) x (5 + 6);

22
gap> a;
22
gap> a
506
gap> a = 10;
false

*

(a + 1);

22 Chapter 2. A First Session with GAP

gap> a:= 10;

10

gap> a * (a + 1);
110

After an assignment the assigned object is echoed on the next line. The printing of the object of a statement may be in
every case prevented by typing a double semicolon.

gap> w:= 2;;

After the assignment the variable evaluates to that object if evaluated. Thus it is possible to refer to that object by the
name of the variable in any situation.

This is in fact the whole secret of an assignment. An identifier is bound to an object and from this moment points to
that object. Nothing more. This binding is changed by the next assignment to that identifier. An identifier does not
denote a block of memory as in some other programming languages. It simply points to an object, which has been
given its place in memory by the GAP storage manager. This place may change during a GAP session, but that doesn’t
bother the identifier. The identifier points to the object, not to a place in the memory.

For the same reason it is not the identifier that has a type but the object. This means on the other hand that the identifier
a which now is bound to an integer object may in the same session point to any other object regardless of its type.

Identifiers may be sequences of letters and digits containing at least one letter. For example abc and aObc1 are valid
identifiers. But also 123a is a valid identifier as it cannot be confused with any number. Just 1234 indicates the number
1234 and cannot be at the same time the name of a variable.

Since GAP distinguishes upper and lower case, al and A1 are different identifiers. Keywords such as quit must not
be used as identifiers. You will see more keywords in the following sections.

In the remaining part of this manual we will ignore the difference between variables, their names (identifiers), and the
objects they point to. It may be useful to think from time to time about what is really meant by terms such as “the
integer w”.

There are some predefined variables coming with GAP. Many of them you will find in the remaining chapters of this
manual, since functions are also referred to via identifiers.

You can get an overview of all GAP variables by entering NamesGVars (). Many of these are predefined. If you are
interested in the variables you have defined yourself in the current GAP session, you can enter NamesUserGVars ().

gap> NamesUserGVars() ;
[llall s "W"]

This seems to be the right place to state the following rule: The name of every global variable in the GAP library
starts with a capital letter. Thus if you choose only names starting with a small letter for your own variables you will
not attempt to overwrite any predefined variable. (Note that most of the predefined variables are read-only, and trying
to change their values will result in an error message.)

There are some further interesting variables one of which will be introduced now.

Whenever GAP returns an object by printing it on the next line this object is assigned to the variable last. So if you
computed

gap> (9 - 7) * (6 + 6);
22

and forgot to assign the object to the variable a for further use, you can still do it by the following assignment.

gap> a:= last;
22

Moreover there are variables last2 and 1ast3, you can guess their values.

In this section you have seen how to assign objects to variables. These objects can later be accessed through the name
of the variable, its identifier. You have also encountered the useful concept of the last variables storing the latest
returned objects. And you have learned that a double semicolon prevents the result of a statement from being printed.

Section 7. About Functions 23

2.6 Objects vs. Elements

In the last section we mentioned that every object is given a certain place in memory by the GAP storage manager
(although that place may change in the course of a GAP session). In this sense, objects at different places in memory
are never equal, and if the object pointed to by the variable a (to be more precise, the variable with identifier a) is
equal to the object pointed to by the variable b, then we should better say that they are not only equal but identical.
GAP provides the function IsIdenticalObj to test whether this is the case.

gap> a:= (1,2);; IsIdenticalObj(a, a);

true

gap> b:= (1,2);; IsIdenticalObj(a, b);
false

gap> b:= a;; IsIdenticalObj(a, b);
true

As the above example indicates, GAP objects a and b can be unequal although they are equal from a mathematical
point of view, i.e., although we should have @ = b. It may be that the objects a and b are stored in different places in
memory, or it may be that we have an equivalence relation defined on the set of objects under which a and b belong to
the same equivalence class. For example, ifa = x*> and b = x> are words in the finitely presented group (x | x> = 1),
we would have a = b in that group.

GAP uses the equality operator = to denote such a mathematical equality, not the identity of objects. Hence we often
have a = b although IsIdenticalObj(a, b) = false. The operator = defines an equivalence relation on the
set of all GAP objects, and we call the corresponding equivalence classes elements. Phrasing it differently, the same
element may be represented by various GAP objects.

Non-trivial examples of elements that are represented by different objects (objects that really look different, not ones
that are merely stored in different memory places) will occur only when we will be considering composite objects
such as lists or domains.

2.7 About Functions

A program written in the GAP language is called a function. Functions are special GAP objects. Most of them
behave like mathematical functions. They are applied to objects and will return a new object depending on the input.
The function Factorial, for example, can be applied to an integer and will return the factorial of this integer.

gap> Factorial(17);
355687428096000

Applying a function to arguments means to write the arguments in parentheses following the function. Several argu-
ments are separated by commas, as for the function Ged which computes the greatest common divisor of two integers.

gap> Gcd (1234, 5678);
2

There are other functions that do not return an object but only produce a side effect, for example changing one of their
arguments. These functions are sometimes called procedures. The function Print is only called for the side effect of
printing something on the screen.

gap> Print (1234, "\n");
1234

In order to be able to compose arbitrary text with Print, this function itself will not produce a line break after printing.
Thus we had another newline character "\n" printed to start a new line.

24 Chapter 2. A First Session with GAP

Some functions will both change an argument and return an object such as the function Sortex that sorts a list and
returns the permutation of the list elements that it has performed. You will not understand right now what it means to
change an object. We will return to this subject several times in the next sections.

A comfortable way to define a function yourself is the maps-to operator -> consisting of a minus sign and a greater
sign with no whitespace between them. The function cubed which maps a number to its cube is defined on the
following line.

gap> cubed:= x -> x73;
function(x) ... end

After the function has been defined, it can now be applied.

gap> cubed(5);
125

More complicated functions, especially functions with more than one argument cannot be defined in this way. You
will see how to write your own GAP functions in Section 4.1.

In this section you have seen GAP objects of type function. You have learned how to apply a function to arguments.
This yields as result a new object or a side effect. A side effect may change an argument of the function. Moreover
you have seen an easy way to define a function in GAP with the maps-to operator.

2.8 Help

The content of the GAP manuals is also available as on-line help. A GAP session loads a long list of index entries.
This typically contains all chapter and section headers, all names of documented functions, operations and so on, as
well as some explicit index entries defined in the manuals.

The format of a query is as follows.
?[book:1 [?]topic

A simple example would be to type 7help at the GAP prompt. If there is a single section with index entry topic then
this is displayed directly.

If there are several matches you get an overview like in the following example.

gap> 7sets
Help: several entries match this topic - type 72 to get match [2]

[1] Tutorial: Sets

[2] Reference: Sets

[3] Reference: sets

[4] Reference: Sets of Subgroups
[6] Reference: setstabilizer

GAP’s manuals consist of several books, which are indicated before the colon in the list above. A help query can be
restricted to one book by using the optional book: part. For example 7tut : sets will display the first of these help
sections. More precisely, the parts of the string book which are separated by white space are interpreted as beginnings
of the first words in the name of the book. Try ?books to see the list of available books and their names.

The search for a matching fopic (and optional book) is done case insensitively. If there is another 7 before the fopic,
then a substring search for topic is performed on all index entries. Otherwise the parts of fopic which are separated
by white space are considered as beginnings of the first words in an index entry.

White space is normalized in the search string (and the index entries).

Examples. All the following queries lead to the chapter of the reference manual which explains the use of GAP’s
help system in more detail.

Section 9. Further Information introducing the System 25

gap> 7Reference: The Help System
gap> 7 REF : t h s
gap> 7ref:? help system

The query ??sets shows all help sections in all books whose index entries contain the substring sets.

As mentioned in the example above a complete list of commands for the help system is available in Section 7Ref:
The Help System of the reference manual. In particular there are commands to browse through the help sections,
see PRef: Browsing through the Sections and there is a way to influence the way how the help sections are
displayed, see TRef: SetHelpViewer. For example you can use an external pager program, a Web browser, dvi-
previewer and/or pdf-viewer for reading GAP’s online help.

2.9 Further Information introducing the System

For large amounts of input data, it might be advisable to write your input first into a file, and then read this into GAP;
see 9.7.1, 6.10.1 for this.

The definition of the GAP syntax can be looked up in Chapter 4. A complete list of command line editing facilities is
found in Section 6.9. The break loop is described in Section 6.4.

Operators are explained in more detail in Sections 4.7 and 4.11. You will find more information about boolean values
in Chapters 20 and 22. Permutations are described in Chapter 40 and characters in Chapter 26.

Variables and assignments are described in more detail in 4.8 and 4.14. A complete list of keywords is contained
in 4.5.

More about functions can be found in 4.10 and 4.15.

Lists and Records

Modern mathematics, especially algebra, is based on set theory. When sets are represented in a computer, they inad-
vertently turn into lists. That’s why we start our survey of the various objects GAP can handle with a description of
lists and their manipulation. GAP regards sets as a special kind of lists, namely as lists without holes or duplicates
whose entries are ordered with respect to the precedence relation <.

After the introduction of the basic manipulations with lists in 3.1, some difficulties concerning identity and mutability
of lists are discussed in 3.2 and 3.3. Sets, ranges, row vectors, and matrices are introduced as special kinds of lists
in 3.4, 3.5, 3.8. Handy list operations are shown in 3.7. Finally we explain how to use records in 3.9.

3.1 Plain Lists

A list is a collection of objects separated by commas and enclosed in brackets. Let us for example construct the list
primes of the first 10 prime numbers.

gap> primes:= [2, 3, 5, 7, 11, 13, 17, 19, 23, 29];
[2, 3,5, 7, 11, 13, 17, 19, 23, 29]

The next two primes are 31 and 37. They may be appended to the existing list by the function Append which takes the
existing list as its first and another list as a second argument. The second argument is appended to the list primes and
no value is returned. Note that by appending another list the object primes is changed.

gap> Append(primes, [31, 37]1);
gap> primes;
[2, 3, 5,7, 11, 13, 17, 19, 23, 29, 31, 37]

You can as well add single new elements to existing lists by the function Add which takes the existing list as its first
argument and a new element as its second argument. The new element is added to the list primes and again no value
is returned but the list primes is changed.

gap> Add(primes, 41);
gap> primes;
[2, 3,5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41]

Single elements of a list are referred to by their position in the list. To get the value of the seventh prime, that is the
seventh entry in our list primes, you simply type

gap> primes[7];
17

This value can be handled like any other value, for example multiplied by 2 or assigned to a variable. On the other
hand this mechanism allows one to assign a value to a position in a list. So the next prime 43 may be inserted in the
list directly after the last occupied position of primes. This last occupied position is returned by the function Length.

Section 1. Plain Lists 27

gap> Length(primes);

13

gap> primes[14]:= 43;

43

gap> primes;

[2, 3,5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43 1]
Note that this operation again has changed the object primes. The next position after the end of a list is not the only
position capable of taking a new value. If you know that 71 is the 20th prime, you can enter it right now in the 20th
position of primes. This will result in a list with holes which is however still a list and now has length 20.

gap> primes[20]:= 71;

71

gap> primes;

(2, 3,5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,,,,,, 71]
gap> Length(primes);

20

The list itself however must exist before a value can be assigned to a position of the list. This list may be the empty
list [1].

gap> 111[1]:= 2;
Variable: ’111° must have a value

gap> 111:= []; 111[1]:= 2;
[]
2

Of course existing entries of a list can be changed by this mechanism, too. We will not do it here because primes then
may no longer be a list of primes. Try for yourself to change the 17 in the list into a 9.

To get the position of 17 in the list primes use the function Position which takes the list as its first argument and the
element as its second argument and returns the position of the first occurrence of the element 17 in the list primes. If
the element is not contained in the list then Position will return the special object fail.

gap> Position(primes, 17);

7

gap> Position(primes, 20);

fail
In all of the above changes to the list primes, the list has been automatically resized. There is no need for you to tell
GAP how big you want a list to be. This is all done dynamically.

It is not necessary for the objects collected in a list to be of the same type.

gap> 111:= [true, "This is a String",,, 3];
[true, "This is a String",,, 3]

In the same way a list may be part of another list. A list may even be part of itself.

gap> 111[3]:= [4,5,6];; 111;

[true, "This is a String", [4, 5, 6 1,, 3]

gap> 111[4]:= 111;

[true, "This is a String", [4, 5, 6 1, 7, 3]
Now the tilde in the fourth position of 111 denotes the object that is currently printed. Note that the result of the last
operation is the actual value of the object 111 on the right hand side of the assignment. In fact it is identical to the
value of the whole list 111 on the left hand side of the assignment.

A string is a special type of list, namely a dense list of characters, where dense means that the list has no holes.
Here, characters are special GAP objects representing an element of the character set of the operating system. The

28 Chapter 3. Lists and Records

input of printable characters is by enclosing them in single quotes ’. A string literal can either be entered as the list
of characters or by writing the characters between doublequotes ". Strings are handled specially by Print. You can
learn much more about strings in the reference manual.

gap> sl := [’H’,’a’,’1’,’1%,%0’,” ’,’w’,’0’,’r’,%1’,’d>,’.’];
"Hallo world."

gap> sl = "Hallo world.";

true

gap> s1[7];

)w)

Sublists of lists can easily be extracted and assigned using the operator list{ positions }.

gap> sl :=111{ [1, 2, 31 };

[true, "This is a String", [4, 5, 6 1 1]

gap> s1{ [2, 3] } := ["New String", false];
["New String", false]

gap> sl;

[true, "New String", false]

This way you get a new list whose ith entry is that element of the original list whose position is the ith entry of the
argument in the curly braces.

3.2 Identical Lists

This second section about lists is dedicated to the subtle difference between equality and identity of lists. It is really
important to understand this difference in order to understand how complex data structures are realized in GAP. This
section applies to all GAP objects that have subobjects, e.g., to lists and to records. After reading the section 3.9 about
records you should return to this section and translate it into the record context.

Two lists are equal if all their entries are equal. This means that the equality operator = returns true for the comparison
of two lists if and only if these two lists are of the same length and for each position the values in the respective lists
are equal.

gap> numbers := primes;; numbers = primes;
true

We assigned the list primes to the variable numbers and, of course they are equal as they have both the same length
and the same entries. Now we will change the third number to 4 and compare the result again with primes.

gap> numbers[3]:= 4;; numbers = primes;
true

You see that numbers and primes are still equal, check this by printing the value of primes. The list primes is no
longer a list of primes! What has happened? The truth is that the lists primes and numbers are not only equal but they
are also identical. primes and numbers are two variables pointing to the same list. If you change the value of the
subobject numbers [3] of numbers this will also change primes. Variables do not point to a certain block of storage
memory but they do point to an object that occupies storage memory. So the assignment numbers := primes did
not create a new list in a different place of memory but only created the new name numbers for the same old list of
primes.

From this we see that the same object can have several names.

If you want to change a list with the contents of primes independently from primes you will have to make a copy of
primes by the function ShallowCopy which takes an object as its argument and returns a copy of the argument. (We
will first restore the old value of primes.)

Section 3. Immutability 29

gap> primes[3]:= 5;; primes;

(2, 3,5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,,,,,, 71]
gap> numbers:= ShallowCopy(primes);; numbers = primes;

true

gap> numbers[3]:= 4;; numbers = primes;

false

Now numbers is no longer equal to primes and primes still is a list of primes. Check this by printing the values of
numbers and primes.

Lists and records can be changed this way because GAP objects of these types have subobjects. To clarify this
statement consider the following example.

gap> i:= 1;; j:= 1i;; i:= i+1;;

By adding 1 to i the value of i has changed. What happens to j? After the second statement j points to the same
object as i, namely to the integer 1. The addition does not change the object 1 but creates a new object according to
the instruction i+1. It is actually the assignment that changes the value of i. Therefore j still points to the object 1.
Integers (like permutations and booleans) have no subobjects. Objects of these types cannot be changed but can only
be replaced by other objects. And a replacement does not change the values of other variables. In the above example
an assignment of a new value to the variable numbers would also not change the value of primes.

Finally try the following examples and explain the results.

gap> 1:= [1;; 1:= [1];

LT 11
gap> 1[1]:= 1;
[~ 1]

Now return to Section 3.1 and find out whether the functions Add and Append change their arguments.

3.3 Immutability

GAP has a mechanism that protects lists against changes like the ones that have bothered us in Section 3.2. The
function Immutable takes as argument a list and returns an immutable copy of it, i.e., a list which looks exactly like
the old one, but has two extra properties: (1) The new list is immutable, i.e., the list itself and its subobjects cannot be
changed. (2) In constructing the copy, every part of the list that can be changed has been copied, so that changes to
the old list will not affect the new one. In other words, the new list has no mutable subobjects in common with the old
list.

gap> list := [1, 2, "three", [4]];; copy := Immutable(list);;

gap> 1list[3][6] := ’w’;; list; copy;
[1, 2, "threw", [41]
[1, 2, "three", [4]]
gap> copy[3][5] := ’w’;

Lists Assignment: <list> must be a mutable list

not in any function

Entering break read-eval-print loop ...

you can ’quit;’ to quit to outer loop, or

you can ’return;’ and ignore the assignment to continue
brk> quit;

As a consequence of these rules, in the immutable copy of a list which contains an already immutable list as subobject,
this immutable subobject need not be copied, because it is unchangeable. Immutable lists are useful in many complex
GAP objects, for example as generator lists of groups. By making them immutable, GAP ensures that no generators
can be added to the list, removed or exchanged. Such changes would of course lead to serious inconsistencies with
other knowledge that may already have been calculated for the group.

30 Chapter 3. Lists and Records

A converse function to Immutable is ShallowCopy, which produces a new mutable list whose ith entry is the ith
entry of the old list. The single entries are not copied, they are just placed in the new list. If the old list is immutable,
and hence the list entries are immutable themselves, the result of ShallowCopy is mutable only on the top level.

It should be noted that also other objects than lists can appear in mutable or immutable form. Records (see Section 3.9)
provide another example.

3.4 Sets

GAP knows several special kinds of lists. A set in GAP is a list that contains no holes (such a list is called dense) and
whose elements are strictly sorted w.r.t. <; in particular, a set cannot contain duplicates. (More precisely, the elements
of a set in GAP are required to lie in the same family, but roughly this means that they can be compared using the <
operator.)

This provides a natural model for mathematical sets whose elements are given by an explicit enumeration.

GAP also calls a set a strictly sorted list, and the function IsSSortedList tests whether a given list is a set. It returns
a boolean value. For almost any list whose elements are contained in the same family, there exists a corresponding set.
This set is constructed by the function Set which takes the list as its argument and returns a set obtained from this list
by ignoring holes and duplicates and by sorting the elements.

The elements of the sets used in the examples of this section are strings.

gap> fruits:= ["apple", "strawberry", "cherry", "plum"];
["apple", "strawberry", "cherry", "plum"]

gap> IsSSortedList(fruits);

false

gap> fruits:= Set(fruits);

["apple", "cherry", "plum", "strawberry"]

Note that the original list fruits is not changed by the function Set. We have to make a new assignment to the
variable fruits in order to make it a set.

The operator in is used to test whether an object is an element of a set. It returns a boolean value true or false.

gap> "apple" in fruits;
true
gap> "banana" in fruits;
false

The operator in can also be applied to ordinary lists. It is however much faster to perform a membership test for sets
since sets are always sorted and a binary search can be used instead of a linear search. New elements may be added to
a set by the function AddSet which takes the set fruits as its first argument and an element as its second argument
and adds the element to the set if it wasn’t already there. Note that the object fruits is changed.

gap> AddSet (fruits, "banana");

gap> fruits; # The banana is inserted in the right place.
["apple", "banana", "cherry", "plum", "strawberry"]

gap> AddSet(fruits, "apple");

gap> fruits; # <fruits has not changed.

["apple", "banana", "cherry", "plum", "strawberry"]

Note that inserting new elements into a set with AddSet is usually more expensive than simply adding new elements
at the end of a list.

Sets can be intersected by the function Intersection and united by the function Union which both take two sets as
their arguments and return the intersection resp. union of the two sets as a new object.

Section 6. For and While Loops 31

gap> breakfast:= ["tea", "apple", "egg"l;
["tea", "apple", Ileggll]

gap> Intersection(breakfast, fruits);

[llapplell]

The arguments of the functions Intersection and Union could be ordinary lists, while their result is always a set.
Note that in the preceding example at least one argument of Intersection was not a set. The functions Inter-
sectSet and UniteSet also form the intersection resp. union of two sets. They will however not return the result but
change their first argument to be the result. Try them carefully.

3.5 Ranges

A range is a finite arithmetic progression of integers. This is another special kind of list. A range is described by the
first two values and the last value of the arithmetic progression which are given in the form [first,second. .last]. In
the usual case of an ascending list of consecutive integers the second entry may be omitted.

gap> [1..999999]; # a range of almost a million numbers
[1 .. 999999]

gap> [1, 2..999999]; # this is equivalent

[1 .. 999999]

gap> [1, 3..999999]; # here the step is 2

[1, 3 .. 999999]

gap> Length(last);

500000

gap> [999999, 999997 .. 1 1;

[999999, 999997 .. 1]

This compact printed representation of a fairly long list corresponds to a compact internal representation. The function
IsRange tests whether an object is a range, the function ConvertToRangeRep changes the representation of a list
that is in fact a range to this compact internal representation.

gap> a:= [-2,-1,0,1,2,3,4,5];
[_23 _13 O’ 1’ 2’ 3) 4: 5]
gap> IsRange(a);

true

gap> ConvertToRangeRep(a);; a;
[-2..5]

gap> al1l:= 0;; IsRange(a);
false

Note that this change of representation does not change the value of the list a. The list a still behaves in any context
in the same way as it would have in the long representation.

3.6 For and While Loops

Given a list pp of permutations we can form their product by means of a for loop instead of writing down the product
explicitly.

32 Chapter 3. Lists and Records

gap> pp:= [(1,3,2,6,8)(4,5,9), (1,6)(2,7,8), (1,5,7)(2,3,8,6),

> (1,8,9(2,3,5,6,4), (1,9,8,6,3,4,7,2)]1;;
gap> prod:= ();

O

gap> for p in pp do

> prod:= prod*p;

> od;

gap> prod;

(1,8,4,2,3,6,5,9)

First a new variable prod is initialized to the identity permutation (). Then the loop variable p takes as its value one
permutation after the other from the list pp and is multiplied with the present value of prod resulting in a new value
which is then assigned to prod.

The for loop has the following syntax

for var in list do statements od;

The effect of the for loop is to execute the statements for every element of the list. A for loop is a statement and
therefore terminated by a semicolon. The list of statements is enclosed by the keywords do and od (reverse do). A
for loop returns no value. Therefore we had to ask explicitly for the value of prod in the preceding example.

The for loop can loop over any kind of list, even a list with holes. In many programming languages the for loop has
the form

for var from first to last do statements od;

In GAP this is merely a special case of the general for loop as defined above where the list in the loop body is a range
(see 3.5):

for var in [first..last] do statements od;
You can for instance loop over a range to compute the factorial 15! of the number 15 in the following way.

gap> ff:= 1;

1

gap> for i in [1..15] do
> ff:= £ff * 1i;

> od;

gap> ff;

1307674368000

The while loop has the following syntax

while condition do statements od;

The while loop loops over the statements as long as the condition evaluates to true. Like the for loop the while
loop is terminated by the keyword od followed by a semicolon.

We can use our list primes to perform a very simple factorization. We begin by initializing a list factors to the
empty list. In this list we want to collect the prime factors of the number 1333. Remember that a list has to exist
before any values can be assigned to positions of the list. Then we will loop over the list primes and test for each
prime whether it divides the number. If it does we will divide the number by that prime, add it to the list factors and
continue.

Section 7. List Operations 33

gap> n:= 1333;;
gap> factors:= [];;
gap> for p in primes do

> while n mod p = 0 do
> n:= n/p;

> Add(factors, p);
> od;

> od;

gap> factors;

[31, 43]

gap> n;

1

As n now has the value 1 all prime factors of 1333 have been found and factors contains a complete factorization
of 1333. This can of course be verified by multiplying 31 and 43.

This loop may be applied to arbitrary numbers in order to find prime factors. But as primes is not a complete list of
all primes this loop may fail to find all prime factors of a number greater than 2000, say. You can try to improve it in
such a way that new primes are added to the list primes if needed.

You have already seen that list objects may be changed. This of course also holds for the list in a loop body. In most
cases you have to be careful not to change this list, but there are situations where this is quite useful. The following
example shows a quick way to determine the primes smaller than 1000 by a sieve method. Here we will make use of
the function Unbind to delete entries from a list, and the ’if” statement covered in 4.2.

gap> primes:= [];;
gap> numbers:= [2..1000];;
gap> for p in numbers do
> Add(primes, p);
for n in numbers do
if n mod p = 0 then
Unbind (numbers[n-1]);
fi;
od;
od;

V V V V V V

The inner loop removes all entries from numbers that are divisible by the last detected prime p. This is done by
the function Unbind which deletes the binding of the list position numbers [n-1] to the value n so that afterwards
numbers [n-1] no longer has an assigned value. The next element encountered in numbers by the outer loop neces-
sarily is the next prime.

In a similar way it is possible to enlarge the list which is looped over. This yields a nice and short orbit algorithm for
the action of a group, for example.

More about for and while loops can be found in the sections 4.17 and 4.19 of the reference manual.

3.7 List Operations

There is a more comfortable way than that given in the previous section to compute the product of a list of numbers
or permutations.

34 Chapter 3. Lists and Records

gap> Product([1..15]);
1307674368000

gap> Product (pp) ;
(1,8,4,2,3,6,5,9)

The function Product takes a list as its argument and computes the product of the elements of the list. This is possible
whenever a multiplication of the elements of the list is defined. So Product executes a loop over all elements of the
list.

There are other often used loops available as functions. Guess what the function Sum does. The function List may
take a list and a function as its arguments. It will then apply the function to each element of the list and return the
corresponding list of results. A list of cubes is produced as follows with the function cubed from Section 4.

gap> cubed:= x —-> x73;;
gap> List([2..10], cubed);
[8, 27, 64, 125, 216, 343, 512, 729, 1000]

To add all these cubes we might apply the function Sum to the last list. But we may as well give the function cubed to
Sum as an additional argument.

gap> Sum(last) = Sum([2..10], cubed);
true

The primes less than 30 can be retrieved out of the list primes from Section 3.1 by the function Filtered. This
function takes the list primes and a property as its arguments and will return the list of those elements of primes
which have this property. Such a property will be represented by a function that returns a boolean value. In this example
the property of being less than 30 can be represented by the function x -> x < 30 since x < 30 will evaluate to
true for values x less than 30 and to false otherwise.

gap> Filtered(primes, x-> x < 30);
[2, 3,5, 7, 11, 13, 17, 19, 23, 29 1]

We have already mentioned the operator { } that forms sublists. It takes a list of positions as its argument and will
return the list of elements from the original list corresponding to these positions.

gap> primes{ [1 .. 10] };
[2, 3,5, 7,11, 13, 17, 19, 23, 29]

Finally we mention the function ForAl1 that checks whether a property holds for all elements of a list. It takes as its
arguments a list and a function that returns a boolean value. ForA11 checks whether the function returns true for all
elements of the list.

gap> list:= [1, 2, 3, 4 1;;

gap> ForAll(list, x -> x > 0);

true

gap> ForAll(list, x -> x in primes);
false

You will find more predefined for loops in chapter 21 of the reference manual.

Section 8. Vectors and Matrices 35

3.8 Vectors and Matrices

This section describes how GAP uses lists to represent row vectors and matrices. A row vector is a dense list of
elements from a common field. A matrix is a dense list of row vectors over a common field and of equal length.

gap> v:= [3, 6, 2, 5/2];; IsRowVector(v);
true

Row vectors may be added and multiplied by scalars from their field. Multiplication of row vectors of equal length
results in their scalar product.

gap> 2 * v; v x 1/3;

[6, 12, 4, 5]

(1,2, 2/3, 5/6]

gap> v * v; # the scalar product of ‘v’ with itself
221/4

Note that the expression v * 1/3 is actually evaluated by first multiplying v by 1 (which yields again v) and by then
dividing by 3. This is also an allowed scalar operation. The expression v/3 would result in the same value.

Such arithmetical operations (if the results are again vectors) result in mutable vectors except if the operation is binary
and both operands are immutable; thus the vectors shown in the examples above are all mutable.

So if you want to produce a mutable list with 100 entries equal to 25, you can simply say25 + 0 = [1 .. 100].
Note that ranges are also vectors (over the rationals), and that [1 .. 100] is mutable.

A matrix is a dense list of row vectors of equal length.

gap> m:= [[1,-1, 1],

> [2, 0,-11,

> [1, 1, 111;

i1, -2,11, 2,0, -11, [1,1,11]1
gap> m[2] [1];

2

Syntactically a matrix is a list of lists. So the number 2 in the second row and the first column of the matrix m is
referred to as the first element of the second element of the list m viam[2] [1].

A matrix may be multiplied by scalars, row vectors and other matrices. (If the row vectors and matrices involved in
such a multiplication do not have suitable dimensions then the “missing” entries are treated as zeros, so the results
may look unexpectedly in such cases.)

gap> [1, O, O] * m;
[1, -1, 1]

gap> [1, 0, 0, 2] * m;
[1, -1, 1]

gap> m * [1, 0, 0];
[1, 2, 1]

gap> m * [1, 0, 0, 2];
[1, 2, 1]

Note that multiplication of a row vector with a matrix will result in a linear combination of the rows of the matrix,
while multiplication of a matrix with a row vector results in a linear combination of the columns of the matrix. In the
latter case the row vector is considered as a column vector.

A vector or matrix of integers can also be multiplied with a finite field scalar and vice versa. Such products result in a
matrix over the finite field with the integers mapped into the finite field in the obvious way. Finite field matrices are
nicer to read when they are Displayed rather than Printed. (Here we write Z(q) to denote a primitive root of the
finite field with q elements.)

36 Chapter 3. Lists and Records

gap> Display(m * One(GF(5)));
141

2 .4

111
gap> Display(m"2 * Z(2) + m * Z(4));
z = Z(4)

z"1 z71 z72

1 1 z72

z"1 z71 z°2
Submatrices can easily be extracted using the expression mat{rows}{columns}. They can also be assigned to, pro-
vided the big matrix is mutable (which it is not if it is the result of an arithmetical operation, see above).

gap> sm :=m{ [1, 21 X [2, 31 };
(C-1,11, 00, -111

gap> sm{ [1, 2] X [2] } := [[-2],[0]1];; 'sm;
(-1, -21, 0,011

The first curly brackets contain the selection of rows, the second that of columns.

Matrices appear not only in linear algebra, but also as group elements, provided they are invertible. Here we have the
opportunity to meet a group-theoretical function, namely Order, which computes the order of a group element.

gap> Order(m * One(GF(5)));

8

gap> Order(m);

infinity
For matrices whose entries are more complex objects, for example rational functions, GAP’s Order methods might
not be able to prove that the matrix has infinite order, and one gets the following warning.

#I Order: warning, order of <mat> might be infinite

In such a case, if the order of the matrix really is infinite, you will have to interrupt GAP by pressing c#/-C (followed
by ctl-D or quit; to leave the break loop).

To prove that the order of m is infinite, we also could look at the minimal polynomial of m over the rationals.

gap> f:= MinimalPolynomial(Rationals, m);; Factors(f);
[x_1-2, x_172+3]

Factors returns a list of irreducible factors of the polynomial f. The first irreducible factor X — 2 reveals that 2 is an
eigenvalue of m, hence its order cannot be finite.

3.9 Plain Records

A record provides another way to build new data structures. Like a list a record contains subobjects. In a record the
elements, the so-called record components, are not indexed by numbers but by names.

In this section you will see how to define and how to use records. Records are changed by assignments to record
components.

Initially a record is defined as a comma separated list of assignments to its record components.

gap> date:= rec(year:= 1997,

> month:= "Jul",
> day:= 14);
rec(year := 1997, month := "Jul", day := 14)

The value of a record component is accessible by the record name and the record component name separated by one
dot as the record component selector.

Section 10. Further Information about Lists 37

gap> date.year;
1997

Assignments to new record components are possible in the same way. The record is automatically resized to hold the
new component.

gap> date.time:= rec(hour:= 19, minute:= 23, second:= 12);

rec(hour := 19, minute := 23, second := 12)
gap> date;
rec(year := 1997, month := "Jul", day := 14,
time := rec(hour := 19, minute := 23, second := 12))

We may use the Display function to illustrate the hierarchy of the record components.

gap> Display(date);
rec(
year := 1997,
month := "Jul",
day := 14,
time := rec(
hour := 19,
minute := 23,
second := 12))

Records are objects that may be changed. An assignment to a record component changes the original object. The
remarks made in Sections 3.2 and 3.3 about identity and mutability of lists are also true for records.

Sometimes it is interesting to know which components of a certain record are bound. This information is available
from the function RecNames, which takes a record as its argument and returns a list of names of all bound components
of this record as a list of strings.

gap> RecNames(date);
[nyearn’ "IIlOIlth", "day", "time"]

Now return to Sections 3.2 and 3.3 and find out what these sections mean for records.

3.10 Further Information about Lists

(The following cross-references point to the GAP Reference Manual.)

You will find more about lists, sets, and ranges in Chapter 21, in particular more about identical lists in Section 21.6. A
more detailed description of strings is contained in Chapter 26. Fields are described in Chapter 56, some known fields
in GAP are described in Chapters 16, 58, and 57. Row vectors and matrices are described in more detail in Chapters 23
and 24. Vector spaces are described in Chapter 59, further matrix related structures are described in Chapters 42, 60,
and 61.

You will find more list operations in Chapter 21.

Records and functions for records are described in detail in Chapter 27.

Functions

You have already seen how to use functions in the GAP library, i.e., how to apply them to arguments.

In this section you will see how to write functions in the GAP language. You will also see how to use the if statement
and declare local variables with the 1ocal statement in the function definition. Loop constructions via while and for
are discussed further, as are recursive functions.

4.1 Writing Functions

Writing a function that prints hello, world. on the screen is a simple exercise in GAP.

gap> sayhello:= function()
> Print("hello, world.\n");
> end;

function() ... end

This function when called will only execute the Print statement in the second line. This will print the string hello,
world. on the screen followed by a newline character \n that causes the GAP prompt to appear on the next line rather
than immediately following the printed characters.

The function definition has the following syntax.
function(arguments) statements end

A function definition starts with the keyword function followed by the formal parameter list arguments enclosed
in parenthesis ’()’. The formal parameter list may be empty as in the example. Several parameters are separated by
commas. Note that there must be no semicolon behind the closing parenthesis. The function definition is terminated
by the keyword end.

A GAP function is an expression like an integer, a sum or a list. Therefore it may be assigned to a variable. The
terminating semicolon in the example does not belong to the function definition but terminates the assignment of the
function to the name sayhello. Unlike in the case of integers, sums, and lists the value of the function sayhello is
echoed in the abbreviated fashion function () ... end. This shows the most interesting part of a function: its
formal parameter list (which is empty in this example). The complete value of sayhello is returned if you use the
function Print.

gap> Print(sayhello, "\n");
function ()
Print("hello, world.\n");
return;
end

Note the additional newline character "\n" in the Print statement. It is printed after the object sayhello to start a
new line. The extra return statement is inserted by GAP to simplify the process of executing the function.

The newly defined function sayhello is executed by calling sayhello () with an empty argument list.

gap> sayhello();
hello, world.

However, this is not a typical example as no value is returned but only a string is printed.

Section 3. Local Variables 39

4.2 If Statements

In the following example we define a function sign which determines the sign of a number.

gap> sign:= function(n)

> if n < 0 then

> return -1;

> elif n = 0 then
> return O;

> else

> return 1;

> fi;

> end;

function(n) ... end
gap> sign(0); sign(-99); sign(11);
0

-1

1

This example also introduces the if statement which is used to execute statements depending on a condition. The if
statement has the following syntax.

if condition then statements elif condition then statements else statements fi

There may be several elif parts. The elif part as well as the else part of the if statement may be omitted. An
if statement is no expression and can therefore not be assigned to a variable. Furthermore an if statement does not
return a value.

Fibonacci numbers are defined recursively by f(1) = f(2) = 1 and f(n) = f(n — 1) + f(n — 2) for n > 3. Since
functions in GAP may call themselves, a function £ib that computes Fibonacci numbers can be implemented basically
by typing the above equations. (Note however that this is a very inefficient way to compute f(n).)

gap> fib:= function(n)

> if n in [1, 2] then

> return 1;

> else

> return fib(n-1) + fib(n-2);
> fi;

> end;

function(n) ... end

gap> fib(15);

610

There should be additional tests for the argument n being a positive integer. This function £ib might lead to strange
results if called with other arguments. Try inserting the necessary tests into this example.

4.3 Local Variables

A function gcd that computes the greatest common divisor of two integers by Euclid’s algorithm will need a variable
in addition to the formal arguments.

40 Chapter 4. Functions

gap> gcd:= function(a, b)

> local c;

> while b <> 0 do
> c:= b;

> b:= a mod b;
> a:= c;

> od;

> return c;

> end;

function(a, b) ... end
gap> gcd (30, 63);

3

The additional variable c is declared as a local variable in the 1ocal statement of the function definition. The local
statement, if present, must be the first statement of a function definition. When several local variables are declared in
only one local statement they are separated by commas.

The variable c is indeed a local variable, that is local to the function gcd. If you try to use the value of c in the main
loop you will see that ¢ has no assigned value unless you have already assigned a value to the variable c in the main
loop. In this case the local nature of c in the function gcd prevents the value of the c in the main loop from being
overwritten.

gap> c:= T;;

gap> gcd (30, 63);
3

gap> c;

7

We say that in a given scope an identifier identifies a unique variable. A scope is a lexical part of a program text. There
is the global scope that encloses the entire program text, and there are local scopes that range from the function
keyword, denoting the beginning of a function definition, to the corresponding end keyword. A local scope introduces
new variables, whose identifiers are given in the formal argument list and the local declaration of the function. The
usage of an identifier in a program text refers to the variable in the innermost scope that has this identifier as its name.

4.4 Recursion

We have already seen recursion in the function £ib in Section 4.2. Here is another, slightly more complicated example.

We will now write a function to determine the number of partitions of a positive integer. A partition of a positive
integer is a descending list of numbers whose sum is the given integer. For example [4,2, 1, 1] is a partition of 8. Note
that there is just one partition of 0, namely []. The complete set of all partitions of an integer n may be divided into
subsets with respect to the largest element. The number of partitions of n therefore equals the sum of the numbers of
partitions of n — i with elements less than or equal to i for all possible i. More generally the number of partitions of n
with elements less than m is the sum of the numbers of partitions of n — i with elements less than i for i less than m
and n. This description yields the following function.

gap> nrparts:= function(n)
> local np;
np:= function(n, m)
local i, res;
if n = 0 then
return 1;
fi;
res:= 0;

V V V V V V

Section 5. Further Information about Functions 41

> for i in [1..Minimum(n,m)] do
> res:= res + np(n-i, i);

> od;

> return res;

> end;

> return np(n,n);

> end;

function(n) ... end

We wanted to write a function that takes one argument. We solved the problem of determining the number of partitions
in terms of a recursive procedure with two arguments. So we had to write in fact two functions. The function nrparts
that can be used to compute the number of partitions indeed takes only one argument. The function np takes two
arguments and solves the problem in the indicated way. The only task of the function nrparts is to call np with two
equal arguments.

We made np local to nrparts. This illustrates the possibility of having local functions in GAP. It is however not
necessary to put it there. np could as well be defined on the main level, but then the identifier np would be bound and
could not be used for other purposes, and if it were used the essential function np would no longer be available for
nrparts.

Now have a look at the function np. It has two local variables res and i. The variable res is used to collect the sum
and 1 is a loop variable. In the loop the function np calls itself again with other arguments. It would be very disturbing
if this call of np was to use the same i and res as the calling np. Since the new call of np creates a new scope with
new variables this is fortunately not the case.

Note that the formal parameters 'n’ and m’ of 'np’ are treated like local variables.

(Regardless of the recursive structure of an algorithm it is often cheaper (in terms of computing time) to avoid a
recursive implementation if possible (and it is possible in this case), because a function call is not very cheap.)

4.5 Further Information about Functions

The function syntax is described in Section 5. The if statement is described in more detail in Section 4.16. More
about Fibonacci numbers is found in Section 17.3.1 and more about partitions in Section 17.2.15.

Groups and
Homomorphisms

In this chapter we will show some computations with groups. The examples deal mostly with permutation groups,
because they are the easiest to input. The functions mentioned here, like Group, Size or SylowSubgroup, however,
are the same for all kinds of groups, although the algorithms which compute the information of course will be different
in most cases.

5.1 Permutation groups

Permutation groups are so easy to input because their elements, i.e., permutations, are so easy to type: they are entered
and displayed in disjoint cycle notation. So let’s construct a permutation group:

gap> s8 := Group((1:2), (1,2’3:4,5:6,7’8));
Group([(1,2), (1,2,3,4,5,6,7,8) 1)

We formed the group generated by the permutations (1,2) and (1,2,3,4,5,6,7,8), which is well known to be the
symmetric group on eight points, and assigned it to the identifier s8. Now the group Sg contains the alternating group
on eight points which can be described in several ways, e.g., as the group of all even permutations in s8, or as its
derived subgroup.

gap> a8 := DerivedSubgroup(s8);

Group([(1,2,3), (2,3,4), (2,4)(3,5), (2,6,4), (2,4)(5,7), (2,8,6,4)(3,5) 1)
gap> Size(a8); IsAbelian(a8); IsPerfect(a8);

20160

false

true

Once information about a group like s8 or a8 has been computed, it is stored in the group so that it can simply be
looked up when it is required again. This holds for all pieces of information in the previous example. Namely, a8 stores
its order and that it is nonabelian and perfect, and s8 stores its derived subgroup a8. Had we computed a8 as Commu-
tatorSubgroup(s8, s8), however, it would not have been stored, because it would then have been computed as
a function of two arguments, and hence one could not attribute it to just one of them. (Of course the function Commu-
tatorSubgroup can compute the commutator subgroup of two arbitrary subgroups.) The situation is a bit different
for Sylow p-subgroups: The function SylowSubgroup also requires two arguments, namely a group and a prime p,
but the result is stored in the group — namely together with the prime p in a list called ComputedSylowSubgroups,
but we won’t dwell on the details here.

gap> syl2 := SylowSubgroup(a8, 2);; Size(syl2);

64

gap> Normalizer(a8, syl2) = syl2;

true

gap> cent := Centralizer(a8, Centre(syl2));; Size(cent);
192

gap> DerivedSeries(cent);; List(last, Size);
[192, 96, 32, 2, 1]

Section 1. Permutation groups 43

We have typed double semicolons after some commands to avoid the output of the groups (which would be printed
by their generator lists). Nevertheless, the beginner is encouraged to type a single semicolon instead and study the full
output. This remark also applies for the rest of this tutorial.

With the next examples, we want to calculate a subgroup of a8, then its normalizer and finally determine the struc-
ture of the extension. We begin by forming a subgroup generated by three commuting involutions, i.e., a subgroup
isomorphic to the additive group of the vector space 2°.

gap> elab := Group((1,2)(3,4)(5,6)(7,8), (1,3)(2,4)(5,7)(6,8),

> (1,5)(2,6)(3,7)(4,8));;
gap> Size(elab);

8

gap> IsElementaryAbelian(elab);

true

As usual, GAP prints the group by giving all its generators. This can be annoying, especially if there are many
of them or if they are of huge degree. It also makes it difficult to recognize a particular group when there already
several around. Note that although it is no problem for us to specify a particular group to GAP, by using well-chosen
identifiers such as a8 and elab, it is impossible for GAP to use these identifiers when printing a group for us, because
the group does not know which identifier(s) point to it, in fact there can be several. In order to give a name to the group
itself (rather than to the identifier), you have to use the function SetName. We do this with the name 23 here which
reflects the mathematical properties of the group. From now on, GAP will use this name when printing the group for
us, but we still cannot use this name to specify the group to GAP, because the name does not know to which group it
was assigned (after all, you could assign the same name to several groups). When talking to the computer, you must
always use identifiers.

gap> SetName(elab, "27°3"); elab;

2”3

gap> norm := Normalizer(a8, elab);; Size(norm);
1344

Now that we have the subgroup norm of order 1344 and its subgroup elab, we want to look at its factor group.
But since we also want to find preimages of factor group elements in norm, we really want to look at the natural
homomorphism defined on norm with kernel elab and whose image is the factor group.

gap> hom := NaturalHomomorphismByNormalSubgroup(norm, elab);

<action epimorphism>

gap> £ := Image(hom);

Group([O, O, O, (4,56)(6,7), (4,6)(5,7), (2,3)(6,7), (2,4)(3,5),
(1,2)(5,6) 1)

gap> Size(f);

168

The factor group is again represented as a permutation group. However, the action domain of this factor group has
nothing to do with the action domain of norm. (It only happens that both are subsets of the natural numbers.) We can
now form images and preimages under the natural homomorphism. The set of preimages of an element under hom is
a coset modulo elab. We use the function PreImages here because hom is not a bijection, so an element of the range
can have several preimages or none at all.

gap> ker:= Kernel(hom);

273

gap> x := (1,8,3,5,7,6,2);; Image(hom, x);
(1,7,5,6,2,3,4)

gap> coset := Prelmages(hom, last);

RightCoset(273,(2,8,6,7,3,4,5))

44 Chapter 5. Groups and Homomorphisms

Note that GAP is free to choose any representative for the coset of preimages. Of course the quotient of two represen-
tatives lies in the kernel of the homomorphism.

gap> rep:= Representative(coset);

(2,8,6,7,3,4,5)
gap> x * rep -1 in ker;
true

The factor group £ is a simple group, i.e., it has no non-trivial normal subgroups. GAP can detect this fact, and it can
then also find the name by which this simple group is known among group theorists. (Such names are of course not
available for non-simple groups.)

gap> IsSimple(f); IsomorphismTypeInfoFiniteSimpleGroup(f);

true
rec(series := "L", parameter := [2, 7],
name := "A(1,7) = L(2,7) ~ B(1,7) = 0(3,7) ~ C(1,7) = 8(2,7) ~ 2A(1,7) = U2\

,7) 7 A(2,2) = L(3,2)")
gap> SetName(f, "L_3(2)");

We give £ the name L_3(2) because the last part of the name string reveals that it is isomorphic to the simple linear
group L3(2). This group, however, also has a lot of other names. Names that are connected with a = sign are different
names for the same matrix group, e.g., A(2,2) is the Lie type notation for the classical notation L (3,2). Other pairs
of names are connected via ~, these then specify other classical groups that are isomorphic to that linear group (e.g.,
the symplectic group S(2,7), whose Lie type notation would be C(1,7)).

The group norm acts on the eight elements of its normal subgroup elab by conjugation, yielding a representation of
L3(2) in s8 which leaves one point fixed (namely point 1). The image of this representation can be computed with the
function Action; it is even contained in the group norm and we can show that norm is indeed a split extension of the
elementary abelian group 2° with this image of L3(2).

gap> op := Action(norm, elab);

Group([O, O, O, (5,6)(7,8), (5,7)(6,8), (3,4)(7,8), (3,5)(4,6),
(2,3)(6,7) 1

gap> IsSubgroup(a8, op); IsSubgroup(norm, op);

true

true

gap> IsTrivial(Intersection(elab, op));

true

gap> SetName(norm, "273:L_3(2)");

By the way, you should not try the operator < instead of the function IsSubgroup. Something like

gap> elab < a8;
false

will not cause an error, but the result does not signify anything about the inclusion of one group in another; < tests
which of the two groups is less in some total order. On the other hand, the equality operator = in fact does test the
equality of its arguments.

Summary. In this section we have used the elementary group functions to determine the structure of a normalizer.
We have assigned names to the involved groups which reflect their mathematical structure and GAP uses these names
when printing the groups.

Section 2. Actions of Groups 45

5.2 Actions of Groups

In order to get another representation of a8, we consider another action, namely that on the elements of a certain
conjugacy class by conjugation.

In the following example we temporarily increase the line length limit from its default value 80 to 82 in order to make
the long expression fit into one line.

gap> ccl := ConjugacyClasses(a8);; Length(ccl);

14

gap> List(ccl, c -> Order(Representative(c)));

(1,2, 2,3,6, 3, 4, 4, 5, 15, 15, 6, 7, 7 1]

gap> SizeScreen([82, 1);;

gap> List(ccl, Size);

[1, 210, 105, 112, 1680, 1120, 2520, 1260, 1344, 1344, 1344, 3360, 2880, 2880]
gap> SizeScreen([80, 1);;

Note the difference between Order (which means the element order), Size (which means the size of the conjugacy
class) and Length (which means the length of a list). We choose to let a8 operate on the class of length 112.

gap> class := First(ccl, ¢ -> Size(c) = 112);;
gap> op := Action(a8, AsList(class));;

We use AsList here to convert the conjugacy class into a list of its elements whereas we wrote Action(norm, elab
) directly in the previous section. The reason is that the elementary abelian group elab can be quickly enumerated
by GAP whereas the standard enumeration method for conjugacy classes is slower than just explicit calculation of
the elements. However, GAP is reluctant to construct explicit element lists, because for really large groups this direct
method is infeasible.

Note also the function First, used to find the first element in a list which passes some test. See 21.20.20 in the
reference manual for more details.

We now have a permutation representation op on 112 points, which we test for primitivity. If it is not primitive, we
can obtain a minimal block system (i.e., one where the blocks have minimal length) by the function Blocks.

gap> IsPrimitive(op, [1 .. 112]);
false
gap> blocks := Blocks(op, [1 .. 112]);;

Note that we must specify the domain of the action. You might think that the functions IsPrimitive and Blocks
could use [1..112] as default domain if no domain was given. But this is not so easy, for example would the default
domain of Group((2,3,4)) be [1..4] or [2..4]? To avoid confusion, all action functions require that you
specify the domain of action. If we had specified [1..113] in the primitivity test above, point 113 would have been
a fixpoint (and the action would not even have been transitive).

Now blocks is a list of blocks (i.e., a list of lists), which we do not print here for the sake of saving paper (try it for
yourself). In fact all we want to know is the size of the blocks, or rather how many there are (the product of these two
numbers must of course be 112). Then we can obtain a new permutation group of the corresponding degree by letting
op act on these blocks setwise.

gap> Length(blocks[1]); Length(blocks);
2

56

gap> op2 := Action(op, blocks, OnSets);;
gap> IsPrimitive(op2, [1 .. 56]);

true

Note that we give a third argument (the action function OnSets) to indicate that the action is not the default action
on points but an action on sets of elements given as sorted lists. (Section 39.2 of the reference manual lists all actions
that are pre-defined by GAP.)

46 Chapter 5. Groups and Homomorphisms

The action of op on the given block system gave us a new representation on 56 points which is primitive, i.e., the point
stabilizer is a maximal subgroup. We compute its preimage in the representation on eight points using the associated
action homomorphisms (which of course are monomorphisms). We construct the composition of two homomorphisms
with the * operator, reading left-to-right.

gap> ophom := ActionHomomorphism(a8, op);;
gap> ophom2 := ActionHomomorphism(op, op2);;
gap> composition := ophom * ophom2;;

gap> stab := Stabilizer(op2, 2);;

gap> preim := PreImages(composition, stab);

Group([(1,4,2), (3,6,7), (3,8,5,7,6), (1,4)(7,8) 1)

The normalizer of an element in the conjugacy class class is a group of order 360, too. In fact, it is a conjugate of
the maximal subgroup we had found before, and a conjugating element in a8 is found by the function Representa-
tiveAction.

gap> sgp := Normalizer(a8, Subgroup(a8, [Representative(class)]));;
gap> Size(sgp);

360

gap> RepresentativeAction(a8, sgp, preim);

(3,4)(7,8)

So far we have seen a few applications of the functions Action and ActionHomomorphism. But perhaps even more
interesting is the fact that the natural homomorphism hom constructed above is also an action homomorphism,; this is
also the reason why its image is represented as a permutation group: it is the natural representation for actions. We will
now look at this action homomorphism again to find out on what objects it operates. These objects form the so-called
external set which is associated with every action homomorphism. We will mention external sets only superficially
in this tutorial, for details see 39.11 in the reference manual. For the moment, we need only know that the external set
is obtained by the function UnderlyingExternalSet.

gap> t := UnderlyingExternalSet(hom);

<xset:RightTransversal(273:L_3(2),Group(

[(1,5)(2,6)(3,7)(4,8), (1,3)(2,4)(5,7)(6,8), (1,2)(3,4)(5,6)(7,8),
(5,6)(7,8), (5,7)(6,8), (3,4)(7,8), (3,5)(4,6) 1))>

For the natural homomorphism hom the external set is a right transversal of a subgroup U in norm, and action on
the right transversal really means action on the cosets of the subgroup U. When executing the function call Natural-
HomomorphismByNormalSubgroup(norm, elab), GAP has chosen a subgroup U for which the kernel of this
action (i.e., the core of U in norm) is the desired normal subgroup elab. For the purpose of operating on the cosets,
the right transversal t contains one representative from each coset of U. Regarded this way, a transversal is simply a
list of group elements, and you can make GAP produce this list by AsList (t). (Try it.)

The image of such a representative from AsList (t) under right multiplication with an element from norm will in
general not be in AsList (t), because it will not be among the chosen representatives again. Hence right multiplication
is not an action on AsList (t). However, GAP uses a special trick to be discussed below to make this a well-defined
action on the cosets represented by the elements of AsList (t). For now, it is important to know that the external
set t is more than just the right transversal on which the group norm operates. Altogether three things are necessary
to specify an action: a group G, a set D, and a function opr: D X G — D. We can access these ingredients with the
following functions:

Section 2. Actions of Groups 47

gap> ActingDomain(t); # the group

2°3:L_3(2)

gap> Enumerator(t);

RightTransversal(2°3:L_3(2),Group(

[(1,5)(2,6)(3,7)(4,8), (1,3)(2,4)(5,7)(6,8), (1,2)(3,4)(5,6)(7,8),
(5,6)(7,8), (5,7)(6,8), (3,4)(7,8), (3,5)(4,6) 1))

gap> FunctionAction(t);

function(pnt, elm) ... end
gap> NameFunction(last);
"OnRight"

The function which is named "OnRight" is also assigned to the identifier OnRight, and it means multiplication from
the right; this is the usual way to operate on a right transversal. OnRight (d, g) isdefinedasd * g.

Observe that the external set t and its Enumerator are printed the same way, but be aware that an external set
also comprises the acting domain and the action function. The Enumerator itself, i.e., the right transversal, in turn
comprises knowledge about the group norm and the subgroup U, and this is what allows the special trick promised
above. As far as Position is concerned, the Enumerator behaves as an (immutable) list and you can ask for the
position of an element in it.

gap> elm := (1,4)(2,7)(3,6)(5,8);;

gap> Position(Enumerator(t), elm);

fail

gap> PositionCanonical(Enumerator(t), elm);
5

The result fail means that the element was not found at all in the list: it is not among the chosen representatives.
The difference between the functions Position and PositionCanonical is that the first simply looks whether
elm is contained among the representatives which together form the right transversal t, whereas the second really
looks for the position of the coset described by the representative elm. In other words, it first replaces elm by a
canonical representative of the same coset (which must be contained in Enumerator(t)) and then looks for its
position, hence the name. The function ActionHomomorphism (and its relatives) always use PositionCanonical
when they calculate the images of the generators of the source group (here, norm) under the homomorphism (here,
hom). Therefore they can give a well-defined action on an enumerator, even if the action would not be well-defined
on AsList (enumerator).

The image of the natural homomorphism is the permutation group £ that results from the action of norm on the right
transversal. It can be calculated by either of the following commands. The second of them shows that the external set
t contains all information that is necessary for Action to do its work.

gap> Action(norm, Enumerator(t), OnRight) = f;
true

gap> Action(t) = f;

true

We have specified the action function OnRight in this example, but we have seen examples like Action(norm,
elab) earlier where this third argument was not given. If an action function is omitted, GAP always assumes
OnPoints which is defined as OnPoints(d, g) = d ~ g. This “caret” operator denotes conjugation in a group
if both arguments d and g are group elements (contained in a common group), but it also denotes the natural action of
permutations on positive integers (and exponentiation of integers as well, of course).

Summary. In this section we have learned how groups can operate on GAP objects such as integers and group
elements. We have used ActionHomomorphism, among others, to construct a natural homomorphism, in which case
the group operated on the right transversal of a suitable subgroup. This right transversal gave us an example for the
use of PositionCanonical, which allowed us to specify cosets by giving representatives.

48 Chapter 5. Groups and Homomorphisms

5.3 Subgroups as Stabilizers

Action functions can also be used without constructing external sets. We will try to find several subgroups in a8 as
stabilizers of such actions. One subgroup is immediately available, namely the stabilizer of one point. The index of
the stabilizer must of course be equal to the length of the orbit, i.e., 8.

gap> u8 := Stabilizer(a8, 1);

Group([(2,3,4), (2,4)(3,5), (2,6,4), (2,4)(,7), (2,8,6,4)(3,5) 1)
gap> Index(a8, u8);

8

gap> Orbit(a8, 1); Length(last);

(1, 3,2,4,5,6,7, 8]

8

This gives us a hint how to find further subgroups. Each subgroup is the stabilizer of a point of an appropriate transitive
action (namely the action on the cosets of that subgroup or another action that is equivalent to this action). So the
question is how to find other actions. The obvious thing is to operate on pairs of points. So using the function Tuples
we first generate a list of all pairs.

gap> pairs := Tuples([1..8], 2);;

Now we would like to have a8 operate on this domain. But we cannot use the default action OnPoints because list
~ perm is not defined. So we must tell the functions from the actions package how the group elements operate on
the elements of the domain. In our example we can do this by simply passing OnPairs as an optional last argument.
All functions from the actions package accept such an optional argument that describes the action. One example is
IsTransitive.

gap> IsTransitive(a8, pairs, OnPairs);
false

The action is of course not transitive, since the pairs [1, 1] and [1, 2] cannot lie in the same orbit. So we
want to find out what the orbits are. The function Orbits does that for us. It returns a list of all the orbits. We look at
the orbit lengths and representatives for the orbits.

gap> orbs := Orbits(a8, pairs, OnPairs);; Length(orbs);
2

gap> List(orbs, Length);

[8, 56 1]

gap> List(orbs, o -> o[1]);

(f1,11, 01,211

The action of a8 on the first orbit (this is the one containing [1,1], try [1,1] in orbs[1]) is of course equivalent
to the original action, so we ignore it and work with the second orbit.

gap> ub6 := Stabilizer(a8, orbs[2][1], OnPairs);; Index(a8, ub6);
56

So now we have found a second subgroup. To make the following computations a little bit easier and more efficient
we would now like to work on the points [1..56] instead of the list of pairs. The function ActionHomomorphism
does what we need. It creates a homomorphism defined on a8 whose image is a new group that operates on [1. .56]
in the same way that a8 operates on the second orbit.

gap> h56 := ActionHomomorphism(a8, orbs[2], OnPairs);;
gap> a8_56 := Image(h56);;

We would now like to know if the subgroup u56 of index 56 that we found is maximal or not. As we have used already
in Section 5.2, a subgroup is maximal if and only if the action on the cosets of this subgroup is primitive.

Section 3. Subgroups as Stabilizers 49

gap> IsPrimitive(a8_56, [1..56]);
false

Remember that we can leave out the function if we mean OnPoints but that we have to specify the action domain for
all action functions.

We see that a8_56 is not primitive. This means of course that the action of a8 on orb[2] is not primitive, because
those two actions are equivalent. So the stabilizer u56 is not maximal. Let us try to find its supergroups. We use the
function Blocks to find a block system. The (optional) third argument in the following example tells Blocks that we
want a block system where 1 and 14 lie in one block.

gap> blocks := Blocks(a8_56, [1..56], [1,14]);

[c1i, 3, 4, 5, 6, 14, 311, [2, 13, 15, 16, 17, 23, 24 1],
L7, 8, 22, 34, 37, 47, 491, [9, 11, 18, 20, 35, 38, 48 1],
[10, 25, 26, 27, 32, 39, 50 1, [12, 28, 29, 30, 33, 36, 40],
[19, 21, 42, 43, 45, 46, 55 1, [41, 44, 51, 52, 53, 54, 56] 1]

The result is a list of sets, such that a8_56 operates on those sets. Now we would like the stabilizer of this action on
the sets. Because we want to operate on the sets we have to pass OnSets as third argument.

gap> u8_56 := Stabilizer(a8_56, blocks[1], OnSets);;
gap> Index(a8_56, u8_56);

8

gap> u8b := PreImages(h56, u8_56);; Index(a8, u8b);
8

gap> IsConjugate(a8, u8, u8b);

true

So we have found a supergroup of us6 that is conjugate in a8 to u8. This is not surprising, since u8 is a point stabilizer,
and ub6 is a two point stabilizer in the natural action of a8 on eight points.

Here is a warning: If you specify OnSets as third argument to a function like Stabilizer, you have to make sure
that the point (i.e. the second argument) is indeed a set. Otherwise you will get a puzzling error message or even
wrong results! In the above example, the second argument blocks [1] came from the function Blocks, which returns
a list of sets, so everything was OK.

Actually there is a third block system of a8_56 that gives rise to a third subgroup.

gap> blocks := Blocks(a8_56, [1..56], [1,13]);;
gap> u28_56 := Stabilizer(a8_56, [1,13], OnSets);;
gap> u28 := PreImages(h56, u28_56);;

gap> Index(a8, u28);

28

We know that the subgroup u28 of index 28 is maximal, because we know that a8 has no subgroups of index 2, 4, or
7. However we can also quickly verify this by checking that a8_56 operates primitively on the 28 blocks.

gap> IsPrimitive(a8_56, blocks, OnSets);
true

Stabilizer is not only applicable to groups like a8 but also to their subgroups like u56. So another method to find
a new subgroup is to compute the stabilizer of another point in u56. Note that u66 already leaves 1 and 2 fixed.

gap> u336 := Stabilizer(u56, 3);;

gap> Index(a8, u336);
336

Other functions are also applicable to subgroups. In the following we show that u336 operates regularly on the
60 triples of [4..8] which contain no element twice. We constuct the list of these 60 triples with the function

50 Chapter 5. Groups and Homomorphisms

Orbit (using OnTuples as the natural generalization of OnPairs) and then pass it as action domain to the function
IsRegular. The positive result of the regularity test means that this action is equivalent to the actions of u336 on its
60 elements from the right.

gap> IsRegular(u336, Orbit(u336, [4,5,6], OnTuples), OnTuples);
true

Just as we did in the case of the action on the pairs above, we now construct a new permutation group that operates
on [1..336] in the same way that a8 operates on the cosets of u336. But this time we let a8 operate on a right
transversal, just like norm did in the natural homomorphism above.

gap> t := RightTransversal(a8, u336);;
gap> a8.336 := Action(a8, t, OnRight);;

To find subgroups above u336 we again look for nontrivial block systems.

gap> blocks := Blocks(a8_336, [1..336]);; blocks[1];
[1, 43, 85]

We see that the union of u336 with its 43rd and its 85th coset is a subgroup in a8_336, its index is 112. We can
obtain it as the closure of u336 with a representative of the 43rd coset, which can be found as the 43rd element of the
transversal t. Note that in the representation a8_336 on 336 points, this subgroup corresponds to the stabilizer of the
block [1, 43, 85 1.

gap> ul12 := ClosureGroup(u336, t[43]);;
gap> Index(a8, ull2);
112

Above this subgroup of index 112 lies a subgroup of index 56, which is not conjugate to u56. In fact, unlike u56 it is
maximal. We obtain this subgroup in the same way that we obtained u112, this time forcing two points, namely 7 and
43 into the first block.

gap> blocks := Blocks(a8_336, [1..336], [1,7,43]);;
gap> Length(blocks);

56

gap> u56b := ClosureGroup(ull2, t[7]);; Index(a8, u56b);
56

gap> IsPrimitive(a8_336, blocks, OnSets);

true

We already mentioned in Section 5.2 that there is another standard action of permutations, namely the conjugation.
E.g., since no other action is specified in the following example, OrbitLength simply operates via OnPoints, and
because perm; ~ perm, is defined as the conjugation of perm, on perm;, in fact we compute the length of the
conjugacy class of (1,2)(3,4)(5,6) (7,8).

gap> OrbitLength(a8, (1,2)(3,4)(5,6)(7,8));

105

gap> orb := Orbit(a8, (1,2)(3,4)(5,6)(7,8));;

gap> ul05 := Stabilizer(a8, (1,2)(3,4)(5,6)(7,8));; Index(a8, ul05);
105

Note that although the length of a conjugacy class of any element elm in any finite group G can be computed as
OrbitLength(G, elm), the command Size(ConjugacyClass(G, elm)) is probably more efficient.

Section 4. Group Homomorphisms by Images 51

gap> Size(ConjugacyClass(a8, (1,2)(3,4)(5,6)(7,8)));
105

Of course the stabilizer u105 is in fact the centralizer of the element (1,2) (3,4) (5,6) (7,8). Stabilizer notices
that and computes the stabilizer using the centralizer algorithm for permutation groups. In the usual way we now look
for the subgroups above u105.

gap> blocks := Blocks(a8, orb);; Length(blocks);

15

gap> blocks[1];

[(1,2)(3,4)(5,6)(7,8), (1,3)(2,4)(5,8)(6,7), (1,4)(2,3)(5,7)(6,8),
(1,5)(2,6)(3,8)(4,7), (1,6)(2,5)(3,7)(4,8), (1,7)(2,8)(3,6)(4,5),
(1,8)(2,7)(3,5) (4,6)]

To find the subgroup of index 15 we again use closure. Now we must be a little bit careful to avoid confusion. u105
is the stabilizer of (1,2) (3,4) (5,6) (7,8). We know that there is a correspondence between the points of the orbit
and the cosets of u105. The point (1,2) (3,4) (5,6) (7,8) corresponds to ul05. To get the subgroup above u105
that has index 15 in a8, we must form the closure of u105 with an element of the coset that corresponds to any other
point in the first block. If we choose the point (1,3) (2,4) (5,8) (6,7), we must use an element of a8 that maps
(1,2)(3,4)(5,6)(7,8) to (1,3)(2,4)(5,8) (6,7). The function RepresentativeAction does what we need.
It takes a group and two points and returns an element of the group that maps the first point to the second. In fact it
also allows you to specify the action as an optional fourth argument as usual, but we do not need this here. If no such
element exists in the group, i.e., if the two points do not lie in one orbit under the group, RepresentativeAction
returns fail.

gap> rep := RepresentativeAction(a8, (1,2)(3,4)(5,6)(7,8),

> (1,3)(2,4)(5,8)(6,7));
(2,3)(6,8)

gap> ulb := ClosureGroup(ul05, rep);; Index(a8, ulb);

15

ulb is of course a maximal subgroup, because a8 has no subgroups of index 3 or 5. There is in fact another class of
subgroups of index 15 above u105 that we get by adding (2,3) (6,7) to ul05.

gap> ulbb := ClosureGroup(ul05, (2,3)(6,7));; Index(a8, ulbb);
15

gap> RepresentativeAction(a8, ulb, ulbb);

fail

RepresentativeAction tells us that there is no element g in a8 such thatuls ~ g = ulbb. Because ~ also denotes
the conjugation of subgroups this tells us that u15 and u15b are not conjugate.

Summary. In this section we have demonstrated some functions from the actions package. There is a whole class of
functions that we did not mention, namely those that take a single element instead of a whole group as first argument,
e.g., Cycle and Permutation. These are fully described in Chapter 39 in the reference manual.

5.4 Group Homomorphisms by Images

We have already seen examples of group homomorphisms in the last sections, namely natural homomorphisms and
action homomorphisms. In this section we will show how to construct a group homomorphism G — H by specifying
a generating set for G and the images of these generators in H. We use the function GroupHomomorphismByImages (
G, H, gens, imgs) where gens is a generating set for G and imgs is a list whose ith entry is the image of gens[i
1 under the homomorphism.

52 Chapter 5. Groups and Homomorphisms

gap> s4 := Group((1,2,3,4),(1,2));; s3 := Group((1,2,3),(1,2));;
gap> hom := GroupHomomorphismByImages(s4, s3,

> GeneratorsOfGroup(s4), [(1,2),(2,3)]);

[(1,2,3,4), (1,2) 1 > [(1,2), (2,3)]

gap> Kernel(hom);

Group([(1,4)(2,3), (1,3)(2,4) 1)

gap> Image(hom, (1,2,3));

(1,2,3)

gap> Image(hom, DerivedSubgroup(s4));

Group([(1,3,2), (1,3,2) 1)

gap> PrelImage(hom, (1,2,3));

Error, <map> must be an inj. and surj. mapping called from
<function>(<arguments>) called from read-eval-loop
Entering break read-eval-print loop ...

you can ’quit;’ to quit to outer loop, or

you can ’return;’ to continue

brk> quit;

gap> PrelmagesRepresentative(hom, (1,2,3));

(1,4,2)

gap> PreImage(hom, TrivialSubgroup(s3)); # the kernel
Group([(1,4)(2,3), (1,3)(2,4) 1D

This homomorphism from S, onto S3 is well known from elementary group theory. Images of elements and subgroups
under hom can be calculated with the function Image. But since the mapping hom is not bijective, we cannot use
the function PreImage for preimages of elements (they can have several preimages). Instead, we have to use PreIm-
agesRepresentative, which returns one preimage if at least one exists (and would return fail if none exists, which
cannot occur for our surjective hom.) On the other hand, we can use PreImage for the preimage of a set (which always
exists, even if it is empty).

Suppose we mistype the input when trying to construct a homomorphism, as in the following example.

gap> GroupHomomorphismByImages(s4, s3,
> Generators0fGroup(s4), [(1,2,3),(2,3)]);
fail

There is no such homomorphism, hence fail is returned. But note that because of this, GroupHomomorphismByIm-
ages must do some checks, and this was also done for the mapping hom above. One can avoid these checks if one
is sure that the desired homomorphism really exists. For that, the function GroupHomomorphismByImagesNC can be
used; the NC stands for “no check”.

But note that horrible things can happen if GroupHomomorphismByImagesNC is used when the input does not describe
a homomorphism.

gap> hom2 := GroupHomomorphismByImagesNC(s4, s3,

> Generators0fGroup(s4), [(1,2,3),(2,3)]);
[(1,2,3,4), (1,2) 1 > [(1,2,3), (2,3)]

gap> Size(Kernel(hom2));

24

In other words, GAP claims that the kernel is the full s4, yet hom2 obviously has some non-trivial images! Clearly
there is no such thing as a homomorphism which maps an element of order 4 (namely, (1,2,3,4)) to an element of
order 3 (namely, (1,2,3)). But if you use the command GroupHomomorphismByImagesNC, GAP trusts you.

Section 4. Group Homomorphisms by Images 53

gap> IsGroupHomomorphism(hom2);
true
And then it produces serious nonsense if the thing is not a homomorphism, as seen above!

Besides the safe command GroupHomomorphismByImages, which returns fail if the requested homomorphism
does not exist, there is the function GroupGeneralMappingByImages, which returns a general mapping (that is, a
possibly multi-valued mapping) that can be tested with IsGroupHomomorphism.

gap> hom2 := GroupGeneralMappingByImages(s4, s3,

> Generators0fGroup(s4), [(1,2,3),(2,3)]);;
gap> IsGroupHomomorphism(hom2);
false

But the possibility of testing for being a homomorphism is not the only reason why GAP offers group general
mappings. Another (more important?) reason is that their existence allows “reversal of arrows” in a homomorphism
such as our original hom. By this we mean the GroupHomomorphismByImages with left and right sides exchanged,
in which case it is of course merely a GroupGeneralMappingByImages.

gap> rev := GroupGeneralMappingByImages(s3, s4,
> [(1,2),(2,3)], GeneratorsO0fGroup(s4));;

Now we have av?3b <= b-%qfora € s4 and b € s3. Since every such b has 4 preimages under hom, it now
has 4 images under rev. Just as the 4 preimages form a coset of the kernel V4 < s4 of hom, they also form a coset
of the cokernel V, < s4 of rev. The cokernel itself is the set of all images of One(s3) (it is a normal subgroup
in the group of all images under rev). The operation ’One’ returns the identity element of a group, see 30.10.2 in
the reference manual. And this is why GAP wants to perform such a reversal of arrows: it calculates the kernel of a
homomorphism like hom as the cokernel of the reversed group general mapping (here rev).

gap> CoKernel(rev);
Group([(1,4)(2,3), (1,3)(2,4) 1)

The reason why rev is not a homomorphism is that it is not single-valued (because hom was not injective). But there
is another critical condition: If we reverse the arrows of a non-surjective homomorphism, we obtain a group general
mapping which is not defined everywhere, i.e., which is not total (although it will be single-valued if the original
homomorphism is injective). GAP requires that a group homomorphism be both single-valued and total, so you will
get fail if you say GroupHomomorphismByImages(G, H, gens, imgs) where gens does not generate G (even
if this would give a decent homomorphism on the subgroup generated by gens). For a full description, see Chapter 38
in the reference manual.

The last example of this section shows that the notion of kernel and cokernel naturally extends even to the case where
neither hom?2 nor its inverse general mapping (with arrows reversed) is a homomorphism.

gap> CoKernel(hom2); Kernel(hom2);

Group([(2,3), (1,3) 1

Group([(3,4), (2,3,4), (1,2,4) 1)

gap> IsGroupHomomorphism(InverseGeneralMapping(hom2));
false

Summary. In this section we have constructed homomorphisms by specifying images for a set of generators. We have
seen that by reversing the direction of the mapping, we get group general mappings, which need not be single-valued
(unless the mapping was injective) nor total (unless the mapping was surjective).

54 Chapter 5. Groups and Homomorphisms

5.5 Nice Monomorphisms

For some types of groups, the best method to calculate in an isomorphic group in a “better” representation (say, a
permutation group). We call an injective homomorphism, that will give such an isomorphic image a “nice monomor-
phism”.

For example in the case of a matrix group we can take the action on the underlying vector space (or a suitable subset)
to obtain such a monomorphism:

gap> grp:=GL(2,3);;

gap> dom:=GF(3)"2;;

gap> hom := ActionHomomorphism(grp, dom);; IsInjective(hom);
true

gap> p := Image(hom,grp);

Group([(4,7)(5,8)(6,9), (2,7,6)(3,4,8) 1)

To demonstrate the technique of nice monomorphisms, we compute the conjugacy classes of the permutation group
and lift them back into the matrix group with the monomorphism hom. Lifting back a conjugacy class means finding
the preimage of the representative and of the centralizer; the latter is called StabilizerOfExternalSet in GAP
(because conjugacy classes are represented as external sets, see Section 37.10 in the reference manual).

gap> pcls := ConjugacyClasses(p);; gcls := [1;;

gap> for pc 1in pcls do

> gc:=ConjugacyClass(grp,PreImagesRepresentative (hom,Representative(pc)));
> SetStabilizerOfExternalSet(gc,PreImage (hom,

> StabilizerOfExternalSet(pc)));
> Add(gcls, gc);

> od;

gap> List(gcls, Size);

(1, 8,12, 1,8,6,6, 6]

All the steps we have made above are automatically performed by GAP if you simply ask for ConjugacyClasses(
grp), provided that GAP already knows that grp is finite (e.g., because you asked IsFinite(grp) before). The
reason for this is that a finite matrix group like grp is “handled by a nice monomorphism”. For such groups, GAP
uses the command NiceMonomorphism to construct a monomorphism (such as the hom in the previous example) and
then proceeds as we have done above.

gap> grp:=GL(2,3);;

gap> IsHandledByNiceMonomorphism(grp);

true

gap> hom := NiceMonomorphism(grp);

<action isomorphism>

gap> p :=Image (hom,grp);

Group([(4,7)(5,8)(6,9), (2,7,6)(3,4,8) 1)

gap> cc := ConjugacyClasses(grp);; ForAll(cc, x-> x in gcls);
true

gap> ForAll(gcls, x->x in cc); # cc and gcls might be ordered differently
true

Note that a nice monomorphism might be defined on a larger group than grp — so we have to use Image (hom, grp)
and not only Image (hom).

Nice monomorphisms are not only used for matrix groups, but also for other kinds of groups in which one cannot cal-
culate easily enough. As another example, let us show that the automorphism group of the quaternion group of order 8
is isomorphic to the symmetric group of degree 4 by examining the “nice object” associated with that automorphism
group.

Section 6. Further Information about Groups and Homomorphisms 55

gap> p:=Group((1,7,6,8)(2,5,3,4), (1,2,6,3)(4,8,5,7));;

gap> aut := AutomorphismGroup(p);; NiceMonomorphism(aut);;
gap> niceaut := NiceObject(aut);

Group([(1,2)(3,4), (3,4)(5,6), (1,5,2,6), (1,5,3)(2,6,4) 1)
gap> IsomorphismGroups(niceaut, SymmetricGroup(4));

[(1,2)(3,4), (3,4)(,6), (1,5,2,6), (1,5,3)(2,6,4) 1 ->

[(1,49(2,3), (1,3)(2,4), (1,4,2,3), (1,3,2) 1]

The range of a nice monomorphism is in most cases a permutation group, because nice monomorphisms are mostly
action homomorphisms. In some cases, like in our last example, the group is solvable and you might prefer a pc
group as nice object. You cannot change the nice monomorphism of the automorphism group (because it is the value
of the attribute NiceMonomorphism), but you can compose it with an isomorphism from the permutation group to
a pc group to obtain your personal nicer monomorphism. If you reconstruct the automorphism group, you can even
prescribe it this nicer monomorphism as its NiceMonomorphism, because a newly-constructed group will not yet have
a NiceMonomorphism set.

gap> nicer := NiceMonomorphism(aut) * IsomorphismPcGroup(niceaut);;
gap> aut2 := GroupByGenerators(Generators0fGroup(aut));;

gap> SetIsHandledByNiceMonomorphism(aut2, true);

gap> SetNiceMonomorphism(aut2, nicer);

gap> NiceObject(aut2); # a pc group

Group([f4, £3, f1xf272xf3xf4, £272*f3*f4])

The star * denotes composition of mappings from the left to the right, as we have seen in Section 5.2 above. Recon-
structing the automorphism group may of course result in the loss of other information GAP had already gathered,
besides the (not-so-)nice monomorphism.

Summary. In this section we have seen how calculations in groups can be carried out in isomorphic images in nicer
groups. We have seen that GAP pursues this technique automatically for certain classes of groups, e.g., for matrix
groups that are known to be finite.

5.6 Further Information about Groups and Homomorphisms

Groups and the functions for groups are treated in Chapter 37. There are several chapters dealing with groups in
specific representations, for example Chapter 41 on permutation groups, 43 on polycyclic (including finite solvable)
groups, 42 on matrix groups and 45 on finitely presented groups. Chapter 39 deals with group actions. Group homo-
morphisms are the subject of Chapter 38.

Vector Spaces
and Algebras

This chapter contains an introduction into vector spaces and algebras in GAP.

6.1 Vector Spaces

A vector space over the field F' is an additive group that is closed under scalar multiplication with elements in F. In
GAP, only those domains that are constructed as vector spaces are regarded as vector spaces . In particular, an additive
group that does not know about an acting domain of scalars is not regarded as a vector space in GAP.

Probably the most common F-vector spaces in GAP are so-called row spaces. They consist of row vectors, that is,
lists whose elements lie in F'. In the following example we compute the vector space spanned by the row vectors [1,
1, 1 Jand [1, 0, 2] over the rationals.

gap> F:= Rationals;;

gap> V:= VectorSpace(F, [[1, 1, 11, [1,0, 211);
<vector space over Rationals, with 2 generators>

gap> [2, 1, 31 in V;

true

The full row space F" is created by commands like:

gap> F:= GF(7);;

gap> V:= F~3; # The full row space over F of dimension 3.
(GF(7)"3)

gap> [1, 2, 3] * One(F) in V;

true

In the same way we can also create matrix spaces. Here the short notation field” [diml ,dim2] can be used:

gap>mi:= [[1,27, [3,4]11;;m2:=[C[0,11, [1,011;;
gap> V:= VectorSpace(Rationals, [ml, m2]);

<vector space over Rationals, with 2 generators>

gap> ml+m2 in V;

true

gap> W:= Rationals~[3,2];

(Rationals™[3, 2])

gap> [[1,11, 02,21, [3,31]11] in W;

true

A field is naturally a vector space over itself.

gap> IsVectorSpace(Rationals);
true

If @ is an algebraic extension of F, then & is also a vector space over F' (and indeed over any subfield of & that
contains F). This field F is stored in the attribute LeftActingDomain. In GAP, the default is to view fields as vector

Section 1. Vector Spaces 57

spaces over their prime fields. By the function AsVectorSpace, we can view fields as vector spaces over fields other
than the prime field.

gap> F:= GF(16);;

gap> LeftActingDomain(F);

GF(2)

gap> G:= AsVectorSpace(GF(4), F);
AsField(GF(272), GF(2°4))

gap> F = G;

true

gap> LeftActingDomain(G);
GF(272)

A vector space has three important attributes: its field of definition, its dimension and a basis. We already encountered
the function LeftActingDomain in the example above. It extracts the field of definition of a vector space. The
function Dimension provides the dimension of the space. Here is one more example.

gap> F:= GF(9);;

gap> m:= [[Z(3)70, 0%Z(3), 0%Z(3) 1, [0xZ(3), Z(3)70, Z(3)°0 1 1;;
gap> V:= VectorSpace(F, m);

<vector space over GF(372), with 2 generators>

gap> Dimension(V);

2

gap> W:= AsVectorSpace(GF(3), V);

<vector space over GF(3), with 4 generators>

gap> V = W;

true

gap> Dimension(W);

4

gap> LeftActingDomain(W);
GF(3)

One of the most important attributes is a basis. For a given basis B of V, every vector v in V can be expressed uniquely
as v = Y ,cp cpb, with coefficients ¢, € F.

In GAP, bases are special lists of vectors. They are used mainly for the computation of coefficients and linear combi-
nations.

Given a vector space V, a basis of V is obtained by simply applying the function Basis to V. The vectors that form
the basis are extracted from the basis by BasisVectors.

gap>ml:= [[1,21, [3,4]11;;m2:=[[1,1]1, [1,011;;

gap> V:= VectorSpace(Rationals, [ml, m2]);

<vector space over Rationals, with 2 generators>

gap> B:= Basis(V);

SemiEchelonBasis(<vector space over Rationals, with 2 generators>, ...)
gap> BasisVectors(Basis(V));
crct1,21, 038,411, 000,11, 0[02,4111

The coefficients of a vector relative to a given basis are found by the function Coefficients. Furthermore, linear
combinations of the basis vectors are constructed using LinearCombination.

58 Chapter 6. Vector Spaces and Algebras
gap> V:= VectorSpace(Rationals, [[1, 21, [3,411);

<vector space over Rationals, with 2 generators>

gap> B:= Basis(V);

SemiEchelonBasis(<vector space over Rationals, with 2 generators>, ...)
gap> BasisVectors(Basis(V));

[l1,271, 00,111

gap> Coefficients(B, [1, 0 1);

[1, -2]

gap> LinearCombination(B, [1, -2 1);

[1, 0]

In the above examples we have seen that GAP often chooses the basis it wants to work with. It is also possible to
construct bases with prescribed basis vectors by giving a list of these vectors as second argument to Basis.

gap> V:= VectorSpace(Rationals, [[1, 21, [3, 411);;

gap> B:=Basis(VvV, [[1,01, [0, 111);

SemiEchelonBasis(<vector space over Rationals, with 2 generators>,
(1,071, 00,111)

gap> Coefficients(B, [1, 2]);

[1, 2]

We can construct subspaces and quotient spaces of vector spaces. The natural projection map (constructed by Natu-
ralHomomorphismBySubspace), connects a vector space with its quotient space.

gap> V:= Rationals™4;

(Rationals™4)

gap> W:= Subspace(V, [[1, 2, 3,41, [0,9,8,711);
<vector space over Rationals, with 2 generators>

gap> VmodW:= V/W;

(Rationals~™2)

gap> h:= NaturalHomomorphismBySubspace(V, W);

<linear mapping by matrix, (Rationals”4) -> (Rationals®2)>
gap> Image(h, [1, 2, 3, 4]);

[0, 0]

gap> PreImagesRepresentative(h, [1, 0]);

[1, 0, 0, 01

6.2 Algebras

If a multiplication is defined for the elements of a vector space, and if the vector space is closed under this multiplica-
tion then it is called an algebra. For example, every field is an algebra:

gap> f:= GF(8); IsAlgebra(f);
GF(273)
true

One of the most important classes of algebras are sub-algebras of matrix algebras. On the set of all n x n matrices over a

field F it is possible to define a multiplication in many ways. The most frequent are the ordinary matrix multiplication
and the Lie multiplication.

Each matrix constructed as [rowl, row2, ...] is regarded by GAP as an ordinary matrix, its multiplication

is the ordinary associative matrix multiplication. The sum and product of two ordinary matrices are again ordinary
matrices.

The full matrix associative algebra can be created as follows:

Section 2. Algebras 59

gap> F:= GF(9);;
gap> A:= F~[3,3];
(GF(@3"2)"[3, 31)

An algebra can be constructed from generators using the function Algebra. It takes as arguments the field of co-
efficients and a list of generators. Of course the coefficient field and the generators must fit together; if we want to
construct an algebra of ordinary matrices, we may take the field generated by the entries of the generating matrices,
or a subfield or extension field.

gap>mi:= [[1, 1], [0,0]7;;m2:=[[0,01], [0, 1]17;;
gap> A:= Algebra(Rationals, [ml, m2]);
<algebra over Rationals, with 2 generators>

An interesting class of algebras for which many special algorithms are implemented is the class of Lie algebras. They
arise for example as algebras of matrices whose product is defined by the Lie bracket [A, B = A x B — B x A, where
denotes the ordinary matrix product.

Since the multiplication of objects in GAP is always assumed to be the operation * (resp. the infix operator *), and
since there is already the “ordinary” matrix product defined for ordinary matrices, as mentioned above, we must use
a different construction for matrices that occur as elements of Lie algebras. Such Lie matrices can be constructed by
LieObject from ordinary matrices, the sum and product of Lie matrices are again Lie matrices.

gap> m:= LieObject([[1, 11, [1, 111);
LieObject([[1, 11, [1, 11 1)

gap> m*m;

LieObject([[0, 01, [0, 01 1)

gap> IsOrdinaryMatrix(ml); IsOrdinaryMatrix(m);
true

false

gap> IsLieMatrix(ml); IsLieMatrix(m);

false

true

Given a field F and a list mats of Lie objects over F, we can construct the Lie algebra generated by mats using the
function Algebra. Alternatively, if we do not want to be bothered with the function LieObject, we can use the
function LieAlgebra that takes a field and a list of ordinary matrices, and constructs the Lie algebra generated by the
corresponding Lie matrices. Note that this means that the ordinary matrices used in the call of LieAlgebra are not
contained in the returned Lie algebra.

gap>ml:= [[0, 11, [0, 01 1;;

gap> m2:= [[0, 01, [1, 01 1;;

gap> L:= LieAlgebra(Rationals, [ml, m2]);
<Lie algebra over Rationals, with 2 generators>
gap> ml in L;

false

A second way of creating an algebra is by specifying a multiplication table. Let A be a finite dimensional algebra with
basis {xi,...,x,}, then for 1 < i j < n the product x;x; is a linear combination of basis elements, i.e., there are & in

ij
the ground field such that
n
k
X,:Xj = Z cijxk.
k=1

It is not difficult to show that the constants cg determine the multiplication completely. Therefore, the cfj are called
structure constants. In GAP we can create a finite dimensional algebra by specifying an array of structure constants.

60 Chapter 6. Vector Spaces and Algebras

In GAP such a table of structure constants is represented using lists. The obvious way to do this would be to construct
a “three-dimensional” list T such that T[i] [j] [k] equals cg But it often happens that many of these constants vanish.
Therefore a more complicated structure is used in order to be able to omit the zeros. A multiplication table of an n-
dimensional algebra is an n x n array T such that T[i] [j] describes the product of the i-th and the j-th basis element.
This product is encoded in the following way. The entry T[i] [j] is a list of two elements. The first of these is a list
of indices k such that cf‘] is nonzero. The second list contains the corresponding constants c{‘/ Suppose, for example,
that S is the table of an algebra with basis {xj,...,xs} and that S[3]1 [7] equals [[2, 4, 6 1, [1/2, 2, 2/3
1 1. Then in the algebra we have the relation

X3X7 = (1/2))@ + 2x4 + (2/3))6(,.

Furthermore, if S[6]1[1] = [[1, [1 1] then the product of the sixth and first basis elements is zero.

Finally two numbers are added to the table. The first number can be 1, -1, or 0. If it is 1, then the table is known to be
symmetric, i.e., cg- = cj", If this number is -1, then the table is known to be antisymmetric (this happens for instance
when the algebra is a Lie algebra). The remaining case, 0, occurs in all other cases. The second number that is added

is the zero element of the field over which the algebra is defined.

Empty structure constants tables are created by the function EmptySCTable, which takes a dimension d, a zero ele-
ment z, and optionally one of the strings "symmetric", "antisymmetric", and returns an empty structure constants
table T corresponding to a d-dimensional algebra over a field with zero element z. Structure constants can be entered
into the table T using the function SetEntrySCTable. It takes four arguments, namely 7', two indices i and j, and
a list of the form [cg»‘ Jky ,cf;? skz, .. .]. In this call to SetEntrySCTable, the product of the i-th and the j-th basis
vector in any algebra described by T is setto), cg’xkl. (Note that in the empty table, this product was zero.) If 7' knows
that it is (anti)symmetric, then at the same time also the product of the j-th and the i-th basis vector is set appropriately.

In the following example we temporarily increase the line length limit from its default value 80 to 82 in order to make
the long output expression fit into one line.

gap> SizeScreen([82, 1);;
gap> T:= EmptySCTable(2, 0, "symmetric");

cccc 31,111, cc31,c1r,ccc1, 11,1, 111,1,01
gap> SetEntrySCTable(T, 1, 2, [1/2,1,1/3,2]); T;

ccccfc 31,011, 0C1,27, [1/2,1/3]1 171,
ccft,213,01/2, /3131, CC 1,0 17113,1,0]1

gap> SizeScreen([80, 1);;

If we have defined a structure constants table, then we can construct the corresponding algebra by AlgebraByStruc-
tureConstants.

gap> A:= AlgebraByStructureConstants(Rationals, T);
<algebra of dimension 2 over Rationals>

If we know that a structure constants table defines a Lie algebra, then we can construct the corresponding Lie algebra
by LieAlgebraByStructureConstants; the algebra returned by this function knows that it is a Lie algebra, so
GAP need not check the Jacobi identity.

gap> T:= EmptySCTable(2, 0, "antisymmetric");;

gap> SetEntrySCTable(T, 1, 2, [2/3,1]);

gap> L:= LieAlgebraByStructureConstants(Rationals, T);
<Lie algebra of dimension 2 over Rationals>

In GAP an algebra is naturally a vector space. Hence all the functionality for vector spaces is also available for
algebras.

Section 2. Algebras 61

gap> F:= GF(2);;

gap> z:= Zero(F);; o:= 0One(F);;

gap> T:= EmptySCTable(3, z, "antisymmetric");;
gap> SetEntrySCTable(T, 1, 2, [o, 1, o, 31);
gap> SetEntrySCTable(T, 1, 3, [o, 11);
gap> SetEntrySCTable(T, 2, 3, [o, 31);
gap> A:= AlgebraByStructureConstants(F, T);
<algebra of dimension 3 over GF(2)>

gap> Dimension(A);

3

gap> LeftActingDomain(A);

GF(2)

gap> Basis(A);

CanonicalBasis(<algebra of dimension 3 over GF(2)>)

Subalgebras and ideals of an algebra can be constructed by specifying a set of generators for the subalgebra or ideal.
The quotient space of an algebra by an ideal is naturally an algebra itself.

In the following example we temporarily increase the line length limit from its default value 80 to 81 in order to make
the long output expression fit into one line.

gap> m:= [[1, 2,31, [0,1,61, [0,0,1711;;
gap> A:= Algebra(Ratiomals, [m]);;

gap> subA:= Subalgebra(A, [m-m~2]);

<algebra over Rationals, with 1 generators>

gap> Dimension(subA);

2

gap> SizeScreen([81, 1);;

gap> idA:= Ideal(A, [mm"3]);

<two-sided ideal in <algebra of dimension 3 over Rationals>, (1 generators)>
gap> SizeScreen([80, 1);;

gap> Dimension(idA);

2

gap> B:= A/idA;

<algebra of dimension 1 over Rationals>

The call B:= A/idA creates a new algebra that does not “know” about its connection with A. If we want to connect
an algebra with its factor via a homomorphism, then we first have to create the homomorphism (NaturalHomomor-
phismByIdeal). After this we create the factor algebra from the homomorphism by the function ImagesSource. In
the next example we divide an algebra A by its radical and lift the central idempotents of the factor to the original
algebra A.

gap> m1:=[[1,0,0],[0,2,0],[0,0,31];;

gap> m2:=[[0,1,0],[0,0,2],[0,0,01];;

gap> A:= Algebra(Rationals, [mi, m2 1);;
gap> Dimension(A);

6

gap> R:= RadicalOfAlgebra(A);

<algebra of dimension 3 over Rationals>

gap> h:= NaturalHomomorphismByIdeal(A, R);

<linear mapping by matrix, <algebra of dimension

6 over Rationals> -> <algebra of dimension 3 over Rationals>>

62 Chapter 6. Vector Spaces and Algebras

gap> AmodR:= ImagesSource(h);

<algebra of dimension 3 over Rationals>

gap> id:= CentralldempotentsOfAlgebra(AmodR);
[v.3, v.2+4(-3)*v.3, v.1+(-2)*v.2+(3)*v.3]
gap> PrelmagesRepresentative(h, id[1]);
rfo,o0,01, [0,0,01, [0, 0,111

gap> PrelmagesRepresentative(h, id[2]);
(cto,o0,01, 00,121,071, [0,0,01]1]

gap> PreImagesRepresentative(h, id[3]);
rf+ 0,01, [0,0,01,[0,0,01]1

Structure constants tables for the simple Lie algebras are present in GAP. They can be constructed using the function
SimpleLieAlgebra. The Lie algebras constructed by this function come with a root system attached.

gap> L:= SimpleLieAlgebra("G", 2, Rationals);

<Lie algebra of dimension 14 over Rationals>

gap> R:= RootSystem(L);

<root system of rank 2>

gap> PositiveRoots(R);

tft2,-131,0-8 21, [-1,1]1,[01,0],[3,-11]1,[0,11]
)
]

)

]

gap> CartanMatrix(R
[[2:_1]:[_3,2

Another example of algebras is provided by quaternion algebras. We define a quaternion algebra over an extension
field of the rationals, namely the field generated by v/5. (The number EB(5) is equal to 1/2(—1 4 /5). The field is
printed as NF(5,[1, 4 1).)

gap> b5:= EB(5);

E(5)+E(5) "4

gap> q:= QuaternionAlgebra(FieldByGenerators([b5]));
<algebra-with-one of dimension 4 over NF(5,[1, 4 1)>
gap> gens:= GeneratorsOfAlgebra(q);

Le, i, j, k1]

gap> e:= gens[1];; i:= gens[2];; j:= gens[3];; k:= gens[4];;
gap> IsAssociative(q);

true

gap> IsCommutative(q);

false

gap> i*j; j*i;

k

(-1)*k

gap> One(q);

e

If the coefficient field is a real subfield of the complex numbers then the quaternion algebra is in fact a division ring.

gap> IsDivisionRing(q);
true

gap> Inverse(e+i+j);
(1/3)*e+(-1/3) *i+(-1/3) *j

So GAP knows about this fact. As in any ring, we can look at groups of units. (The function StarCyc used below
computes the unique algebraic conjugate of an element in a quadratic subfield of a cyclotomic field.)

Section 2. Algebras 63

gap> c5:= StarCyc(b5);

E(5)"2+E(5)"3

gap> gl:= 1/2%(bb*e + i - cb*j);

(1/2*E(5)+1/2*E(5) ~4) *e+(1/2) *i+(-1/2*E(5) "2-1/2*E(5) ~3) *j

gap> Order(g1);

5

gap> g2:= 1/2*%(-cb*e + i + bbxk);

(-1/2*E(5) "2-1/2+E(5) "3) xe+(1/2) *i+(1/2+E(5) +1/2+E(5) "4) *k

gap> Order(g2);

10

gap> g:=Group(gi, g2);;

#I default ‘IsGeneratorsOfMagmaWithInverses’ method returns ‘true’ for

[(1/2%E(5)+1/2+E(5) ~4) *e+(1/2) *i+(-1/2+E(5) “2-1/2*%E(5) "3) *j,
(-1/2%E(5) "2-1/2*E(5) "3) *e+(1/2) *i+(1/2*E(5)+1/2*E(5) "4) *k]

gap> Size(g);

120

gap> IsPerfect(g);

true

Since there is only one perfect group of order 120, up to isomorphism, we see that the group g is isomorphic to SL,(5).
As usual, a permutation representation of the group can be constructed using a suitable action of the group.

gap> cos:= RightCosets(g, Subgroup(g, [g1 1));;

gap> Length(cos);

24

gap> hom:= ActionHomomorphism(g, cos, OnRight);;

gap> im:= Image(hom);

Group([(2,3,5,9,15) (4,7,12,8,14) (10,17,23,20,24) (11,19,22,16,13),
(1,2,4,8,3,6,11,20,17,19) (5,10,18,7,13,22,12,21,24,15) (9,16) (14,23) 1)

gap> Size(im);

120

To get a matrix representation of g or of the whole algebra q, we must specify a basis of the vector space on which the
algebra acts, and compute the linear action of elements w.r.t. this basis.

gap> bas:= CanonicalBasis(q);;
gap> BasisVectors(bas);
[e, i, j, k1]
gap> op:= OperationAlgebraHomomorphism(q, bas, OnRight);
<op. hom. AlgebraWithOne(NF(5,[1, 4 1),
[e, i, j, k]) -> matrices of dim. 4>
gap> ImagesRepresentative(op, e);
trt+¢ o0,0,01,00,1,0,01,[0,0,1,01, [0,0,0,11]
gap> ImagesRepresentative(op, i);
rtco,t,o0,01,0-1,0,0,01,[0,0,0,-11,[0,0,1,01]1
gap> ImagesRepresentative(op, gl);
[[1/2+«E(5)+1/2+E(5)"4, 1/2, -1/2*xE(5)"2-1/2%E(5)"3, 0],
[-1/2, 1/2%xE(5)+1/2%E(5)"4, 0, -1/2xE(5)"2-1/2*E(5)"3],
[1/2«E(5)~2+1/2%E(5)"3, 0, 1/2*E(5)+1/2*E(5)"4, -1/2 1],
[0, 1/2%xE(5)"2+1/2+E(5)"3, 1/2, 1/2xE(5)+1/2+E(5)"4]]

64 Chapter 6. Vector Spaces and Algebras

6.3 Further Information about Vector Spaces and Algebras

More information about vector spaces can be found in Chapter 59. Chapter 60 deals with the functionality for general
algebras. Furthermore, concerning special functions for Lie algebras, there is Chapter 61.

Domains

Domain is GAP’s name for structured sets. We already saw examples of domains in Chapters 5 and 6: the groups
s8 and a8 in Section 5.1 are domains, likewise the field £ and the vector space v in Section 6.1 are domains. They
were constructed by functions such as Group and GF, and they could be passed as arguments to other functions such
as DerivedSubgroup and Dimension.

7.1 Domains as Sets

First of all, a domain D is a set. If D is finite then a list with the elements of this set can be computed with the functions
AsList and AsSortedList. For infinite D, Enumerator and EnumeratorSorted may work, but it is also possible
that one gets an error message.

Domains can be used as arguments of set functions such as Intersection and Union. GAP tries to return a domain
in these cases, moreover it tries to return a domain with as much structure as possible. For example, the intersection
of two groups is (either empty or) again a group, and GAP will try to return it as a group. For Union, the situation is
different because the union of two groups is in general not a group.

gap> g:= Group((1,2), (3,4));;
gap> h:= Group((3,4), (5,6));;
gap> Intersection(g, h);
Group([(3,4) 1)

_»

Two domains are regarded as equal w.r.t. the operator
additional structure of the domains.

if and only if they are equal as sets, regardless of the

gap> mats:= [[[0%Z(2), Z(2)"0 1, [Z(2)70, 0xZ(2) 1 1,

> [[2270, 0%Z(2) 1, [0%z(2), 2(2)70 1 1 1;;
gap> Ring(mats) = VectorSpace(GF(2), mats);

true

Additionally, a domain is regarded as equal to the sorted list of its elements.

gap> g:= Group((1,2));;
gap> l:= AsSortedList(g);
[O, 1,2)]

gap> g = 1;

true

gap> IsGroup(1); IsList(g);
false

false

66 Chapter 7. Domains

7.2 Algebraic Structure

The additional structure of D is constituted by the facts that D is known to be closed under certain operations such as
addition or multiplication, and that these operations have additional properties. For example, if D is a group then it
is closed under multiplication (D x D — D, (g,h) — g *h), under taking inverses (D — D, g — g~-1) and under
taking the identity g~0 of each element g in D; additionally, the multiplication in D is associative.

The same set of elements can carry different algebraic structures. For example, a semigroup is defined as being closed
under an associative multiplication, so each group is also a semigroup. Likewise, a monoid is defined as a semigroup D
in which the identity g~0 is defined for every element g, so each group is a monoid, and each monoid is a semigroup.

Other examples of domains are vector spaces, which are defined as additive groups that are closed under (left) mul-
tiplication with elements in a certain domain of scalars. Also conjugacy classes in a group D are domains, they are
closed under the conjugation action of D.

7.3 Notions of Generation

We have seen that a domain is closed under certain operations. Usually a domain is constructed as the closure of some
elements under these operations. In this situation, we say that the elements generate the domain.

For example, a list of matrices of the same shape over a common field can be used to generate an additive group or
a vector space over a suitable field; if the matrices are square then we can also use the matrices as generators of a
semigroup , a ring, or an algebra. We illustrate some of these possibilities:

gap> mats:= [[[0%Z(2), Z(2)°0 1,

> [Z(2)70, 0%xZ(2) 1 1,

> [[Z2(2)70, 0%Z(2) 1,

> [0xZ(2), Z(2)"0 1 1 1;;
gap> Size(AdditiveMagma(mats));

4

gap> Size(VectorSpace(GF(8), mats));
64

gap> Size(Algebra(GF(2), mats));

4

gap> Size(Group(mats));

2

Each combination of operations under which a domain could be closed gives a notion of generation. So each group
has group generators, and since it is a monoid, one can also ask for monoid generators of a group.

Note that one cannot simply ask for “the generators of a domain”, it is always necessary to specify what notion of
generation is meant. Access to the different generators is provided by functions with names of the form Genera-
tors0fSomething. For example, Generators0fGroup denotes group generators, Generators0fMonoid denotes
monoid generators, and so on. The result of Generators0fVectorSpace is of course to be understood relative to the
field of scalars of the vector space in question.

gap> GeneratorsOfVectorSpace(GF(4)"2);

[[2(2)70, 0%z2(2) 1, [0%Z2(2), z(2)70] 1

gap> v:= AsVectorSpace(GF(2), GF(4)"2);;

gap> GeneratorsOfVectorSpace(v);

[[Z(2)70, 0%Z2(2) 1, [0%Z(2), Z(2)°0 1, [Z(272), 0%Z(2) 1,
[0xZ(2), Z(2°2) 1 1]

Section 6. Changing the Structure 67

7.4 Domain Constructors

A group can be constructed from a list of group generators gens by Group (gens), likewise one can construct rings
and algebras with the functions Ring and Algebra.

Note that it is not always or completely checked that gens is in fact a valid list of group generators, for example
whether the elements of gens can be multiplied or whether they are invertible. This means that GAP trusts you, at
least to some extent, that the desired domain Something(gens) does exist.

7.5 Forming Closures of Domains

Besides constructing domains from generators, one can also form the closure of a given domain with an element or
another domain. There are different notions of closure, one has to specify one according to the desired result and
the structure of the given domain. The functions to compute closures have names such as ClosureSomething. For
example, if D is a group and one wants to construct the group generated by D and an element g then one can use
ClosureGroup(D, g).

7.6 Changing the Structure

The same set of elements can have different algebraic structures. For example, it may happen that a monoid M does
in fact contain the inverses of all of its elements, and thus M is equal to the group formed by the elements of M.

gap> m:= Monoid(mats);;
gap> m = Group(mats);
true

gap> IsGroup(m);

false

The last result in the above example may be surprising. But the monoid m is not regarded as a group in GAP, and
moreover there is no way to turn m into a group. Let us formulate this as a rule:

The set of operations under which the domain is closed is fixed in the construction of a domain, and cannot be
changed later.

(Contrary to this, a domain can acquire knowledge about properties such as whether the multiplication is associative
or commutative.)

If one needs a domain with a different structure than the given one, one can construct a new domain with the required
structure. The functions that do these constructions have names such as AsSomething, they return a domain that
has the same elements as the argument in question but the structure Something. In the above situation, one can use
AsGroup.

gap> g:= AsGroup(m);;
gap> m = g;

true

gap> IsGroup(g);

true

If it is impossible to construct the desired domain, the AsSomething functions return fail.

gap> AsVectorSpace(GF(4), GF(2)72);
fail

The functions AsList and AsSortedList mentioned above do not return domains, but they fit into the general pattern
in the sense that they forget all the structure of the argument, including the fact that it is a domain, and return a list
with the same elements as the argument has.

68 Chapter 7. Domains
7.7 Subdomains

It is possible to construct a domain as a subset of an existing domain. The respective functions have names such as
Subsomething, they return domains with the structure Something. (Note that the second s in Subsomething is not
capitalized.) For example, if one wants to deal with the subgroup of the domain D that is generated by the elements
in the list gens, one can use Subgroup(D, gens). It is not required that D is itself a group, only that the group
generated by gens must be a subset of D.

The superset of a domain S that was constructed by a Subsomething function can be accessed as Parent(S).

gap> g:= SymmetricGroup(5);;
gap> gens:= [(1,2), (1,2,3,4) 1;;

gap> s:= Subgroup(g, gens);;
gap> h:= Group(gens);;

gap> s = h;

true

gap> Parent(s) = g;

true

Many functions return subdomains of their arguments, for example the result of SylowSubgroup(G) is a group
with parent group G.

If you are sure that the domain Something(gens) is contained in the domain D then you can also call Subsome-
thingNC(D, gens) instead of Subsomething(D, gens). The NC stands for “no check”, and the functions
whose names end with NC omit the check of containment.

7.8 Further Information about Domains

More information about domains can be found in Chapter 12.4. Many other other chapters deal with specific types of
domain such as groups, vector spaces or algebras.

Operations
and Methods

8.1 Attributes

In the preceding chapters, we have seen how to obtain information about mathematical objects in GAP: We have to
pass the object as an argument to a function. For example, if G is a group one can call Size(G), and the function
will return a value, in our example an integer which is the size of G. Computing the size of a group generally requires
a substantial amount of work, therefore it seems desirable to store the size somewhere once it has been calculated. You
should imagine that GAP stores the size in some place associated with the object G when Size(G) is executed for
the first time, and if this function call is executed again later, the size is simply looked up and returned, without further
computation.

This means that the behavior of the function Size has to depend on whether the size for the argument G is already
known, and if not, that the size must be stored after it has been calculated. These two extra tasks are done by two
other functions that accompany Size(G), namely the tester HasSize(G) and the setter SetSize(G, size
). The tester returns true or false according to whether G has already stored its size, and the setter puts size into
a place from where G can directly look it up. The function Size itself is called the getter, and from the preceding
discussion we see that there must really be at least two methods for the getter: One method is used when the tester
returns false; it is the method which first does the real computation and then executes the setter with the computed
value. A second method is used when the tester returns true; it simply returns the stored value. This second method
is also called the system getter. GAP functions for which several methods can be available are called operations, so
Size is an example of an operation.

gap> G := Group((1,2,3,4,5,6,7,8), (1,2));;

gap> Size(G); time > O; # the time may of course vary on your machine
40320

true

gap> Size(G); time;

40320

0

The convenient thing for the user is that GAP automatically chooses the right method for the getter, i.e., it calls a
real-work getter at most once and the system getter in all subsequent occurrences. At most once because the value of
a function call like Size(G) can also be set for G before the getter is called at all; for example, one can call the
setter directly if one knows the size.

The size of a group is an example of a class of things which in GAP are called attributes. Every attribute in GAP is
represented by a triple of a getter, a setter and a tester. When a new attribute is declared, all three functions are created
together and the getter contains references to the other two. This is necessary because when the getter is called, it
must first consult the tester, and perhaps execute the setter in the end. Therefore the getter could be implemented as
follows:

70 Chapter 8. Operations and Methods

getter := function(obj)
local value;
if tester(obj) then
value := system_getter(obj);
else
value := real_work_getter(obj);
setter(obj, value);
fi;
return value;
end;

The only function which depends on the mathematical nature of the attribute is the real-work getter, and this is of
course what the programmer of an attribute has to install. In both cases, the getter returns the same value, which we
also call the value of the attribute (properly: the value of the attribute for the object obj). By the way: The names for
setter and tester of an attribute are always composed from the prefix Set resp. Has and the name of the getter.

As a (not typical) example, note that the GAP function Random, although it takes only one argument, is of course not
an attribute, because otherwise the first random element of a group would be stored by the setter and returned over
and over again by the system getter every time Random is called in the sequel.)

There is a general important rule about attributes: Once the value of an attribute for an object has been set, it
cannot be reset, i.e., it cannot be changed any more. This is achieved by having two methods not only for the getter
but also for the setter: If an object already has an attribute value stored, i.e., if the tester returns true, the setter simply
does nothing.

gap> G := SymmetricGroup(8);; Size(G);
40320

gap> SetSize(G, 0); Size(G);
40320

Summary. In this section we have introduced attributes as triples of getter, setter and tester and we have explained
how these three functions work together behind the scene to provide automatic storage and look-up of values that
have once been calculated. We have seen that there can be several methods for the same function among which GAP
automatically selects an appropriate one.

8.2 Properties and Filters

Certain attributes, like IsAbelian, are boolean-valued. Such attributes are known to GAP as properties, because
their values are stored in a slightly different way. A property also has a getter, a setter and a tester, but in this case, the
getter as well as the tester returns a boolean value. Therefore GAP stores both values in the same way, namely as bits
in a boolean list, thereby treating property getters and all testers (of attributes or properties) uniformly. These boolean-
valued functions are called filters. You can imagine a filter as a switch which is set either to true or to false. For
every GAP object there is a boolean list which has reserved a bit for every filter GAP knows about. Strictly speaking,
there is one bit for every simple filter, and these simple filters can be combined with and to form other filters (which
are then true if and only if all the corresponding bits are set to true). For example, the filter IsPermGroup and
IsSolvableGroup is made up from several simple filters.

Since they allow only two values, the bits which represent filters can be compared very quickly, and the scheme by
which GAP chooses the method, e.g., for a getter or a setter (as we have seen in the previous section), is mostly based
on the examination of filters, not on the examination of other attribute values. Details of this method selection are
described in chapter 2 of “Programming in GAP”.

We only present the following rule of thumb here: Each installed method for an attribute, say Size, has a “required
filter”, which is made up from certain simple filters which must yield true for the argument obj for this method to be
applicable. To execute a call of Size (obj), GAP selects among all applicable methods the one whose required filter
combines the most simple filters; the idea behind is that the more an algorithm requires of obj, the more efficient it is

Section 3. Immediate and True Methods 71

expected to be. For example, if 0bj is a permutation group that is not (known to be) solvable, a method with required
filter IsPermGroup and IsSolvableGroup is not applicable, whereas a method with required filter IsPermGroup
can be chosen. On the other hand, if obj was known to be solvable, the method with required filter IsPermGroup and
IsSolvableGroup would be preferred to the one with required filter IsPermGroup.

It may happen that a method is applicable for a given argument but cannot compute the desired value. In such cases,
the method will execute the statement TryNextMethod () ;, and GAP calls the next applicable method. For example,
[Sim90] describes an algorithm to compute the size of a solvable permutation group, which can be used also to decide
whether or not a permutation group is solvable. Suppose that the function size_solvable implements this algorithm,
and that is returns the order of the group if it is solvable and fail otherwise. Then we can install the following method
for Size with required filter IsPermGroup.

function(G)
local value;
value := size_solvable(G);
if value <> fail then return value;
else TryNextMethod(); f£i;
end;

This method can then be tried on every permutation group (whether known to be solvable or not), and it would include
a mandatory solvability test.

If no applicable method (or no next applicable method) is found, GAP stops with an error message of the form

Error, no method found! For debugging hints type 7Recovery from NoMethodFound
Error, no 1st choice method found for ‘Size’ on 1 arguments called from
lines deleted here

You would get an error message as above if you asked for Size(1). The message simply says that there is no
method installed for calculating the size of 1. Section 7.1 of the reference manual contains more information on how
to deal with these messages.

Summary. In this section we have introduced properties as special attributes, and filters as the general concept behind
property getters and attribute testers. The values of the filters of an object govern how the object is treated in the
selection of methods for operations.

8.3 Immediate and True Methods

In the example in Section 8.2, we have mentioned that the operation Size has a method for solvable permutation
groups that is so far superior to the method for general permutation groups that it seems worthwhile to try it even if
nothing is known about solvability of the group of which the Size is to be calculated. There are other examples where
certain methods are even “cheaper” to execute. For example, if the size of a group is known it is easy to check whether
it is odd, and if so, the Feit-Thompson theorem allows us to set IsSolvableGroup to true for this group. GAP uti-
lizes this celebrated theorem by having an immediate method for IsSolvableGroup with required filter HasSize
which checks parity of the size and either sets IsSolvableGroup or does nothing, i.e., calls TryNextMethod ().
These immediate methods are executed automatically for an object whenever the value of a filter changes, so solv-
ability of a group will automatically be detected when an odd size has been calculated for it (and therefore the value
of HasSize for that group has changed to true).

Some methods are even more immediate, because they do not require any calculation at all: They allow a filter to be set
if another filter is also set. In other words, they model a mathematical implication like IsGroup and IsCyclic =
IsSolvableGroup and such implications can be installed in GAP as true methods. To execute true methods, GAP
only needs to do some bookkeeping with its filters, therefore true methods are much faster than immediate methods.

How immediate and true methods are installed is described in 2.6 and 2.7 in “Programming in GAP”.

72 Chapter 8. Operations and Methods

8.4 Operations and Method Selection

The method selection is not only used to select methods for attribute getters but also for arbitrary operations, which
can have more than one argument. In this case, there is a required filter for each argument (which must yield true for
the corresponding arguments).

Additionally, a method with at least two arguments may require a certain relation between the arguments, which is
expressed in terms of the families of the arguments. For example, the methods for ConjugateGroup(grp, elm)
require that e/m lies in the family of elements from which grp is made, i.e., that the family of elm equals the “elements
family” of grp.

For permutation groups, the situation is quite easy: all permutations form one family, PermutationsFamily, and
each collection of permutations, for example each permutation group, each coset of a permutation group, or each
dense list of permutations, lies in CollectionsFamily(PermutationsFamily).

For other kinds of group elements, the situation can be different. Every call of FreeGroup constructs a new family
of free group elements. GAP refuses to compute One (FreeGroup(1)) * One(FreeGroup(1)) because
the two operands of the multiplication lie in different families and no method is installed for this case.

For further information on family relations, see 13.1 in the reference manual.

If you want to know which properties are already known for an object 0bj, or which properties are known to be
true, you can use the functions KnownProperties0f0bject (obj) resp. KnownTrueProperties0f0bject (obj
). This will print a list of names of properties. These names are also the identifiers of the property getters, by which
you can retrieve the value of the properties (and confirm that they are really true). Analogously, there is the function
KnownAttributes0f0bject which lists the names of the known attributes, leaving out the properties.

Since GAP lets you know what it already knows about an object, it is only natural that it also lets you know what
methods it considers applicable for a certain method, and in what order it will try them (in case TryNextMethod ()
occurs). ApplicableMethod(opr, [argy, argy, ... 1) returns the first applicable method for the call opr(
argy, argy, ...). More generally, ApplicableMethod(opr, [... 1, 0, nr) returns the nrth applicable
method (i.e., the one that would be chosen after nr — 1 TryNextMethods) and if nr = "all", the sorted list of all
applicable methods is returned. For details, see 2.3 in “Programming in GAP”.

If you want to see which methods are chosen for certain operations while GAP code is being executed, you can call
the function TraceMethods with a list of these operations as arguments.

gap> TraceMethods([Size]);

gap> g:= Group((1,2,3), (1,2));; Size(g);
#I Size: for a permutation group

#I Setter(Size): system setter

#I Size: system getter

#I Size: system getter

6

The system getter is called once to fetch the freshly computed value for returning to the user. The second call is
triggered by an immediate method. To find out by which, we can trace the immediate methods by saying TraceIm-
mediateMethods(true).

gap> TraceImmediateMethods(true);
gap> g:= Group((1,2,3), (1,2));;
#I immediate: Size

#I immediate: IsCyclic

#I immediate: IsCommutative

#I immediate: IsTrivial

gap> Size(g);

#I Size: for a permutation group
#I immediate: IsNonTrivial

Section 4. Operations and Method Selection 73

#I immediate: Size

#I immediate: IsNonTrivial

#I immediate: GeneralizedPcgs
#I Setter(Size): system setter
#I Size: system getter

#I immediate: IsPerfectGroup
#I Size: system getter

#I immediate: IsEmpty

6

gap> TraceImmediateMethods(false);
gap> UntraceMethods([Size]);

The last two lines switch off tracing again. We now see that the system getter was called by the immediate method for
IsPerfectGroup. Also the above-mentioned immediate method for IsSolvableGroup was not used because the
solvability of g was already found out during the size calculation (cf. the example in Section 8.2).

Summary. In this section and the last we have looked some more behind the scenes and seen that GAP automatically
executes immediate and true methods to deduce information about objects that is cheaply available. We have seen
how this can be supervised by tracing the methods.

1»

Migrating to GAP 4

This chapter is intended to give users who have experience with GAP 3 some information about what has changed in
GAP 4.

In particular, it informs about changed command line options (see 9.1), the new global variable fail (see 9.2), some
functions that have changed their behaviour (see 9.3) or their names (see 9.4), and some conventions used for variable
names (see 9.5).

Then the new concepts of GAP 4 are sketched, first that of mutability or immutability (see 3.3), with the explanation
of related changes in functions that copy objects (see 9.7), then the concepts of operations and method selection,
which are compared with the use of operations records in GAP 3 (see 9.8, 9.10, and 9.11).

More local changes affect the concepts of notions of generation (see 9.9), of parents (see 9.12), of homomorphisms
(see 9.13, 9.14, and 9.15), how elements in finitely presented groups are treated (see 9.16), how information about
progress of computations can be obtained (see 9.18), and how one gets information in a break loop (see 9.19).

While a “GAP 3 compatibility mode” is provided (see 9.20), its use will disable some of the new features of GAP 4.
Also it certainly can only try to provide partial compatibility.

For a detailed explanation of the new features and concepts of GAP 4, see the manual ‘“Programming in GAP”.

9.1 Changed Command Line Options

In GAP 4, the -1 option is used to specify the root directory (see 9.2 in the Reference Manual) of the GAP distri-
bution, which is the directory containing the 1ib and doc subdirectories. Note that in GAP 3 this option was used to
specify the path to the 1ib directory.

The -h option of GAP 3 has been removed, the path(s) for the documentation are deduced automatically in GAP 4.

The option -g is now used to print information only about full garbage collections. The new option -g -g generates
information about partial garbage collections too.

9.2 Fail

There is a new global variable
fail

in GAP 4. It is intended as a return value of a function for the case that it could not perform its task. For example,
Inverse returns fail if it is called with a singular matrix, and Position returns fail if the second argument is not
contained in the list given as first argument.

GAP 3 handled such situations by either signalling an error, for example if it was asked for the inverse of a singular
matrix, or by (mis)using false as return value, as in the example Position. Note that in the first example, in GAP 3
it was necessary to check the invertibility of a matrix before one could safely ask for its inverse, which meant that
roughly the same work was done twice.

1»

2»

3»

4»

5»

6>

Section 3. Changed Functionality 75

9.3 Changed Functionality

Some functions that were already available in GAP 3 behave differently in GAP 4. This section lists them.
Orbit(G,pnt)

The GAP 3 manual promised that pnt would be the first entry of the resulting orbit. This was wrong already there in
a few cases, therefore GAP 4 does not promise anything about the ordering of points in an orbit.

Order(g)

only takes the element g and computes its multiplicative order. Calling Order with two arguments is permitted only
in the GAP 3 compatibility mode, see 9.20. (Note that it does not make sense anymore to specify a group as first
argument w.r.t. which the order of the second argument shall be computed, see 9.16.)

Position(list, obj)
If obj is not contained in the list list then fail is returned in GAP 4 (see 9.2), whereas false was returned in GAP 3.
PermGroupOps .ElementProperty(G, prop[, K])

In GAP 3, this function took either two or three arguments, the optional argument K being a subgroup of G that
stabilizes prop in the sense that for any element g in G, either all elements or no element in the coset g * K have the
property prop.

The GAP 4 function ElementProperty, however, takes between two and four arguments, and the subgroup K known
from GAP 3 has to be entered as the fourth argument not the third. (The third argument in the GAP 4 function
denotes a subgroup U stabilizing prop in the sense that either all elements or no element in right cosets U * g have
the property prop.)

(This discrepancy was discovered only in March 2002, short before the release of GAP 4.3.)
Print(obj, ...)

Objects may appear on the screen in a different way, depending on whether they are printed by the read eval print
loop or by an explicit call of Print. The reason is that the read eval print loop calls the operation ViewObj and not
PrintObj, whereas Print calls Print0bj for each of its arguments. This permits the installation of methods for
printing objects in a short form in the read eval print loop while retaining Print to display the object completely. See
also Section 6.3 in the Reference Manual.

(Print0bj is installed as standard method ViewObj, so it is not really necessary to have a ViewObj method for an
object.)

PrintTo(filename, obj, ...)

In GAP 3, PrintTo could be (mis)used to “redirect” the text printed by a function (that is, not only the output of a
function) to a file by entering the function call as second argument. This was used mainly in order to avoid many calls
of AppendTo. In GAP 4, this feature has disappeared. One can use streams (see Chapter 10 in the Reference Manual)
instead in order to write files efficiently.

76

9.4 Changed Variable Names

Chapter 9. Migrating to GAP 4

Some functions have changed their name without changing the functionality. A — probably incomplete — list follows

GAP 3 GAP 4

AgGroup PcGroup # (also composita)
ApplyFunc CallFuncList

Backtrace Where

CharTable CharacterTable # (also composita)
Denominator DenominatorRat

DepthVector PositionNot

Elements AsSSortedList

IsBijection IsBijective

IsFunc IsFunction

IsMat IsMatrix

IsRec IsRecord

IsSet IsSSortedList

LengthWord Length

NOfCyc Conductor

Numerator NumeratorRat

NormedVector NormedRowVector

Operation Action # (also composita)
Order(G,g) Order(g)

OrderMat Order

OrderPerm Order

RandomInvertableMat RandomInvertibleMat

RecFields RecNames

X Indeterminate

See Section 9.20 for a way to make the old names available again.

9.5 Naming Conventions

The way functions are named has been unified in GAP 4. This might help to memorize or even guess names of library
functions.

If a variable name consists of several words then the first letter of each word is capitalized.

If the first part of the name of a function is a verb then the function may modify its argument(s) but does not return
anything, for example Append appends the list given as second argument to the list given as first argument. Otherwise
the function returns an object without changing the arguments, for example Concatenation returns the concatenation
of the lists given as arguments.

If the name of a function contains the word By then the return value is thought of as built in a certain way from
the parts given as arguments. For example, GroupByGenerators returns a group built from its group generators,
and creating a group as a factor group of a given group by a normal subgroup can be done by taking the image of
NaturalHomomorphismByNormalSubgroup (see also 9.14). Other examples of “By” functions are GroupHomomor-
phismByImages and UnivariateLaurentPolynomialByCoefficients.

If the name of a function contains the word Of then the return value is thought of as information deduced from the
arguments. Usually such functions are attributes (see 8.1 in this Tutorial and 13.5 in the Reference Manual). Examples
are Generators0fGroup, which returns a list of generators for the group entered as argument, or DiagonalOfMat.

For the setter and tester functions of an attribute artr (see 9.8 in this Tutorial and 13.5 in the Reference Manual) the
names Setattr resp. Hasattr are available.

Section 7. Copy 77

If the name of a function funl ends with NC then there is another function fun2 with the same name except that the
NC is missing. NC stands for “no check”. When fun2 is called then it checks whether its arguments are valid, and if so
then it calls funl. The functions SubgroupNC and Subgroup are a typical example.

The idea is that the possibly time consuming check of the arguments can be omitted if one is sure that they are
unnecessary. For example, if an algorithm produces generators of the derived subgroup of a group then it is guaranteed
that they lie in the original group; Subgroup would check this, and SubgroupNC omits the check.

Needless to say, all these rules are not followed slavishly, for example there is one operation Zero instead of two
operations ZeroOfElement and ZeroOfAdditiveGroup.

9.6 Immutable Objects

GAP 4 supports “immutable” objects. Such objects cannot be changed, attempting to do so issues an error. Typically
attribute values are immutable, and also the results of those binary arithmetic operations where both arguments are
immutable, see Section 3.8. For example, [1 .. 100] + [1 .. 100] is a mutable list and 2 * Immutable(
[1 .. 100]) is an immutable list, both are equal to the (mutable) list [2, 4 .. 200].

There is no way to make an immutable object mutable, one can only get a mutable copy by ShallowCopy. The other
way round, MakeImmutable makes a (mutable or immutable) object and all its subobjects immutable; one must be
very careful to use MakeImmutable only for those objects that are really newly created, for such objects the advantage
over Immutable is that no copy is made.

More about immutability can be found in Sections 3.3 in this tutorial and 12.6 in the Reference Manual.

9.7 Copy

The function Copy of GAP 3 is not supported in GAP 4. This function was used to create a copy cop of its argument
obj with the properties that cop and obj had no subobjects in common and that if two subobjects of obj were identical
then also the corresponding subobjects of cop were identical.

The possibility of having immutable objects (see 3.3) can and should be used to avoid unnecessary copying. Namely,
given an immutable object one needs to copy it only if one wants to get a modified object, and in such a situation
usually it is sufficient to use ShallowCopy, or at least one knows how deep one must copy in order to do the changes
one has in mind.

For example, suppose you have a matrix group, and you want to construct a list of matrices by modifying the group
generators. This list of generators is immutable, so you call ShallowCopy to get a mutable list that contains the same
matrices. If you only want to exchange some of them, or to append some other matrices, this shallow copy is already
what you need. So suppose that you are interested in a list of matrices where some rows are also changed. For that,
you call ShallowCopy for the matrices in question, and you get matrices whose rows can be changed. If you want to
change single entries in some rows, ShallowCopy must be called to get mutable copies of these rows. Note that in all
these situations there is no danger to change, i.e., to destroy the original generators of the matrix group.

If one needs the facility of the Copy function of GAP 3 to get a copy with the same structure then one can use the
new GAP 4 function StructuralCopy. It returns a structural copy that has no mutable subobject in common with
its argument. So if StructuralCopy is called with an immutable object then this object itself is returned, and if
StructuralCopy is called with a mutable list of immutable objects then a shallow copy of this list is returned.

Note that ShallowCopy now is an operation. So if you create your own type of (copyable) objects then you must
define what a shallow copy of these objects is, and install an appropriate method.

78 Chapter 9. Migrating to GAP 4

9.8 Attributes vs. Record Components

In GAP 3, many complex objects were represented via records, for example all domains. Information about these ob-
jects was stored in components of these records. For the user, this was usually not relevant, since there were functions
for computing information about the objects in question. For example, if one was interested in the size of a group then
one could call Size.

But since it was guaranteed that the size of a domain D was stored as value of the component size, it was allowed to
access D . size if this component was bound, and a check for this was possible via IsBound(D.size).

In GAP 4, only the access via functions is admissible. One reason is the following basic rule.

From the information that a given GAP 4 object is for example a domain, one cannot conclude that this object
has a certain representation.

For attributes like Size, GAP 4 provides two related functions, the setter and the tester of the attribute, which can
be used to set an attribute value and to check whether the value of an attribute is already stored for an object (see
also 13.5 in the Reference Manual). For example, if D is a domain in GAP 4 then HasSize(D) is true if the size
of D is already stored, and false otherwise. In the latter case, if you know that the size of D is size then you may
store it by SetSize(D, size).

Besides the flexibility in the internal representation of objects, storing information only via function calls has also the
advantage that GAP 4 is able to draw conclusions automatically. For example, as soon as it is stored that a group is
nilpotent, it is also stored that it is solvable, see Chapters 13 in the Reference Manual and 2 in “Programming in GAP”
for the details.

As a consequence, you cannot put your favourite information into a domain D by assigning it to a new component
like D.myPrivateInfo. Instead you can introduce a new attribute and then use its setter, see 13.5 in the Reference
Manual.

9.9 Different Notions of Generation

As in GAP 3, a domain in GAP 4 is a structured set.

The same set can have different structures, for example a field can be regarded as a ring or as an algebra or vector
space over a subfield.

In GAP 3, however, an object representing a ring did not represent a field, and an object representing a field did not
represent a ring. One reason for this was that the record component generators was used to denote the appropriate
generators of the domain. For a ring R, the component R. generators was a list of ring generators, and for a field F,
F.generators was a list of field generators.

GAP 4 cleans this up, see 7.3. It supports many different notions of generation, for example one can ask for magma
generators of a group or for generators of a field as an additive group. A subtle but important distinction is that between
generators of an algebra and of an algebra-with-one.

So the attributes Generators0fGroup, Generators0fMagma, Generators0fRing, Generators0fField, Gener-
atorsOfVectorSpace, and so on, replace the access to the generators component.

9.10 Operations Records

Already in GAP 3 there were several functions that were applicable to many different kinds of objects, for example
Size could be applied to any domain, and the binary infix multiplication * could be used to multiply two matrices,
an integer with a row vector, or a permutation with a permutation group. This was implemented as follows. Functions
like Size and * tried to find out what situation was described by its arguments, and then it called a more specific
function to compute the desired information. These more specific functions, let us call them methods as they are also
called in GAP 4, were stored in so-called operations records of the arguments.

Section 12. Parents and Subgroups 79

For example, every domain in GAP 3 was represented as a record, and the operations record was stored in the record
component operations. If Size was called for the domain then the method to compute the size of the domain was
found as value of the Size component of the operations record.

This was fine for functions taking only one argument, and in principle it is possible that for those functions an object
stored an optimal method in its operations record. But in the case of more arguments this is not possible. In a mul-
tiplication of two objects in GAP 3, one had to choose between the methods stored in the operations records of the
arguments, and if for example the method stored for the left operand was called, this method had to handle all possible
right operands.

So operations records turned out to be not flexible enough. In GAP 4, operations records are not supported (see 9.20
for a possibility to use your GAP 3 code that utilizes operations records, at least to some extent). A detailed description
of the new mechanism to select methods can be found in Chapter 2 in “Programming in GAP”.

An important point is that the new mechanism allows GAP to take the relation between arguments into account. So
it is possible (and recommended) to install different methods for different relations between the arguments. Note that
such methods need not do the extensive argument checking that was necessary in GAP 3, because most of the checks
are done already by the method selection mechanism.

9.11 Operations vs. Dispatcher Functions

GAP 3 functions like Size, CommutatorSubgroup, or SylowSubgroup did mainly call an appropriate method
(see 9.10) after they had checked their arguments. Such functions were called dispatchers in GAP 3. In GAP 4,
many dispatchers have been replaced by operations, due to the fact that methods are no longer stored in operations
records (see 2 in “Programming in GAP” for the details).

Most dispatchers taking only one argument were treated in a special way in GAP 3, they had the additional task of
storing computed values and using these values in subsequent calls. For example, the dispatcher Size first checked
whether the size of the argument was already stored, and if so then this value was returned; otherwise a method was
called, the value returned by this method was stored in the argument, and then returned by Size.

In GAP 4, computed values of operations that take one argument (these operations are called attributes) are also
stored, only the mechanism to achieve this has changed, see 13.5 and 13.7 in the Reference Manual.

So the behaviour of Size is the same in GAP 3 and GAP 4. But note that in GAP 4, it is not possible to access
D.size, see 9.8. As described in 9.10, GAP 4 does not admit “bypassing the dispatcher” by calling for example
D.operations.Size. This was done in GAP 3 often for efficiency reasons, but the method selection mechanism of
GAP 4 is fast enough to make this unnecessary.

If you had written your own dispatchers and put your own methods into existing operations records then this code will
not work in GAP 4. See 3 and 2 in “Programming in GAP” for a description of how to define operations and to install
methods.

Finally, some functions in GAP 3 were hidden in operations records, e.g., PermGroupOps .MovedPoints. These
functions became proper operations in GAP 4.

9.12 Parents and Subgroups

In GAP 3 there was a strict distinction between parent groups and subgroups. The use of the name “parent” (instead
of “supergroup”) was chosen to indicate that the parent of an object was more than just useful information. In fact the
main reason for the introduction of parents was to provide a common roof for example for all groups of polycyclic
words that belonged to the same PC-presentation, or for all subgroups of a finitely presented group (see 9.16). A
subgroup was never a parent group, and it was possible to create subgroups only of parent groups.

In GAP 4 this common roof is provided already by the concept of families, see 13.1 in the Reference Manual. Thus
it is no longer compulsory to use parent groups at all. On the other hand, parents may be used in GAP 4 to provide
information about an object, for example the normalizer of a group in its parent group may be stored as an attribute
value. Note that there is no restriction on the supergroup that is set to be the parent, it is possible to create a subgroup

80 Chapter 9. Migrating to GAP 4

of any group, this group then being the parent of the new subgroup. This permits for example chains of subgroups
with respective parents, of arbitrary length.

As a consequence, the Parent command cannot be used in GAP 4 to test whether the two arguments of Commuta-
torSubgroup fit together, this is now a question that concerns the relation between the families of the groups. So the
2-argument version of Parent and the now meaningless function IsParent have been abolished.

9.13 Homomorphisms vs. General Mappings

In GAP 3 there had been a confusion between group homomorphisms and general mappings, as GroupHomomor-
phismByImages created only a general mapping that did not store whether it was a mapping. This caused expensive,
unwanted, and unnecessary tests whether the mapping was in fact a group homomorphism. Moreover, the “official”
workaround to set some components of the mapping record was quite unwieldy.

In GAP 4, GroupHomomorphismByImages checks whether the desired mapping is indeed a group homomorphism;
if so then this property is stored in the returned mapping, otherwise fail is returned. If you want to avoid the checks
then you can use GroupHomomorphismByImagesNC. If you want to check whether a general mapping that respects
the group operations is really a group homomorphism, you can construct it via GroupGeneralMappingByImages
and then call IsGroupHomomorphism for it. (Note that IsGroupHomomorphism returns true if and only if both
IsGroupGeneralMapping and IsMapping do, so one does in fact check IsMapping in this case.)

There is no function IsHomomorphism in GAP 4, since there are several different operations with respect to which a
mapping can be a homomorphism.

9.14 Homomorphisms vs. Factor Structures

If F is a factor structure of G, with kernel N, complete information about the connection between F and G is provided
by the natural homomorphism.

In GAP 3, the “official way” to construct this natural homomorphism was to create first the factor structure F, and
then to call NaturalHomomorphism with the arguments G and F'. For that, the data necessary to compute the homo-
morphism was stored in F' when F was constructed.

In GAP 4, factor structures are not treated in a special way, in particular they do not store information about a
homomorphism. Instead, the more natural way is taken to construct the natural homomorphism from G and N by
NaturalHomomorphismByNormalSubgroup if N is a normal subgroup of the group G, or by NaturalHomomor-
phismByIdeal if N is an ideal in the ring G. The factor F can then be accessed as the image of this homomorphism,
and of course G is the preimage and N is the kernel.

Note that GAP 4 does not guarantee anything about the representation of the factor F, it may be a permutation group
or a polycyclically presented group or another kind of group. Also note that a natural homomorphism need not be
surjective.

A consequence of this change is that GAP 4 does not allow you to construct a natural homomorphism from the groups
Gand F.

The other common type of homomorphism in GAP 3, “operation homomorphisms”, have been replaced (just a name
change) by action homomorphisms, which are handled in a similar fashion. That is, an action homomorphism is
constructed from an acting group, an action domain, and a function describing the operation. The permutation group
arising by the induced action is then the image of this operation homomorphism.

The GAP 3 function Operation is still supported, under the name Action, but from the original group and the result
of Action it is not possible to construct the action homomorphism.

Section 17. Polynomials 81

9.15 Isomorphisms vs. Isomorphic Structures

In GAP 3, a different representation of a group could be obtained by calling AgGroup to get an isomorphic polycycli-
cally presented group, PermGroup to get an isomorphic permutation group, and so on. The returned objects stored an
isomorphism in the record component bijection.

For the same reason as in 9.14, GAP 4 puts emphasis on the isomorphism, and the isomorphic object in the desired
representation can be accessed as its image. So you can call IsomorphismPcGroup or IsomorphismPermGroup in
order to get an isomorphism to a polycyclically presented group or a permutation group, respectively, and then call
Image to get the isomorphic group.

Note that the image of an action homomorphism with trivial kernel is also an isomorphic permutation group, but an
action homomorphism need not be surjective, since it may be easier to define it into the full symmetric group.

Further note that in GAP 3, a usual application of isomorphisms to polycyclically presented groups was to utilize the
usually more effective algorithms for solvable groups. However, the new concept of polycyclic generating systems in
GAP 4 makes it possible to apply these algorithms to arbitrary solvable groups, independent of the representation.
For example, GAP 4 can handle polycyclic generating systems of solvable permutation groups. So in many cases, a
change of the representation for efficiency reasons may be not necessary any longer.

In general IsomorphismFpGroup will define a presentation on generators chosen by the algorithm. The corresponding
elements of the original group can be obtained by the command

gens:=List (Generators0fGroup(Image(isofp)),i->PreImagesRepresentative(isofp,i));

If a presentation in the given generators is needed, the command IsomorphismFpGroupByGenerators (G, gens)
will produce one.

9.16 Elements of Finitely Presented Groups

Strictly speaking, GAP 3 did not support elements of finitely presented groups. Instead, the “words in abstract gener-
ators” of the underlying free groups were (mis)used. This caused problems whenever calculations with elements were
involved, the most obvious ones being wrong results of element comparisons. Also functions that should in principle
work for any group were not applicable to finitely presented groups. In effect, a finitely presented group had to be
treated in a special way in GAP 3.

GAP 4 distinguishes free groups and their elements from finitely presented groups and their elements. Comparing
two elements of a finitely presented group will yield either the correct result or no result at all.

Note that in GAP 4, the arithmetic and comparison operations for group elements do not depend on a context provided
by a group that contains the elements. In particular, in GAP 4 it is not meaningful to call Order (G, g) for a group
G and an element g.

9.17 Polynomials

In GAP 3, polynomials were defined over a field. So a polynomial over GF (3) was different from a polynomial over
GF (9), even if the coefficients were exactly the same.

GAP 4 defines polynomials only over a characteristic. This makes it possible for example to multiply a polynomial
over GF (3) with a polynomial over GF (9) without the need to convert the former to the larger field.

However it has an effect on the result of DefaultRing for polynomials: In GAP 3 the default ring for a polynomial
was the polynomial ring of the field over which the polynomial was defined. In GAP 4 no field is associated, so (to
avoid having to define the algebraic closure as the only other sensible alternative) the default ring of a polynomial is
the DefaultRing of its coefficients.

This has an effect on Factors: If no ring is given, a polynomial is factorized over its DefaultRing and so Fac-
tors(poly) might return different results.

To be safe from this problem, if you are not working over prime fields, rather call Factors (pring,poly) with the
appropriate polynomial ring and change your code accordingly.

82 Chapter 9. Migrating to GAP 4

9.18 The Info Mechanism

Sometimes it is useful to get information about the progress of a calculation. Many GAP functions contain statements
to display such information under certain conditions.

In GAP 3, these statements were calls to functions such as InfoGroupl or InfoGroup2, and if the user assigned
Print to these variables then this had the effect to switch on the printing of information. InfoGroup2 was used for
more detailed information than InfoGroupl. One could switch off the printing again by assigning Ignore to the
variables, and Ignore was also the default value.

GAP 4 uses one function Info for the same purpose, which is a function that takes as first argument an info class
such as InfoGroup, as second argument an info level, and the print statements as remaining arguments. The level of
an info class class is set to level by calling SetInfoLevel(class, level). An Info statement is printed only if its
second argument is smaller than or equal to the current info level. For example,

gap> test:= function(obj)
> Info(InfoGroup, 2, "This is useful, isn’t it?")
> return obj;

> end;;
gap> test(1);
1

gap> SetInfolevel(InfoGroup, 2);
gap> test(1);

#I This is useful, isn’t it?

1

As in GAP 3, if an info statement is ignored then its arguments are not evaluated.

9.19 Debugging
If GAP 4 runs into an error or is interrupted, it enters a break loop. The command Where (number), which replaces
Backtrace of GAP 3, can be used to display number lines of information about the current function call stack.

As in GAP 3, access is only possible to the variables of the current level in the function stack, but in GAP 4 the
function DownEnv, with a positive or negative integer as argument, permits one to step down or up in the stack.

When interrupting, the first line printed by Where actually may be one level higher, as the following example shows

gap> OnBreak := function() Where(0); end;; # eliminate back-tracing on
gap> # entry to break loop

gap> test:= function(n)

> if n > 3 then Error("!'\n"); fi; test(n+l); end;;

gap> test(1);

Error, !

Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> Where();
called from
test(n + 1); called from
test(n + 1); called from
test(n + 1); called from
<function>(<arguments>) called from read-eval-loop
brk> n;
4
brk> DownEnv() ;

Section 20. Compatibility Mode 83

brk> n;
3
brk> Where();
called from
test(n + 1); called from
test(n + 1); called from
<function>(<arguments>) called from read-eval-loop
brk> DownEnv(2);
brk> n;
1
brk> Where();
called from
<function>(<arguments>) called from read-eval-loop
brk> DownEnv(-2);
brk> n;
3
brk> quit;
gap> OnBreak := Where;; # restore OnBreak to its default value

For purposes of debugging, it can be helpful sometimes, to see what information is stored within an object. In GAP 3
this was possible using RecFields because the objects in question were represented via records. For component
objects, GAP 4 permits the same by NamesOf Components (object), which will list all components present.

9.20 Compatibility Mode

For users who want to use GAP 3 code with as little changes as possible, a compatibility mode is provided by GAP 4.
This mode must be turned on explicitly by the user.

It should be noted that this compatibility mode has not been tested thoroughly.

The compatibility mode can be turned on by loading some of the following files with ReadLib. The different files
address different aspects of compatibility.

compat3a.g
makes some GAP 3 function names available that were changed in GAP 4, and provides code for some
GAP 3 features that were deliberately left out from the GAP 4 library. For example, almost all variable
names concerning character theory that are mentioned in the GAP 3 manual, such as CharTable and Sub-
groupFusions, are available after compat3a.g has been read; the only exceptions are names of operations
records.

compat3b.g
implements the availability of “components” of domains; besides components that have no meaning for the
rest of the GAP 4 library, such as D.myInfo, there are components associated to attributes; for example
D.size is redirected to the call of the attribute Size, IsBound(D.size) to the call of its tester, and
D .size:= valto the call of its setter. (An important special case is the component operations, see below.)

compat3c.g
permits you to implement your own elements represented as records, and using operations records to provide
a Print method and the basic arithmetic operations. When using operations records, it is probably a good
idea to use immutable operations records; for example, if the results of arithmetic operations are records
with operations records then this avoids to create shallow copies of the operations records in the call to
Immutable for the results.

The following features are accessible only via starting GAP with the command line option -0 and may damage some
features of GAP 4 permanently for the current session.

84 Chapter 9. Migrating to GAP 4

With this option, also the files listed above are read automatically.

compat3d.g
provides some GAP 3 functions like Domain, simulates the GAP 3 behaviour of IsString (to convert a
list to string representation if possible), and replaces fail by false; these changes destroy parts of the
functionality of GAP 4.

Some words concerning the simulation of operations records may be necessary.

The operations records of the GAP 3 library, such as DomainOps and GroupOps, are available only for access
to their components, whose values are GAP 4 operations; for example, the value of both DomainOps.Size and
GroupOps . Size is the operation Size. So it is not safely possible to delegate from a Size method in another opera-
tions record to DomainOps.Size. Also it is not possible to change these predefined operations records.

If one wants to install individual methods for a given object 0bj via the mechanism of operations records then one
can construct a new operations record with OperationsRecord, assign the desired methods to components of this
record, and then assign the operations record to obj.operations. Whenever an operation that is associated with a
component nam of the operations record is called with obj as first argument, the value of nam is chosen as the method.

In the case of the binary operations =, <, +, -, *, /, Comm, and LeftQuotient, this also happens if 0bj is the right-hand
argument. As in GAP 3, if both arguments of one of the above binary operations have operations records containing
a function for this operation, then the function in the operations record of the right-hand argument is chosen.

We give a small example how the compatibility mode works.

Suppose we want to deal with new objects that are derived from known field elements by distorting their multiplication.
Namely, let @’ and b’ be the new objects corresponding to the field elements a, b, and define o’ xb' = ab —a — b + 2.

In GAP 3, this problem was solved by representing each new object by a record that stored the corresponding “old”
object and an operations record, where the latter was a record containing the functions applicable to the new object.
After the library file compat3c.g has been read, we can use this construction of the operations record and of the new
objects. Note that operations records must be created with the function OperationsRecord (this was also the norm in
GAP 3), starting with an empty record would not work. For our intended application, we thus start with the following
two lines of code.

gap> ReadLib("compat3c.g");
gap> MyOps:= OperationsRecord("MyOps");;
HasMyOps := NewFilter("HasMyOps");

In order to make the translation from GAP 3 code to GAP 4 easier, GAP prints the definition of filters associated with
operations records and the method installations for operations corresponding to components of the operations records.
The output line printed by GAP after the call of OperationsRecord is one such case.

Now we add our multiplication function to the operations record, and again GAP 4 prints a translation to GAP 4 code.

gap> MyOps.* := function(a, b)

> return rec(x:= a.x * b.x - a.x - b.x + 2,
> operations := MyOps);
> end;;

If the following method installation matches the requirements
of the operation ‘PROD’ then ‘InstallMethod’ should be used.
It might be useful to replace the rank ‘SUM_FLAGS’ by ‘0’.
InstallOtherMethod(PROD,

"for object with ‘MyOps’ as first argument",

true,

[HasMyOps, IsObject], SUM_FLAGS,

MyOps.*);

Section 20. Compatibility Mode 85

For binary infix operators, a second method is installed
for the case that the object with ‘MyOps’ is the right operand;
since this case has higher priority in GAP 3, the method is
installed with higher rank ‘SUM_FLAGS + 1°.
InstallOtherMethod(PROD,
"for object with ‘MyOps’ as second argument",
true,
[IsObject, HasMyOps], SUM_FLAGS + 1,
MyOps.*);

Let us look how this installation works.

gap> a:= rec(x:= 3, operations:= MyOps);
rec(x := 3, operations := MyOps)

gap> b:= rec(x:= 5, operations:= MyOps);
rec(x := 5, operations := MyOps)

gap> a * b;

rec(x := 9, operations := MyOps)

(In more complicated cases, we might run into problems, but this was already the case in GAP 3. For example, suppose
we want to support the multiplication of two operands having different operations records; then it is not clear which
of the two multiplication functions is to be chosen, and in GAP 3, the only way out was to change the multiplication
functions, in order to make them aware of such situations.)

If we are now interested to translate the code to GAP 4 in the sense that no compatibility mode is needed, we can use
what GAP 4 has printed above. (The same example is dealt with in Chapter 6 of “Programming in GAP”.)

The objects will no longer be records with operations component. Instead of records we may use so-called compo-
nent objects with record-like access to components, and instead of the operations component, we give the objects a
type that has the filter HasMyOps set.

HasMyOps := NewFilter("HasMyOps");
MyType := NewType(NewFamily("MyFamily"),
HasMyOps and IsComponentObjectRep);

(More about families and representations in this context can be found in the chapter of “Programming in GAP”
mentioned above.)

The next step is to write a function that creates a new object. It may look as follows.

MyObject := function(val)
return Objectify(MyType, rec(x:= val));
end;

The multiplication function shall return an object with the filter HasMyOp, so we change it as follows.

gap> MyMult := function(a, b)
> return MyObject(x:= a!.x * bl.x - al.x - bl.x + 2);
> end;;

Note that the component access for these objects works via ! . instead of .; further note that no operations record
needs to appear here, the filter takes its role.

Finally, we install the multiplication for at least one argument with the new filter, as had been printed by GAP 4 in
the session shown above.

86 Chapter 9. Migrating to GAP 4

InstallOtherMethod(PROD,
"for object with ‘MyOps’ as first argument",
true,
[HasMyOps, IsObject], O,
MyMult);

InstallOtherMethod(PROD,
"for object with ‘MyOps’ as second argument",
true,
[IsObject, HasMyOps], 1,
MyMult);

And now the example works (again).

gap> a:= MyObject(3);
<object>

gap> b:= MyObject(5);
<object>

gap> a * b;

<object>

gap> last!.x

9

We may install a method to print our objects in a nice way; we could have done this for the operations record MyOps
in the compatibility mode, the printed output would look similar to the following.

InstallOtherMethod(PRINT_OBJ,
"for object with ‘MyOps’ as first argument",
true,
[HasMyOps], O,
function(obj) Print("MyObject(", obj!.x, ")"); end);

Now the example behaves as follows.

gap> a; b; a * b;
MyObject(3)
MyObject(5)
MyObject(9)

Maybe now we want to improve the installation. The multiplication function we want to use is apparently thought
only for the case that both operands have the filter HasMyOps (and a component x). So it is reasonable to replace the
two methods for the multiplication by one method for which both arguments are required to have the filter.

InstallOtherMethod(PROD,
"for two objects with ‘MyOps’",
true,
[HasMyOps, HasMyOps], O,
MyMult);

At first sight, the GAP 4 approach seems to be much more complicated. But the last example shows that in GAP 4,
each method can be installed more specifically for the appropriate situation. Moreover, it is for example possible to
install a method for the multiplication of an integer and a HasMyOps object; note that —contrary to the situation in
GAP 3- such a method is independent from already existing methods in the sense that these need not be changed
when new functionality is added.

Another example that uses this part of the compatibility mode can be found in the file tst/compat3.tst of the
GAP 4 distribution.

Bibliography

[Sim90] Charles C. Sims. Computing the order of a solvable permutation group. J. Symbolic Comput., 9:699-705,
1990.

Index

This index covers only this manual. A page number in italics refers to a whole section which is devoted to the
indexed subject. Keywords are sorted with case and spaces ignored, e.g., “PermutationCharacter” comes before

“permutation group”.

A

About Functions, 23
Acknowledgements, /2

Actions of Groups, 45
AgGroup, 76

Algebraic Structure, 66
Algebras, 58
ApplicableMethod, 72
ApplyFunc, 76

assignment, 21

AsSomething, 67

Attributes, 69

Attributes vs. Record Components, 78
Authorship and Maintenance, /2

B
Backtrace, 76, 82
break loops, 19

C

Changed Command Line Options, 74
Changed Functionality, 75
Changed Variable Names, 76
Changes from Earlier Versions, /3
Changing the Structure, 67
CharTable, 76
ClosureSomething, 67
cokernel, 53

comments, 18

Compatibility Mode, 83
constants, 20

Copy, 77

D

Debugging, 82

Denominator, 76

DepthVector, 76

Different Notions of Generation, 78
Domain Constructors, 67

Domains as Sets, 65

DownEnv, 82

E

Elements, 76

elements, 23

Elements of Finitely Presented Groups, 81
email addresses, 16

enumerator, 47

external set, 46

F

Fail, 74

fail instead of false, 74

family, 30

filters, 70

For and While Loops, 31/

Forming Closures of Domains, 67

Further Information about Domains, 68

Further Information about Functions, 4/

Further Information about GAP, 16

Further Information about Groups and Homomorphisms,
55

Further Information about Lists, 37

Further Information about Vector Spaces and Algebras,
64

Further Information introducing the System, 25

G

Generators0fSomething, 66

getter, of an attribute, 69

group general mapping, 53
single-valued, 53
total, 53

GroupHomomorphismByImages vs. GroupGen-
eralMappingByImages, 53

Group Homomorphisms, Group Homomorphisms, by
Images, 51

H
Help, 24

Index

homomorphism, action, 46

natural, 43

operation, 46
Homomorphisms vs. Factor Structures, 80
Homomorphisms vs. General Mappings, 80

|

Identical Lists, 28
identifier, 21

If Statements, 39
Immutability, 29
Immutable Objects, 77
IsBijection, 76
IsFunc, 76
IsIdenticalObj, 23
IsMat, 76
Isomorphisms vs. Isomorphic Structures, 81
IsRec, 76

IsSet, 76

K

kernel, 53
KnownAttributesOf0Object, 72
KnownProperties0OfObject, 72
KnownTrueProperties0fObject, 72

L

last, 22

last?2, 22

last3, 22

leaving GAP, 17

LengthWord, 76

line editing, 19

List Operations, 33

lists, dense, 27
strictly sorted, 30

lists, identical, 28
plain, 26

loading source code from a file, 18

Local Variables, 39

loops, for, 31
while, 31

maps-to operator, 24

matrices, 35

methods, 69
immediate, 71
selection, 70
true, 71

N

Naming Conventions, 76
Nice Monomorphisms, 54
NOfCyc, 76

Notions of Generation, 66
Numerator, 76

o)

objects, 21
objects, vs. elements, 23
vs. variables, 21
operations, 72
Operations Records, 78
Operations vs. Dispatcher Functions, 79
operators, 20
Orbit, 75
Order, 75

P

Parents and Subgroups, 79
PermGroupOps . ElementProperty, 75
Permutation groups, 42

Plain Lists, 26

Plain Records, 36

Polynomials, 81

Position, 75

Position vs. PositionCanonical, 47
Print, 75

PrintTo, 75

Properties and Filters, 70

Q

quit, 17

R

RandomInvertableMat, 76
Ranges, 31

Read, 18

read evaluate print loop, /8
reading source code from a file, 18
RecFields, 76

Recursion, 40

right transversal, 46

S

Sets, 30

setter, of an attribute, 69
ShallowCopy, 77
Something, 67

Starting and Leaving GAP, 17

89

90

starting GAP, 17

strings, 27

StructuralCopy, 77

Subdomains, 68

Subgroups, Subgroups, as Stabilizers, 48
Subsomething, 68

SubsomethingNC, 68

support, email address, 16

T
tester, of an attribute, 69
The GAP System, 10
The Info Mechanism, 82
TraceMethods, 72
TryNextMethod, 71

Index

vV

variables, 21

vectors, row, 35

Vectors and Matrices, 35
Vector Spaces, 56

w

web sites, for GAP, 16
Where, 82
whitespace, 18
Writing Functions, 38

X
X, 76

	
	Acknowledgement
	Contents
	Copyright Notice
	Preface
	The GAP System
	Authorship and Maintenance
	Acknowledgements
	Changes from Earlier Versions
	Further Information about GAP

	A First Session with GAP
	Starting and Leaving GAP
	Loading Source Code from a File
	The Read Evaluate Print Loop
	Constants and Operators
	Variables versus Objects
	Objects vs. Elements
	About Functions
	Help
	Further Information introducing the System

	Lists and Records
	Plain Lists
	Identical Lists
	Immutability
	Sets
	Ranges
	For and While Loops
	List Operations
	Vectors and Matrices
	Plain Records
	Further Information about Lists

	Functions
	Writing Functions
	If Statements
	Local Variables
	Recursion
	Further Information about Functions

	Groups and Homomorphisms
	Permutation groups
	Actions of Groups
	Subgroups!as Stabilizers
	Group Homomorphisms!by Images
	Nice Monomorphisms
	Further Information about Groups and Homomorphisms

	Vector Spaces and Algebras
	Vector Spaces
	Algebras
	Further Information about Vector Spaces and Algebras

	Domains
	Domains as Sets
	Algebraic Structure
	Notions of Generation
	Domain Constructors
	Forming Closures of Domains
	Changing the Structure
	Subdomains
	Further Information about Domains

	Operations and Methods
	Attributes
	Properties and Filters
	Immediate and True Methods
	Operations and Method Selection

	Migrating to GAP 4
	Changed Command Line Options
	Fail
	Changed Functionality
	Changed Variable Names
	Naming Conventions
	Immutable Objects
	Copy
	Attributes vs. Record Components
	Different Notions of Generation
	Operations Records
	Operations vs. Dispatcher Functions
	Parents and Subgroups
	Homomorphisms vs. General Mappings
	Homomorphisms vs. Factor Structures
	Isomorphisms vs. Isomorphic Structures
	Elements of Finitely Presented Groups
	Polynomials
	The Info Mechanism
	Debugging
	Compatibility Mode

	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	W
	X

