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1 Introduction

The modular isomorphism problem asks whether FG ∼= FH implies that G ∼= H for two p-groups G and H
and F the field with p elements. This problem is still open, despite various efforts towards proving the claim
or finding counterexamples to it. The claim has been proved, for example, for abelian p-groups [Des56],
p-groups of class 2 and exponent p [PS72], metacyclic p-groups [San96] and groups of order pn dividing 27

[Wur93, BKRW99] or p5 [SS96].

The modular isomorphism problem can be considered as a special case of a wider range of problems. In
general, one can ask under which conditions on a ring R and groups G and H does RG ∼= RH imply
G ∼= H . Important results on this type of problem are due to Dade [Dad71] who found that for every field
R there exist finite groups G 6∼= H with RG ∼= RH and to Hertweck [Her01] who determined finite groups
G 6∼= H with ZG ∼= ZH . In both cases, explicit examples for G and H are known, but none of them are
p-groups. On the other hand, Roggenkamp and Scott [RS87] proved that RG ∼= RH implies that G ∼= H if
R is the ring of p-adic integers and G and H are p-groups.

Computational approaches have been used to investigate the modular isomorphism problem. Based on an
algorithm by Roggenkamp and Scott [RS93], Wursthorn [Wur93] described an algorithm for checking the
modular isomorphism problem; that is, he described an algorithm for checking whether two modular group
algebras FG and FH are isomorphic. This algorithm has been implemented in C by Wursthorn and has
been used applied to the groups of order dividing 27 without finding a counterexample, see [BKRW99].

This package contains an implementation of the new algorithm described in [Eic08] for checking isomor-
phism of modular group algebras. Hence it provides a new method to investigate the modular isomorphism
problem. The algorithm underlying this method can also be used to check isomorphisms and to compute
the automorphism group of a finite dimensional, nilpotent, associative algebra over a finite field.

1.1 Associative algebras and nilpotency

Let A be an associative algebra of dimension d over a field F of prime order and let {b1, . . . , bd} be a basis
for A. We identify the element x1b1 + . . . + xdbd of A with the element (x1, . . . , xd ) of F d and thus obtain an
identification of A with the vector space F d . The multiplication of A can then be described by a structure
constants table: a 3-dimensional array with entries ai ,j ,k ∈ F satisfying that

bibj =
d∑

k=1

ai ,j ,kbk ·

A canonical form Can(A) for A is a structure constants table for A which is unique for the isomorphism
type of A; that is, two algebras A and B are isomorphic if and only if Can(A) = Can(B) holds. Further,
using the above identification of A with F d the automorpism group of A can be defined as

Aut(A) = {M ∈ GL(d ,F ) | (ab)M = (aM )(bM ) for all a, b ∈ A}·
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An associative algebra A is nilpotent if its power series terminates at the trivial ideal of A; that is, the
algebra A has the series

A > A2 > . . . > An > An+1 = {0}

where Aj is the ideal of A generated by all products of length i in A. Note that A is generated by dim(A/A2)
elements in this case and A does not contain a multiplicative identity.

1.2 Modular group algebras

Let G be a finite p-group and F the field with p elements. Then FG is the modular group algebra defined
by G ; it is an associative algebra, contains a multiplicative identity and has dimenion |G |.

Every modular group algebra FG contains a unique maximal ideal J (FG); this ideal has codimension 1 in
FG and a basis is given by {g − 1 | g ∈ G , g 6= 1}. Thus J (FG) coincides with the augementation ideal of
FG . It is well-known that J (FG) is nilpotent and a basis through its power series can be read off from the
Jennings series of G .

By construction, the ideal J (FG) is fully invariant under any isomorphism of FG . Hence we find that
Aut(FG) can be identified with Aut(J (FG)) and a canonical form Can(J (FG)) extends naturally to a
canonical form of FG . In particular, two group algebras FG and FH are isomorphism if and only if J (FG)
and J (FH ) are isomorphic or, equivalently, if and only if Can(J (FG)) = Can(J (FH )) holds.

The main function of this package determines the automorphism group of J (FG) and a canonical form
Can(J (FG)).

1.3 The modular isomorphism problem

The modular isomorphism problem asks whether there exist two non-isomorphic finite p-groups G and H
with FG ∼= FH . The methods of this package can be used to check this problem for groups of small order.
In fact, the implementation of this package has been used to check MIP for the groups of order dividing 28

and 36 (without finding a counterexample).
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This chapter contains all the main methods and functions of this package. Throughout, let F be a prime
field. First, we note that there is an info class

1 I InfoModIsom

which takes values 0 or 1. With value 1 it prints various informations about the computation of canonical
forms and automorphism groups.

2.1 Structure constants tables

All algebras in this package are described by structure constants tables. In the case of this package, these
are 3-dimensional arrays and thus elements of F n×n×n . The functions converting between such tables and
algebras are the following.

1 I AlgebraByTable(T) M

returns the algebra defined by the table T .

2 I TableByBasis(A, b) M

returns the table of A with respect to the basis b.

2.2 Associative algebras and nilpotency

Let A be an associative algebra over a prime field defined by a structure constants table in GAP.

1 I IsNilpotentAlgebra(A) P

returns true if the algebra A is nilpotent and false otherwise.

2 I PowerSeries(A) A

returns the power series of A.

3 I PowerBasis(A) A

returns a basis of A exhibiting the power series provided that A is nilpotent.

4 I TableByPowerBasis(A) A

returns a structure constants table for A with respect to the basis computed by PowerBasis.

5 I CanonicalForm(A) A

returns a canonical form for A. This is a table T which is unique for the isomorphism type of A.

6 I AutomorphismGroup(A) A

returns the automorphism group of A as a subgroup of GL(dim(A),F ).
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2.3 Modular group algebras

The modular group algebra FG of a finite p-group G is not nilpotent, as it contains a unit. However, the
augementation ideal A of FG is nilpotent and this is used in all computations with FG in this package.

1 I ModularGroupAlgebra(G) A

returns the modular group algebra FG for G .

2 I AugmentationIdeal(FG) A

returns the augmentation ideal of the group algebra FG .

3 I TableByPowerSeriesOfAug(FG) A

returns a structure constants table for the augmentation ideal of FG with respect to a power basis of this
augmentation ideal. Note that this method is usually significantly faster than TableByPowerSeries(I)
where I is the augmentation ideal of FG , as the power series of the augmentation ideal of a modular group
algebra can be determined from the Jennings series of G .

4 I CanoFormOfAugIdeal(FG) F

returns the canonical form of the augmentation ideal of FG using the TableByPowerSeriesOfAug(FG).

5 I AutomorphismGroupOfAugIdeal(FG) F

returns the automorphism group of the augmentation ideal of FG using the TableByPowerSeriesOfAug(FG).

6 I CanonicalForm(FG) A

returns a canonical form for FG . This is a table T which is unique for the isomorphism type of FG as
algebra over F . This function is based on CanoFormOfAugIdeal(FG).

7 I AutomorphismGroup(FG) A

returns the automorphism group of FG as a subgroup of the general linear group of dimension dim(FG)
over F . This function is based on AutomorphismGroupOfAugIdeal(FG).

2.4 The modular isomorphism problem for groups of small order

A major application of the methods in this package has been the checking of the modular isomorphism
problems for the groups of order dividing 28 and 36. This section contains the functions used for this
purpose.

1 I BinsByGT( p, n ) F

returns a partion of the list [1 · ·NumberSmallGroups(pn)] into sublists so that the modular group algebras
of two groups SmallGroup(pn , i) and SmallGroup(pn , j ) can not be isomorphic if i and j are in different
lists. The function BinsByGT uses various group theoretic invariants to split the groups of order pn in bins.

2 I CheckBin( p, n, k, bin ) F

For i ∈ bin let Gi denote SmallGroup(pn , i) and let Ai be the augementation ideal of FGi . This function
computes and compares the canonical forms of the algebras Ai/A

j
i for i ∈ bin and increasing j ∈ {1, . . . , k +

1}.
At each level j it splits the current bins into sub-bins according to the different canonical forms of Ai/A

j
i .

Bins of length 1 are then discarded.

The function returns if no further bins are available or if j = k + 1 is reached. In the later case the function
returns the remaining bins.
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2.5 Examples

We compute the automorphism group and a canonical form for the modular group algebra of the dihedral
group of order 8 with three different methods.

Method 1 and 2 just consider the augmentation ideal of the group algebra, with method 2 being faster for
this purpose, since it uses the Jennings series of the considered group to determine a table through the power
series of the augementation ideal.

Method 3 considers the full group algebra. The underlying functions are based on Method 2.

# take the dihedral group of order 8 and its modular group algebra
gap> G := SmallGroup(8, 3);
<pc group of size 8 with 3 generators>
gap> A := ModularGroupAlgebra(G);
<algebra-with-one over GF(2), with 3 generators>

# compute the automorphism group and a canonical form of its
# augmentation ideal -- Method 1
gap> I := AugmentationIdeal(A);
<two-sided ideal in <algebra-with-one of dimension 8 over GF(2)>,
(3 generators)>

gap>
gap> CanonicalForm(I);
[ <an immutable 7x7 matrix over GF2>, <an immutable 7x7 matrix over GF2>,
<an immutable 7x7 matrix over GF2>, <an immutable 7x7 matrix over GF2>,
<an immutable 7x7 matrix over GF2>, <an immutable 7x7 matrix over GF2>,
<an immutable 7x7 matrix over GF2> ]

gap> AutomorphismGroup(I);
<matrix group of size 512 with 9 generators>

# compute the automorphism group and a canonical form of its
# augmentation ideal -- Method 2
gap> CanoFormOfAugIdeal(A);
[ <a 7x7 matrix over GF2>, <a 7x7 matrix over GF2>, <a 7x7 matrix over GF2>,
<a 7x7 matrix over GF2>, <a 7x7 matrix over GF2>, <a 7x7 matrix over GF2>,
<a 7x7 matrix over GF2> ]

gap> AutomorphismGroupOfAugIdeal(A);
<matrix group of size 512 with 9 generators>

# compute the automorphism group and a canonical form of the
# full group algebra -- Method 3
gap> CanonicalForm(A);
[ <an immutable 8x8 matrix over GF2>, <an immutable 8x8 matrix over GF2>,
<an immutable 8x8 matrix over GF2>, <an immutable 8x8 matrix over GF2>,
<an immutable 8x8 matrix over GF2>, <an immutable 8x8 matrix over GF2>,
<an immutable 8x8 matrix over GF2>, <an immutable 8x8 matrix over GF2> ]

gap> AutomorphismGroup(A);
<matrix group of size 512 with 8 generators>

We show how to check the modular isomorphism problem for the groups of order 64. We first use BinsByGT
to determine bins and we then check the first of the resulting bins with CheckBin. The fact that CheckBin
ends with an empty list of bins shows that all groups are splitted.



8 Chapter 2. Methods and functions

gap> bins := BinsByGT(2,6);
refine by abelian invariants of group (Sehgal/Ward)
13 bins with 256 groups
refine by abelian invariants of center (Sehgal/Ward)
30 bins with 237 groups
refine by lower central series (Sandling)
32 bins with 127 groups
refine by jennings series (Passi+Sehgal/Ritter+Sehgal)
36 bins with 123 groups
refine by conjugacy classes (Roggenkamp/Wursthorn)
16 bins with 36 groups
refine by elem-ab subgroups (Quillen)
start bin 1 of 16
start bin 2 of 16
start bin 3 of 16
start bin 4 of 16
start bin 5 of 16
start bin 6 of 16
start bin 7 of 16
start bin 8 of 16
start bin 9 of 16
start bin 10 of 16
start bin 11 of 16
start bin 12 of 16
start bin 13 of 16
start bin 14 of 16
start bin 15 of 16
start bin 16 of 16

9 bins with 21 groups
[ [ 13, 14 ], [ 18, 19 ], [ 20, 22 ], [ 97, 101 ], [ 108, 110 ],
[ 155, 157, 159 ], [ 156, 158, 160 ], [ 173, 176 ], [ 179, 180, 181 ] ]

gap> CheckBin(2,6,bins[1]);
compute tables through power series
determined table for 1
determined table for 2

refine bin
weights yields bins [ [ 1, 2 ] ]
layer 1 yields bins [ [ 1, 2 ] ]
layer 2 yields bins [ [ 1, 2 ] ]
layer 3 yields bins [ [ 1, 2 ] ]
layer 4 yields bins [ ]
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