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1 Introduction

One of the oldest problems in algebra is the solution of a system of linear equations over
certain domains. The Gaussian elimination algorithm provides an effective solution over
fields. The Smith normal form algorithm yields a method over the integers. Here we
consider another variation of this theme.

Let A be a finite (additive) abelian group, let «; j € End(A) for 1 <i<nand 1<j<m
and let by, ..., by, € A. Then we want to determine the set S of all (z1,...,x,) € A" with

api(z)+...Fapi(zn) = b

atm(z1)+ . Fanm(Tn) = bpy

As a first step, we combine the endomorphisms «; ; of A to an homomorphism o : A" —
A™ defined by

oz, Tn) = (Z 1 (i), - .. ,Zai7m(:ci)).

Our considered problem then translates to determining all elements x = (z1,...,x,) of
A™ with a(xz) = b for b = (b1,...,by) € A™. In other words, we want to decide whether
b is an element of the image of « and, if so, then we want to compute a preimage k of b
under « and the kernel K of a. The solutions S are then given by the coset k + K.

In the following we consider two approaches towards this problem. The first uses that A
is a quotient of a free abelian group and applies the Smith normal form algorithm. This
approach is folklore; In the special case of a homogeneous system of equations a method
to solve this is available as "PcpNullspaceMatMod’ in the Polycyclic Package [2]. The
second approach uses that A is a direct sum of p-groups and applies Gaussian elimination
over finite fields iteratedly. This method extends the special case considered in [1, III.19].
The implementation of this second approach will also be made available in the Polycyclic
Package [2].

An alternative approach towards solving the considered problem is given by Hartung [3].



2 Preliminaries

Let Z* denote the free abelian group of rank k; that is, the direct sum of k copies of the
infinite cyclic group Z. More generally, for an abelian group K and [ € N we denote with
K' the direct sum of I copies of the abelian group K.

As A is finitely generated abelian, it follows that A = Z* /T for some k € N and for some
subgroup T of Z*. This implies that A" = Z"¥/T™ and A™ =2 Z™*/T™. Thus we can
represent the elements of A™ and A™ by integral vectors. In the following we usually
identify the elements of A™ and A™ with integral vectors to shorten notation. Further, we
use the representations of A” and A™ as quotients of free abelian groups to represent the
homomorphism « by an mk X nk integral matrix M.

In this setting, we aim to determine the set & C A" of all solutions x € A™ solving the

integral system of equations
Mx =bmod T".

3 The Smith normal form approach

Let 7 C Z™ denote the solutions of the integral system xM = bmod T™. Then the
natural homomorphism of abelian groups Z"* — Z"¥ /T™ = A™ induces a surjection 7 — S
with kernel T". Hence we can determine S by computing 7. The latter can be achieved
as follows.

Let B be an mk x mk integer matrix whose rows generate 7" and let E denote the
(mk x nk +mk) matrix obtained by concatenating the rows of M and the rows of B. The
Smith normal form algorithm allows to determine invertible integer matrices P and @ so
that PDQ = E holds for a diagonal matrix D. This yields that

yE=b < y(PDQ)=b < (yP)D=0bQ '=:V.

The solutions g’ of the system 3D = I’ can be read off readily from the diagonal matrix
D. The solutions 3 of the system yE = b can then be obtained via y = 3/P~'. The
following straightforward lemma exhibits how 7 can be determined from these solutions
y € an’-{—mk.

1 Lemma: Let y € Z"*T™F be the concatenation of the vectors x € Z™ and » € Z™F.
Then y satisfies yE = b if and only if x satisfies M = b mod T™.

4 The Gaussian elimination approach

The finite abelian group A is a direct sum of its Sylow subgroups: A = A, @© ... D A,.
The endomorphism « leaves every of the Sylow subgroups invariant. Hence we can solve
the considered system for each of the Sylow subgroups and then compose the solution
for A from solutions for the Sylow subgroups. We thus assume in the remainder of this
section that A is a finite abelian p-group.



We use induction on the exponent of A to solve the considered system. To shorten notation,
we write V = A" and W = A™. Further, we denote 4; = A/p’'A and, similarly, V; = V/p'V
and W; = W/p'W. Note that o maps p'V into p'W and thus a induces a homomorphism
«; from V; to W; via

o Vi = Wit v+ p'V = a(v) + p'W.

4.1 The initial step

In the first step of the induction we solve the considered system over A;. As A; is elemen-
tary abelian, this reduces to solving the system xM = b over the field with p elements.
Thus a single solution k1 and a basis By for the kernel K7 of M can be determined with
the Gaussian elimination algorithm.

4.2 The induction step

In the induction step we assume that we are given a single solution k; for the system over
A; and a generating set B; for the kernel K; of M over A;. We wish to determine a single
solution k;y; for the system over A;;; and a generatings set B;y; for the kernel K;y; of
M over A;+q1. We consider the natural epimorphism

Vi:%+1b—>1/i:v+pi+1V'—>U+in

with kernel p'V;, 1. Let L; denote the full preimage of K; under v;. A generating set C;
of L; can be determined readily from the given generating set B; and a basis of p‘V; 1.
Let C; = {c1,...,¢} and consider each ¢; as integral vector. Then ¢;M = w; € p'W.
Hence w; is an integral vector which is divisible by p’. Let E; denote the integral matrix
whose rows correspond to the vectors w;/p’. Further, let v = k;M —b. Then v € p'W and
thus v can be considered as an integral vector which is divisible by p’.

2 Lemma: Let eq,...,e; be a generating set for the kernel of E; over the field with p
elements and let u be a solution of the system xE; = v/p" over the field with p elements.
We consider each e; and u as integral vectors of length r and denote their coefficients with
eij and u;, respectively.

a) Let b; = 27}:1 eijc; for 1 <i <I. Then Bjt1 = {b1,...,b;} generates Ki;1.

b) Let ¢ = Z§:1 ujcj. Then kip1 = k; — ¢ solves xM = b over A;1;.

Proof: b) This follows directly as k; 1 = k;M —cM = (v+b)—(uC; M) = (v+b)—(up' E;) =
v+b—v=>bmod ptl.

a) First note that b;M = e;C;M = ejpiEZ- = 0 mod p't!. Hence every b; is contained in
Ki11. Vice versa, let k € K;11. Then k € L; and thus k = Z;Zl ajcj. Then

T
kM = (O ajc;)M
j=1
g
= ) aju;
7j=1
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(a17 R aT)piEi

= Omod pt!

if and only if (a1, ...,a,)E; = 0 mod p. Hence kM = 0 mod p'*! if and only if (ay,...,a,)
is an element of the kernel of F; over the field with p elements. °

4.3 Improvements in special cases

We usually assume that A is given as a direct sum of cyclic groups of increasing order. In
this case, bases for p'V; and p*W; can be read off readily.
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