Linear equations over finite abelian groups

Bettina Eick

October 28, 2011

1 Introduction

One of the oldest problems in algebra is the solution of a system of linear equations over certain domains. The Gaussian elimination algorithm provides an effective solution over fields. The Smith normal form algorithm yields a method over the integers. Here we consider another variation of this theme.
Let A be a finite (additive) abelian group, let $\alpha_{i, j} \in \operatorname{End}(A)$ for $1 \leq i \leq n$ and $1 \leq j \leq m$ and let $b_{1}, \ldots, b_{m} \in A$. Then we want to determine the set \mathcal{S} of all $\left(x_{1}, \ldots, x_{n}\right) \in A^{n}$ with

$$
\begin{array}{ccc}
\alpha_{1,1}\left(x_{1}\right)+\ldots+\alpha_{n, 1}\left(x_{n}\right) & = & b_{1} \\
\vdots & \vdots & \vdots \\
\alpha_{1, m}\left(x_{1}\right)+\ldots+\alpha_{n, m}\left(x_{n}\right) & = & b_{m}
\end{array}
$$

As a first step, we combine the endomorphisms $\alpha_{i, j}$ of A to an homomorphism $\alpha: A^{n} \rightarrow$ A^{m} defined by

$$
\alpha\left(x_{1}, \ldots, x_{n}\right)=\left(\sum_{i} \alpha_{i, 1}\left(x_{i}\right), \ldots, \sum_{i} \alpha_{i, m}\left(x_{i}\right)\right) .
$$

Our considered problem then translates to determining all elements $x=\left(x_{1}, \ldots, x_{n}\right)$ of A^{n} with $\alpha(x)=b$ for $b=\left(b_{1}, \ldots, b_{m}\right) \in A^{m}$. In other words, we want to decide whether b is an element of the image of α and, if so, then we want to compute a preimage k of b under α and the kernel K of α. The solutions \mathcal{S} are then given by the coset $k+K$.
In the following we consider two approaches towards this problem. The first uses that A is a quotient of a free abelian group and applies the Smith normal form algorithm. This approach is folklore; In the special case of a homogeneous system of equations a method to solve this is available as 'PcpNullspaceMatMod' in the Polycyclic Package [2]. The second approach uses that A is a direct sum of p-groups and applies Gaussian elimination over finite fields iteratedly. This method extends the special case considered in [1, III.19]. The implementation of this second approach will also be made available in the Polycyclic Package [2].
An alternative approach towards solving the considered problem is given by Hartung [3].

2 Preliminaries

Let \mathbb{Z}^{k} denote the free abelian group of rank k; that is, the direct sum of k copies of the infinite cyclic group \mathbb{Z}. More generally, for an abelian group K and $l \in \mathbb{N}$ we denote with K^{l} the direct sum of l copies of the abelian group K.
As A is finitely generated abelian, it follows that $A \cong \mathbb{Z}^{k} / T$ for some $k \in \mathbb{N}$ and for some subgroup T of \mathbb{Z}^{k}. This implies that $A^{n} \cong \mathbb{Z}^{n k} / T^{n}$ and $A^{m} \cong \mathbb{Z}^{m k} / T^{m}$. Thus we can represent the elements of A^{n} and A^{m} by integral vectors. In the following we usually identify the elements of A^{n} and A^{m} with integral vectors to shorten notation. Further, we use the representations of A^{n} and A^{m} as quotients of free abelian groups to represent the homomorphism α by an $m k \times n k$ integral matrix M.
In this setting, we aim to determine the set $\mathcal{S} \subseteq A^{n}$ of all solutions $x \in A^{n}$ solving the integral system of equations

$$
M x \equiv b \bmod T^{n} .
$$

3 The Smith normal form approach

Let $\mathcal{T} \subseteq \mathbb{Z}^{n k}$ denote the solutions of the integral system $x M \equiv b \bmod T^{m}$. Then the natural homomorphism of abelian groups $\mathbb{Z}^{n k} \rightarrow \mathbb{Z}^{n k} / T^{n} \cong A^{n}$ induces a surjection $\mathcal{T} \rightarrow \mathcal{S}$ with kernel T^{n}. Hence we can determine \mathcal{S} by computing \mathcal{T}. The latter can be achieved as follows.
Let B be an $m k \times m k$ integer matrix whose rows generate T^{m} and let E denote the ($m k \times n k+m k$) matrix obtained by concatenating the rows of M and the rows of B. The Smith normal form algorithm allows to determine invertible integer matrices P and Q so that $P D Q=E$ holds for a diagonal matrix D . This yields that

$$
y E=b \Leftrightarrow y(P D Q)=b \Leftrightarrow(y P) D=b Q^{-1}=: b^{\prime} .
$$

The solutions y^{\prime} of the system $y^{\prime} D=b^{\prime}$ can be read off readily from the diagonal matrix D. The solutions y of the system $y E=b$ can then be obtained via $y=y^{\prime} P^{-1}$. The following straightforward lemma exhibits how \mathcal{T} can be determined from these solutions $y \in \mathbb{Z}^{n k+m k}$.

1 Lemma: Let $y \in \mathbb{Z}^{n k+m k}$ be the concatenation of the vectors $x \in \mathbb{Z}^{n k}$ and $z \in \mathbb{Z}^{m k}$. Then y satisfies $y E=b$ if and only if x satisfies $x M=b \bmod T^{m}$.

4 The Gaussian elimination approach

The finite abelian group A is a direct sum of its Sylow subgroups: $A=A_{p_{1}} \oplus \ldots \oplus A_{p_{l}}$. The endomorphism α leaves every of the Sylow subgroups invariant. Hence we can solve the considered system for each of the Sylow subgroups and then compose the solution for A from solutions for the Sylow subgroups. We thus assume in the remainder of this section that A is a finite abelian p-group.

We use induction on the exponent of A to solve the considered system. To shorten notation, we write $V=A^{n}$ and $W=A^{m}$. Further, we denote $A_{i}=A / p^{i} A$ and, similarly, $V_{i}=V / p^{i} V$ and $W_{i}=W / p^{i} W$. Note that α maps $p^{i} V$ into $p^{i} W$ and thus α induces a homomorphism α_{i} from V_{i} to W_{i} via

$$
\alpha_{i}: V_{i} \rightarrow W_{i}: v+p^{i} V \mapsto \alpha(v)+p^{i} W .
$$

4.1 The initial step

In the first step of the induction we solve the considered system over A_{1}. As A_{1} is elementary abelian, this reduces to solving the system $x M=b$ over the field with p elements. Thus a single solution k_{1} and a basis B_{1} for the kernel K_{1} of M can be determined with the Gaussian elimination algorithm.

4.2 The induction step

In the induction step we assume that we are given a single solution k_{i} for the system over A_{i} and a generating set B_{i} for the kernel K_{i} of M over A_{i}. We wish to determine a single solution k_{i+1} for the system over A_{i+1} and a generatings set B_{i+1} for the kernel K_{i+1} of M over A_{i+1}. We consider the natural epimorphism

$$
\nu_{i}: V_{i+1} \mapsto V_{i}: v+p^{i+1} V \mapsto v+p^{i} V
$$

with kernel $p^{i} V_{i+1}$. Let L_{i} denote the full preimage of K_{i} under ν_{i}. A generating set C_{i} of L_{i} can be determined readily from the given generating set B_{i} and a basis of $p^{i} V_{i+1}$. Let $C_{i}=\left\{c_{1}, \ldots, c_{r}\right\}$ and consider each c_{i} as integral vector. Then $c_{i} M=w_{i} \in p^{i} W$. Hence w_{i} is an integral vector which is divisible by p^{i}. Let E_{i} denote the integral matrix whose rows correspond to the vectors w_{i} / p^{i}. Further, let $v=k_{i} M-b$. Then $v \in p^{i} W$ and thus v can be considered as an integral vector which is divisible by p^{i}.

2 Lemma: Let e_{1}, \ldots, e_{l} be a generating set for the kernel of E_{i} over the field with p elements and let u be a solution of the system $x E_{i}=v / p^{i}$ over the field with p elements. We consider each e_{i} and u as integral vectors of length r and denote their coefficients with $e_{i j}$ and u_{j}, respectively.
a) Let $b_{i}=\sum_{j=1}^{r} e_{i j} c_{j}$ for $1 \leq i \leq l$. Then $B_{i+1}=\left\{b_{1}, \ldots, b_{l}\right\}$ generates K_{i+1}.
b) Let $c=\sum_{j=1}^{r} u_{j} c_{j}$. Then $k_{i+1}=k_{i}-c$ solves $x M=b$ over A_{i+1}.

Proof: b) This follows directly as $k_{i+1}=k_{i} M-c M=(v+b)-\left(u C_{i} M\right)=(v+b)-\left(u p^{i} E_{i}\right) \equiv$ $v+b-v=b \bmod p^{i+1}$.
a) First note that $b_{j} M=e_{j} C_{i} M=e_{j} p^{i} E_{i} \equiv 0 \bmod p^{i+1}$. Hence every b_{j} is contained in K_{i+1}. Vice versa, let $k \in K_{i+1}$. Then $k \in L_{i}$ and thus $k=\sum_{j=1}^{r} a_{j} c_{j}$. Then

$$
\begin{aligned}
k M & =\left(\sum_{j=1}^{r} a_{j} c_{j}\right) M \\
& =\sum_{j=1}^{r} a_{j} w_{j}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(a_{1}, \ldots, a_{r}\right) p^{i} E_{i} \\
& =0 \bmod p^{i+1}
\end{aligned}
$$

if and only if $\left(a_{1}, \ldots, a_{r}\right) E_{i} \equiv 0 \bmod p$. Hence $k M=0 \bmod p^{i+1}$ if and only if $\left(a_{1}, \ldots, a_{r}\right)$ is an element of the kernel of E_{i} over the field with p elements.

4.3 Improvements in special cases

We usually assume that A is given as a direct sum of cyclic groups of increasing order. In this case, bases for $p^{i} V_{i}$ and $p^{i} W_{i}$ can be read off readily.

References

[1] B. Eick. Spezielle PAG Systeme im Computeralgebra System GAP. Diplomarbeit, RWTH Aachen, 1993.
[2] B. Eick and W. Nickel. Polycyclic - computing with polycyclic groups, 2005. A refereed GAP 4 package, see [4].
[3] R. Hartung. Solving linear equations over finitely generated abelian groups. arxiv.org e-Print archive, 2010.
[4] The GAP Group. GAP - Groups, Algorithms and Programming, Version 4.4. Available from http://www.gap-system.org, 2005.

