1 Introduction

One of the oldest problems in algebra is the solution of a system of linear equations over certain domains. The Gaussian elimination algorithm provides an effective solution over fields. The Smith normal form algorithm yields a method over the integers. Here we consider another variation of this theme.

Let A be a finite (additive) abelian group, let $\alpha_{i,j} \in \text{End}(A)$ for $1 \leq i \leq n$ and $1 \leq j \leq m$ and let $b_1, \ldots, b_m \in A$. Then we want to determine the set S of all $(x_1, \ldots, x_n) \in A^n$ with

$$\alpha_{1,1}(x_1) + \ldots + \alpha_{n,1}(x_n) = b_1$$
$$\vdots$$
$$\alpha_{1,m}(x_1) + \ldots + \alpha_{n,m}(x_n) = b_m$$

As a first step, we combine the endomorphisms $\alpha_{i,j}$ of A to an homomorphism $\alpha : A^n \rightarrow A^m$ defined by

$$\alpha(x_1, \ldots, x_n) = (\sum_i \alpha_{i,1}(x_i), \ldots, \sum_i \alpha_{i,m}(x_i)).$$

Our considered problem then translates to determining all elements $x = (x_1, \ldots, x_n)$ of A^n with $\alpha(x) = b$ for $b = (b_1, \ldots, b_m) \in A^m$. In other words, we want to decide whether b is an element of the image of α and, if so, then we want to compute a preimage k of b under α and the kernel K of α. The solutions S are then given by the coset $k + K$.

In the following we consider two approaches towards this problem. The first uses that A is a quotient of a free abelian group and applies the Smith normal form algorithm. This approach is folklore; In the special case of a homogeneous system of equations a method to solve this is available as ’PcpNullspaceMatMod’ in the Polycyclic Package [2]. The second approach uses that A is a direct sum of p-groups and applies Gaussian elimination over finite fields iteratedly. This method extends the special case considered in [1, III.19]. The implementation of this second approach will also be made available in the Polycyclic Package [2].

An alternative approach towards solving the considered problem is given by Hartung [3].
2 Preliminaries

Let \(\mathbb{Z}^k \) denote the free abelian group of rank \(k \); that is, the direct sum of \(k \) copies of the infinite cyclic group \(\mathbb{Z} \). More generally, for an abelian group \(K \) and \(l \in \mathbb{N} \) we denote with \(K^l \) the direct sum of \(l \) copies of the abelian group \(K \).

As \(A \) is finitely generated abelian, it follows that \(A \cong \mathbb{Z}^k / T \) for some \(k \in \mathbb{N} \) and for some subgroup \(T \) of \(\mathbb{Z}^k \). This implies that \(A^n \cong \mathbb{Z}^{nk} / T^n \) and \(A^m \cong \mathbb{Z}^{mk} / T^m \). Thus we can represent the elements of \(A^n \) and \(A^m \) by integral vectors. In the following we usually identify the elements of \(A^n \) and \(A^m \) with integral vectors to shorten notation.

In this setting, we aim to determine the set \(S \subseteq A^n \) of all solutions \(x \in A^n \) solving the integral system of equations

\[
M x \equiv b \mod T^n.
\]

3 The Smith normal form approach

Let \(T \subseteq \mathbb{Z}^{nk} \) denote the solutions of the integral system \(xM \equiv b \mod T^m \). Then the natural homomorphism of abelian groups \(\mathbb{Z}^{nk} \to \mathbb{Z}^{nk} / T^n \cong A^n \) induces a surjection \(T \to S \) with kernel \(T^n \). Hence we can determine \(S \) by computing \(T \). The latter can be achieved as follows.

Let \(B \) be an \(mk \times mk \) integer matrix whose rows generate \(T^m \) and let \(E \) denote the \((mk \times nk + mk)\) matrix obtained by concatenating the rows of \(M \) and the rows of \(B \). The Smith normal form algorithm allows to determine invertible integer matrices \(P \) and \(Q \) so that \(PDQ = E \) holds for a diagonal matrix \(D \). This yields that

\[
yE = b \Leftrightarrow y(PDQ) = b \Leftrightarrow (yP)D = bQ^{-1} =: b'.
\]

The solutions \(y' \) of the system \(y'D = b' \) can be read off readily from the diagonal matrix \(D \). The solutions \(y \) of the system \(yE = b \) can then be obtained via \(y = y'P^{-1} \). The following straightforward lemma exhibits how \(T \) can be determined from these solutions \(y \in \mathbb{Z}^{nk+mk} \).

1 Lemma: Let \(y \in \mathbb{Z}^{nk+mk} \) be the concatenation of the vectors \(x \in \mathbb{Z}^{nk} \) and \(z \in \mathbb{Z}^{mk} \). Then \(y \) satisfies \(yE = b \) if and only if \(x \) satisfies \(xM = b \mod T^m \).

4 The Gaussian elimination approach

The finite abelian group \(A \) is a direct sum of its Sylow subgroups: \(A = A_{p_1} \oplus \ldots \oplus A_{p_l} \). The endomorphism \(\alpha \) leaves every of the Sylow subgroups invariant. Hence we can solve the considered system for each of the Sylow subgroups and then compose the solution for \(A \) from solutions for the Sylow subgroups. We thus assume in the remainder of this section that \(A \) is a finite abelian \(p \)-group.
We use induction on the exponent of A to solve the considered system. To shorten notation, we write $V = A^n$ and $W = A^m$. Further, we denote $A_i = A/p^i A$ and, similarly, $V_i = V/p^i V$ and $W_i = W/p^i W$. Note that α maps $p^i V$ into $p^i W$ and thus α induces a homomorphism α_i from V_i to W_i via
\[
\alpha_i : V_i \rightarrow W_i : v + p^i V \mapsto \alpha(v) + p^i W.
\]

4.1 The initial step
In the first step of the induction we solve the considered system over A_1. As A_1 is elementary abelian, this reduces to solving the system $xM = b$ over the field with p elements. Thus a single solution k_1 and a basis B_1 for the kernel K_1 of M can be determined with the Gaussian elimination algorithm.

4.2 The induction step
In the induction step we assume that we are given a single solution k_i for the system over A_i and a generating set B_i for the kernel K_i of M over A_i. We wish to determine a single solution k_{i+1} for the system over A_{i+1} and a generating set B_{i+1} for the kernel K_{i+1} of M over A_{i+1}. We consider the natural epimorphism
\[
\nu_i : V_{i+1} \twoheadrightarrow V_i : v + p^{i+1} V \mapsto v + p^i V
\]
with kernel $p^i V_{i+1}$. Let L_i denote the full preimage of K_i under ν_i. A generating set C_i of L_i can be determined readily from the given generating set B_i and a basis of $p^i V_{i+1}$.

Let $C_i = \{c_1, \ldots, c_r\}$ and consider each c_j as integral vector. Then $c_j M = w_j \in p^i W$. Hence w_j is an integral vector which is divisible by p^i. Let E_i denote the integral matrix whose rows correspond to the vectors w_j/p^i. Further, let $v = k_i M - b$. Then $v \in p^i W$ and thus v can be considered as an integral vector which is divisible by p^i.

2 Lemma: Let e_1, \ldots, e_l be a generating set for the kernel of E_i over the field with p elements and let u be a solution of the system $xE_i = v/p^i$ over the field with p elements. We consider each e_i and u as integral vectors of length r and denote their coefficients with e_{ij} and u_j, respectively.

a) Let $b_i = \sum_{j=1}^r e_{ij} c_j$ for $1 \leq i \leq l$. Then $B_{i+1} = \{b_1, \ldots, b_l\}$ generates K_{i+1}.

b) Let $c = \sum_{j=1}^r u_j c_j$. Then $k_{i+1} = k_i - c$ solves $xM = b$ over A_{i+1}.

Proof: b) This follows directly as $k_{i+1} = k_i M - c M = (v + b) - (u c_i M) = (v + b) - (u p^i E_i) \equiv v + b - v = b \mod p^{i+1}$.

a) First note that $b_j M = e_j c_i M = e_j p^i E_i \equiv 0 \mod p^{i+1}$. Hence every b_j is contained in K_{i+1}. Vice versa, let $k \in K_{i+1}$. Then $k \in L_i$ and thus $k = \sum_{j=1}^r a_j c_j$. Then
\[
k M = \left(\sum_{j=1}^r a_j c_j \right) M
= \sum_{j=1}^r a_j w_j
\]
\[(a_1, \ldots, a_r)E_i \equiv 0 \mod p^{i+1}\]

if and only if \((a_1, \ldots, a_r)E_i \equiv 0 \mod p\). Hence \(kM \equiv 0 \mod p^{i+1}\) if and only if \((a_1, \ldots, a_r)\) is an element of the kernel of \(E_i\) over the field with \(p\) elements.

4.3 Improvements in special cases

We usually assume that \(A\) is given as a direct sum of cyclic groups of increasing order. In this case, bases for \(p^iV_i\) and \(p^iW_i\) can be read off readily.

References

