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1 Introduction

One of the oldest problems in algebra is the solution of a system of linear equations over
certain domains. The Gaussian elimination algorithm provides an effective solution over
fields. The Smith normal form algorithm yields a method over the integers. Here we
consider another variation of this theme.
Let A be a finite (additive) abelian group, let αi,j ∈ End(A) for 1 ≤ i ≤ n and 1 ≤ j ≤ m
and let b1, . . . , bm ∈ A. Then we want to determine the set S of all (x1, . . . , xn) ∈ An with

α1,1(x1) + . . . + αn,1(xn) = b1

...
...

...

α1,m(x1) + . . . + αn,m(xn) = bm

As a first step, we combine the endomorphisms αi,j of A to an homomorphism α : An →
Am defined by

α(x1, . . . , xn) = (
∑

i

αi,1(xi), . . . ,
∑

i

αi,m(xi)).

Our considered problem then translates to determining all elements x = (x1, . . . , xn) of
An with α(x) = b for b = (b1, . . . , bm) ∈ Am. In other words, we want to decide whether
b is an element of the image of α and, if so, then we want to compute a preimage k of b
under α and the kernel K of α. The solutions S are then given by the coset k + K.
In the following we consider two approaches towards this problem. The first uses that A
is a quotient of a free abelian group and applies the Smith normal form algorithm. This
approach is folklore; In the special case of a homogeneous system of equations a method
to solve this is available as ’PcpNullspaceMatMod’ in the Polycyclic Package [2]. The
second approach uses that A is a direct sum of p-groups and applies Gaussian elimination
over finite fields iteratedly. This method extends the special case considered in [1, III.19].
The implementation of this second approach will also be made available in the Polycyclic
Package [2].
An alternative approach towards solving the considered problem is given by Hartung [3].
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2 Preliminaries

Let Z
k denote the free abelian group of rank k; that is, the direct sum of k copies of the

infinite cyclic group Z. More generally, for an abelian group K and l ∈ N we denote with
K l the direct sum of l copies of the abelian group K.
As A is finitely generated abelian, it follows that A ∼= Z

k/T for some k ∈ N and for some
subgroup T of Z

k. This implies that An ∼= Z
nk/Tn and Am ∼= Z

mk/Tm. Thus we can
represent the elements of An and Am by integral vectors. In the following we usually
identify the elements of An and Am with integral vectors to shorten notation. Further, we
use the representations of An and Am as quotients of free abelian groups to represent the
homomorphism α by an mk × nk integral matrix M .
In this setting, we aim to determine the set S ⊆ An of all solutions x ∈ An solving the
integral system of equations

Mx ≡ b mod Tn.

3 The Smith normal form approach

Let T ⊆ Z
nk denote the solutions of the integral system xM ≡ b mod Tm. Then the

natural homomorphism of abelian groups Z
nk → Z

nk/Tn ∼= An induces a surjection T → S
with kernel Tn. Hence we can determine S by computing T . The latter can be achieved
as follows.
Let B be an mk × mk integer matrix whose rows generate Tm and let E denote the
(mk×nk +mk) matrix obtained by concatenating the rows of M and the rows of B. The
Smith normal form algorithm allows to determine invertible integer matrices P and Q so
that PDQ = E holds for a diagonal matrix D. This yields that

yE = b ⇔ y(PDQ) = b ⇔ (yP )D = bQ−1 =: b′.

The solutions y′ of the system y′D = b′ can be read off readily from the diagonal matrix
D. The solutions y of the system yE = b can then be obtained via y = y′P−1. The
following straightforward lemma exhibits how T can be determined from these solutions
y ∈ Z

nk+mk.

1 Lemma: Let y ∈ Z
nk+mk be the concatenation of the vectors x ∈ Z

nk and z ∈ Z
mk.

Then y satisfies yE = b if and only if x satisfies xM = b mod Tm.

4 The Gaussian elimination approach

The finite abelian group A is a direct sum of its Sylow subgroups: A = Ap1
⊕ . . . ⊕ Apl

.
The endomorphism α leaves every of the Sylow subgroups invariant. Hence we can solve
the considered system for each of the Sylow subgroups and then compose the solution
for A from solutions for the Sylow subgroups. We thus assume in the remainder of this
section that A is a finite abelian p-group.
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We use induction on the exponent of A to solve the considered system. To shorten notation,
we write V = An and W = Am. Further, we denote Ai = A/piA and, similarly, Vi = V/piV
and Wi = W/piW . Note that α maps piV into piW and thus α induces a homomorphism
αi from Vi to Wi via

αi : Vi → Wi : v + piV 7→ α(v) + piW.

4.1 The initial step

In the first step of the induction we solve the considered system over A1. As A1 is elemen-
tary abelian, this reduces to solving the system xM = b over the field with p elements.
Thus a single solution k1 and a basis B1 for the kernel K1 of M can be determined with
the Gaussian elimination algorithm.

4.2 The induction step

In the induction step we assume that we are given a single solution ki for the system over
Ai and a generating set Bi for the kernel Ki of M over Ai. We wish to determine a single
solution ki+1 for the system over Ai+1 and a generatings set Bi+1 for the kernel Ki+1 of
M over Ai+1. We consider the natural epimorphism

νi : Vi+1 7→ Vi : v + pi+1V 7→ v + piV

with kernel piVi+1. Let Li denote the full preimage of Ki under νi. A generating set Ci

of Li can be determined readily from the given generating set Bi and a basis of piVi+1.
Let Ci = {c1, . . . , cr} and consider each ci as integral vector. Then ciM = wi ∈ piW .
Hence wi is an integral vector which is divisible by pi. Let Ei denote the integral matrix
whose rows correspond to the vectors wi/pi. Further, let v = kiM − b. Then v ∈ piW and
thus v can be considered as an integral vector which is divisible by pi.

2 Lemma: Let e1, . . . , el be a generating set for the kernel of Ei over the field with p
elements and let u be a solution of the system xEi = v/pi over the field with p elements.

We consider each ei and u as integral vectors of length r and denote their coefficients with

eij and uj, respectively.

a) Let bi =
∑r

j=1
eijcj for 1 ≤ i ≤ l. Then Bi+1 = {b1, . . . , bl} generates Ki+1.

b) Let c =
∑r

j=1
ujcj. Then ki+1 = ki − c solves xM = b over Ai+1.

Proof: b) This follows directly as ki+1 = kiM−cM = (v+b)−(uCiM) = (v+b)−(upiEi) ≡
v + b − v = b mod pi+1.
a) First note that bjM = ejCiM = ejp

iEi ≡ 0 mod pi+1. Hence every bj is contained in
Ki+1. Vice versa, let k ∈ Ki+1. Then k ∈ Li and thus k =

∑r
j=1

ajcj . Then

kM = (
r∑

j=1

ajcj)M

=
r∑

j=1

ajwj
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= (a1, . . . , ar)p
iEi

= 0 mod pi+1

if and only if (a1, . . . , ar)Ei ≡ 0 mod p. Hence kM = 0 mod pi+1 if and only if (a1, . . . , ar)
is an element of the kernel of Ei over the field with p elements. •

4.3 Improvements in special cases

We usually assume that A is given as a direct sum of cyclic groups of increasing order. In
this case, bases for piVi and piWi can be read off readily.
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