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Abstract

For a prime p let G be a finite p-group and K a field of characteristic p. The
Modular Isomorphism Problem (MIP) asks whether the modular group algebra
KG determines the isomorphism type of G. We briefly survey the history of this
problem and report on our computer-aided verification of the Modular Isomorphism
Problem for the groups of order 512 and the field K with 2 elements.

1 Introduction

The Modular Isomorphism Problem is known for more than 50 years now. Despite
various attempts to prove it or to find a counterexample for it, it is still open and
remains one of the challenging problems in the theory of finite p-groups bordering
on the theory of associative algebras.

Solutions for the modular isomorphism problem are available for various special
types of p-groups. For example, MIP holds for

• abelian p-groups (Deskins [14]; an alternative proof was given by Coleman [12]);

• p-groups G of class 2 with G′ elementary abelian (Sandling [34], Theorem 6.25);

• metacyclic p-groups (Bagiński [1] for p > 3; completed by Sandling [36]);

• 2-groups of maximal class (Carlson [11]; alternative proof by Bagiński [3]);

• p-groups G of maximal class, p 6= 2, where |G| ≤ pp+1 and G contains an
abelian maximal subgroup (Caranti and Bagiński [2]);

• elementary abelian-by-cyclic groups (Bagiński [4]);

• p-groups with the center of index p2 (Drensky [16]); and

• p-groups having a cyclic subgroup of index p2 (Baginski and Konovalov, [5]).

This large number of rather special cases shows the significant interest in the
problem, but it also exhibits that the problem is difficult to attack.

There are results on the groups of various small orders and the field with p
elements available. For example, MIP holds for

• groups of order dividing p4 (Passman [29]);

• groups of order 25 (Makasikis [26] with remarks by Sandling [34]; alternative
proof by Michler, Newman and O’Brien [27]);

• groups of order p5 (Kovacs and Newman, due to Sandling’s remark in [35];
alternative proof by Salim and Sandling [32, 33]);
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• groups of order 26 (Wursthorn [41, 42] using computers; theoretical proof by
Hertweck and Soriano [21]);

• groups of order 27 (Wursthorn [9] using computers); and

• groups of orders 28 and 36 (Eick [17] using computers).

The results on the groups of order dividing 28 or 36 have been established using
computers. As the groups of order dividing 28 or 36 are classified, this mainly
requires an algorithm to check whether two modular group algebras are isomorphic.
The first method for this purpose is due to Wursthorn [42]. It has been implemented
in the C programming language. The implementation was used on the groups of
order dividing 27, but this seems to be its limit. Eick [17] has developed a new and
independent approach for such an isomorphism test. This is implemented in the
ModIsom package [19] of the computational algebra system GAP [20] and proved
to be practical for the groups of order 28 and 36.

We applied the implementation by Eick successfully to the 10494213 groups of
order 512. This required some improvements as well as a parallelization of the
implementation. We report on details of this large-scale computation below.

It is worth to mention that there is even stronger conjecture than MIP: the
Modular Isomorphism Problem for Normalized Unit Groups (UMIP) asks whether
a finite p-group G is determined by the normalized unit group of its modular group
algebra over the field of p elements. Only a few results are known in this direction.
For a long time, the positive solution of UMIP was known only for abelian p-groups.
Recently it was solved for 2-groups of maximal class in [6] and for p-groups with
the cyclic Frattini subgroup for p > 2 in [7]. In [23] UMIP was verified in GAP [20]
for all 2-groups of order at most 32 using the LAGUNA package [10].

2 Invariants

A first step for a computational check of MIP is the computation of invariants of
the considered groups which are known to be determined by the modular group
algebra. Hence groups with different such invariants have non-isomorphic modular
group algebras. The following lists some such invariants. For a group G we denote
with Ji(G) the i-th term of the Jennings series of G.

(a) The exponent of the group G ([25]; see also [36]).

(b) The isomorphism type of the center of the group G ([38, 40]).

(c) The isomorphism type of the factorgroup G/G′ ([40]; see also [29, 34]).

(d) The isomorphism type of the factorgroup G/Φ(G) ([15]).

(e) The isomorphism type of the factorgroup G/(γ2(G)pγ3(G)) ([35]). This is
also called Sandling factor.

(f) The minimal number of generators d(G′) of G′ (follows immediately from
Prop.III.1.15(ii) of [39]).

(g) The length of the Jennings series and the isomorphism types of the factors
Ji(G)/Ji+1(G), Ji(G)/Ji+2(G), and Ji(G)/J2i+1(G) ([28, 31]).

(h) The number of conjugacy classes of elements of the group G and the number
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of conjugacy classes of all pn-th powers of elements of the group G for all
n ∈ N ([41]).

(i) The number of conjugacy classes of maximal elementary abelian subgroups
of given rank ([30]). This is also called Quillen invariant.

(j) The so-called Roggenkamp parameter

R(G) =
t∑

i=1

logp|CG(gi)/Φ(CG(gi))|,

where {g1, . . . , gt} is a set of representatives of the conjugacy classes of the
group G (Roggenkamp, see [41]).

Additionally, the nilpotency class of a group G is determined provided if G has
exponent p, or class 2, or G′ is cyclic or G is a group of maximal class and contains
an abelian subgroup of index p (see [5]).

3 Isomorphism testing for group algebras

In this section we recall the algorithm by Eick [17] and exhibit some refinements
of it which have been necessary to deal with the groups of order 512.

Let F be the field with p elements and A a finite dimensional F-algebra. The
automorphism group Aut(A) is the set of all bijective linear maps α : A → A which
are compatible with the multiplication: α(ab) = α(a)α(b) holds for all a, b ∈ A.
The canonical form Can(A) is a structure constants table for A which describes
A up to isomorphism; that is, A ∼= B for two F-algebras A and B if and only if
Can(A) = Can(B) holds.

Given a finite p-group G, our aim is to determine Aut(FG) and Can(FG). This
facilitates an effective check of the modular isomorphism problem for the groups
of a given order: we determine the canonical forms Can(FG) for all groups G
considered and then determine isomorphisms by simply comparing the canonical
forms.

3.1 A reduction to nilpotent algebras

Let G be a finite p-group and F the field with p elements. Let I(G) denote the
Jacobson radical of the modular group algebra FG. As a first step, we recall the
well-known reduction of our given task to the same task for I(G).

Lemma 3.1

a) I(G) is a nilpotent subalgebra of FG. Thus there exists an l ∈ N with

I(G) > I(G)2 > . . . > I(G)l > I(G)l+1 = {0}.

b) I(G) coincides with the augmentation ideal of FG. Thus {g − 1 | g ∈ G, g 6= 1}
is a F-basis for I(G) and FG = I(G) ⊕ F.
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Lemma 3.1 (b) implies that we can readily extend Aut(I(G)) and Can(I(G)) to
Aut(FG) and Can(FG). Hence it is sufficient to compute Aut(I(G)) and Can(I(G))
only. The main advantage of this reduction is that I(G) is a nilpotent algebra by
Lemma 3.1 (a).

It is well-known that the Jennings series of the finite p-group G yields a basis for
I(G) which contains bases for all ideals of the power series of I(G). This facilitates
an efficient determination of the ideals of the power series of I(G).

3.2 An induction approach

Let I be a finite dimensional nilpotent associative F-algebra. We describe a method
to determine the automorphism groups and the canonical form for I. The basic
idea of this method is to use induction on the quotients of the power series I >
I2 > . . . > I l > I l+1 = {0} of I; that is, we successively determine Cj = Can(I/Ij)
and Aj = Aut(I/Ij) from Can(I/Ij−1) and Aut(I/Ij−1). Denote Ij = I/Ij and
let d = dim(I2).

The first step: In the initialisation step of the induction we consider the
algebra I2. This algebra satisfies ab = 0 for all a, b ∈ I2. Thus every structure
constants table for I2 is a zero-table. Hence C2 is the zero-table and A2 = GL(d, F)
holds.

The induction step: In the induction step, we have determined Cj−1 and
generators and the order of Aj−1. Our aim is to compute Cj and generators and
the order of Aj .

Let F be the free nilpotent associative algebra on d generators over F. Then Ij−1

is a quotient of F , say Ij−1
∼= F/R for some ideal R. Define R be the two-sided

ideal of F generated by FR ∪ RF . Then

I∗j−1 = F/R

is the so-called covering algebra of Ij−1.
Eick [17] provides a detailed investigation of the covering algebra and an effective

algorithm to compute a canonical table C∗
j−1 for this algebra from the canonical

table Cj−1 of Ij−1. Here we recall the most important features of the covering
algebra only. First, we note that the automorphism group Aj−1 acts naturally on
the covering algebra I∗j−1 by directly extending the action on F/R to F/R.

Theorem 1 (Eick [17])
Let ρj : Aj → Aj−1 be the natural homomorphism.

a) Ij
∼= I∗j−1/U for some ideal U in I∗j−1.

b) Let V be a canonical element in the orbit UAj−1 . Then Ij
∼= I∗j−1/V and Cj is

the table of I∗j−1/V with respect to the basis underlying the table C∗
j−1.

c) im(ρj) = StabAutj−1
(V ) and ker(ρj) is the elementary abelian p-group consist-

ing of the automorphism which fix I/Ij−1 and Ij−1/Ij pointwise.
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Theorem 1 is used to reduce the induction step to an orbit-stabilizer compu-
tation. A general algorithm to compute orbits and stabilizers for finite groups is
described in [22]. The problem inherent in this algorithm is that if the considered
orbit is long, then the computation is time- and space-consuming. In our applica-
tions, the arising orbits are often huge. Thus the generic algorithm for finite groups
is not going to succeed in most cases.

Eick [17] uses a special orbit-stabilizer algorithm. This exploits the fact that the
kernel of the natural homomorphism Aj−1 → A2 is a normal p-subgroup of Aj−1.
Orbit representatives and their stabilizers under the action of a p-group can be de-
termined with a highly effective method due to Schwingel [37]; This method avoids
the explicit computation of the orbits. Using Schwingel’s method, our desired orbit-
stabilizer computations mainly reduce to an orbit-stabilizer computation under the
action of A2

∼= GL(d, F). This reduction has been sufficient to determine canonical
forms for the modular group algebras of the groups of order 28.

However, even with this very significant reduction of the problem, the arising
orbits and stabilizers in the application to the groups of order 29 are frequently
too large to be computed. Thus for this new application, we had to reduce the
orbit-stabilizer problem further. We exploited an approach which is also used in
[18]: we try to reduce the initial group A2

∼= GL(d, F) a priori.

3.3 Fingerprints and precomputing

Let ϕ : I → I2 denote the natural homomorphism and recall that I2
∼= F

d. Thus I2

has l = (pd − 1)/(p − 1) one-dimensional subspaces. Let M1, . . . , Ml denote their
preimages under ϕ and note that M1, . . . , Ml are subalgebras of I. In particular,
each algebra Mi is nilpotent.

We fingerprint each of these subalgebras M ; that is, we determine invariants of
M . Suitable invariants are, for example, the dimensions of the quotients of the k
initial terms of their power series for some given k. That is, given a subalgebra M ,
we compute M = M1 ≥ M2 ≥ . . . ≥ Mk+1 and determine the sequence d1, . . . , dk

defined by di = dim(M i/M i+1). The larger we choose k, the better is the resulting
fingerprint, but also the more time-consuming is its determination.

Given a fingerprint for each M in the list M1, . . . , Ml, we partition the subalge-
bras according to their fingerprints. For every occurring fingerprint f let Lf be the
set of subalgebras with fingerprint f . Define Vf as the sum of all subalgebras in
Lf . Then Vf is a subalgebra of I which contains I2 and is an invariant for Aut(I)
and Can(I).

We sort the set of all arising fingerprints and thus obtain a list f1, . . . , fr of
fingerprints. Let Vf1

, . . . , Vfr
denote the corresponding set of subalgebras of I.

Then in the first step of our algorithm we start with a basis for I2 which exhibits
the images of the subalgebras Vf1

, . . . , Vfr
under ϕ and we use the stabilizer in

GL(d, F) of these images as initialization for A2.
As a result we can often reduce a priori to a comparatively small subgroup A2 of

GL(d, F). This reduces the subsequent orbit-stabilizer computations significantly,
since we act with a comparatively small subgroup of GL(d, F) only.
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4 The groups of order 512

The complete and non-redundant list of groups of order 512 contains 10494213
groups: these are available in the GAP Small Groups Library [8]. In this section we
describe our strategy to check MIP for these groups and we provide some numerical
information on the steps of computation.

Our strategy splits the computation into two steps: first, split the groups of order
512 into possibly small clusters by determining invariants of the groups which are
determined by their group algebras and then, secondly, check MIP for the groups
in a cluster for each cluster.

4.1 Computing invariants

We used the invariants listed in Section 2 for the first step. Most of these invariants
can be computed readily using available GAP functions; the others are implemented
in the LAGUNA package [10]. The computation of these invariants for all groups of
order 512 was already a first long-term computation. We outline some more details
in the following.

On the initial stage, the following parameters were computed for all groups of
order 512 to obtain an initial distribution of groups into clusters: the exponent of
G, the number of conjugacy classes of G, orders of Z(G), G′, the Frattini subgroup
of G and the Sandling factor G/(γ2(G)pγ3(G)), the length of the Jennings series
and the Roggenkamp parameter

∑t
i=1

logp|CG(gi)/Φ(CG(gi))|. These parameters
were selected on the ground that they can be computed very effectively and some
of them, especially the Roggenkamp parameter, are known to be rather efficient
invariants to check that group algebras are non-isomorphic.

As a result of this initial computation, the groups of order 512 were split into
30605 clusters of various sizes. For example, we obtained 5678 clusters of size 1;
The groups contained in these need not be considered any further. On the other
end, there were four clusters containing more than 100000 groups each, with sizes
110248, 112390, 115807 and 118504.

However, it occurs that the majority of these groups has a Sandling factor of
order 512. In this case, the groups are determined by their modular group algebras.
After filtering out such groups and also all clusters of size 1, it remained 1646012
groups in 19877 clusters, including 3373 pairs of groups, and the biggest cluster
had size 9175 (‘only’).

To further refine the set of clusters, the following invariants were computed for
the remaining groups: the isomorphism type of Z(G) and G/G′, and the number
of conjugacy classes of pn-th powers of elements. This step ruled out only 23222
groups, leaving still 1622790 groups to go, but, however, it increased the number
of clusters to 51103 and reduced an average size of the cluster: now we already had
14770 pairs, and the largest cluster contained 5424 groups.

The above mentioned computations were made using the GAP package ParGAP

[13] on an 8-core computer.
To split families further, the Quillen invariant (that is, the number of con-

jugacy classes of maximal elementary abelian subgroups of each rank) was se-
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lected. Its computation is rather time-consuming, since it involves computation
of the lattice of subgroups. Thus we extended computations on other CIRCA
machines, GILDA cluster available to the 2nd author for the time of the Interna-
tional Winter School in Grid Computing 2009, and Beowulf cluster in the Heriot-
Watt University. Dependently on the architecture, we used various technologies:
SCSCP package [24], ParGAP package [13] or the Condor job submission system
(http://www.cs.wisc.edu/condor/). This computation finished with the follow-
ing improvement: 1553963 groups in 97116 clusters, including 35486 pairs and the
largest cluster of size 1827.

Two more group-theoretical invariants were applied after this stage: the minimal
number of generators of G′ and the isomorphism types of factors of the Jennings
series.

As a final result of the invariant computation, we obtained 345367 clusters con-
taining 1297026 groups mostly in small clusters, including 168486 pairs and the
biggest cluster of size 210.

4.2 Isomorphism testing

Now we were able to split each of the clusters using the isomorphism test imple-
mented in the ModIsom package.

This computation consumed about 14000 CPU hours during three weeks of com-
putations on the UK National Grid Service (http://www.ngs.ac.uk/).

At first, Modisom split successfully all clusters except 293 exceptional clusters
containing in total 1660 groups. These clusters needed an improvement of the
implementation in Modisom as described in Section 3.3 of this paper.

After implementing this improvement, Modisom was able to split the remaining
clusters and hence returned the result that there are no counterexamples to the
modular isomorphism problem among the groups of order 512.

Acknowledgments: Besides the CIRCA computational facilities in St An-
drews, we used the research server of the Functional Programming group in the
University of St Andrews, Beowulf cluster in the Heriot-Watt University (Edin-
burgh), the GILDA cluster provided for IWSGC’09, and the UK National Grid
Service. We acknowledge all involved organizations for these opportunities.
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