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1 Finite (L)-presentations

A finite presentation is an expression of the form 〈S | R〉, where S is a finite alphabet and
R is a finite subset of the free group FS on S. This finite presentation defines the group
FS/K, where K is the normal subgroup of FS generated by R. Finite L-presentations
have been introduced by Bartholdi [2]. A finite L-presentation is an expression of the
form 〈S | Q | Φ | R〉, where S is a finite alphabet, Q and R are finite subsets of the free
group FS and Φ is a finite set of homomorphisms φ : FS → FS . This finite L-presentation
defines the group FS/K, where K is the normal subgroup of FS generated by

Q ∪
⋃

φ∈Φ∗

φ(R),

where Φ∗ is the monoid generated by Φ. Let

Ri = Q ∪
⋃

φ∈Φi

φ(R),

where Φi contains all products of length at most i in the generators of Φ. Then Ri is a
finite subset of FS and R0 ≤ R1 ≤ . . . ≤ R with R = ∪i∈N0

Ri holds.

2 Some quotient algorithms

Quotient algorithms have been invented as tools to investigate groups given by finite pre-
sentations. Among the known quotient algorithms is the p-quotient algorithm by Havas,
Newman and O’Brien [4, 6], the nilpotent quotient algorithm by Nickel [7] and the poly-
cyclic quotient algorithm by Lo [5]. All of these methods allow to determine polycyclic
presentations for certain quotients of a given finitely presented group.
All these three quotient algorithms have in common that they proceed by induction along
a certain normal series. They inially start with the trivial quotient G/G defined by the
trivial polycyclic presentation. In the induction step they assume that they are given
a consistent polycyclic presentation for a certain quotient G/N and they determine a
consistent polycyclic presentation for a certain quotient G/M with M ≤ N and N/M
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abelian. For this purpose they construct a module presentation A/T for N/M ; they
determine the group structure of G/M from this. The module presentation is obtained
by attaching tails to the consistent polycyclic presentation of G/N and then evaluating
finitely many consistency relations and the elements of R. The generators of T correspond
one-to-one to the finitely many consistency relations and the finitely many elements in R.
We refer also to [1] for a description of the construction of such a module presentation in
the case of the polycyclic quotient algorithm.
In the case of the p-quotient algorithm, A is a free Z/pZ-module of finite rank. The
group structure of A/T can then be computed by Gaussian elimination. In the case of
the nilpotent quotient algorithm, A is a free Z-module of finite rank. The group structure
of A/T can then be computed by a Smith normal form algorithm. In the case of the
polycyclic quotient algorithm, A is a free ZH-module of finite rank for H = G/N . The
group structure of A/T can then be computed by a Groebner basis algorithm for integral
group rings of polycyclic groups, see [5].

3 The generalization

Recently, Bartholdi, Eick & Hartung [3] observed that the nilpotent quotient algorithm by
Nickel [7] generalizes to finitely L-presented groups. Similar ideas had been used already
by Nickel [8] to determine Engel groups. Further, also the p-quotient algorithm had been
applied to groups which are not finitely presented by Newman & O’Brien [6]. The aim of
this manuscript is to exhibit a short and unified proof for the following.

1 Lemma: The p-quotient algorithm by Newman & O’Brien [6], the nilpotent quotient
algorithm by Nickel [7] and the polycyclic quotient algorithm by Lo [5] generalize to finitely
L-presented groups.

Proof: All three quotient algorithms depend in the induction step on the determination
of the group structure of A/T . In the case of a finitely L-presented group, the submodule
T is not necessarily finitely generated, but it has a series T0 ≤ T1 ≤ . . . ≤ T with
∪i∈N0

Ti = T . Each submodule Ti is finitely generated by generators corresponding one-
to-one to the finitely many consistency relations and the finitely many elements of Ri. As
A is a noetherian module in all three cases, it follows that ascending chains of submodules
terminate and hence there exists an i with Ti = Ti+k for all k ∈ N0. Note that Ti = Ti+1

implies that Ti = Ti+k for all k ∈ N0 by the definition of Ri. We now determine the
group structure of the quotients A/T0, A/T1, . . . as in the case of finitely presented groups
until A/Ti

∼= A/Ti+1. In this case we have obtained the group structure of A/T and thus
completed the induction step. •

Note that the proof of Lemma 1 is constructive and translates to an algorithm. This
algorithm differs from the orginal algorithm for finitely presented groups by adding a
single while-loop to construct the ascending series T0, T1, . . . until A/Ti

∼= A/Ti+1.
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