Context-free Groups and Their Structure Trees

Armin Weiß¹

Universität Stuttgart

May 22, 2013

¹Joint work with Volker Diekert

Theorem

Let Γ be a connected, locally finite graph of finite tree-width and let a group G act on Γ with finitely many orbits and finite vertex stabilizers.

Then there is a tree T such that G acts on T with finitely many orbits and finite vertex stabilizers.

Corollary (Muller, Schupp, 1983)

A group is context-free if and only if it is finitely generated virtually free.

Virtually free \Rightarrow context-free: construct a pushdown automaton. Context-free \Rightarrow virtually free:

- **(**) *G* context-free \implies Cayley graph finite tree-width.
- **②** Theorem above implies that G acts on T with finitely many orbits and finite vertex stabilizers.
- Bass-Serre implies that G is a fundamental group of a finite graph of finite groups.
- G Karrass, Pietrowski, and Solitar (1973) implies that G is virtually free.

context-free \Rightarrow virtually free (proof by Muller and Schupp):

- G context-free ⇐⇒
 Cayley graph is quasi-isometric to a tree.
- Q Cayley graphs which are quasi-isometric to a tree have more than one end.
- Apply Stallings' Structure Theorem (1971).
- Use the result by Dunwoody (1985) that finitely presented groups are accessible. (This piece was still missing 1983.)
- Apply the theorem by Karrass, Pietrowski, and Solitar (1973) to see that the group is virtually free.

Definition

A graph Γ has finite tree-width if there is a tree T = (V(T), E(T))and for every vertex $t \in V(T)$ a bag $X_t \subseteq V(\Gamma)$ such that

- Every node v ∈ V(Γ) and every edge uv ∈ E(Γ) is contained in some bag.
- If v ∈ X_s ∩ X_t for two nodes s, t of the tree, then v is contained in every bag of the unique geodesic in the tree from s to t.
- The size of the bags is bounded by some constant.

Modular group

The Cayley graph of $\mathrm{PSL}(2,\mathbb{Z})\cong\mathbb{Z}/2\mathbb{Z}*\mathbb{Z}/3\mathbb{Z}$ has finite tree-width.

The Cayley graph of $\mathbb{Z}\times\mathbb{Z}$ does not have finite tree-width.

In general, both classes are incomparable:

- Infinite clique does not have finite tree-width, but is is quasi-isometric to a point.
- The following graph has finite tree-width, but is not quasi-isometric to a tree.

However, for Cayley graphs are equivalent:

- quasi-isometric to a tree,
- finite tree-width.

Cuts

Starting point:

 $\Gamma=$ connected, locally finite graph of finite tree-width

G= group acting on Γ with finitely many orbits and finite vertex stabilizers

For $C \subseteq V(\Gamma)$ let $\delta C = \{ uv \in E(\Gamma) \mid u \in C, v \in \overline{C} \}$ be the *boundary*.

Definition

A *cut* is a subset $C \subseteq V(\Gamma)$ such that δC is finite.

Definition

A tree set is a set of cuts $\ensuremath{\mathcal{C}}$ such that

- $C \in \mathcal{C} \Rightarrow \overline{C} \in \mathcal{C}$,
- cuts in C are pairwise nested, i.e., for $C, D \in C$ either $C \subseteq D$ or $C \subseteq \overline{D}$ or $\overline{C} \subseteq D$ or $\overline{C} \subseteq \overline{D}$,
- the partial order (\mathcal{C},\subseteq) is discrete.

The aim is to construct a tree set C.

A cut *C* of tree set defines an undirected edge $\{[C], [\overline{C}]\}$ in a tree for the following equivalence relation.

DefinitionFor $C, D \in C$ the relation $C \sim D$ is defined as follows:Either C = D,or $\overline{C} \subsetneq D$ and there is no $E \in C$ with $\overline{C} \gneqq E \gneqq D$.

Proposition (Dunwoody, 1979)

The graph $T(\mathcal{C})$ is a tree, where

Vertices: $V(T(\mathcal{C})) = \{ [C] \mid C \in \mathcal{C} \},\$ Edges: $E(T(\mathcal{C})) = \{ \{ [C], [\overline{C}] \} \mid C \in \mathcal{C} \}.$

Vertices in the structure tree

Three cuts in one equivalence class = one vertex in T(C).

Facts about Γ

- There exists some k such that every bi-infinite geodesic can be split into two infinite pieces by some k-cut., i.e., |δ(C)| ≤ k.
 - Every bi-infinite geodesic defines two different ends.
 - Every pair of ends can be separated by a k-cut.
- If Γ is infinite, then there exists some bi-infinite geodesic.

We need $|Aut(\Gamma)\setminus\Gamma| < \infty$: There are graphs with arbitrarily long geodesics, bi-infinite simple paths, but without any bi-infinite geodesic:

Here: $\operatorname{Aut}(\Gamma) = \mathbb{Z}/2\mathbb{Z}$ and $\operatorname{Aut}(\Gamma) \setminus \Gamma = \mathbb{N}$.

Minimal cuts

 $\label{eq:minimal} \begin{array}{l} \mbox{Minimal cuts} = \mbox{cuts which are minimal splitting an infinite geodesic.} \end{array}$

Minimal cuts still might not be nested:

A cut C is optimal, if it cuts a bi-infinite geodesic α with $|\delta C|$ minimal and with a minimal number of not nested cuts.

Theorem

- Every bi-infinite geodesic is split by an optimal cut.
- Optimal cuts are pairwise nested.

Corollary

The optimal cuts form a tree set and the action of G on Γ induces an action of G on $\mathcal{C}_{\mathrm{opt}}.$

$|\delta E| + |\delta E'| \le |\delta C| + |\delta D|$

 $\delta E \cup \delta E' \subseteq \delta C \cup \delta D \qquad \qquad \delta E \cap \delta E' \subseteq \delta C \cap \delta D$

Optimal Cuts

Theorem

The group G acts on the tree $T(C_{opt})$ with finitely many orbits and finite vertex stabilizers.

Proof.

Construct a tree decomposition of Γ assigning to each $[C] \in V(T(C_{opt}))$ a block B[C] with

$$B[C] = \bigcap_{D \sim C} N^{\lambda}(D).$$

- Blocks are connected.
- **2** The stabilizer $G_{[C]}$ acts with finitely many orbits on B[C].
- There is no cut in B[C] which splits some bi-infinite geodesic.

Vertices in the structure tree and blocks

A block assigned to an equivalence class consisting of three cuts.

- Proof based on "Cutting up graphs revisited a short proof of Stallings' structure theorem" by Krön (2010).
- Direct, one-step construction of the structure tree.
- Muller-Schupp-Theorem as corollary.
- Solution of the isomorphism problem for context-free groups in elementary time if the minimal cuts can be computed in elementary time. (Known: primitive recursive (Sénizergues, 1993))

Thank you!