The Submonoid Membership Problem for Groups

Benjamin Steinberg¹ City College of New York bsteinberg@ccny.cuny.edu http://www.sci.ccny.cuny.edu/~benjamin/

June 22, 2013

¹Encompasses joint work with Mark Kambites, Markus Lohrey, Pedro Silva and Georg Zetzsche $\langle \Box \rangle \langle \Box \rangle \langle$

• INTEGER PROGRAMMING:

• Given $A \in M_{mn}(\mathbb{Z})$ and $b \in \mathbb{Z}^m$, does Ax = b have a solution $x \in \mathbb{N}^n$?

- INTEGER PROGRAMMING:
 - Given $A \in M_{mn}(\mathbb{Z})$ and $b \in \mathbb{Z}^m$, does Ax = b have a solution $x \in \mathbb{N}^n$?

• Algebraically speaking, the problem is to determine whether **b** is a non-negative linear combination of the columns of A.

- INTEGER PROGRAMMING:
 - Given $A \in M_{mn}(\mathbb{Z})$ and $b \in \mathbb{Z}^m$, does Ax = b have a solution $x \in \mathbb{N}^n$?

▲日▼▲□▼▲□▼▲□▼ □ ののの

- Algebraically speaking, the problem is to determine whether **b** is a non-negative linear combination of the columns of A.
- In other words, does b belong to the submonoid of Z^m generated by the columns of A?

- INTEGER PROGRAMMING:
 - Given $A \in M_{mn}(\mathbb{Z})$ and $b \in \mathbb{Z}^m$, does Ax = b have a solution $x \in \mathbb{N}^n$?

- Algebraically speaking, the problem is to determine whether **b** is a non-negative linear combination of the columns of A.
- In other words, does b belong to the submonoid of Z^m generated by the columns of A?
- So integer programming is the submonoid membership problem for abelian groups.

- INTEGER PROGRAMMING:
 - Given $A \in M_{mn}(\mathbb{Z})$ and $b \in \mathbb{Z}^m$, does Ax = b have a solution $x \in \mathbb{N}^n$?

- Algebraically speaking, the problem is to determine whether **b** is a non-negative linear combination of the columns of A.
- In other words, does b belong to the submonoid of Z^m generated by the columns of A?
- So integer programming is the submonoid membership problem for abelian groups.
- Integer programming is well known to be NP-complete.

- INTEGER PROGRAMMING:
 - Given $A \in M_{mn}(\mathbb{Z})$ and $b \in \mathbb{Z}^m$, does Ax = b have a solution $x \in \mathbb{N}^n$?
- Algebraically speaking, the problem is to determine whether **b** is a non-negative linear combination of the columns of A.
- In other words, does b belong to the submonoid of Z^m generated by the columns of A?
- So integer programming is the submonoid membership problem for abelian groups.
- Integer programming is well known to be NP-complete.
- The submonoid membership problem for arbitrary groups is a non-commutative analogue of integer programming.

• Fix a group G and a finite symmetric generating set Σ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

- Fix a group G and a finite symmetric generating set $\Sigma.$
- Let $\pi \colon \Sigma^* \to G$ be the canonical projection.

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 • • • • • •

- Fix a group G and a finite symmetric generating set $\Sigma.$
- Let $\pi \colon \Sigma^* \to G$ be the canonical projection.
- Consider the following algorithmic problems for G.

- Fix a group G and a finite symmetric generating set $\Sigma.$
- Let $\pi \colon \Sigma^* \to G$ be the canonical projection.
- Consider the following algorithmic problems for G.
- The Word Problem:
 - $\circ \ \ {\rm Given} \ w \in \Sigma^* {\rm , \ does} \ \pi(w) = 1 {\rm ?}$

- Fix a group G and a finite symmetric generating set Σ .
- Let $\pi \colon \Sigma^* \to G$ be the canonical projection.
- Consider the following algorithmic problems for G.
- The Word Problem:

• Given $w \in \Sigma^*$, does $\pi(w) = 1$?

• The (Uniform) Generalized Word Problem:

• Given $w, w_1, \ldots, w_n \in \Sigma^*$, is $\pi(w) \in \langle \pi(w_1), \ldots, \pi(w_n) \rangle$?

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

- Fix a group G and a finite symmetric generating set Σ .
- Let $\pi \colon \Sigma^* \to G$ be the canonical projection.
- Consider the following algorithmic problems for G.
- The Word Problem:

• Given $w \in \Sigma^*$, does $\pi(w) = 1$?

• The (Uniform) Generalized Word Problem:

• Given $w, w_1, \ldots, w_n \in \Sigma^*$, is $\pi(w) \in \langle \pi(w_1), \ldots, \pi(w_n) \rangle$?

• The (Uniform) Submonoid Membership Problem:

• Given $w, w_1, \ldots, w_n \in \Sigma^*$, is $\pi(w) \in \pi(\{w_1, \ldots, w_n\}^*)$?

- Fix a group G and a finite symmetric generating set Σ .
- Let $\pi \colon \Sigma^* \to G$ be the canonical projection.
- Consider the following algorithmic problems for G.
- The Word Problem:

• Given $w \in \Sigma^*$, does $\pi(w) = 1$?

• The (Uniform) Generalized Word Problem:

• Given $w, w_1, \ldots, w_n \in \Sigma^*$, is $\pi(w) \in \langle \pi(w_1), \ldots, \pi(w_n) \rangle$?

• THE (UNIFORM) SUBMONOID MEMBERSHIP PROBLEM:

• Given $w, w_1, \ldots, w_n \in \Sigma^*$, is $\pi(w) \in \pi(\{w_1, \ldots, w_n\}^*)$?

- THE (UNIFORM) RATIONAL SUBSET MEMBERSHIP PROBLEM:
 - Given $w \in \Sigma^*$ and a finite automaton \mathscr{A} over Σ , is $\pi(w) \in \pi(L(\mathscr{A}))$?

- Fix a group G and a finite symmetric generating set Σ .
- Let $\pi \colon \Sigma^* \to G$ be the canonical projection.
- Consider the following algorithmic problems for G.
- The Word Problem:

• Given $w \in \Sigma^*$, does $\pi(w) = 1$?

• The (Uniform) Generalized Word Problem:

• Given $w, w_1, \ldots, w_n \in \Sigma^*$, is $\pi(w) \in \langle \pi(w_1), \ldots, \pi(w_n) \rangle$?

• THE (UNIFORM) SUBMONOID MEMBERSHIP PROBLEM:

• Given $w, w_1, \ldots, w_n \in \Sigma^*$, is $\pi(w) \in \pi(\{w_1, \ldots, w_n\}^*)$?

- The (Uniform) Rational Subset Membership Problem:
 - Given $w \in \Sigma^*$ and a finite automaton \mathscr{A} over Σ , is $\pi(w) \in \pi(L(\mathscr{A}))$?
- Decidability of these problems is independent of Σ .

• The above decision problems were listed in order of difficulty.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

- The above decision problems were listed in order of difficulty.
- It is natural to search for groups distinguishing these problems.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

- The above decision problems were listed in order of difficulty.
- It is natural to search for groups distinguishing these problems.
- $F_2 \times F_2$ has undecidable generalized word problem (Mihailova)

- The above decision problems were listed in order of difficulty.
- It is natural to search for groups distinguishing these problems.
- $F_2 \times F_2$ has undecidable generalized word problem (Mihailova)
- Free solvable groups of derived length ≥ 3 and rank ≥ 2 have undecidable generalized word problem (Umirbaev).

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

- The above decision problems were listed in order of difficulty.
- It is natural to search for groups distinguishing these problems.
- $F_2 \times F_2$ has undecidable generalized word problem (Mihailova)
- Free solvable groups of derived length ≥ 3 and rank ≥ 2 have undecidable generalized word problem (Umirbaev).

• Compare: all finitely generated metabelian groups have decidable generalized word problem (Romanovskii).

- The above decision problems were listed in order of difficulty.
- It is natural to search for groups distinguishing these problems.
- $F_2 \times F_2$ has undecidable generalized word problem (Mihailova)
- Free solvable groups of derived length ≥ 3 and rank ≥ 2 have undecidable generalized word problem (Umirbaev).

- Compare: all finitely generated metabelian groups have decidable generalized word problem (Romanovskii).
- The Rips construction produces hyperbolic groups with undecidable generalized word problem.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• A finite automaton $\mathscr A$ over an alphabet Σ consists of:

A finite automaton A over an alphabet Σ consists of:
a finite directed graph with edges labeled by elements of Σ;

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

- A finite automaton $\mathscr A$ over an alphabet Σ consists of:
 - $\circ\;$ a finite directed graph with edges labeled by elements of $\Sigma;\;$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

• a distinguished initial vertex;

- A finite automaton $\mathscr A$ over an alphabet Σ consists of:
 - $\circ\,$ a finite directed graph with edges labeled by elements of $\Sigma;$

- a distinguished initial vertex;
- a set of final vertices.

• A finite automaton $\mathscr A$ over an alphabet Σ consists of:

 \circ a finite directed graph with edges labeled by elements of Σ ;

- a distinguished initial vertex;
- a set of final vertices.
- The language $L(\mathscr{A})$ of the automaton consists of all words labeling a path from the initial vertex to a final vertex.

• A finite automaton $\mathscr A$ over an alphabet Σ consists of:

- \circ a finite directed graph with edges labeled by elements of Σ ;
- a distinguished initial vertex;
- a set of final vertices.
- The language $L(\mathscr{A})$ of the automaton consists of all words labeling a path from the initial vertex to a final vertex.
- A language is called rational if it is accepted by some finite automaton.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

• A finite automaton $\mathscr A$ over an alphabet Σ consists of:

- \circ a finite directed graph with edges labeled by elements of Σ ;
- a distinguished initial vertex;
- a set of final vertices.
- The language $L(\mathscr{A})$ of the automaton consists of all words labeling a path from the initial vertex to a final vertex.
- A language is called rational if it is accepted by some finite automaton.
- Examples:
 - The language of geodesic words in a hyperbolic group;

• A finite automaton $\mathscr A$ over an alphabet Σ consists of:

- \circ a finite directed graph with edges labeled by elements of Σ ;
- a distinguished initial vertex;
- a set of final vertices.
- The language $L(\mathscr{A})$ of the automaton consists of all words labeling a path from the initial vertex to a final vertex.
- A language is called rational if it is accepted by some finite automaton.
- Examples:
 - The language of geodesic words in a hyperbolic group;
 - The language of geodesic words belonging to a quasiconvex subgroup of a hyperbolic group.

 Let Rat(G) be the collection of rational subsets of G, i.e., sets of the form π(L(𝒜)) with 𝒜 a finite automaton.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

- Let Rat(G) be the collection of rational subsets of G, i.e., sets of the form π(L(A)) with A a finite automaton.
- Rat(G) is the smallest collection of subsets of G containing the finite subsets and closed under:

- Let Rat(G) be the collection of rational subsets of G, i.e., sets of the form π(L(A)) with A a finite automaton.
- Rat(G) is the smallest collection of subsets of G containing the finite subsets and closed under:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

union;

- Let Rat(G) be the collection of rational subsets of G, i.e., sets of the form π(L(A)) with A a finite automaton.
- Rat(G) is the smallest collection of subsets of G containing the finite subsets and closed under:

- union;
- product;

- Let Rat(G) be the collection of rational subsets of G, i.e., sets of the form π(L(A)) with A a finite automaton.
- Rat(G) is the smallest collection of subsets of G containing the finite subsets and closed under:

- union;
- product;
- $\circ \ \ \text{generation of submonoids} \ X \mapsto X^*.$

- Let Rat(G) be the collection of rational subsets of G, i.e., sets of the form π(L(𝒜)) with 𝒜 a finite automaton.
- Rat(G) is the smallest collection of subsets of G containing the finite subsets and closed under:

- union;
- product;
- $\circ \ \ \text{generation of submonoids} \ X \mapsto X^*.$
- Examples:
 - finitely generated subgroups;

- Let Rat(G) be the collection of rational subsets of G, i.e., sets of the form π(L(𝒜)) with 𝒜 a finite automaton.
- Rat(G) is the smallest collection of subsets of G containing the finite subsets and closed under:

- union;
- product;
- $\circ \ \ {\rm generation} \ {\rm of} \ {\rm submonoids} \ X\mapsto X^*.$
- Examples:
 - finitely generated subgroups;
 - finitely generated submonoids;
Rational subsets

- Let Rat(G) be the collection of rational subsets of G, i.e., sets of the form π(L(𝒜)) with 𝒜 a finite automaton.
- Rat(G) is the smallest collection of subsets of G containing the finite subsets and closed under:

- union;
- product;
- generation of submonoids $X \mapsto X^*$.
- Examples:
 - finitely generated subgroups;
 - finitely generated submonoids;
 - o double cosets of finitely generated subgroups.

Examples

• The automaton

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

recognizes the submonoid $\{g,h\}^*$ generated by g,h.

Examples

The automaton

recognizes the submonoid $\{g,h\}^*$ generated by g,h.

• The automaton

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

recognizes the double coset $\langle g_1, g_2 \rangle g \langle g_1, g_2 \rangle$.

Theorem (Anissimov, Seifert)

A subgroup $H \leq G$ belongs to Rat(G) iff H is finitely generated.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Theorem (Anissimov, Seifert)

A subgroup $H \leq G$ belongs to Rat(G) iff H is finitely generated.

• Rational submonoids need not be finitely generated.

Theorem (Anissimov, Seifert)

A subgroup $H \leq G$ belongs to Rat(G) iff H is finitely generated.

- Rational submonoids need not be finitely generated.
- Rational subsets are not in general closed under complement and intersection.

▲日▼▲□▼▲□▼▲□▼ □ ののの

Theorem (Anissimov, Seifert)

A subgroup $H \leq G$ belongs to Rat(G) iff H is finitely generated.

- Rational submonoids need not be finitely generated.
- Rational subsets are not in general closed under complement and intersection.
- If $\operatorname{Rat}(G)$ is closed under intersection, then G is a Howson group.

• Diekert, Gutiérrez and Hagenah showed solving equations with rational constraints over free groups is PSPACE-complete.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

• Diekert, Gutiérrez and Hagenah showed solving equations with rational constraints over free groups is PSPACE-complete.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Diekert and Lohrey used this to solve equations and decide the positive theory for right-angled Artin groups.

• Diekert, Gutiérrez and Hagenah showed solving equations with rational constraints over free groups is PSPACE-complete.

- Diekert and Lohrey used this to solve equations and decide the positive theory for right-angled Artin groups.
- Dahmani and Guirardel solved equations over hyperbolic groups with special rational constraints.

- Diekert, Gutiérrez and Hagenah showed solving equations with rational constraints over free groups is PSPACE-complete.
- Diekert and Lohrey used this to solve equations and decide the positive theory for right-angled Artin groups.
- Dahmani and Guirardel solved equations over hyperbolic groups with special rational constraints.
- Dahmani and Groves use rational subsets in their solution to the isomorphism problem for toral relatively hyperbolic groups.

- Diekert, Gutiérrez and Hagenah showed solving equations with rational constraints over free groups is PSPACE-complete.
- Diekert and Lohrey used this to solve equations and decide the positive theory for right-angled Artin groups.
- Dahmani and Guirardel solved equations over hyperbolic groups with special rational constraints.
- Dahmani and Groves use rational subsets in their solution to the isomorphism problem for toral relatively hyperbolic groups.
- The order of g is finite if and only if $g^{-1} \in g^*$, so decidability of submonoid membership gives decidability of order.

Theorem (Benois (1969))

Rational subset membership is decidable for free groups.

Theorem (Benois (1969))

Rational subset membership is decidable for free groups.

• The proof uses an automata theoretic analogue of Stallings folding.

Theorem (Benois (1969))

Rational subset membership is decidable for free groups.

• The proof uses an automata theoretic analogue of Stallings folding.

Theorem (Eilenberg, Schützenberger (1969))

Rational subset membership in an abelian group is decidable.

Theorem (Benois (1969))

Rational subset membership is decidable for free groups.

• The proof uses an automata theoretic analogue of Stallings folding.

Theorem (Eilenberg, Schützenberger (1969))

Rational subset membership in an abelian group is decidable.

• It reduces to INTEGER PROGRAMMING.

• Decidability of rational subset membership is a virtual property (Grunschlag 1999).

- Decidability of rational subset membership is a virtual property (Grunschlag 1999).
- For every c ≥ 2, there is an r ≫ 1 so that the free nilpotent group of class c and rank r has undecidable rational subset membership (Roman'kov 1999).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Decidability of rational subset membership is a virtual property (Grunschlag 1999).
- For every c ≥ 2, there is an r ≫ 1 so that the free nilpotent group of class c and rank r has undecidable rational subset membership (Roman'kov 1999).
- The decidability of rational subset membership passes through free products (Nedbaj 2000).

- Decidability of rational subset membership is a virtual property (Grunschlag 1999).
- For every c ≥ 2, there is an r ≫ 1 so that the free nilpotent group of class c and rank r has undecidable rational subset membership (Roman'kov 1999).
- The decidability of rational subset membership passes through free products (Nedbaj 2000).

Theorem (Kambites, Silva, BS (2007))

Decidability of rational subset membership is preserved by free products with amalgamation and HNN-extensions with finite edge groups.

• Let \mathscr{C} be the smallest class of groups containing the trivial group and closed under:

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

• Let \mathscr{C} be the smallest class of groups containing the trivial group and closed under:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

• Taking finitely generated subgroups;

• Let \mathscr{C} be the smallest class of groups containing the trivial group and closed under:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Taking finitely generated subgroups;
- Taking finite index overgroups;

- Let \mathscr{C} be the smallest class of groups containing the trivial group and closed under:
 - Taking finitely generated subgroups;
 - Taking finite index overgroups;
 - Free products with amalgamation and HNN extensions with finite edge groups;

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

- Let \mathscr{C} be the smallest class of groups containing the trivial group and closed under:
 - Taking finitely generated subgroups;
 - Taking finite index overgroups;
 - Free products with amalgamation and HNN extensions with finite edge groups;

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

• Direct product with \mathbb{Z} .

- Let \mathscr{C} be the smallest class of groups containing the trivial group and closed under:
 - Taking finitely generated subgroups;
 - Taking finite index overgroups;
 - Free products with amalgamation and HNN extensions with finite edge groups;

 \circ Direct product with \mathbb{Z} .

Theorem (Lohrey, BS (2008))

Every group in the class \mathscr{C} has decidable rational subset membership problem.

• For Γ a graph, the associated right-angled Artin group is

 $\mathscr{G}(\Gamma) = \langle V(\Gamma) \mid [v,w] : (v,w) \in E(\Gamma) \rangle.$

• For Γ a graph, the associated right-angled Artin group is

 $\mathscr{G}(\Gamma) = \langle V(\Gamma) \mid [v,w] : (v,w) \in E(\Gamma) \rangle.$

• For Γ a graph, the associated right-angled Artin group is

 $\mathscr{G}(\Gamma) = \langle V(\Gamma) \mid [v,w] : (v,w) \in E(\Gamma) \rangle.$

• Then $\mathscr{G}(C4) = F_2 \times F_2$ and so this group has undecidable generalized word problem.

• For Γ a graph, the associated right-angled Artin group is

Let

 $\mathscr{G}(\Gamma) = \langle V(\Gamma) \mid [v,w] : (v,w) \in E(\Gamma) \rangle.$

- Then $\mathscr{G}(C4) = F_2 \times F_2$ and so this group has undecidable generalized word problem.
- A graph is chordal if it has no induced cycle of length ≥ 4 .

- For Γ a graph, the associated right-angled Artin group is

• l et

 $\mathscr{G}(\Gamma) = \langle V(\Gamma) \mid [v,w] : (v,w) \in E(\Gamma) \rangle.$

- Then $\mathscr{G}(C4) = F_2 \times F_2$ and so this group has undecidable generalized word problem.
- A graph is chordal if it has no induced cycle of length ≥ 4 .

Theorem (Kapovich, Myasnikov, Weidmann (2005)) The generalized word problem is decidable for chordal right-angled Artin groups.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Lohrey, BS (2008)) Let Γ be a graph. Then the following are equivalent:

Theorem (Lohrey, BS (2008)) Let Γ be a graph. Then the following are equivalent: 1. rational subset membership is decidable for $\mathscr{G}(\Gamma)$;

Theorem (Lohrey, BS (2008)) Let Γ be a graph. Then the following are equivalent: 1. rational subset membership is decidable for $\mathscr{G}(\Gamma)$;

2. submonoid membership is decidable for $\mathscr{G}(\Gamma)$;

Theorem (Lohrey, BS (2008))

Let Γ be a graph. Then the following are equivalent:

1. rational subset membership is decidable for $\mathscr{G}(\Gamma)$;

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

- 2. submonoid membership is decidable for $\mathscr{G}(\Gamma)$;
- 3. Γ contains neither an induced C4 nor P4.
Right-angled Artin groups: the rational subset problem

Theorem (Lohrey, BS (2008))

Let Γ be a graph. Then the following are equivalent:

- 1. rational subset membership is decidable for $\mathscr{G}(\Gamma)$;
- 2. submonoid membership is decidable for $\mathscr{G}(\Gamma)$;
- 3. Γ contains neither an induced C4 nor P4.

P4 is chordal, yielding our first (but not last!) example of a group with decidable generalized word problem but undecidable submonoid membership problem.

The direct product of two free monoids

Theorem (Lohrey, BS)

Any group containing a direct product of two free monoids has undecidable rational subset membership problem.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The direct product of two free monoids

Theorem (Lohrey, BS)

Any group containing a direct product of two free monoids has undecidable rational subset membership problem.

• This is a simple encoding of the Post correspondence problem.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• The submonoid and rational subset membership problems are equivalent for right-angled Artin groups.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

• The submonoid and rational subset membership problems are equivalent for right-angled Artin groups.

• We have no example of a group with decidable submonoid membership but undecidable rational subset membership.

• The submonoid and rational subset membership problems are equivalent for right-angled Artin groups.

- We have no example of a group with decidable submonoid membership but undecidable rational subset membership.
- In fact, we have the following result:

- The submonoid and rational subset membership problems are equivalent for right-angled Artin groups.
- We have no example of a group with decidable submonoid membership but undecidable rational subset membership.
- In fact, we have the following result:

Theorem (Lohrey, BS (2010))

The submonoid and rational subset membership problems are equivalent for groups with two or more ends.

- The submonoid and rational subset membership problems are equivalent for right-angled Artin groups.
- We have no example of a group with decidable submonoid membership but undecidable rational subset membership.
- In fact, we have the following result:

Theorem (Lohrey, BS (2010))

The submonoid and rational subset membership problems are equivalent for groups with two or more ends.

• Recall: a group has 2 or more ends iff it splits over a finite subgroup.

• Consider $G = H * F_2$ with H non-trivial.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

- Consider $G = H * F_2$ with H non-trivial.
- Assume G has decidable submonoid membership.

- Consider $G = H * F_2$ with H non-trivial.
- Assume G has decidable submonoid membership.
- It suffices to prove *H* has decidable rational subset membership by the combination theorem.

- Consider $G = H * F_2$ with H non-trivial.
- Assume G has decidable submonoid membership.
- It suffices to prove H has decidable rational subset membership by the combination theorem.
- Let \mathscr{A} be an automaton over H with state set Q.

- Consider $G = H * F_2$ with H non-trivial.
- Assume G has decidable submonoid membership.
- It suffices to prove H has decidable rational subset membership by the combination theorem.
- Let \mathscr{A} be an automaton over H with state set Q.
- Fix a copy of F_Q in F_2 .

- Consider $G = H * F_2$ with H non-trivial.
- Assume G has decidable submonoid membership.
- It suffices to prove H has decidable rational subset membership by the combination theorem.
- Let \mathscr{A} be an automaton over H with state set Q.
- Fix a copy of F_Q in F_2 .
- Encode a transition $p \xrightarrow{a} q$ by paq^{-1} .

- Consider $G = H * F_2$ with H non-trivial.
- Assume G has decidable submonoid membership.
- It suffices to prove H has decidable rational subset membership by the combination theorem.
- Let \mathscr{A} be an automaton over H with state set Q.
- Fix a copy of F_Q in F_2 .
- Encode a transition $p \xrightarrow{a} q$ by paq^{-1} .
- $h \in L(\mathscr{A})$ iff $q_0 h q_f^{-1}$ is in the submonoid generated by encodings of transitions.

- Consider $G = H * F_2$ with H non-trivial.
- Assume G has decidable submonoid membership.
- It suffices to prove H has decidable rational subset membership by the combination theorem.
- Let \mathscr{A} be an automaton over H with state set Q.
- Fix a copy of F_Q in F_2 .
- Encode a transition $p \xrightarrow{a} q$ by paq^{-1} .
- $h \in L(\mathscr{A})$ iff $q_0 h q_f^{-1}$ is in the submonoid generated by encodings of transitions.

• Here q_0 is initial and q_f is final.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

• Let G and H be groups.

- Let G and H be groups.
- $G^{(H)}$ denotes the group of all mappings $f\colon H\to G$ of finite support.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

- Let G and H be groups.
- $G^{(H)}$ denotes the group of all mappings $f \colon H \to G$ of finite support.
- The wreath product $G \wr H$ is the semidirect product $G^{(H)} \rtimes H$ with respect to the action of H on $G^{(H)}$ by left translation.

- Let G and H be groups.
- $G^{(H)}$ denotes the group of all mappings $f \colon H \to G$ of finite support.
- The wreath product $G \wr H$ is the semidirect product $G^{(H)} \rtimes H$ with respect to the action of H on $G^{(H)}$ by left translation.

• I.e.,
$$(hf)(h') = f(h^{-1}h')$$
.

The element $cbcb^{-1}cabcb^{-1}ca$ in $\mathbb{Z}_2 \wr F_2$:

- nac

 $cbcb^{-1}cabcb^{-1}ca$:

▶ ▲母 ▶ ▲臣 ▶ ▲臣 ▶ ―臣 ─ のへで

 $cbcb^{-1}cabcb^{-1}ca$:

▶ ▲母 ▶ ▲臣 ▶ ▲臣 ▶ ―臣 ─ のへで

 $cbcb^{-1}cabcb^{-1}ca$:

・ 《母 》 《臣 》 《臣 》 三臣 - のへで

 $cbcb^{-1}cabcb^{-1}ca$:

コト 4 昼 ト 4 臣 ト 4 臣 ト 三臣 - 釣A@

 $cbcb^{-1}cabcb^{-1}ca$:

▶ ▲母 ▶ ▲臣 ▶ ▲臣 ▶ ─ 臣 ─ のへで

 $cbcb^{-1}cabcb^{-1}ca$:

|▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q () ●

 $cbcb^{-1}cabcb^{-1}ca$:

・ 《母 》 《 臣 》 《 臣 》 「臣 」 のへで

 $cbcb^{-1}cabcb^{-1}ca$:

| ◆ □ ▶ ◆ 三 ▶ ◆ □ ● ● ○ ○ ○ ○

 $cbcb^{-1}cabcb^{-1}ca$:

| ◆ □ ▶ ◆ 三 ▶ ◆ □ ● ● ○ ○ ○ ○

 $cbcb^{-1}cabcb^{-1}ca$:

▶ ▲母 ▶ ▲臣 ▶ ▲臣 ▶ ─ 臣 ─ のへで

 $cbcb^{-1}cabcb^{-1}ca$:

・ 《母 》 《 臣 》 《 臣 》 三 目 … の Q () ~

▲□▶ ▲□▶ ★ 国▶ ★ 国▶ - 国 - の��

Theorem (Lohrey, BS (2009))

The wreath product $H \wr (\mathbb{Z} \times \mathbb{Z})$ has undecidable rational subset membership problem for every non-trivial group H.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Theorem (Lohrey, BS (2009))

The wreath product $H \wr (\mathbb{Z} \times \mathbb{Z})$ has undecidable rational subset membership problem for every non-trivial group H.

Proof idea: The grid-like structure of the Cayley graph of $\mathbb{Z} \times \mathbb{Z}$ allows one to encode a tiling problem.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Theorem (Lohrey, BS (2009))

The wreath product $H \wr (\mathbb{Z} \times \mathbb{Z})$ has undecidable rational subset membership problem for every non-trivial group H.

Proof idea: The grid-like structure of the Cayley graph of $\mathbb{Z} \times \mathbb{Z}$ allows one to encode a tiling problem.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

A similar idea yields:
Rational subsets of wreath products with $\mathbb{Z}\times\mathbb{Z}$

Theorem (Lohrey, BS (2009))

The wreath product $H \wr (\mathbb{Z} \times \mathbb{Z})$ has undecidable rational subset membership problem for every non-trivial group H.

Proof idea: The grid-like structure of the Cayley graph of $\mathbb{Z} \times \mathbb{Z}$ allows one to encode a tiling problem.

A similar idea yields:

Theorem (Lohrey, BS (2009))

Submonoid membership is undecidable in $\mathbb{Z} \wr (\mathbb{Z} \times \mathbb{Z})$ and in the free metabelian group of rank 2.

Theorem (Lohrey, BS, Zetzsche (2012))

The submonoid membership problem for the wreath product $\mathbb{Z} \wr \mathbb{Z}$ is undecidable.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Theorem (Lohrey, BS, Zetzsche (2012))

The submonoid membership problem for the wreath product $\mathbb{Z} \wr \mathbb{Z}$ is undecidable.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Proof is based on reduction from 2-counter (Minsky) machines:

Theorem (Lohrey, BS, Zetzsche (2012))

The submonoid membership problem for the wreath product $\mathbb{Z} \wr \mathbb{Z}$ is undecidable.

Proof is based on reduction from 2-counter (Minsky) machines:

Theorem (Lohrey, BS, Zetzsche (2012))

The submonoid membership problem for the wreath product $\mathbb{Z} \wr \mathbb{Z}$ is undecidable.

Proof is based on reduction from 2-counter (Minsky) machines:

Theorem (Lohrey, BS, Zetzsche (2012))

The submonoid membership problem for the wreath product $\mathbb{Z} \wr \mathbb{Z}$ is undecidable.

Proof is based on reduction from 2-counter (Minsky) machines:

Theorem (Lohrey, BS, Zetzsche (2012))

The submonoid membership problem for the wreath product $\mathbb{Z} \wr \mathbb{Z}$ is undecidable.

Proof is based on reduction from 2-counter (Minsky) machines:

Theorem (Lohrey, BS, Zetzsche (2012))

The submonoid membership problem for the wreath product $\mathbb{Z} \wr \mathbb{Z}$ is undecidable.

Proof is based on reduction from 2-counter (Minsky) machines:

Corollary

Submonoid membership is undecidable in Thompson's group F.

Theorem (Lohrey, BS, Zetzsche (2012))

Rational subset membership is decidable in $H \wr V$ for every finite group H and virtually free group V.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem (Lohrey, BS, Zetzsche (2012))

Rational subset membership is decidable in $H \wr V$ for every finite group H and virtually free group V.

• The proof is based on an automaton saturation process.

Theorem (Lohrey, BS, Zetzsche (2012))

Rational subset membership is decidable in $H \wr V$ for every finite group H and virtually free group V.

- The proof is based on an automaton saturation process.
- Termination is guaranteed by the theory of well quasi-orders.

Theorem (Lohrey, BS, Zetzsche (2012))

Rational subset membership is decidable in $H \wr V$ for every finite group H and virtually free group V.

- The proof is based on an automaton saturation process.
- Termination is guaranteed by the theory of well quasi-orders.
- The languages constructed at each stage form an ascending chain of ideals with respect to a well quasi-order.

Theorem (Lohrey, BS, Zetzsche (2012))

Rational subset membership is decidable in $H \wr V$ for every finite group H and virtually free group V.

- The proof is based on an automaton saturation process.
- Termination is guaranteed by the theory of well quasi-orders.
- The languages constructed at each stage form an ascending chain of ideals with respect to a well quasi-order.

• No complexity bounds are obtained.

Question

Does there exist a group with decidable submonoid membership and undecidable rational subset membership?

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Question

Does there exist a group with decidable submonoid membership and undecidable rational subset membership?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

This question is equivalent to the following one.

Question

Does there exist a group with decidable submonoid membership and undecidable rational subset membership?

This question is equivalent to the following one.

Question

Is decidability of submonoid membership preserved by free products?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Question

Does there exist a group with decidable submonoid membership and undecidable rational subset membership?

This question is equivalent to the following one.

Question

Is decidability of submonoid membership preserved by free products?

Question

Is submonoid membership decidable for nilpotent groups?

Question

Does there exist a group with decidable submonoid membership and undecidable rational subset membership?

This question is equivalent to the following one.

Question

Is decidability of submonoid membership preserved by free products?

Question

Is submonoid membership decidable for nilpotent groups?

Question

Is it true that rational subset membership is undecidable for $G \wr H$ whenever G is non-trivial and H is not virtually free?

THANK YOU FOR YOUR ATTENTION!

