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Why?

• Efficiency (smaller key size, less computation)

• Security (?)

• Trying to do something useful
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Public Key Cryptography

One-way functions

−→ easy ←− hard

f (x) = xn

Trapdoor !
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Public Key Cryptography

• Encryption

• Key agreement (a.k.a. key exchange, a.k.a. key establishment)

• Authentication
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The Diffie-Hellman key establishment (1976)

1. Alice and Bob agree on a (finite) cyclic group G and a generating element g
in G . We will write the group G multiplicatively.

2. Alice picks a random natural number a and sends g a to Bob.

3. Bob picks a random natural number b and sends gb to Alice.

4. Alice computes KA = (gb)a = gba.

5. Bob computes KB = (g a)b = g ab.

Since ab = ba (because Z is commutative), both Alice and Bob are now in
possession of the same group element K = KA = KB which can serve as the
shared secret key.
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Efficiency for legitimate parties

Exponentiation by “square-and-multiply”:

g22 = (((g2)2)2)2 · (g2)2 · g2

Complexity of computing gn is therefore O(log n), times complexity of reducing
mod p (more generally, reducing to a “normal form” in the platform group G ). In
the original Diffie-Hellman protocol, G was Z∗p.
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Variations on Diffie-Hellman: why not just multiply them?

1. Alice and Bob agree on a (finite) cyclic group G and a generating element g
in G . We will write the group G multiplicatively.

2. Alice picks a random natural number a and sends g a to Bob.

3. Bob picks a random natural number b and sends gb to Alice.

4. Alice computes KA = (gb) · (g a) = gb+a.

5. Bob computes KB = (g a) · (gb) = g a+b.

Obviously, KA = KB = K , which can serve as the shared secret key.

Drawback: anybody can obtain K the same way!
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Security assumptions

To recover g ab from (g , g a, gb) is hard.

To recover a from (g , g a) (discrete log problem) is hard.
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The Ko-Lee et al. protocol

1. Alice and Bob agree on a group G and an element w in G . Thus, G and w
are public.

2. Alice picks a private a ∈ G and sends w a = a−1wa to Bob.

3. Bob picks a private b ∈ G and sends wb = b−1wb to Alice.

4. Alice computes KA = (wb)a = wba, and Bob computes KB = (w a)b = w ab.

If ab = ba, then Alice and Bob get a common private key KB = w ab = wba = KA.
Typically, there are two public subgroups A and B of the group G , given by their
(finite) generating sets, such that ab = ba for any a ∈ A, b ∈ B.
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The platform group G

(P0) The group G has to be well known. More specifically, the conjugacy search
problem (i.e., recovering a from (w , a−1wa)) in the group G either has to
be well studied or can be reduced to a well-known problem.

(P1) The word problem in G should have a fast (e.g. quadratic-time) solution by
a deterministic algorithm. Better yet, there should be an efficiently
computable “normal form” for elements of G .

(P2) The conjugacy search problem should not have an efficient solution by a
deterministic algorithm.

(P3) There should be a way to disguise elements of G so that it would be
impossible to recover x from x−1wx just by inspection. Example: “normal
form”.

(P4) G should be “large”, i.e. have a “fast growth”. This is necessary to have a
sufficiently large key space.
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Platform groups

• Braid groups

• Thompson’s group

• Small cancellation groups

• Polycyclic groups

• Groups of matrices over various rings
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Semidirect product

Let G ,H be two groups, let Aut(G ) be the group of automorphisms of G , and let
ρ : H → Aut(G ) be a homomorphism. Then the semidirect product of G and H
is the set

Γ = G oρ H = {(g , h) : g ∈ G , h ∈ H}

with the group operation given by

(g , h)(g ′, h′) = (gρ(h) · g ′, h · h′).

Here gρ(h) denotes the image of g under the automorphism ρ(h).
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Holomorph

If H = Aut(G ), then the corresponding semidirect product is called the holomorph
of the group G . Thus, the holomorph of G , usually denoted by Hol(G ), is the set
of all pairs (g , φ), where g ∈ G , φ ∈ Aut(G ), with the group operation given by

(g , φ) · (g ′, φ′) = (φ′(g) · g ′, φ · φ′).

It is often more practical to use a subgroup of Aut(G ) in this construction.

Also, if we want the result to be just a semigroup, not necessarily a group, we can
consider the semigroup End(G ) instead of the group Aut(G ) in this construction.
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Using semidirect product
(Habeeb-Kahrobaei-Koupparis-Shpilrain)

Let G be a group (or a semigroup). An element g ∈ G is chosen and made public
as well as an arbitrary automorphism (or an endomorphism) φ of G . Bob chooses
a private n ∈ N, while Alice chooses a private m ∈ N. Both Alice and Bob are
going to work with elements of the form (g , φk), where g ∈ G , k ∈ N.

1. Alice computes (g , φ)m = (φm−1(g) · · ·φ2(g) · φ(g) · g , φm) and sends only
the first component of this pair to Bob. Thus, she sends to Bob only the
element a = φm−1(g) · · ·φ2(g) · φ(g) · g of the group G .

2. Bob computes (g , φ)n = (φn−1(g) · · ·φ2(g) · φ(g) · g , φn) and sends only
the first component of this pair to Alice: b = φn−1(g) · · ·φ2(g) · φ(g) · g .

3. Alice computes (b, x) · (a, φm) = (φm(b) · a, x · φm). Her key is now
KA = φm(b) · a. Note that she does not actually “compute” x · φm because
she does not know the automorphism x ; recall that it was not transmitted to
her. But she does not need it to compute KA.
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Using semidirect product (cont.)

4. Bob computes (a, y) · (b, φn) = (φn(a) · b, y · φn). His key is now
KB = φn(a) · b. Again, Bob does not actually “compute” y · φn because he
does not know the automorphism y .

5. Since (b, x) · (a, φm) = (a, y) · (b, φn) = (g , φ)m+n, we should have
KA = KB = K , the shared secret key.
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Special case: Diffie-Hellman

G = Z∗p
φ(g) = gk for all g ∈ G and a fixed k , 1 < k < p − 1.

Then (g , φ)m = (φm−1(g) · · ·φ(g) · φ2(g) · g , φm).

The first component is equal to gkm−1+...+k+1 = g
km−1
k−1 .

The shared key K = g
km+n−1

k−1 .

“The Diffie-Hellman type problem” would be to recover the shared key

K = g
km+n−1

k−1 from the triple (g , g
km−1
k−1 , g

kn−1
k−1 ). Since g and k are public, this is

equivalent to recovering gkm+n

from the triple (g , gkm

, gkn

), i.e., this is exactly
the standard Diffie-Hellman problem.

Vladimir Shpilrain, shpil@groups.sci.ccny.cuny.edu May 24, 2013 16 / 19



Special case: Diffie-Hellman

G = Z∗p
φ(g) = gk for all g ∈ G and a fixed k , 1 < k < p − 1.

Then (g , φ)m = (φm−1(g) · · ·φ(g) · φ2(g) · g , φm).

The first component is equal to gkm−1+...+k+1 = g
km−1
k−1 .

The shared key K = g
km+n−1

k−1 .

“The Diffie-Hellman type problem” would be to recover the shared key

K = g
km+n−1

k−1 from the triple (g , g
km−1
k−1 , g

kn−1
k−1 ). Since g and k are public, this is

equivalent to recovering gkm+n

from the triple (g , gkm

, gkn

), i.e., this is exactly
the standard Diffie-Hellman problem.

Vladimir Shpilrain, shpil@groups.sci.ccny.cuny.edu May 24, 2013 16 / 19



Special case: Diffie-Hellman

G = Z∗p
φ(g) = gk for all g ∈ G and a fixed k , 1 < k < p − 1.

Then (g , φ)m = (φm−1(g) · · ·φ(g) · φ2(g) · g , φm).

The first component is equal to gkm−1+...+k+1 = g
km−1
k−1 .

The shared key K = g
km+n−1

k−1 .

“The Diffie-Hellman type problem” would be to recover the shared key

K = g
km+n−1

k−1 from the triple (g , g
km−1
k−1 , g

kn−1
k−1 ). Since g and k are public, this is

equivalent to recovering gkm+n

from the triple (g , gkm

, gkn

), i.e., this is exactly
the standard Diffie-Hellman problem.

Vladimir Shpilrain, shpil@groups.sci.ccny.cuny.edu May 24, 2013 16 / 19



Platform: matrices over group rings

Our general protocol can be used with any non-commutative group G if φ is
selected to be an inner automorphism. Furthermore, it can be used with any
non-commutative semigroup G as well, as long as G has some invertible
elements; these can be used to produce inner automorphisms. A typical example
of such a semigroup would be a semigroup of matrices over some ring.

We use the semigroup of 3× 3 matrices over the group ring Z7[A5], where A5 is
the alternating group on 5 elements.
Then the public key consists of two matrices: the (invertible) conjugating matrix
H and a (non-invertible) matrix M. The shared secret key then is:
K = H−(m+n)(HM)m+n.
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Security assumptions

To recover H−(m+n)(HM)m+n from (M, H, H−m(HM)m, H−n(HM)n) is hard.

To recover m from (M, H, H−m(HM)m) is hard.
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Thank you
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