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We draw connected finite plane graphs and label the edges:
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Faces are oriented clockwise.
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We draw connected finite plane bipartite graphs:
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Labels are on the red corners. Faces are oriented clockwise.
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Introducing infrastructures

Definition
An infrastructure is a semigroup S and two subsets S+,SL ⊆ S,
such that:

if xy ∈ S+ for x , y ∈ S, then yx ∈ S+.

The elements in S+ are acceptors. The elements in SL are
labels.

If 0 ∈ S then we usually insist that 0 6∈ S+, 0 6∈ SL, and for all
x ∈ S \ {0} there is a y ∈ S with xy ∈ S+.

Lemma (Cyclicity)
Let S be an infrastructure. If s1s2 · · · sk ∈ S+, then all rotations
sisi+1 · · · sks1s2 · · · si−1 ∈ S+.
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Examples of infrastructures

Let G be a group. Let S = G, SL := G \ {1} and S+ := {1}.

Let S(2) := {A,1,0} with A · A = 1 and all other products 0.
Set S(2)

+ := {1} and S(2)
L := {A}.

Let S(3) := {A,A−1,1,0} with A · A−1 = A−1 · A = 1 and all
other products 0.
Set S(3)

+ := {1} and S(3)
L := {A,A−1}.

Take any groupoid, adjoin a 0 and set undefined products
to 0. Let all identities accept.
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Further examples of infrastructures

Lemma
The zero direct product of infrastructures (with unions of labels
and accepters) is an infrastructure.

e.g. P := {R,S, I,T , J,U,V ,K ,0}, P+ := {I, J,K},
PL := {S,R,T ,U,V}

R S I T J U V K
R S I R · · · · ·
S I R S · · · · ·
I R S I · · · · ·
T · · · J · · · ·
J · · · · · · · ·
U · · · · · V K U
V · · · · · K U V
K · · · · · U V K

These are two cyclic groups of order 3 and an S(2) for T .
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Diagrams

S – infrastructure. Let R be a set of cyclic words in SL.

Definition (Valid diagram)

A valid diagram is: a finite set X , permutations R,G,B of X and
a function ` : X → S, such that

the product RGB = 1,
the group 〈R,G,B〉 is transitive on X ,
the total number of cycles of R, G and B on X is |X |+ 2,
for every R-cycle x , xR, . . . , xRk the product
`(x) · `(xR) · · · · · `(xRk ) ∈ S+, and
for all but maybe one (the boundary) G-cycle
x , xG, . . . , xGk the word (`(x), `(xG), . . . , `(xGk ))	 ∈ R.

There is a bijection between plane bipartite graphs and such
triples R,G,B, up to appropriate equivalence.

Colva Roney-Dougal Computation in FP-groups



V

U

S

S
S

T

U

U

U

R

S

R

R

U

VT
T

S

S

S

S S

V
V

U

U V

V

T

R

R

S S

R

R

S

V

S

T T

K

I

K

We can easily store this on a computer!
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Two fundamental problems

A diagram is reduced if Im` ⊆ SL.
S – infrastructure. Let R be a finite set of cyclic words in SL.

Problem (Diagram boundary problem)

Algorithmically devise a procedure that decides for any cyclic
word w	 in SL whether or not there is a reduced diagram such
that the external face is labelled by w.

Problem (Isoperimetric inequality)
Algorithmically find and prove a function D : N→ N, s.t. for
every cyclic word w in SL of length k that is the boundary label
of a valid diagram, there is one with at most D(k) internal faces.

If there is a linear D, we call 〈S | R〉 hyperbolic.

Colva Roney-Dougal Computation in FP-groups



Applications

These diagrams and their two fundamental problems encode
the word problem in quotients of the free group,
the word problem in quotients of free products of groups,
the word problem for relative presentations
the rewrite decision problem for rewrite systems,
the word problem in finite semigroup and monoid
presentations,
jigsaw-puzzles in which you can use arbitrarily many
copies of each piece,
computations of non-deterministic Turing machines,
etc. ???

You just have to choose the right infrastructure!
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Classical Small Cancellation

Consider a group presentation P = 〈X |R〉, relators freely
cyclically cancelled, inverse closed.

Suppose that no two relators in R have common subword of >
1/4 than either of their lengths.
Suppose also that internal vertices in a reduced van Kampen
diagram either have valency 2 or at least 4.

Then P is a C′(1/4) presentation.

Can show that group presented by P is hyperbolic.
There exists an efficient algorithm to solve the word problem for
C′(1/4) groups.

We want to generalise this idea – and to make it a property of
groups rather than of their presentations.
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Combinatorial Curvature

Given a plane graph, we endow
each vertex with +1 unit of combinatorial curvature,
each edge with −1 unit of combinatorial curvature and
each internal face with +1 unit of combinatorial curvature.

Euler’s formula
The total sum of our combinatorial curvature is always +1.

Given S,R, first find “pieces”,
compute the finite list of all possible edges,
edges now have different lengths,
denote the new set of sides of edges in a diagram by Ê .
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Curvature redistribution

Idea (Officers)
We redistribute the curvature locally in a conservative way.
We call a curvature redistribution scheme an officer.

“Officer Tom”:

Phase 1: Tom moves the negative curvature to the vertices:

−1/2

−1/2

Any vertex in any diagram with valency v (≥ 3) now has
+1− v

2 < 0.
All internal faces still have +1, all edges now have 0.
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Phase 2 of Tom

Tom now moves the positive curvature from faces to vertices:

*
0<c<1/2

+1−v/2

+1

Corner values for Tom
A corner value c of Tom depends on two edges that are
adjacent on a face. Tom moves c units of curvature to the
vertex v .
Default values for c: 1/6 if v might have valency 3, and 1/4
otherwise.
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What do officers achieve?

Officers try to redistribute the curvature, such that for all
permitted diagrams, after redistribution

every internal face has < −ε curvature (for some explicit
ε > 0),
every vertex has ≤ 0 curvature.
every edge has 0 curvature,
every face with more than one external edge has ≤ 0
curvature.

Consequence:
All the positive curvature is on faces touching the boundary
once.

(Need to show that diagram boundaries have a permitted
diagram.)
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Using and analysing curvature

The total positive curvature ≤ n (boundary length).
Let F := #internal faces, then

1 < n − F · ε =⇒ F < ε−1 · n =⇒ hyperbolic

Let L := {1,2, . . . , `} and a1,a2, . . . ,a` ∈ R and T :=
∑

m∈L am.
Define πL : Z→ L such that z ≡ πL(z) (mod `).

Lemma (Goes up and stays up)
If T ≥ 0 then ∃ j ∈ L s.t. for all i ∈ N the partial sum

tj,i :=
i−1∑
m=0

aπL(j+m) ≥ 0.

Corollary
Assume that there are k ∈ N and ε ≥ 0 such that for all j ∈ L
there is an i ≤ k with tj,i < −ε, then T < −ε · `/k.
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Sunflower

To show that every internal face has curvature < −ε:

L 2

L
1

c

L

Use Goes up and stays up on L1+L2
2L − c.

Colva Roney-Dougal Computation in FP-groups



Poppy

To show that every internal vertex has curvature ≤ 0:

3
c c

4

c
2

c
1

Use Goes up and stays up on c + 1−v/2
v = c + 2−v

v .
Do valency v = 3 first, if nothing found, increase v .
This terminates: higher valencies tend to be negatively curved.
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What does Tom achieve?

If Tom found no bad sunflowers or poppies, we have
determined an explicit ε,
proved hyperbolicity, and
can in principle solve the diagram boundary problem.

If we did find bad sunflowers or poppies, we can still
improve our choices for the corner values
(leads to difficult optimisation/linear program problems),
forbid more diagrams (if possible)
(need to show that every boundary is proved by a
permitted one),
or switch to a more powerful officer
(with further sight or redistribution), . . .

and try again. If 〈S | R〉 is not hyperbolic, this will not work.
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