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We draw connected finite plane graphs and label the edges:

Faces are oriented clockwise.
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We draw connected finite plane bipartite graphs:

Labels are on the red corners. Faces are oriented clockwise.
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Introducing infrastructures

Definition
An infrastructure is a semigroup S and two subsets S, ,S; C S,
such that:

if xy e Sy forx,y € S,thenyx € S,.

The elements in S, are acceptors. The elements in S; are
labels.

If 0 € Sthen we usually insistthat 0 ¢ S, 0 ¢ S;, and for all
x € S\ {0} thereisay € Swith xy € S;.

Let S be an infrastructure. If s1s» - - - s € Sy, then all rotations
SiSit1++SkS1S2+ " Si—1 € Sy.
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Examples of infrastructures

@ LetGbeagroup. Let S=G, S, :=G\ {1} and S; :={1}.

@ Let S® := {A 1,0} with A- A =1 and all other products 0.
Set P .= {1} and S .= {A}.

o Let SO .= {A A1 1,0}withA-AT=A"1.A=1andall
other products 0.
Set S .= {1} and 8 .= {4 A1},

@ Take any groupoid, adjoin a 0 and set undefined products
to 0. Let all identities accept.
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Further examples of infrastructures

The zero direct product of infrastructures (with unions of labels
and accepters) is an infrastructure.

eg. P.={R,S,I,T,J,U,V,K,0}, P, .= {I,J,K},
P, :={S,R,T,U,V}

_ IRIS[ITIJ]U[VIK]
s|i|Rr|s
1Ris|1| -
T J
U VKU
v K|ulv
K Ulv kK

These are two cyclic groups of order 3 and an S for T.

Colva Roney-Dougal Computation in FP-groups




Ell Computation in FP-groups



Diagrams

S — infrastructure. Let R be a set of cyclic words in S;.

Definition (Valid diagram)
A valid diagram is: a finite set X, permutations R, G, B of X and
a function ¢ : X — S, such that
@ the product RGB = 1,
@ the group (R, G, B) is transitive on X,
@ the total number of cycles of R, Gand Bon X is | X| + 2,
e for every R-cycle x, xR, ..., xR* the product
0(x) - 6(xR) - --- - £(xR*) € S, and
@ for all but maybe one (the boundary) G-cycle
X, XG, ..., xGF the word (¢(x), {(xG), ..., {(xGK))© € R.

There is a bijection between plane bipartite graphs and such
triples R, G, B, up to appropriate equivalence.
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We can easily store this on a computer!
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Two fundamental problems

A diagram is reduced if Im¢ C S; .
S —infrastructure. Let R be a finite set of cyclic words in S;.

Problem (Diagram boundary problem)

Algorithmically devise a procedure that decides for any cyclic
word w® in S; whether or not there is a reduced diagram such
that the external face is labelled by w.

Problem (Isoperimetric inequality)

Algorithmically find and prove a function D : N — N, s.t. for
every cyclic word w in S; of length k that is the boundary label
of a valid diagram, there is one with at most D(k) internal faces.

If there is a linear D, we call (S| R) hyperbolic.



Applications

These diagrams and their two fundamental problems encode
@ the word problem in quotients of the free group,
@ the word problem in quotients of free products of groups,
@ the word problem for relative presentations
@ the rewrite decision problem for rewrite systems,

@ the word problem in finite semigroup and monoid
presentations,

@ jigsaw-puzzles in which you can use arbitrarily many
copies of each piece,

@ computations of non-deterministic Turing machines,
@ etc. 777

You just have to choose the right infrastructure!
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Classical Small Cancellation

Consider a group presentation P = (X|R), relators freely
cyclically cancelled, inverse closed.

Suppose that no two relators in R have common subword of >
1/4 than either of their lengths.

Suppose also that internal vertices in a reduced van Kampen
diagram either have valency 2 or at least 4.

Then P is a C'(1/4) presentation.

Can show that group presented by P is hyperbolic.
There exists an efficient algorithm to solve the word problem for
C'(1/4) groups.

We want to generalise this idea — and to make it a property of
groups rather than of their presentations.
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Combinatorial Curvature

Given a plane graph, we endow
@ each vertex with +1 unit of combinatorial curvature,
@ each edge with —1 unit of combinatorial curvature and
@ each internal face with +1 unit of combinatorial curvature.

Euler’s formula
The total sum of our combinatorial curvature is always +1.

Given S, R, first find “pieces”,

@ compute the finite list of all possible edges,
@ edges now have different lengths,
@ denote the new set of sides of edges in a diagram by E.
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Curvature redistribution

Idea (Officers)

We redistribute the curvature locally in a conservative way.
We call a curvature redistribution scheme an officer.

“Officer Tom™:

Phase 1: Tom moves the negative curvature to the vertices:

/12N

12/

Any vertex in any diagram with valency v (> 3) now has
+1 -4 <0.
All internal faces still have +1, all edges now have 0.
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Phase 2 of Tom

Tom now moves the positive curvature from faces to vertices:
+1-v/2

/

Corner values for Tom

A corner value ¢ of Tom depends on two edges that are
adjacent on a face. Tom moves c units of curvature to the
vertex v.

Default values for c¢: 1/6 if v might have valency 3, and 1/4
otherwise.
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What do officers achieve?

Officers try to redistribute the curvature, such that for all
permitted diagrams, after redistribution

@ every internal face has < —e curvature (for some explicit
e > 0),

@ every vertex has < 0 curvature.
@ every edge has 0 curvature,

@ every face with more than one external edge has < 0
curvature.

Consequence:

All the positive curvature is on faces touching the boundary
once.

(Need to show that diagram boundaries have a permitted
diagram.)
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Using and analysing curvature

@ The total positive curvature < n (boundary length).
@ Let F := #internal faces, then

1<n—-F.¢e = F<e'.-n = hyperbolic

LetL:={1,2,...,/}and @y, a,...,agc Rand T := >, ., am.
Define 7, : Z — L such that z = 7/ (z) (mod ¢).

Lemma (Goes up and stays up)

IfT >0then3jec Ls.t foralli € N the partial sum
i—1

fii= D an(rm) > 0.

m=0

Corollary

Assume that there are k € N and e > 0 such that for all j € L
thereisani < k withtj; < —¢, then T < —e - /K.
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Sunflower

To show that every internal face has curvature < —e:

\/

Li+L
Use Goes up and stays up on =522 — c.
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Poppy

To show that every internal vertex has curvature < 0:

1—v/2 o_
Use Goes up and stays up on ¢ + —*= = ¢ + %,

Do valency v = 3 first, if nothing found, increase v.
This terminates: higher valencies tend to be negatively curved.
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What does Tom achieve?

If Tom found no bad sunflowers or poppies, we have
@ determined an explicit ¢,
@ proved hyperbolicity, and
@ can in principle solve the diagram boundary problem.

If we did find bad sunflowers or poppies, we can still

@ improve our choices for the corner values
(leads to difficult optimisation/linear program problems),

@ forbid more diagrams (if possible)
(need to show that every boundary is proved by a
permitted one),

@ or switch to a more powerful officer
(with further sight or redistribution), . . .

and try again. If (S| R) is not hyperbolic, this will not work.

Colva Roney-Dougal Computation in FP-groups



