
Algebraic models of computation

Sarah Rees,
,

University of Newcastle, UK

Braunschweig, 23rd May 2013

1

0. Introduction

Qn: Why would we want to study algebraic models of computation?

Ans: To interpret computability and complexity of computation in a
mathematical framework.

Qn: What in particular do I want to model?

Ans: Really I’m searching for algebraic models of quantum computation,
particularly at a low level (corresponding to the classical models of finite
state automata, pushdown automata etc.) But there’s a lot we need to
understand first about modelling classical computation. So I’ll say very
little about quantum computation today.

My collaborators? Andrew Duncan, Nick Loughlin, colleagues Dritschel,
Vdovina, White + helpful input from Kambites, Lawson, Gilman.

Classical vs quantum computation

The states of a classical computation can be viewed as binary strings.
So we can view a classical computation as a sequence of such strings, and
semigroups and monoids, in their actions on these sets of states, provide
a natural algebraic framework to study classical computation.

But the states of a quantum computer are complex linear combina-
tions of binary strings, and so belong to a Hilbert space. Transition be-
tween these states is through unitary transformations, is always reversible.
C∗-algebras are the natural objects to act on Hilbert spaces, and so are
excellent candidates to model quantum computation algebraically.

Polycyclic monoids and Cuntz-Krieger algebras

We are particularly interested in the Cuntz-Krieger algebras, which
can be constructed out of polycylic monoids; those monoids are fun-
damental to the study of pushdown automata (rather basic machines for
classical computation).

Maybe these algebras describe a type of quantum computation occupying
a similar position in the hierarchy of quantum computation to that of
pushdown automata in the classical hierarchy?

Maybe they do. But before we can answer that question we need to
understand better than we currently do how monoids such as the polycylic
monoids can be used to model classical computation. That is what this
presentation is about. It describes an ongoing exploration.

Plan for today

1. Using machines: I’ll set up some notation for Turing’s model for com-
putation, and the simplest machines in the Chomsky hierarchy, finite
state automata fsa and pushdown automata pda.

2. Standard semigroups: I’ll describe the construction of Post’s semigroup
and the syntactic monoid for a Turing machine, and the transition
monoid for a fsa.

3.Monoid automata: I’ll describe a model of computation defined by
adding a monoid register to a fsa, studied by Kambites and others,
and show that this seems to provide answers to many of my questions.

1. Using machines to model computability and complexity

Alan Turing, who introduced the Turing machine in 1936 and (relative to
this) defined notions of computability and computable numbers, proved
the equivalence of his notion of computability and Alonzo Church’s notion
of ‘effective calculability’. According to the Church-Turing thesis, this is
the right notion of computability.

From Turing’s definition of a Turing machine it is straightforward to de-
duce

• a proof that some sets of numbers, some functions are not computable,

• a proof that there are procedures that do not terminate on all input.

Different types of algorithms (of varying complexity) are easily defined
by imposing various types of restrictions on the definition of a Turing
machine; so finite state machines are defined as Turing machines with
bounded memory, pushdown automata as machines with a simple push-
down stack as memory.

Turing machines are frequently associated with semigroups and monoids;
the existence of a Turing machine with insoluble halting problem is equiv-
alent to the existence of a semigroup with insoluble word problem.

Many other questions of computability can be seen to be equivalent to
questions about semigroups or monoids.

What is a Turing machine?

The simplest of many equivalent models is probably a device consisting of

• a single bi-infinite tape divided up into discrete cells, each of which may
contain a letter of a finite alphabet B or be blank,

• a read-write (rw) head that can move left and right along the tape,

• that can exist in any one of a finite number of states ∈ Σ, an initial
state σ0, some halting states, and some of those accepting states.

At any one time the head points to a single cell of the tape. In a single
move, the tape head reads from that cell, writes to the cell, changes
state, and moves right or left one cell, or stays still, according to a rule
(σ, b) 7→ (σ′, b′, η), where σ, σ′ ∈ Σ, b, b′ ∈ B, η ∈ {r, l,c}.

b

✣✢
✤✜
σξ1

︷ ︸︸ ︷

· ·

ξ2
︷ ︸︸ ︷

· ·

A string (over an alphabet A ⊆ B) is input to the machine by writing
it on the tape, and is accepted if the machine moves from an initial
configuration with that input into an accepting state; the final contents
of the tape are the corresponding output.

The configuration of M at any point is determined by its state, the
position of the head, and the contents of the tape. Hence it can be
described by a string of the form ξ1σbξ2, where σ ∈ Σ is the current
state, b is the symbol under the tape head, and ξ1, ξ2 ∈ B∗ are the
strings to the left and right of the tape head.

We can consider a Turing machine as a device

• to compute a set of strings that it enumerates sequentially,

• to compute the function that maps each input string to the correspond-
ing output string, or

• to recognise the set of inputs from which it reaches an accepting state.

Other models, with any finite number of bi-infinite or semi-infinite tapes,
and a rw head for each, are equivalent.

A set of strings is

recursively enumerable if it’s the language recognised by a Turing
machine, or, equivalently, can be enumerated by a tm,

recursive if it’s the language of a tm that halts on all input.

Finite state automata and pushdown automata

The most basic computational machines, namely

finite state automata , which have bounded memory, and

pushdown automata , with pushdown stacks as memory,

can easily be described within this framework of Turing machines, although
other descriptions may be more natural.

E.g. fsa recognising binary strings of even length

The state records the parity of the string length.

�
�
�✒

④✣✢
✤✜

σ0 ④σ1

❅❅
��

0, 1

��
❅❅

0, 1

Any fsa can be modelled as a Turing machine with a single semi-infinite
tape used only for input. The rw head starts at the left hand end, moves
right on each move, halts at the right hand end.

E.g. pda recognising strings with as many 0’s as 1’s.

The state records whether more 0’s or more 1’s have been read, and the
stack the (positive) difference between the numbers of 0’s and 1’s. The
machine accepts on empty stack.

✡
✡

✡
✡✡✢

��❅❅

(, 0;×)
(×, 0;××)

(×, 1; ǫ)

✬

✫

✩

✪
④σ0 ④

✬

✫

✩

✪��❅❅

(, 1;×)
(×, 1;××)
(×, 0; ǫ)

σ1

❅❅
��

(, 1;×)

��
❅❅

(, 0;×)
×
×
...
...
...
×
×

The natural tm model for a pda uses two semi-infinite tapes, the 1st
for the stack, the 2nd for input. The 1st tape head moves so as to remain
at the right hand end of its tape, the 2nd moves rightward, at most one
cell in a move (head stays still for an ǫ-move, where no input is processed).

Determinism for a Turing machine

A tm M is deterministic if from any a given input string w there is
no choice in the operation of M, non-deterministic otherwise.

For an fsa, determinism corresponds to (at most) one transition from
each state σ on any one input symbol a ∈ A. (‘No transition’ would be
interpreted as transition to an invisible failure state.)

For a pda, determinism corresponds to (at most) one transition defined
by any one combination (σ, y, a) of state σ ∈ Σ, top stack symbol
y ∈ Y ∪ { } and input symbol a ∈ A.

A deterministic pda could well include ǫ-moves, but corresponding to a
given pair (σ, y) there may not be than one ǫ-move, nor both an ǫ-move
and a move reading an input symbol.

Working simply from the definition of a Turing machine, we can prove

• that there are functions that cannot be computed,

• that there are algorithms that do not halt on all input.

The first result follows from the fact that

each Turing machine can be labelled by a unique binary string, its ‘code’,
and so there are countably many Turing machines, but

there are uncountably many sets of strings over any finite alphabet,

The second result can be deduced from the fact that the set of Tur-
ing machine codes not accepted by the machines they label cannot be
recognised, but its complement can.

These results are standard. We can use more algebraic arguments once
we associate a semigroup to a Turing machine.

2. Standard semigroups for a Turing machine M

• Post constructed a semigroup (called γ(M) in Rotman’s book) on the
set of products over a set containing Σ∪B, equating any two products
corresponding to configurations related by a move of the tm M.
If L(M) is non-recursive then Γ(M) has insoluble word problem.

• The syntactic monoid Syn(L) of the language L = L(M) is the
quotient of A∗ by the equivalence relation ≈ defined by

u ≈ u′ ⇐⇒ (∀v1, v2 ∈ A∗, (v1uv2 ∈ L ⇐⇒ v1u
′v2 ∈ L))

• To any fsa M we can associate the transition monoid Tr(M), that
describes the partial action of M on its set of states. Of course M is
completely specified by that representation of Tr(M), together with
an assignment of types to its state set. Our goal: a meaningful
definition of Tr(M) for a general tm M.

What use are these semigroups?

Post’s semigroup

expresses the computing power of the machine in terms of an equation in
the semigroup. He used it to construct a semigroup with insoluble word
problem out of a Turing machine that doesn’t halt on all input (proving
the ‘Markov-Post theorem’).

The syntactic monoid

Syn(L) ‘recognises’ L, (By definition, a monoid M recognises a subset
L of A∗ if

∃α : A∗ ⇒ M, L = α−1(α(L)).

And in fact Syn(M) is a quotient of any monoid that recognises L.

It’s clear that, for any L, Syn(L) = Syn(A∗ \ L).

Syn(L) is finite ⇐⇒ L is regular (i.e. the language of an fsa).

This result is the basis of the proof that the equivalence of two regular
expressions (defining regular languages) is decidable.

Classifying regular languages according to Syn(L)

Eilenberg (in his 1976 book) finds a correspondence between varieties of
regular languages and (pseudo-)varieties of monoids.

We can express various properties of a regular language (star-freeness,
local testability, etc) in terms of rules holding in its syntactic monoid.

Property of L Definition Property of M = Syn(L)
Star-free Built from finite sets using

concatenation, ∩, ∪, c;
correspond to Boolean cir-
cuits with limiting fanning.

Aperiodic, i.e. containing
no non-trivial subgroups
(Schützenberger)

k-testable w ∈ L? depends on na-
ture of substrings of length
≤ k.

For all x, y, z ∈ A∗ with
|x| = k − 1,
xyxzx =M xzxyx, and
xy = zx ⇒ xy =M xy2.
(Brzozowski&Simon)

Locally testable k-testable for some k Syn(L) is locally (idem-
potent and commutative),
(McNaughton;
Brzozowski&Simon)

Piecewise testable For some fixed k, w ∈ L?
depends on nature of sub-
sequences of length ≤ k,

J-trivial, i.e. admits a par-
tial order � s.t.
∀x, y, xy � x, y

Transition monoid of an fsa

If M is the minimal fsa accepting a language L, Tr(M) and Syn(L)
are isomorphic. We can use the relationship betweenTr(M) and Syn(L)
together with the finiteness of Syn(M) to prove the pumping lemma for
regular languages:

For any regular language L, ∃N s.t. any w ∈ L with |w| > N has
the form uxv, where uxnv ∈ L for all n ≥ 0.

We can define Tr(M) for any deterministic fsa M, but we need M to
be minimal for L to deduce Tr(M) ∼= Syn(L).

For M non-deterministic without ǫ-moves we can define a monoid of
transition relations on Σ(M); that’s isomorphic to Tr(M′), where M′ is
the deterministic fsa constructed from M using the standard algorithm.

The syntactic monoid: Beyond regular languages

Once we leave regular languages, Syn(L) is infinite and its structure is
less constrained.

Languages in different parts of the Chomsky hierarchy can have the same
infinite syntactic monoid.

Example:
L := {w ∈ {a, b}∗ : w =

Z2 1}

L and its complement have the same syntactic monoid; any group is
the syntactic monoid of its word and co-word problem. But while Lc is
context-free, L itself is not (HRRT,2005 + Muller&Schupp,1983).

On the whole, Syn(L) is not easy to compute. But we can look at some
examples (computed by Nick Loughlin).

Syntactic monoids of some context-free languages

The two context-free languages, {aibi : i ≥ 0} and {aibj : 0 ≤ i ≤ j},
have the same syntactic monoid

〈a, b, 1, 0 | ba = 0, a2b2 = ab〉.

For the one-sided Dyck language D1 of ‘balanced parentheses’ over {(,)},
the syntactic monoid is the bicyclic monoid

Syn(D1)
∼= P1 = 〈a, b | ab = 1〉,

For the one-sided Dyck language Dn of ‘balanced parentheses’ over n

distinct pairs of brackets we have the polycylic monoid,

Syn(Dn) ∼= Pk = 〈p1, . . . pk, q1, . . . , qk | piqj = δij〉

For the two-sided Dyck language D̃n (where we drop the requirement that
one symbol in a pair ‘opens’, the other ‘closes’) we have Syn(D̃n) ∼= Fn.

In his thesis (1979) Sakarovitch proves some general results about the
syntactic monoids of context-free languages, such as:

Theorem (Sakarovitch 1979) A context-free language whose syn-
tactic monoid is an abelian group is deterministic ⇐⇒ the rank of the
group is at most 1.

In general it seems that the syntactic monoid of a non-regular language is
hard to compute, somewhat unconstrained, and not tremendously useful.
However it turns out that the polycyclic monoids, as syntactic monoids of
Dyck languages are important.

Context-free languages: the big results

Theorem (Chomsky-Schützenberger, 1963) Any context-free
language is the homomorphic image of the intersection of a one-sided
Dyck language with a regular language (over the same alphabet of 2n
symbols). The same is true with respect to a two-sided Dyck language.

Hence one might hope to relate every context-free language to a monoid
associated with a polycylic monoid. We’ll see soon that in fact we can.

We might also hope for an algebraic explanation of the pumping lemma
for context-free languages (see Amarillo& Jeanmougin 2012):

For any context-free language L, ∃N s.t. any w ∈ L with |w| > N

has the form uvxyz, where

|vxy| ≤ N, |vy| ≥ 1, ∀n ≥ 0, uvnxynz ∈ L.

Defining Tr(M) for a fully deterministic pda

We call a pda M fully deterministic if it is deterministic with no
ǫ-transitions. In that case, we can define a monoid

Tr(M) = 〈τa : a ∈ A〉

of partial maps on Σ× Y ∗.

Where τ : Σ× (Y ∪{ })×A → Σ× (Y ∗∪{ }) is the transition function
of the pda, we define partial maps τa : a ∈ A on Σ× Y ∗ as follows.

If u ∈ Y ∗ is a non-empty string, let l[u] be the last letter of u, and pre[u]
the prefix of u obtained by deleting l[u]. Suppose that a ∈ A, σ ∈ Σ.

If u ∈ Y ∗ is non-empty and τ (σ, l[u], a) = (σ′, u′),
then τa(σ, u) := (σ′, pre[u]u′).
If τ (σ, , a) = (σ′′, u′′), then τa(σ, ǫ) := (σ′′, u′′).

Example: We compute the transition monoid of the pda M that
recognises the identity problem of the polycylic monoid Pn.

M has a single state σ0, stack alphabet y1, . . . yn, and the following
transition function:

τ (σ0, , pi) = (σ0, yi)

τ (σ0, yj, pi) = (σ0, yjyi)

τ (σ0, yi, qi) = (σ0, ǫ)

The description above defines partial maps τpi, τqi via

τpi(σ0, v) = (σ0, vyi), τqi(σ0, vyi) = (σ0, v),

for any string v ∈ Y ∗. Clearly it’s natural to consider this as a partial
action on Y ∗ alone. τpi appends yi to the stack, while τqi deletes yi from
the top of the stack, provided it is there. Of course τpi and τqi generate
precisely the polycyclic monoid.

So far this definition of transition monoid seems to be quite restricted.
However it turns out that we can apply it much more generally, once we
start to model computation using monoid automata.

Monoid automata give us models of computation in which basically the
complexity of the computation is encoded in the monoid, M , so e.g. we
can set the monoid to be a group with insoluble word problem and hence
describe a machine on which the word problem for the group can be
solved. That example might seem a little absurd . . . Nonetheless we see
that different choices of monoids will define distinct families of monoid
automata with differing computational capabilities.

My background comes from Mark Kambites’ 2006 article ‘Formal lan-
guages and groups as memory’.

3. Monoid automata

An M -automaton M over a given monoid M , alphabet A is defined by
adjoining to an fsa over A a register to hold an element m ∈ M .

• An element of M is attached to each transition of the fsa.

• Initially the register a selected element m0 of M .

• As a string is read through the fsa

• the state σ is updated according to the transition rules of the fsa,

• m is updated by successive right multiplications by the monoid ele-
ments labelling the transitions.

• w is accepted by the monoid automaton if

• w leads to an accepting state of the fsa,

• the final element in the monoid register is equal to 1M .

Capturing the entire Chomsky hierarchy

• Any fsa can be seen as a monoid automaton based on the monoid
with one element.

• A pda with a stack alphabet of n symbols can be modelled by a
Pn-automaton based on the same underlying fsa. We’ll describe the
construction later.

• Any pda can be modelled by a P2-automaton.

• Any pda can be modelled by an F2-automaton.

• Any Turing machine can be modelled using states and two independent
stacks, so as a P2 × P2-automaton or an F2 × F2-automaton.

It’s no coincidence that we see the syntactic monoids of both the Dyck
languages here.

Representing a pda as a Pn-automaton

A pda M with stack alphabet Y = {y1, . . . , yn} is modelled by a Pn-
automaton M′ based on the same underlying fsa, as follows,
where p : Y ∗ → Pn is the homomorphism defined by ∀i, yi 7→ pi.

• Where M is initialised with u0 on the stack, initialise the monoid
register of M′ to p(u0).

• Corresponding to each transition τ (σ, , x) = (σ′, u) of M, define a
transition of M′ from σ to σ′ labelled by (x, p(u)).

• Corresponding to each transition τ (σ, yi, x) = (σ′, u) of M, define a
transition of M′ from σ to σ′ labelled by the pair (x, qip(u)).

NB: If an element m ∈ Pn is not a product ending in pi, then no product
mqip(u)m

′ can ever equal the identity.

Determinism for a monoid automaton

According to my definition of determinism for a tm, we would expect to
define an M -automaton to be deterministic if for a given input word w,
there’s only one way to read w through the machine.

But such a definition allows the underlying fsa to have multiple tran-
sitions from a given state σ on the same input symbol a, as well as ǫ-
transitions. Indeed that situation may well occur in the natural translation
of a deterministic pda.

To deal with this unnatural situation, we define a monoid automaton to be
fully deterministic if the underlying fsa admits at most one transition
from a given state σ on a given input symbol a, and no ǫ-transitions.

Elementary results

Kambites proves a number of elementary results about monoid automata,
such as

Proposition (Kambites,2006) For any monoid M , if L is the lan-
guage of an M -automaton then L is the language of an N -automaton,
for some fg submonoid N of M .

We just take the fg submonoid generated by the monoid elements that
label edges of the underlying automaton.

A tailor-made monoid ML and NL-automaton

For any language L, over an alphabet AL, Loughlin (2013) describes a
monoid

ML = 〈AL,#L | #Ll#L = 1, ∀l ∈ L〉

and then an ML-automaton accepting L as follows.

❅
❅
❅
❅
❅
❅④

σ0

④
σ1

a | aL��
❅❅

✬

✫

✩

✪ ④✣✢
✤✜

σ2

❅❅
��

ǫ | #L ❅❅
��

ǫ | #L

Rational transductions and Chomsky-Schützenberger

A rational transducer M from B to A is defined to be an fsa over
B × A. A language L ⊆ A∗ is the rational transduction (via M) of a
language K ⊆ B∗ if it has the form

L = {w ∈ A∗ : ∃u ∈ K, (u,w) ∈ L(M)}

Proposition (Kambites, 2006) For any f.g. monoid M , L ⊆ A∗ is
the language of an M -automaton iff L is a rational transduction of the
identity language of M wrt some (equiv. wrt every) finite generating set.

From this we can deduce a form of Chomsky-Schützenberger, that

every context-free language is the image under a rational transduc-
tion of the one-sided Dyck language,

from which we can (apparently) deduce the C-S result as already stated.

Defining Tr(M) for a fully deterministic M-automaton

We can easily define a transition monoid for a monoid automaton M
provided that the underlying fsa MF is deterministic with no ǫ-moves. In
that case we say that M is fully deterministic.

Let A be the input alphabet, Σ the state set, and M the associated
monoid for M,

We can define a partial action of A∗ on Σ×M as follows..

Suppose there’s a transition from σ ∈ Σ to σ′ labelled by a, with associ-
ated monoid element mσ,a. Then, for all m ∈ M , we define

τa(σ,m) = (σ′,mmσ,a)

This bears a strong resemblance to the monoid we already defined from
a fully deterministic pda.

Defining Tr(M) for a general M-automaton M.

This is a little tricky.

If we could define a procedure that took as input an M -automaton M
as input and output a fully deterministic M̃ -automaton M̃ (for a monoid
M̃ , related to M), with L(M̃) = L(M), we could use the construction
above to define a transition monoid for ˜cM and hence for M. However
we have been unable to find such a procedure.

It’s proved by Zetzsche (2011) that we certainly cannot hope to succeed
with M̃ equal to M .

However the natural construction, derived from the standard construction
for an fsa, although it does not seem to give a monoid automaton per
se, does give us a reasonable definition of a transition monoid.

The idea

We can make a device recognising L(M) that is based on

• a deterministic fsa M̃F recognising the same language as MF , to-
gether with

• a monoid M̃ related to M ,

but which is not quite a M̃ -automaton, because we cannot relate accep-
tance to the identity element of M̃ in the way we need to.

We define a monoid of partial maps in terms of this device.

The construction of the deterministic fsa M̃F

The construction of a deterministic fsa M̃F from the underlying fsa MF

of the M -automaton M is standard.

The fsa M̃F has state set Σ̃ corresponding to the set of subsets of Σ.

For S ⊆ Σ, a ∈ A,
transition in M̃F from S on a is to the state corresponding to S′ ⊆ Σ,
the set of all states that are the target in MF of some σ ∈ S via a path
whose label contains a single symbol a and any number of ǫs.

The construction of the monoid M̃

The monoid M̃ is defined on the set MN,N(2M) of N ×N matrices over

the set 2M of subsets of M , where N = |Σ| as follows:

• on 2M we define multiplication via the rule

AB = {ab : a ∈ A, b ∈ B}

• for P,Q ∈ MN,N(2M) we define the entry (PQ)ij of the product PQ

as
N⋃

k=1

PikQkj

where the products PikQkj of subsets of M are as defined above.

The construction of Tr(M)

The transition from S to S′ labelled by a ∈ A is labelled by the matrix
whose i, j-th entry is

the set of all monoid elements that label paths labelled by a single a

together with any number of ǫs from the state σi to the state σj ,
provided that σi ∈ S, σj ∈ S′,

and otherwise is the empty set.

Hence for each a ∈ A we can define a partial map

τa : Σ×MN,N (2M) → Σ×MN,N (2M).

We define
Tr(M) := 〈τa : a ∈ A〉

Remarks

• Tr(M) has an action on the states of the fsa M̃F that is equivalent
to the action of the transition monoid of the fsa (which we recall is
isomorphic to Tr(MF).

• The monoid we already described for a fully deterministic Pn-automaton
bears a strong resemblance to the transition monoid we also described
for a fully deterministic pda.

• Nick Loughlin hopes he may be able to define a ‘Rees co-congruence’
on M̃ , and hence a monoid M and a fully deterministic M -automaton,
based on the (images of the) partial maps described above, that ac-
cepts the same language as M, and has Tr(M) (or something closely
related) as its transition monoid.

