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The word problem for groups

In this talk: Only finitely generated groups

Let G be a finitely generated group, and let Σ be a finite
symmetric generating set for G .

Word problem for G , WP(G ) (Dehn 1910)

INPUT: Word w ∈ Σ∗

QUESTION: w = 1 in G ?

Decidability/complexity of the word problem is independent of the
generating set Σ.

Novikov 1958, Boone 1959: There exists a finitely presented group
with an undecidable word problem.
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word problem
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polynomial time (even
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Some decidable word problems

Some classes of group with decidable word problems:

computational complexity of
word problem

finitely generated linear groups
polynomial time (even

logarithmic space)

hyperbolic groups linear time

automatic groups quadratic time

one-relator groups 〈Σ, r〉 primitive recursive
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The word search problem

Let G = 〈Σ | R〉 be a finitely presented group.
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The word search problem

Let G = 〈Σ | R〉 be a finitely presented group.

R ⊆ Σ∗ is the finite set of relators.

Word search problem for G , WSP(G )

INPUT: Word w ∈ Σ∗
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The word search problem

Let G = 〈Σ | R〉 be a finitely presented group.

R ⊆ Σ∗ is the finite set of relators.

Word search problem for G , WSP(G )

INPUT: Word w ∈ Σ∗

OUTPUT: If w 6= 1 in G then output “NO”, otherwise output
words c1, . . . , cn ∈ Σ∗ and r1, . . . , rn ∈ R ∪ R−1 with

w =

n
∏

i=1

ci ric
−1
i in F (Σ).
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The word search problem

Remarks:

Complexity of the WSP is independent of the finite
presentation.
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The word search problem

Remarks:

Complexity of the WSP is independent of the finite
presentation.

A group with a polynomial time WSP must have a polynomial
Dehn function.

Groups with polynomial time WSP:

f.g. nilpotent groups

automatic groups

Markus Lohrey Compresed word problem in wreath products



The compressed word problem

A straight-line program (SLP) over the alphabet Γ is a sequence of
definitions A = (Ai := αi )1≤i≤n, where either αi ∈ Γ or αi = AjAk

for some j , k < i .

Markus Lohrey Compresed word problem in wreath products



The compressed word problem

A straight-line program (SLP) over the alphabet Γ is a sequence of
definitions A = (Ai := αi )1≤i≤n, where either αi ∈ Γ or αi = AjAk

for some j , k < i .

We write val(A) for the unique word generated by A.
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The compressed word problem

A straight-line program (SLP) over the alphabet Γ is a sequence of
definitions A = (Ai := αi )1≤i≤n, where either αi ∈ Γ or αi = AjAk

for some j , k < i .

We write val(A) for the unique word generated by A.

Example: A = (A1 := b, A2 := a, Ai := Ai−1Ai−2 for 3 ≤ i ≤ 7)

A3 = A2A1 = ab

A4 = A3A2 = aba

A5 = A4A3 = abaab

A6 = A5A4 = abaababa

A7 = A6A5 = abaababaabaab = val(A)
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The compressed word problem

A straight-line program (SLP) over the alphabet Γ is a sequence of
definitions A = (Ai := αi )1≤i≤n, where either αi ∈ Γ or αi = AjAk

for some j , k < i .

We write val(A) for the unique word generated by A.

Example: A = (A1 := b, A2 := a, Ai := Ai−1Ai−2 for 3 ≤ i ≤ 7)

A3 = A2A1 = ab

A4 = A3A2 = aba

A5 = A4A3 = abaab

A6 = A5A4 = abaababa

A7 = A6A5 = abaababaabaab = val(A)

If |A| is the number of definitions in A, then |val(A)| ≤ 2|A|.
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The compressed word problem

Plandowski 1994: The following problem can be solved in
polynomial time:

INPUT: SLPs A, B
QUESTION: val(A) = val(B)?
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The compressed word problem

Plandowski 1994: The following problem can be solved in
polynomial time:

INPUT: SLPs A, B
QUESTION: val(A) = val(B)?

The best known algorithm is almost quadratic
(Alstrup, Brodal Rauhe 2000).
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polynomial time:

INPUT: SLPs A, B
QUESTION: val(A) = val(B)?

The best known algorithm is almost quadratic
(Alstrup, Brodal Rauhe 2000).

Let the group G be finitely generated by Σ (symmetric).
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The compressed word problem

Plandowski 1994: The following problem can be solved in
polynomial time:

INPUT: SLPs A, B
QUESTION: val(A) = val(B)?

The best known algorithm is almost quadratic
(Alstrup, Brodal Rauhe 2000).

Let the group G be finitely generated by Σ (symmetric).

Compressed word problem for G , CWP(G )

INPUT: SLP A over Σ

QUESTION: val(A) = 1 in G?
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The compressed word problem

Remarks:

Complexity of the CWP is independent of the generating set.
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The compressed word problem

Remarks:

Complexity of the CWP is independent of the generating set.

Groups with polynomial time CWP:

f.g. nilpotent groups (here, CWP even belongs to NC2)

right-angled Artin groups (RAAGs)

finite extensions of subgroups of RAAGs
(hence: virtually special groups)

Coxeter groups

fully residually free groups (independently shown by
Macdonald 2010)

fundamental groups of hyperbolic 3-manifolds

word hyperbolic groups (Saul Schleimer’s talk)
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What’s interesting about the compressed word problem?

Let H be a finitely generated subgroup of Aut(G ).

CWP(G ) ∈ P ⇒ WP(H) ∈ P
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What’s interesting about the compressed word problem?

Let H be a finitely generated subgroup of Aut(G ).

CWP(G ) ∈ P ⇒ WP(H) ∈ P

Let G = K ⋊ Q be a semi-direct product.

WP(Q) ∈ P, CWP(K ) ∈ P ⇒ WP(G ) ∈ P

Let 1 → K → G → Q → 1 be a short exact sequence of f.g.
groups such that the quotient Q is finitely presented.

WSP(Q) ∈ P, CWP(K ) ∈ P ⇒ WP(G ) ∈ P
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Wreath products

Let A and B be groups and let

K =
⊕

b∈B

A

be the direct sum of copies of A.
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be the direct sum of copies of A.

Elements of K can be thought as mappings k : B → A with finite
support (i.e., k−1(A \ 1) is finite).
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Wreath products

Let A and B be groups and let

K =
⊕

b∈B

A

be the direct sum of copies of A.

Elements of K can be thought as mappings k : B → A with finite
support (i.e., k−1(A \ 1) is finite).

The wreath product A ≀ B is the set of all pairs K × B with the
following multiplication, where (k1, b1), (k2, b2) ∈ K × B :

(k1, b1)(k2, b2) = (k, b1b2) with ∀b ∈ B : k(b) = k1(b)k2(b
−1
1 b).
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Wreath product Z2 ≀ F (a, b) with Z2 = 〈c | c
2 = 1〉
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Easy word problem but difficult compressed word problem

Let A be any non-Abelian group. Then CWP(A ≀ Z) is coNP-hard.
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Easy word problem but difficult compressed word problem

Let A be any non-Abelian group. Then CWP(A ≀ Z) is coNP-hard.

Remark: If A is finite then WP(A ≀ Z) can be solved in logspace.

Proof sketch: Reduction from coSUBSETSUM:

INPUT: Binary coded weight vector w ∈ Nn and a target z ∈ N.

QUESTION: Does for all x ∈ {0, 1}n, x · w 6= z hold?
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Easy word problem but difficult compressed word problem

Let A be any non-Abelian group. Then CWP(A ≀ Z) is coNP-hard.

Remark: If A is finite then WP(A ≀ Z) can be solved in logspace.

Proof sketch: Reduction from coSUBSETSUM:

INPUT: Binary coded weight vector w ∈ Nn and a target z ∈ N.

QUESTION: Does for all x ∈ {0, 1}n, x · w 6= z hold?

Let w = (w1, . . . ,wn) and s = w1 + · · · + wn.
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Easy word problem but difficult compressed word problem

Let A be any non-Abelian group. Then CWP(A ≀ Z) is coNP-hard.

Remark: If A is finite then WP(A ≀ Z) can be solved in logspace.

Proof sketch: Reduction from coSUBSETSUM:

INPUT: Binary coded weight vector w ∈ Nn and a target z ∈ N.

QUESTION: Does for all x ∈ {0, 1}n, x · w 6= z hold?

Let w = (w1, . . . ,wn) and s = w1 + · · · + wn.

From w , z we can construct in poly. time SLPs A, B such that

val(A) =
∏

x∈{0,1}n

(tx·w−1 c ts−x·w ) and val(B) = (tz−1 c ts−z)2
n

.
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Easy word problem but difficult compressed word problem

Let A be any non-Abelian group. Then CWP(A ≀ Z) is coNP-hard.

Remark: If A is finite then WP(A ≀ Z) can be solved in logspace.

Proof sketch: Reduction from coSUBSETSUM:

INPUT: Binary coded weight vector w ∈ Nn and a target z ∈ N.

QUESTION: Does for all x ∈ {0, 1}n, x · w 6= z hold?

Let w = (w1, . . . ,wn) and s = w1 + · · · + wn.

From w , z we can construct in poly. time SLPs A, B such that

val(A) =
∏

x∈{0,1}n

(tx·w−1 c ts−x·w ) and val(B) = (tz−1 c ts−z)2
n

.

 ∃p ∈ N : p-th symbol of val(A) = c = p-th symbol of val(B)

⇔

∃x ∈ {0, 1}n : x · w = z
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Easy word problem but difficult compressed word problem

Let Z = 〈t〉.
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Easy word problem but difficult compressed word problem

Let Z = 〈t〉.

Choose two elements a, b ∈ A with [a, b] 6= 1.
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Easy word problem but difficult compressed word problem

Let Z = 〈t〉.

Choose two elements a, b ∈ A with [a, b] 6= 1.

For x ∈ {a, b, a−1, b−1} let Ax (Bx) be the SLP that is obtained
from A (B) by replacing every occurrence of the letter c by x .
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Easy word problem but difficult compressed word problem

Let Z = 〈t〉.

Choose two elements a, b ∈ A with [a, b] 6= 1.

For x ∈ {a, b, a−1, b−1} let Ax (Bx) be the SLP that is obtained
from A (B) by replacing every occurrence of the letter c by x .

We can construct in poly. time an SLP C such that

val(C) = val(Aa)t
−s·2n

val(Bb)t
−s·2n

val(Aa−1)t−s·2n

val(Bb−1)t−s·2n

.
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Easy word problem but difficult compressed word problem

Let Z = 〈t〉.

Choose two elements a, b ∈ A with [a, b] 6= 1.

For x ∈ {a, b, a−1, b−1} let Ax (Bx) be the SLP that is obtained
from A (B) by replacing every occurrence of the letter c by x .

We can construct in poly. time an SLP C such that

val(C) = val(Aa)t
−s·2n

val(Bb)t
−s·2n

val(Aa−1)t−s·2n

val(Bb−1)t−s·2n

.

Then we have:

val(C) 6= 1 in A ≀ Z

⇔

∃p ∈ N : p-th symbol of val(A) = c = p-th symbol of val(B).

Markus Lohrey Compresed word problem in wreath products



Other wreath products

If G and H are finitely generated abelian, then H ≀ G is finitely
generated metabelian (2-step solvable).
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Other wreath products

If G and H are finitely generated abelian, then H ≀ G is finitely
generated metabelian (2-step solvable).

Wehrfritz 1980

Every finitely generated metabelian group embedds into a direct
product of finitely generated linear groups.
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Other wreath products

If G and H are finitely generated abelian, then H ≀ G is finitely
generated metabelian (2-step solvable).

Wehrfritz 1980

Every finitely generated metabelian group embedds into a direct
product of finitely generated linear groups.

Hence, CWP(H ≀ G ) (with G and H finitely generated abelian)
reduces to the CWP for finitely generated linear groups.
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Randomized complexity classes

A language L belongs to the class RP (randomized polynomial
time) if there exists a nondeterministic polynomial time bounded
Turing machine M such that for every input x :

If x 6∈ L then Prob[M accepts x ] = 0.

If x ∈ L then Prob[M accepts x ] ≥ 1/2.
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Randomized complexity classes

A language L belongs to the class RP (randomized polynomial
time) if there exists a nondeterministic polynomial time bounded
Turing machine M such that for every input x :

If x 6∈ L then Prob[M accepts x ] = 0.

If x ∈ L then Prob[M accepts x ] ≥ 1/2.

A language L belongs to the class coRP if there exists a
nondeterministic polynomial time bounded Turing machine M such
that for every input x :

If x ∈ L then Prob[M accepts x ] = 1.

If x 6∈ L then Prob[M accepts x ] ≤ 1/2.

Markus Lohrey Compresed word problem in wreath products



Randomized complexity classes

A language L belongs to the class RP (randomized polynomial
time) if there exists a nondeterministic polynomial time bounded
Turing machine M such that for every input x :

If x 6∈ L then Prob[M accepts x ] = 0.

If x ∈ L then Prob[M accepts x ] ≥ 1/2.

A language L belongs to the class coRP if there exists a
nondeterministic polynomial time bounded Turing machine M such
that for every input x :

If x ∈ L then Prob[M accepts x ] = 1.

If x 6∈ L then Prob[M accepts x ] ≤ 1/2.

Impagliazzo, Wigderson 1997

If there exists a language in DTIME(2O(n)) that has circuit
complexity 2Ω(n) (seems to be plausible) then P = RP = coRP

(actually, P = BPP).
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Polynomial identity testing

An arithmetic circuit is a directed acyclic graph C such that:

Every node (gate) is labelled with either 1, −1, a variable
x1, . . . , xn, or an operator +, ·.

Nodes labelled with 1, −1, or a variable xi have no incoming
edges.

There is a distinguished gate o (the output gate).
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Polynomial identity testing

An arithmetic circuit is a directed acyclic graph C such that:

Every node (gate) is labelled with either 1, −1, a variable
x1, . . . , xn, or an operator +, ·.

Nodes labelled with 1, −1, or a variable xi have no incoming
edges.

There is a distinguished gate o (the output gate).

C defines a polynomial pC(x1, . . . , xn) ∈ Z[x1, . . . , xn].
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Polynomial identity testing

An arithmetic circuit is a directed acyclic graph C such that:

Every node (gate) is labelled with either 1, −1, a variable
x1, . . . , xn, or an operator +, ·.

Nodes labelled with 1, −1, or a variable xi have no incoming
edges.

There is a distinguished gate o (the output gate).

C defines a polynomial pC(x1, . . . , xn) ∈ Z[x1, . . . , xn].

An arithmetic circuit variable-free if there is no node labeled with a
variable xi (hence, pC ∈ Z).
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Polynomial identity testing

An arithmetic circuit is a directed acyclic graph C such that:

Every node (gate) is labelled with either 1, −1, a variable
x1, . . . , xn, or an operator +, ·.

Nodes labelled with 1, −1, or a variable xi have no incoming
edges.

There is a distinguished gate o (the output gate).

C defines a polynomial pC(x1, . . . , xn) ∈ Z[x1, . . . , xn].

An arithmetic circuit variable-free if there is no node labeled with a
variable xi (hence, pC ∈ Z).

Polynomial identity testing over the ring R ∈ {Z} ∪ {Zn | n ≥ 2}

INPUT: An arithmetic circuit C.
QUESTION: Is pC the zero polynomial in R [x1, . . . , xn]?

Markus Lohrey Compresed word problem in wreath products



Complexity of polynomial identity testing

Ibarra, Moran 1983; Agrawal, Biswas 2003

For every ring R ∈ {Z} ∪ {Zn | n ≥ 2}, polynomial identity testing
over R belongs to coRP.
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Complexity of polynomial identity testing

Ibarra, Moran 1983; Agrawal, Biswas 2003

For every ring R ∈ {Z} ∪ {Zn | n ≥ 2}, polynomial identity testing
over R belongs to coRP.

Allender, Bürgisser, Kjeldgaard-Pedersen, Miltersen 2008

Polynomial identity testing over Z is equivalent w.r.t. polynomial
time many-one reductions) to polynomial identity testing over Z,
restricted to variable-free arithmetic circuits.
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Complexity of polynomial identity testing

Ibarra, Moran 1983; Agrawal, Biswas 2003

For every ring R ∈ {Z} ∪ {Zn | n ≥ 2}, polynomial identity testing
over R belongs to coRP.

Allender, Bürgisser, Kjeldgaard-Pedersen, Miltersen 2008

Polynomial identity testing over Z is equivalent w.r.t. polynomial
time many-one reductions) to polynomial identity testing over Z,
restricted to variable-free arithmetic circuits.

Kabanets, Impagliazzo 2004

If polynomial identity testing over Z belongs to P, then one of the
following conclusions holds:

There is a language in NEXPTIME that does not have
polynomial size boolean circuits.

The permanent is not computable by polynomial size
arithmetic circuits.
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Polynomial identity testing and the compressed word
problem

If G is finitely generated linear over field of characteristic 0 (resp.
p ∈ Primes), then CWP(G ) can be reduced to polynomial identity
testing over Z (resp. Zp).
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Polynomial identity testing and the compressed word
problem

If G is finitely generated linear over field of characteristic 0 (resp.
p ∈ Primes), then CWP(G ) can be reduced to polynomial identity
testing over Z (resp. Zp).

In particular, CWP(G ) belongs to coRP.

Proof: G can be embedded into GLn(Q(x1, . . . , xn)) (resp.
GLn(Fp(x1, . . . , xn)) for some n (Lipton, Zalcstein 1975).

Markus Lohrey Compresed word problem in wreath products



Polynomial identity testing and the compressed word
problem

If G is finitely generated linear over field of characteristic 0 (resp.
p ∈ Primes), then CWP(G ) can be reduced to polynomial identity
testing over Z (resp. Zp).

In particular, CWP(G ) belongs to coRP.

Proof: G can be embedded into GLn(Q(x1, . . . , xn)) (resp.
GLn(Fp(x1, . . . , xn)) for some n (Lipton, Zalcstein 1975).

CWP(SL3(Z)) is equivalent w.r.t. polynomial time many-one
reductions to polynomial identity testing over Z.
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Polynomial identity testing and the compressed word
problem

If G is finitely generated linear over field of characteristic 0 (resp.
p ∈ Primes), then CWP(G ) can be reduced to polynomial identity
testing over Z (resp. Zp).

In particular, CWP(G ) belongs to coRP.

Proof: G can be embedded into GLn(Q(x1, . . . , xn)) (resp.
GLn(Fp(x1, . . . , xn)) for some n (Lipton, Zalcstein 1975).

CWP(SL3(Z)) is equivalent w.r.t. polynomial time many-one
reductions to polynomial identity testing over Z.

Proof: Uses a construction of Ben-Or, Cleve 1992.
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CWP(SL3(Z))

CWP(SL3(Z)) is equivalent w.r.t. polynomial time many-one
reductions to polynomial identity testing over Z.
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CWP(SL3(Z))

CWP(SL3(Z)) is equivalent w.r.t. polynomial time many-one
reductions to polynomial identity testing over Z.

Proof: Let C be a variable-free arithmetic circuit C over Z.
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CWP(SL3(Z))

CWP(SL3(Z)) is equivalent w.r.t. polynomial time many-one
reductions to polynomial identity testing over Z.

Proof: Let C be a variable-free arithmetic circuit C over Z.

Construct an SLP A over generators of SL3(Z) such that:
pC = 0 ⇔ val(A) = I3.
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CWP(SL3(Z))

CWP(SL3(Z)) is equivalent w.r.t. polynomial time many-one
reductions to polynomial identity testing over Z.

Proof: Let C be a variable-free arithmetic circuit C over Z.

Construct an SLP A over generators of SL3(Z) such that:
pC = 0 ⇔ val(A) = I3.

The SLP A contains for every C-gate A and all b ∈ {−1, 1} and
1 ≤ i , j ≤ 3 with i 6= j a variable Ai ,j ,b such that: If y = Ai ,j ,b · x
then yi = xi + b · A · xj and yk = xk for k ∈ {1, 2, 3} \ {j}.
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CWP(SL3(Z))

CWP(SL3(Z)) is equivalent w.r.t. polynomial time many-one
reductions to polynomial identity testing over Z.

Proof: Let C be a variable-free arithmetic circuit C over Z.

Construct an SLP A over generators of SL3(Z) such that:
pC = 0 ⇔ val(A) = I3.

The SLP A contains for every C-gate A and all b ∈ {−1, 1} and
1 ≤ i , j ≤ 3 with i 6= j a variable Ai ,j ,b such that: If y = Ai ,j ,b · x
then yi = xi + b · A · xj and yk = xk for k ∈ {1, 2, 3} \ {j}.

Consider a C-gate A.
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CWP(SL3(Z))

CWP(SL3(Z)) is equivalent w.r.t. polynomial time many-one
reductions to polynomial identity testing over Z.

Proof: Let C be a variable-free arithmetic circuit C over Z.

Construct an SLP A over generators of SL3(Z) such that:
pC = 0 ⇔ val(A) = I3.

The SLP A contains for every C-gate A and all b ∈ {−1, 1} and
1 ≤ i , j ≤ 3 with i 6= j a variable Ai ,j ,b such that: If y = Ai ,j ,b · x
then yi = xi + b · A · xj and yk = xk for k ∈ {1, 2, 3} \ {j}.

Consider a C-gate A.

Case 1. A := c ∈ {−1, 1}. Set for instance

A1,2,1 :=





1 c 0
0 1 0
0 0 1




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CWP(SL3(Z))

CWP(SL3(Z)) is equivalent w.r.t. polynomial time many-one
reductions to polynomial identity testing over Z.

Proof: Let C be a variable-free arithmetic circuit C over Z.

Construct an SLP A over generators of SL3(Z) such that:
pC = 0 ⇔ val(A) = I3.

The SLP A contains for every C-gate A and all b ∈ {−1, 1} and
1 ≤ i , j ≤ 3 with i 6= j a variable Ai ,j ,b such that: If y = Ai ,j ,b · x
then yi = xi + b · A · xj and yk = xk for k ∈ {1, 2, 3} \ {j}.

Consider a C-gate A.

Case 1. A := c ∈ {−1, 1}. Set for instance

A1,2,1 :=





1 c 0
0 1 0
0 0 1





Case 2. A := B + C . Set Ai ,j ,b := Bi ,j ,b + Ci ,j ,b.
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CWP(SL3(Z))

Case 3. A := B · C . Let {k} = {1, 2, 3} \ {i , j}. Then we set

Ai ,j ,1 := Bk,j ,−1Ci ,k,1Bk,j ,1Ci ,k,−1

Ai ,j ,−1 := Bk,j ,−1Ci ,k,−1Bk,j ,1Ci ,k,1
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CWP(SL3(Z))

Case 3. A := B · C . Let {k} = {1, 2, 3} \ {i , j}. Then we set

Ai ,j ,1 := Bk,j ,−1Ci ,k,1Bk,j ,1Ci ,k,−1

Ai ,j ,−1 := Bk,j ,−1Ci ,k,−1Bk,j ,1Ci ,k,1

If y = Ai ,j ,1 · x , then yj = xj , yk = xk + B · xj − B · xj = xk , and

yi = xi − C · xk + C · (xk + B · xj) = xi + C · B · xj .
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CWP(SL3(Z))

Case 3. A := B · C . Let {k} = {1, 2, 3} \ {i , j}. Then we set

Ai ,j ,1 := Bk,j ,−1Ci ,k,1Bk,j ,1Ci ,k,−1

Ai ,j ,−1 := Bk,j ,−1Ci ,k,−1Bk,j ,1Ci ,k,1

If y = Ai ,j ,1 · x , then yj = xj , yk = xk + B · xj − B · xj = xk , and

yi = xi − C · xk + C · (xk + B · xj) = xi + C · B · xj .

If y = Ai ,j ,−1x , then yj = xj , yk = xk + B · xj − B · xj = xk , and

yi = xi + C · xk − C · (xk + B · xj) = xi − C · B · xj .
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CWP(SL3(Z))

Case 3. A := B · C . Let {k} = {1, 2, 3} \ {i , j}. Then we set

Ai ,j ,1 := Bk,j ,−1Ci ,k,1Bk,j ,1Ci ,k,−1

Ai ,j ,−1 := Bk,j ,−1Ci ,k,−1Bk,j ,1Ci ,k,1

If y = Ai ,j ,1 · x , then yj = xj , yk = xk + B · xj − B · xj = xk , and

yi = xi − C · xk + C · (xk + B · xj) = xi + C · B · xj .

If y = Ai ,j ,−1x , then yj = xj , yk = xk + B · xj − B · xj = xk , and

yi = xi + C · xk − C · (xk + B · xj) = xi − C · B · xj .

Let S1,2,1 be the start variable of A.  
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CWP(SL3(Z))

Case 3. A := B · C . Let {k} = {1, 2, 3} \ {i , j}. Then we set

Ai ,j ,1 := Bk,j ,−1Ci ,k,1Bk,j ,1Ci ,k,−1

Ai ,j ,−1 := Bk,j ,−1Ci ,k,−1Bk,j ,1Ci ,k,1

If y = Ai ,j ,1 · x , then yj = xj , yk = xk + B · xj − B · xj = xk , and

yi = xi − C · xk + C · (xk + B · xj) = xi + C · B · xj .

If y = Ai ,j ,−1x , then yj = xj , yk = xk + B · xj − B · xj = xk , and

yi = xi + C · xk − C · (xk + B · xj) = xi − C · B · xj .

Let S1,2,1 be the start variable of A.  

pC = 0 ⇔ ∀x ∈ Z3 : val(A) · x = x ⇔ val(A) = I3.
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Open problems

What is the precise complexity of CWP(A ≀ Z) for A finite
non-Abelian (coNP-hard, in PSPACE).
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Open problems

What is the precise complexity of CWP(A ≀ Z) for A finite
non-Abelian (coNP-hard, in PSPACE).

Compressed word problem for A ≀ F2.

Might be related to polynomial identity testing for
non-commuting variables.
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Open problems

What is the precise complexity of CWP(A ≀ Z) for A finite
non-Abelian (coNP-hard, in PSPACE).

Compressed word problem for A ≀ F2.

Might be related to polynomial identity testing for
non-commuting variables.

Compressed word problem for braid groups (they are linear).

Markus Lohrey Compresed word problem in wreath products


