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1 – Non-Commutative Polynomials

Play is the highest form of research.

(Albert Einstein)
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Idea: Use the potential of Gröbner basis theory for computations

in group theory.
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1 – Non-Commutative Polynomials

Play is the highest form of research.

(Albert Einstein)

Idea: Use the potential of Gröbner basis theory for computations

in group theory.

K field

K〈X〉 free associative algebra over the alphabet X = {x1, . . . , xn}

(This will be called the non-commutative polynomial ring.)

X∗ monoid of all words xi1 · · ·xir

I ⊆ K〈X〉 two-sided ideal generated by f1, . . . , fs ∈ K〈X〉

R = K〈X〉/I finitely presented K-algebra
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Main Example:

G = 〈x1, . . . , xn; ℓ1 = r1, . . . , ℓs = rs〉 finitely presented group (or

monoid)

K〈G〉 =
⊕

g∈G Kg group ring

K〈G〉 = K〈X〉/I

I = 〈ℓ1 − r1, . . . , ℓs − rs〉 two-sided ideal generated by binomials
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Definition 1.1 (a) A complete ordering σ on X∗ is called a word

ordering if

(1) it is multiplicative, i.e. w1 <σ w2 implies w3w1w4 <σ w3w2w4,

(2) it is a well-ordering. (Equivalently, 1 <σ w for all w 6= 1.)
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Definition 1.1 (a) A complete ordering σ on X∗ is called a word

ordering if

(1) it is multiplicative, i.e. w1 <σ w2 implies w3w1w4 <σ w3w2w4,

(2) it is a well-ordering. (Equivalently, 1 <σ w for all w 6= 1.)

(b) For a word w = xi1 · · ·xiℓ , the number deg(w) = ℓ is called the

degree or the length of the word.
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Example 1.2 The length lexicographic word ordering llex is

defined by w1 <llex w2 iff

(1) deg(w1) < deg(w2) or

(2) deg(w1) = deg(w2) and the first letter where w1 and w2 differ

has a larger index in w1.

Notice that x1 >llex · · · >llex xn.

6



Example 1.2 The length lexicographic word ordering llex is

defined by w1 <llex w2 iff

(1) deg(w1) < deg(w2) or

(2) deg(w1) = deg(w2) and the first letter where w1 and w2 differ

has a larger index in w1.

Notice that x1 >llex · · · >llex xn.

Remark 1.3 The lexicographic ordering is not a word ordering,

because

x1 >lex x2x1 >lex x2x2x1 >lex · · ·

yields a set of words without minimal element.
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Definition 1.4 Let f ∈ K〈X〉 \ {0}. Then we have a unique

representation f = c1w1 + · · ·+ csws with ci ∈ K \ {0} and wi ∈ X∗

satisfying w1 >σ w2 >σ · · · >σ ws.
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Definition 1.4 Let f ∈ K〈X〉 \ {0}. Then we have a unique

representation f = c1w1 + · · ·+ csws with ci ∈ K \ {0} and wi ∈ X∗

satisfying w1 >σ w2 >σ · · · >σ ws.

(a) The word Lwσ(f) = w1 is called the leading word of f .
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Definition 1.4 Let f ∈ K〈X〉 \ {0}. Then we have a unique

representation f = c1w1 + · · ·+ csws with ci ∈ K \ {0} and wi ∈ X∗

satisfying w1 >σ w2 >σ · · · >σ ws.

(a) The word Lwσ(f) = w1 is called the leading word of f .

(b) The element Lcσ(f) = c1 is called the leading coefficient of f .

(c) The set Supp(f) = {w1, . . . , ws} is called the support of f . For

f = 0 we set Supp(f) = ∅.
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Definition 1.4 Let f ∈ K〈X〉 \ {0}. Then we have a unique

representation f = c1w1 + · · ·+ csws with ci ∈ K \ {0} and wi ∈ X∗

satisfying w1 >σ w2 >σ · · · >σ ws.

(a) The word Lwσ(f) = w1 is called the leading word of f .

(b) The element Lcσ(f) = c1 is called the leading coefficient of f .

(c) The set Supp(f) = {w1, . . . , ws} is called the support of f . For

f = 0 we set Supp(f) = ∅.

Example 1.5 For the non-commutative polynomial

f = x2x1x2 + x1x2 + 1 we have Lwllex(f) = x2x1x2 and

Supp(f) = {x2x1x2, x1x2, 1}.
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σ word ordering

f1, . . . , fs ∈ K〈X〉 \ {0} non-commutative polynomials

I = 〈f1, . . . , fs〉 two-sided ideal generated by {f1, . . . , fs}
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σ word ordering

f1, . . . , fs ∈ K〈X〉 \ {0} non-commutative polynomials

I = 〈f1, . . . , fs〉 two-sided ideal generated by {f1, . . . , fs}

Definition 1.6 (a) The ideal Lwσ(I) = 〈Lwσ(f) | f ∈ I \ {0}〉 is

called the leading word ideal of I .
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σ word ordering

f1, . . . , fs ∈ K〈X〉 \ {0} non-commutative polynomials

I = 〈f1, . . . , fs〉 two-sided ideal generated by {f1, . . . , fs}

Definition 1.6 (a) The ideal Lwσ(I) = 〈Lwσ(f) | f ∈ I \ {0}〉 is

called the leading word ideal of I .

(b) A set of non-commutative polynomials G = {g1, . . . , gs}

in I \ {0} is called a σ-Gröbner basis of I if

Lwσ(I) = 〈Lwσ(g1), . . . ,Lwσ(gs)〉
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σ word ordering

f1, . . . , fs ∈ K〈X〉 \ {0} non-commutative polynomials

I = 〈f1, . . . , fs〉 two-sided ideal generated by {f1, . . . , fs}

Definition 1.6 (a) The ideal Lwσ(I) = 〈Lwσ(f) | f ∈ I \ {0}〉 is

called the leading word ideal of I .

(b) A set of non-commutative polynomials G = {g1, . . . , gs}

in I \ {0} is called a σ-Gröbner basis of I if

Lwσ(I) = 〈Lwσ(g1), . . . ,Lwσ(gs)〉

Example 1.7 For the ideal I = 〈f1, f2, f3, f4〉 generated by

f1 = x2 − yx, f2 = xy − zy, f3 = xz − zy, and f4 = yz − zy in

Q〈x, y, z〉, we have the llex-Gröbner basis

G = {f1, f2, f3, f4, zy
2 − z2y, y2x− zyx}.
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Example 1.8 The principal ideal I = 〈x2 − yx〉 in Q〈x, y〉 has an

infinite reduced llex-Gröbner basis G. We have

Lwllex(I) = 〈xyix | i ≥ 0〉

G = {xyix− xyi+1 | i ≥ 0}
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Example 1.8 The principal ideal I = 〈x2 − yx〉 in Q〈x, y〉 has an

infinite reduced llex-Gröbner basis G. We have

Lwllex(I) = 〈xyix | i ≥ 0〉

G = {xyix− xyi+1 | i ≥ 0}

Remark 1.9 Non-commutative Gröbner bases have

characterizations similar to commutative Gröbner bases:

(a) special generation of the ideal I

(b) convergence of the associated rewriting system

(c) Buchberger criterion
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2 – The Buchberger Procedure

It’s kind of fun to do the impossible.

(Walt Disney)
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2 – The Buchberger Procedure

It’s kind of fun to do the impossible.

(Walt Disney)

Idea: Construct an efficient enumerating procedure to compute

non-commutative Gröbner bases!

If the given ideal has a finite Gröbner basis, the procedure shall stop

after finitely many steps and return the answer.

If the given ideal has an infinite Gröbner basis, the procedure shall

enumerate Gröbner basis elements for a specified amount of time.
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The Division Algorithm

Given monic polynomials f, g1, . . . , gs ∈ K〈X〉 and a word ordering σ

on X∗, consider the following steps.
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The Division Algorithm

Given monic polynomials f, g1, . . . , gs ∈ K〈X〉 and a word ordering σ

on X∗, consider the following steps.

(1) Starting initially with j = 1, p = 0 and h = f , find the smallest

ij ∈ {1, . . . , s} such that Lwσ(h) = w Lwσ(gij )w
′ with w,w′ ∈ X∗.

(2) If such an ij exists, set ℓj = w, rj = w′, increase j by one, an

replace f by f − ℓjgijrj .

(3) If no such ij exists, replace p by p+Lwσ(v) and v by v−Lwσ(v).

(4) Repeat (1) – (3) until h = 0. Then return the pairs (ℓj , rj) and p.
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The Division Algorithm

Given monic polynomials f, g1, . . . , gs ∈ K〈X〉 and a word ordering σ

on X∗, consider the following steps.

(1) Starting initially with j = 1, p = 0 and h = f , find the smallest

ij ∈ {1, . . . , s} such that Lwσ(h) = w Lwσ(gij )w
′ with w,w′ ∈ X∗.

(2) If such an ij exists, set ℓj = w, rj = w′, increase j by one, an

replace f by f − ℓjgijrj .

(3) If no such ij exists, replace p by p+Lwσ(v) and v by v−Lwσ(v).

(4) Repeat (1) – (3) until h = 0. Then return the pairs (ℓj , rj) and p.

This is an algorithm which computes a representation

f =
∑

j ℓjgijrj + p such that no word in the support of the normal

remainder NRσ,G(f) = p is divisible by some Lwσ(gi) and such that

ℓj Lwσ(gij )rj ≤σ Lwσ(f) for all j.
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σ (fixed) word ordering (usually llex) on X∗

g1, . . . , gs ∈ K〈X〉 \ {0} monic polynomials (i.e. Lcσ(gi) = 1)

I = 〈G〉 two-sided ideal generated by G = {g1, . . . , gs}
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σ (fixed) word ordering (usually llex) on X∗

g1, . . . , gs ∈ K〈X〉 \ {0} monic polynomials (i.e. Lcσ(gi) = 1)

I = 〈G〉 two-sided ideal generated by G = {g1, . . . , gs}

Definition 2.1 A quadruple (ℓ, r, ℓ′, r′) ∈ X∗4 is called an

obstruction for (gi, gj) if ℓ Lwσ(gi) r = ℓ′ Lwσ(gj) r
′.
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Definition 2.2 Given an obstruction (ℓ, r, ℓ′, r′) for (gi, gj), the

polynomial

S(gi, gj) =
1

Lcσ(gi)
ℓ gi r −

1

Lcσ(gj)
ℓ′ gj r

′

is called the corresponding S-polynomial.
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Definition 2.2 Given an obstruction (ℓ, r, ℓ′, r′) for (gi, gj), the

polynomial

S(gi, gj) =
1

Lcσ(gi)
ℓ gi r −

1

Lcσ(gj)
ℓ′ gj r

′

is called the corresponding S-polynomial.

Definition 2.3 A polynomial f ∈ K〈X〉 has a (weak) Gröbner

representation with respect to G if there exist ci ∈ K and

ℓi, ri ∈ X and ji ∈ {1, . . . , s} such that

f =
m∑
i=1

ci ℓi gji ri and ℓi Lwσ(gji) ri ≤σ Lwσ(f)

for i = 1, . . . ,m.
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Theorem 2.4 (Buchberger Criterion)

The set G is a σ-Gröbner basis of I if and only if every S-polynomial

of two elements of G has a Gröbner representation with respect to G.
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Theorem 2.4 (Buchberger Criterion)

The set G is a σ-Gröbner basis of I if and only if every S-polynomial

of two elements of G has a Gröbner representation with respect to G.

It can be shown that it is indeed sufficient to consider the following

finite set of non-trivial obstructions:

(a) right obstructions: Lwσ(gi) · r = ℓ′ · Lwσ(gj)

(b) left obstructions: ℓ · Lwσ(gi) = Lwσ(gj) · r
′

(c) center obstructions: ℓ · Lwσ(gi) · r = Lwσ(gj)

Therefore one can check in finitely many steps whether G is a

σ-Gröbner basis.
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Theorem 2.5 (Buchberger Procedure)

Let I = 〈g1, . . . , gs〉 be a two-sided ideal in K〈X〉 generated by a set

G = {g1, . . . , gs} of monic polynomials. Perform the following steps:

(1) Let B be the set of all normal remainders NRσ,G(S(gi, gj)) of

S-polynomials S(gi, gj) corresponding to non-trivial obstructions.

(2) If B = ∅, return G and stop. Otherwise, choose f ∈ B using a

fair strategy, remove it from B and append f to G.

(3) Compute the non-trivial obstructions for the pairs (gi, f) and

append the non-zero normal remainders of the corresponding S(gi, f)

to the set B.

(4) Interreduce G and update the set B correspondingly.

This procedure enumerates a σ-Gröbner basis of I. If I has finite

σ-Gröbner bases, the procedure stops and outputs one of them.
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Optimizing the Buchberger Procedure
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Optimizing the Buchberger Procedure

Remark 2.6 (Trivial Obstructions)

(a) If (ℓ, r, ℓ′, r′) is an obstruction of (gi, gj) i.e. if

ℓ · Lwσ(gi) · r = ℓ′ · Lwσ(gj) · r
′, then all multiples

(w ℓ, r w′, w ℓ′, r′w′) with w,w′ ∈ X∗

are also obstructions. If the S-polynomial of (ℓ, r, ℓ′, r′) has a

Gröbner representation, the S-polynomials of all such obstructions

have Gröbner representations.
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Optimizing the Buchberger Procedure

Remark 2.6 (Trivial Obstructions)

(a) If (ℓ, r, ℓ′, r′) is an obstruction of (gi, gj) i.e. if

ℓ · Lwσ(gi) · r = ℓ′ · Lwσ(gj) · r
′, then all multiples

(w ℓ, r w′, w ℓ′, r′w′) with w,w′ ∈ X∗

are also obstructions. If the S-polynomial of (ℓ, r, ℓ′, r′) has a

Gröbner representation, the S-polynomials of all such obstructions

have Gröbner representations.

(b) (Product Criterion) If Lwσ(gi) and Lwσ(gi) have no overlap,

then the S-polynomial of every obstruction of (gi, gj) has a Gröbner

representation.

16-b



Proposition 2.7 (Non-Commutative Criterion M)

Let (ℓi, ri, ℓ
′
i, r

′
i) be an obstruction of (gi, gs) and (ℓj , rj, ℓ

′
j , r

′
j) an

obstruction of (gj , gs). If there exist words w,w′ ∈ X∗ such that

ℓ′i = w ℓ′j and r′i = r′j w then we can remove (ℓi, ri, ℓ
′
i, r

′
i) from B in

the execution of the Buchberger Procedure provided ww′ 6= 1.
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Proposition 2.7 (Non-Commutative Criterion M)

Let (ℓi, ri, ℓ
′
i, r

′
i) be an obstruction of (gi, gs) and (ℓj , rj, ℓ

′
j , r

′
j) an

obstruction of (gj , gs). If there exist words w,w′ ∈ X∗ such that

ℓ′i = w ℓ′j and r′i = r′j w then we can remove (ℓi, ri, ℓ
′
i, r

′
i) from B in

the execution of the Buchberger Procedure provided ww′ 6= 1.

Proposition 2.8 (Non-Commutative Criterion F)

In the setting of the preceding proposition, assume that w = w′ = 1,

i.e. that ℓ′i = ℓ′j and r′i = r′j. Then the obstruction (ℓi, ri, ℓ
′
i, r

′
i) can be

removed from B in the execution of the Buchberger Procedure if i > j

or if i = j and ℓi >σ ℓj.
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Proposition 2.9 (Non-Commutative Criterion B)

A non-trivial obstruction (ℓi, ri, ℓj , rj) of (gi, gj) can be removed from

the set B during the execution of the Buchberger Procedure if the

following conditions hold.

(1) There exist words ℓs, rs ∈ X∗ such that (ℓi, ri, ℓs, rs) is an

obstruction of (gi, gs) where gs is the newly constructed Gröbner basis

element.

(2) Each of the obstructions (ℓi, ri, ℓs, rs) and (ℓj , rj, ℓs, rs) is

without overlap or a multiple of a non-trivial obstruction.
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3 – Application to Group Rings

Obvious is the most dangerous word in mathematics.

(Eric T. Bell)
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3 – Application to Group Rings

Obvious is the most dangerous word in mathematics.

(Eric T. Bell)

G = 〈x1, . . . , xn; ℓ1 = r1, . . . , ℓs = rs〉 finitely presented group (or

monoid)

I = 〈ℓ1 − r1, . . . , ℓs − rs〉 two-sided ideal in K〈X〉

K〈G〉 = K〈X〉/I group ring (or monoid ring)
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3 – Application to Group Rings

Obvious is the most dangerous word in mathematics.

(Eric T. Bell)

G = 〈x1, . . . , xn; ℓ1 = r1, . . . , ℓs = rs〉 finitely presented group (or

monoid)

I = 〈ℓ1 − r1, . . . , ℓs − rs〉 two-sided ideal in K〈X〉

K〈G〉 = K〈X〉/I group ring (or monoid ring)

Remark 3.1 (a) Notice that in general we have to include

indeterminates representing the inverses yi = x−1
i and relations

xiyi − 1, yix1 − 1 here.

(b) If xi represents a group element of finite order, i.e. if we have a

relation xk
i − 1 ∈ I , we do not need yi.
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The Word Problem

Proposition 3.2 (Ideal Membership)

Given a two-sided ideal I = 〈g1, . . . , gs〉 in K〈X〉 and a polynomial

f ∈ K〈X〉, there is a semi-decision procedure for determining

whether f ∈ I.

(1) Perform one iteration of the Buchberger Procedure.

(2) Check whether the normal remainder of f after division by the

intermediate partial Gröbner basis G is zero. If it is, return TRUE.

Otherwise, continue with (1).

20



The Word Problem

Proposition 3.2 (Ideal Membership)

Given a two-sided ideal I = 〈g1, . . . , gs〉 in K〈X〉 and a polynomial

f ∈ K〈X〉, there is a semi-decision procedure for determining

whether f ∈ I.

(1) Perform one iteration of the Buchberger Procedure.

(2) Check whether the normal remainder of f after division by the

intermediate partial Gröbner basis G is zero. If it is, return TRUE.

Otherwise, continue with (1).

Remark 3.3 For a word w ∈ X∗, we have a semi-decision procedure

for checking whether w represents the neutral element of G by

checking w − 1 ∈ I .
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Remark 3.4 A more careful computation, keeping track of the

division steps, also solves the Explicit Membership Problem

(also called Word Search Problem): if w represents the neutral

element in G, write it as a product of the relators.
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Elimination

Let {y1, . . . , ym} ⊂ {x1, . . . , xn}, and let Y ∗ be the monoid of words

in the letters y1, . . . , ym. For a two-sided ideal I of K〈X〉, the set

I ∩K〈Y 〉 is a two-sided ideal in K〈Y 〉. It is called the elimination

ideal of I obtained by eliminating the indeterminates in X \ Y .
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Elimination

Let {y1, . . . , ym} ⊂ {x1, . . . , xn}, and let Y ∗ be the monoid of words

in the letters y1, . . . , ym. For a two-sided ideal I of K〈X〉, the set

I ∩K〈Y 〉 is a two-sided ideal in K〈Y 〉. It is called the elimination

ideal of I obtained by eliminating the indeterminates in X \ Y .

Definition 3.5 A word ordering σ on X∗ is called an elimination

ordering for X \ Y if Lwσ(f) ∈ K〈Y 〉 implies f ∈ K〈Y 〉.

Equivalently, an elimination ordering σ is characterized by the

property that w1 >σ w2 if w1 /∈ Y ∗ and w2 ∈ Y ∗.
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Example 3.6 The total lexicographic word ordering tlex is

defined as follows. For t1, t2 ∈ X∗ we let t1 <tlex t2 if the associated

commutative terms t̃1, t̃2 satisfy t̃1 <lex t̃2 or if t̃1 = t̃2 and t1 <lex t2.

The ordering tlex is an elimination ordering for {x1, . . . , xk} for

every k ∈ {1, . . . , n− 1}.
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Example 3.6 The total lexicographic word ordering tlex is

defined as follows. For t1, t2 ∈ X∗ we let t1 <tlex t2 if the associated

commutative terms t̃1, t̃2 satisfy t̃1 <lex t̃2 or if t̃1 = t̃2 and t1 <lex t2.

The ordering tlex is an elimination ordering for {x1, . . . , xk} for

every k ∈ {1, . . . , n− 1}.

Theorem 3.7 (Main Theorem on Elimination)

Let I ⊂ K〈X〉 be a two-sided ideal, and let G be a Gröbner basis of I

with respect to an elimination ordering σ for X \ Y .

Then G ∩K〈Y 〉 is a Gröbner basis of I ∩K〈Y 〉 with respect to the

restriction of σ.

In particular, a Gröbner basis of I ∩K〈Y 〉 can be enumerated.
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Kernels of Algebra Homomorphisms

Let I ⊂ K〈X〉 be a two-sided ideal, let {y1, . . . , ym} be a set of

further indeterminates and let ϕ : K〈Y 〉 −→ K〈X〉/I be the

K-algebra homomorphism given by ϕ(yi) = h̄i for i = 1, . . . ,m.

24
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further indeterminates and let ϕ : K〈Y 〉 −→ K〈X〉/I be the

K-algebra homomorphism given by ϕ(yi) = h̄i for i = 1, . . . ,m.

Definition 3.8 The two-sided ideal ∆ = 〈y1 − h1, . . . , ym − hm〉+ I

of K〈X, Y 〉 is called the diagonal ideal of ϕ.
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Kernels of Algebra Homomorphisms

Let I ⊂ K〈X〉 be a two-sided ideal, let {y1, . . . , ym} be a set of

further indeterminates and let ϕ : K〈Y 〉 −→ K〈X〉/I be the

K-algebra homomorphism given by ϕ(yi) = h̄i for i = 1, . . . ,m.

Definition 3.8 The two-sided ideal ∆ = 〈y1 − h1, . . . , ym − hm〉+ I

of K〈X, Y 〉 is called the diagonal ideal of ϕ.

Proposition 3.9 We have ker(ϕ) = ∆ ∩K〈Y 〉. In particular, we

can enumerate a Gröbner basis of the kernel of ϕ.
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The Order of a Group Element

K〈G〉 = K〈X〉/I group ring of a finitely presented group.

Corollary 3.10 For word w ∈ X∗ representing a group element

w̄ ∈ G, we have a semi-decision procedure to check whether w̄ has

finite order.

Proof: Compute the kernel of the K-algebra homomorphism

K[t] −→ K〈X〉/I given by t 7→ w̄. The element w̄ has infinite order

iff this kernel is zero.
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The Order of a Group Element

K〈G〉 = K〈X〉/I group ring of a finitely presented group.

Corollary 3.10 For word w ∈ X∗ representing a group element

w̄ ∈ G, we have a semi-decision procedure to check whether w̄ has

finite order.

Proof: Compute the kernel of the K-algebra homomorphism

K[t] −→ K〈X〉/I given by t 7→ w̄. The element w̄ has infinite order

iff this kernel is zero.

Remark 3.11 To prove that w̄ has infinite order, we can try to add

polynomials to the diagonal ideal and show that the larger ideal ∆̃

satisfies ∆̃ ∩K〈Y 〉 = {0}. In particular, we can add the binomials

defining a normal subgroup.
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The Tits Alternative

If a finitely presented group G = 〈x1, . . . , xn; ℓ1 = r1, . . . , ℓs = rs〉

contains a free subgroup of rank 2, two randomly chosen elements

of G should generate such a subgroup.
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The Tits Alternative

If a finitely presented group G = 〈x1, . . . , xn; ℓ1 = r1, . . . , ℓs = rs〉

contains a free subgroup of rank 2, two randomly chosen elements

of G should generate such a subgroup.

Remark 3.12 Let w1, w2 ∈ X∗ be words representing two elements

of G. Define a K-algebra homomorphism

ϕ : K〈y1, y2, z1, z2〉 −→ K〈G〉 by ϕ(yi) = w̄i, ϕ(zi) = w̄−1
i

and compute its kernel. The elements w̄1, w̄2 generate a free

subgroup of G iff ker(ϕ) = 〈yizi − 1, ziyi − 1〉
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The Generalized Word Problem

Proposition 3.13 (Subalgebra Membership) Let

ϕ : K〈Y 〉 −→ K〈X〉/I be a K-algebra homomorphism. Given

f ∈ K〈X〉, we have the following semi-decision procedure to check

whether f̄ ∈ im(ϕ).
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Gröbner basis of ∆.

(b) Check whether the partial Gröbner basis G reduces f to an
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The Generalized Word Problem

Proposition 3.13 (Subalgebra Membership) Let

ϕ : K〈Y 〉 −→ K〈X〉/I be a K-algebra homomorphism. Given

f ∈ K〈X〉, we have the following semi-decision procedure to check

whether f̄ ∈ im(ϕ).

(a) Run one iteration of the Buchberger Procedure to compute a

Gröbner basis of ∆.

(b) Check whether the partial Gröbner basis G reduces f to an

element in K〈Y 〉. If this is the case, return TRUE and stop.

Otherwise, continue with (a).

If we have h = NRG(f) ∈ K〈Y 〉 then f = h(ϕ(y1), . . . , ϕ(ym)) is an

explicit representation of f as an element of im(ϕ).
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Application to groups and monoids:

Let G = 〈x1, . . . , xn; ℓ1 = r1, . . . , ℓs = rs〉 be a finitely presented

group and let w1, . . . , wm ∈ X∗ be words whose residue classes

generate a subgroup H.

Given a word f ∈ X∗, we have a semi-decision procedure for the

Generalized Word Problem which asks whether f̄ ∈ H holds.
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Application to groups and monoids:

Let G = 〈x1, . . . , xn; ℓ1 = r1, . . . , ℓs = rs〉 be a finitely presented

group and let w1, . . . , wm ∈ X∗ be words whose residue classes

generate a subgroup H.

Given a word f ∈ X∗, we have a semi-decision procedure for the

Generalized Word Problem which asks whether f̄ ∈ H holds.

The element f̄ is contained in H iff f̄ is contained in the image of the

K-algebra homomorphism

ϕ : K〈y1, . . . , ym, z1, . . . , zm〉 −→ K〈G〉

defined by ϕ(yi) = w̄i and ϕ(zi) = w̄−1
i .

If we have f̄ ∈ H then the second part of the preceding proposition

yields f̄ = h(w̄i, w̄
−1
i ). This representation solves the Generalized

Word Search Problem.
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4 – Hilbert-Dehn Functions

Mathematics is a game

played according to certain simple rules

with meaningless marks on paper.

(David Hilbert)
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Let I ⊆ K〈X〉 be a two-sided ideal and R = K〈X〉/I .
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played according to certain simple rules

with meaningless marks on paper.

(David Hilbert)

Let I ⊆ K〈X〉 be a two-sided ideal and R = K〈X〉/I .

Definition 4.1 For i ≥ 0, let Fi be the K-vector subspace of K〈X〉

generated by the words of length ≤ i. Then F = (Fi)i∈N is an

increasing filtration of K〈X〉. It is called the degree filtration.
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4 – Hilbert-Dehn Functions

Mathematics is a game

played according to certain simple rules

with meaningless marks on paper.

(David Hilbert)

Let I ⊆ K〈X〉 be a two-sided ideal and R = K〈X〉/I .

Definition 4.1 For i ≥ 0, let Fi be the K-vector subspace of K〈X〉

generated by the words of length ≤ i. Then F = (Fi)i∈N is an

increasing filtration of K〈X〉. It is called the degree filtration.

The vector space Fi / (Fi ∩ I) measures the (lowest degree

representatives of) elements of degree ≤ i contained in R.
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Definition 4.2 (a) The function HFtot
R : N −→ N given by

HFtot
R (i) = dimK(Fi / (Fi ∩ I))

is called the total Hilbert function of R.
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called the Hilbert function of R.
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(c) If G is a finitely presented group, the function

HDG(i) = HFK〈G〉(i) is called the Hilbert-Dehn function of G.

The value HDG(i) measures the number of normal words of

degree i, i.e. of words which cannot be reduced with respect to a

degree compatible word ordering.
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Definition 4.2 (a) The function HFtot
R : N −→ N given by

HFtot
R (i) = dimK(Fi / (Fi ∩ I))

is called the total Hilbert function of R.

(b) Its first difference function HFR(i) = HFtot
R (i)−HFtot

R (i− 1) is

called the Hilbert function of R.

(c) If G is a finitely presented group, the function

HDG(i) = HFK〈G〉(i) is called the Hilbert-Dehn function of G.

The value HDG(i) measures the number of normal words of

degree i, i.e. of words which cannot be reduced with respect to a

degree compatible word ordering.

In general, the Hilbert function of R in degree i cannot be calculated,

but only an upper bound.
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σ degree-compatible word ordering (e.g. σ = llex)

Proposition 4.3 (Macaulay’s Basis Theorem)

The residue classes of the elements of the set of normal words

Oσ(I) = X \ Lwσ(I) form a K-vector space basis of R.
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Oσ(I) = X \ Lwσ(I) form a K-vector space basis of R.

Corollary 4.4 We have HFR(i) = HFK〈X〉/Lwσ(I)(i) for all i ≥ 0.

Definition 4.5 The power series HSR(t) =
∑

i≥0HFR(i) t
i is called

the Hilbert series of R.
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σ degree-compatible word ordering (e.g. σ = llex)

Proposition 4.3 (Macaulay’s Basis Theorem)

The residue classes of the elements of the set of normal words

Oσ(I) = X \ Lwσ(I) form a K-vector space basis of R.

Corollary 4.4 We have HFR(i) = HFK〈X〉/Lwσ(I)(i) for all i ≥ 0.

Definition 4.5 The power series HSR(t) =
∑

i≥0HFR(i) t
i is called

the Hilbert series of R.

Goals: Determine whether R is a finite-dimensional K-vector space;

if not, find out whether HFR has polynomial or exponential growth;

compute HSR.
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Checking Finite-Dimensionality of R

Let σ be a degree compatible term ordering, and let G be a

σ-Gröbner basis of I .
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Checking Finite-Dimensionality of R

Let σ be a degree compatible term ordering, and let G be a

σ-Gröbner basis of I .

Definition 4.6 Let S be a finite set of terms and

ℓ = max{len(w) | w ∈ S}. The Ufnarovski graph ΓS has

(1) a vertex for each normal word w ∈ S which has length ℓ− 1, and

(2) a directed edge (v, w) iff there are xi, xj such that vxi = xjw and

this is a normal word.
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Checking Finite-Dimensionality of R

Let σ be a degree compatible term ordering, and let G be a

σ-Gröbner basis of I .

Definition 4.6 Let S be a finite set of terms and

ℓ = max{len(w) | w ∈ S}. The Ufnarovski graph ΓS has

(1) a vertex for each normal word w ∈ S which has length ℓ− 1, and

(2) a directed edge (v, w) iff there are xi, xj such that vxi = xjw and

this is a normal word.

Theorem 4.7 (Ufnarovski’s Finiteness Criterion)

Assume that G is finite. Then we have dimK(R) <∞ if and only if

ΓLwσ(G) contains no cycle.
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Computing the Growth Rate of R

We use again the Ufnarovski graph ΓLwσ(G) of R and the following

proposition.
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We use again the Ufnarovski graph ΓLwσ(G) of R and the following

proposition.

Proposition 4.8 (a) The normal words of length i are in 1–1

correspondence with the paths of length i in the Ufnarovski graph.
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of the polynomial growth.
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Computing the Growth Rate of R

We use again the Ufnarovski graph ΓLwσ(G) of R and the following

proposition.

Proposition 4.8 (a) The normal words of length i are in 1–1

correspondence with the paths of length i in the Ufnarovski graph.

(b) The Hilbert function of R has exponential growth if and only if

its Ufnarovski graph contains two intersecting cycles.

Moreover, in the case of polynomial growth, the maximal number of

disjoint cycles visited by a path in the Ufnarovski graph is the degree

of the polynomial growth.

Thus, if we can compute a σ-Gröbner basis of I , we can determine

the growth rate of R.
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Example 4.9 Let I = 〈x2 − y2〉 and σ = llex. Then the σ-Gröbner

basis of I is G = {x2 − y2, xy2 − y2x}. This yields

Lwσ(I) = 〈x
2, xy2〉 and Oσ(I) = {1, x, y, xy, yx, y

2, xyx, . . . }

The Ufnarovski graph of Lwσ(I) is y2
	
→ xy ⇆ yx. Since there

are two non-intersectiong cycles, the algebra R = K〈x, y〉/〈x2 − y2〉

has polynomial growth of degree 2.

34



Example 4.9 Let I = 〈x2 − y2〉 and σ = llex. Then the σ-Gröbner
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→ xy ⇆ yx. Since there

are two non-intersectiong cycles, the algebra R = K〈x, y〉/〈x2 − y2〉

has polynomial growth of degree 2.

Example 4.10 For the monomial algebra R = K〈x, y〉/〈x3, xy2〉,

the Ufnarovski graph is x ⇆ y
	
← x2. Since there are two

intersecting cycles, the algebra has exponential growth.

34-a



Example 4.9 Let I = 〈x2 − y2〉 and σ = llex. Then the σ-Gröbner

basis of I is G = {x2 − y2, xy2 − y2x}. This yields

Lwσ(I) = 〈x
2, xy2〉 and Oσ(I) = {1, x, y, xy, yx, y

2, xyx, . . . }

The Ufnarovski graph of Lwσ(I) is y2
	
→ xy ⇆ yx. Since there

are two non-intersectiong cycles, the algebra R = K〈x, y〉/〈x2 − y2〉

has polynomial growth of degree 2.

Example 4.10 For the monomial algebra R = K〈x, y〉/〈x3, xy2〉,

the Ufnarovski graph is x ⇆ y
	
← x2. Since there are two

intersecting cycles, the algebra has exponential growth.

Definition 4.11 The Gelfand-Kirillov dimension of R is

GKdim(R) = lim
i→∞

ln(HFtot

R (i))
ln(i) .

The Gelfand-Kirillov dimension is finite iff HFR has polynomial

growth. It is a number in {0, 1} ∪ [2,∞].
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Computing the Hilbert Series

Let M be a minimal set of generators of Lwσ(I). The Hilbert series

can be computed from M as follows:
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Computing the Hilbert Series

Let M be a minimal set of generators of Lwσ(I). The Hilbert series

can be computed from M as follows:

(a) Define the notion of n-chains in M .

(b) Construct the graph of chains C(M).

(c) Perform certain transformations on C(M), in particular certain

identifications of vertices.

(d) If the graph becomes finite after several transformations, there is

a formula for the Hilbert series of K〈X〉/Lwσ(I).

(e) This Hilbert series agrees with HSR(t).
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ApCoCoA

All computations mentioned n this talk can be executed using the

packages implemented by X. Xiu in ApCoCoA 1.9, see

http://www.apcocoa.org
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ApCoCoA

All computations mentioned n this talk can be executed using the

packages implemented by X. Xiu in ApCoCoA 1.9, see

http://www.apcocoa.org

Thank you for your attention!

In the end, everything is a gag.

(Charlie Chaplin)
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