An L_3 - U_3 -quotient algorithm for finitely presented groups

Sebastian Jambor

University of Auckland

Let $G = \langle a, b | r_1, ..., r_k \rangle$ be a finitely presented group. Compute all quotients of *G* that are isomorphic to one of the groups PSL(3, *q*), PSU(3, *q*), PGL(3, *q*), or PGU(3, *q*), *simultaneously for every prime power q*.

Studying representations

... using character theory

- We want to find epimorphisms $\delta \colon G \to \mathsf{PSL}(3,q)$.
- As a first step: Study representations $\Delta : F_2 \rightarrow SL(3, q)$.
- Main tool: The character $\chi_{\Delta} \colon F_2 \to \mathbb{F}_q \colon w \mapsto tr(\Delta(w))$.

Theorem

Let $\Delta_1, \Delta_2: \Gamma \to GL(n, K)$ be absolutely irreducible, where Γ is an arbitrary group and K is arbitrary field.

If $\chi_{\Delta_1} = \chi_{\Delta_2}$, then Δ_1 and Δ_2 are equivalent.

From now on:

"character" = "character of a representation $F_2 \rightarrow SL(3,q)$ "

Studying characters

... using commutative algebra

Theorem

For every $w \in F_2$ there exists

 $\tau_{w} \in \mathbb{Z}[x_{1}, x_{-1}, x_{2}, x_{-2}, x_{1,2}, x_{-1,2}, x_{-2,1}, x_{-2,-1}, x_{[1,2]}]$ such that

 $\chi(w) = \tau_w(\chi(a), \chi(a^{-1}), \chi(b), \dots, \chi([a, b])).$ for every character $\chi \colon F_2 \to \mathbb{F}_q.$

We call τ_w the trace polynomial of w and $t_{\chi} := (\chi(a), \dots, \chi([a, b])) \in \mathbb{F}_q^9$ the trace tuple of χ .

Corollary

Every character is uniquely determined by its trace tuple.

Studying characters

... using commutative algebra

Theorem

There exists $r \in \mathbb{Z}[x_1, \ldots, x_{[1,2]}]$ such that $t \in \mathbb{F}_q^9$ is the trace tuple of a character χ if and only if r(t) = 0.

Corollary

There is a bijection between the maximal ideals of $R := \mathbb{Z}[x_1, \ldots, x_{[1,2]}]/\langle r \rangle$ and the (Gal(\mathbb{F}_q)-classes of) characters $\chi \colon F_2 \to \mathbb{F}_q$, where q ranges over all prime powers.

For $M \in \text{MaxSpec}(R)$ let χ_M be the corresponding character, and $\Delta_M : F_2 \rightarrow \text{SL}(3, q)$ a representation with character χ_M .

Representations of f.p. groups

... in ring theoretic terms

Let $M \in MaxSpec(R)$ and $\Delta_M : F_2 \rightarrow SL(3, q)$ a corresponding representation.

Theorem

Let G be a finitely presented group. There exists an ideal $I_G \subseteq R$ such that Δ_M factors over G if and only if $I_G \subseteq M$.

Surjectivity of representations

... in ring theoretic terms

Let $M \in MaxSpec(R)$ and $\Delta_M : F_2 \rightarrow SL(3, q)$ a corresponding representation.

Theorem

There exists an ideal $\omega \trianglelefteq R$ such that Δ_M fixes a symmetric form if and only if $\omega \subseteq M$.

Theorem

:

There exists an ideal $\rho \trianglelefteq R$ such that Δ_M is (absolutely) reducible if and only if $\rho \subseteq M$.

Examples: Finitely many L₃-U₃-quotients

- $G = \langle a, b | a^2, b^3, (ab^2ab)^4, (ab)^{41} \rangle$ has quotients L₃(83) (twice), L₃(2543) and U₃(3⁴).
- $G = \langle a, b | a^2, b^4, (ab)^{11}, [a, bab]^7 \rangle$ has quotients U₃(769), U₃(9437) and U₃(133078695023).

Examples: Infinitely many L₃-U₃-quotients Classification using algebraic number theory

 $G = \langle a, b | a^2, b^3, u^4 vuvuvuv^4 u^2 v^2 \rangle$ with u = ab and $v = ab^{-1}$, has infinitely many L₃-quotients, precisely one in every characteristic $\neq 2, 13$.

The isomorphism type of the quotient is

	$p^3 \equiv \pm 1 \mod 13$	$p^3 ot\equiv \pm 1 \mod 13$
$p \equiv 1 \mod 3$	$L_3(p)$ or PGL(3, p)	$U_3(\rho)$
$p \not\equiv 1 \mod 3$	$L_3(p)$	$U_3(p)$ or PGU(3, p)

Examples: Infinitely many L₃-U₃-quotients Classification using combinatorics

• $G = \langle a, b | a^2, b^3, [a, b]^5, [a, babab]^3 \rangle$ has infinitely many L₃-quotients, but all are defined in characteristic 2.

Example: For $\ell > 3$ prime there are

 $(2^{2\ell-1}-2)/(3\ell)$ quotients isomorphic to PSL(3, $2^{2\ell}),$

 $(2^{2\ell-1}-2)/\ell$ quotient isomorphic to $\text{PSU}(3,2^{2\ell}),$ and

 $(2^{2\ell}-2)/(3\ell)$ quotients isomorphic to PGL(3, $2^{2\ell})$.

• $G = \langle a, b | a^3, b^5, aba^{-1}b^2aba^{-1}bab^2a^{-1}b \rangle$ has infinitely many L₃-quotients; finitely many in every characteristic, and infinitely many in characteristic 5.