
Computing automorphism groups and testing groups for
isomorphism

Derek Holt

University of Warwick

Questions, Algorithms, and Computations in Abstract Group Theory,
Braunschweig, May 2013

Derek Holt (University of Warwick) Computing automorphism groups and testing groups for isomorphismMay, 2013 1 / 16

Contents

1 Search problems in computational group theory

2 Automorphism groups of finite p-groups

3 Automorphism groups of general finite groups

4 An alternative approach using automorphisms of p-groups

5 Representing automorphism groups

6 Bibliography

Derek Holt (University of Warwick) Computing automorphism groups and testing groups for isomorphismMay, 2013 2 / 16

Search problems in computational group theory

Let G be a finite group with |G | = n.

Some computations involve searching through the elements of G , and so
their complexity is potentially Ω(n).

Such problems often come in pairs, one of which is to compute a certain
subgroup and the other is to find a representative of a coset of the
subgroup, which may or may not exist.

Algorithms for the two problems are typically very similar, so they can be
considered (and implemented) together.

Derek Holt (University of Warwick) Computing automorphism groups and testing groups for isomorphismMay, 2013 3 / 16

Search problems in computational group theory

Let G be a finite group with |G | = n.

Some computations involve searching through the elements of G , and so
their complexity is potentially Ω(n).

Such problems often come in pairs, one of which is to compute a certain
subgroup and the other is to find a representative of a coset of the
subgroup, which may or may not exist.

Algorithms for the two problems are typically very similar, so they can be
considered (and implemented) together.

Derek Holt (University of Warwick) Computing automorphism groups and testing groups for isomorphismMay, 2013 3 / 16

Examples

1 a) Find the centralizer of an element of G ;
b) Test two elements of G for conjugacy and find a conjugating element if

it exists.

2 a) Find the normalizer of a subgroup of G ;
b) Test two subgroups of G for conjugacy and find a conjugating element

if it exists.

3 For G ≤ Sym(X):

a) Find the stabilizer of a subset of X ;
b) For two subsets Y ,Z ⊆ X , test for existence of g ∈ G with Y g = Z

and find g if it exists.

4 For G ≤ GLn(Fq) acting on V = Fn
q:

a) Find the stabilizer of a subspace W of V ;
b) For two subspaces W ,X of V , test for existence of g ∈ G with

W g = X and find g if it exists.

Derek Holt (University of Warwick) Computing automorphism groups and testing groups for isomorphismMay, 2013 4 / 16

Examples

1 a) Find the centralizer of an element of G ;
b) Test two elements of G for conjugacy and find a conjugating element if

it exists.

2 a) Find the normalizer of a subgroup of G ;
b) Test two subgroups of G for conjugacy and find a conjugating element

if it exists.

3 For G ≤ Sym(X):

a) Find the stabilizer of a subset of X ;
b) For two subsets Y ,Z ⊆ X , test for existence of g ∈ G with Y g = Z

and find g if it exists.

4 For G ≤ GLn(Fq) acting on V = Fn
q:

a) Find the stabilizer of a subspace W of V ;
b) For two subspaces W ,X of V , test for existence of g ∈ G with

W g = X and find g if it exists.

Derek Holt (University of Warwick) Computing automorphism groups and testing groups for isomorphismMay, 2013 4 / 16

Examples

1 a) Find the centralizer of an element of G ;
b) Test two elements of G for conjugacy and find a conjugating element if

it exists.

2 a) Find the normalizer of a subgroup of G ;
b) Test two subgroups of G for conjugacy and find a conjugating element

if it exists.

3 For G ≤ Sym(X):

a) Find the stabilizer of a subset of X ;
b) For two subsets Y ,Z ⊆ X , test for existence of g ∈ G with Y g = Z

and find g if it exists.

4 For G ≤ GLn(Fq) acting on V = Fn
q:

a) Find the stabilizer of a subspace W of V ;
b) For two subspaces W ,X of V , test for existence of g ∈ G with

W g = X and find g if it exists.

Derek Holt (University of Warwick) Computing automorphism groups and testing groups for isomorphismMay, 2013 4 / 16

Examples

1 a) Find the centralizer of an element of G ;
b) Test two elements of G for conjugacy and find a conjugating element if

it exists.

2 a) Find the normalizer of a subgroup of G ;
b) Test two subgroups of G for conjugacy and find a conjugating element

if it exists.

3 For G ≤ Sym(X):

a) Find the stabilizer of a subset of X ;
b) For two subsets Y ,Z ⊆ X , test for existence of g ∈ G with Y g = Z

and find g if it exists.

4 For G ≤ GLn(Fq) acting on V = Fn
q:

a) Find the stabilizer of a subspace W of V ;
b) For two subspaces W ,X of V , test for existence of g ∈ G with

W g = X and find g if it exists.

Derek Holt (University of Warwick) Computing automorphism groups and testing groups for isomorphismMay, 2013 4 / 16

Automorphism groups and isomorphism testing

5 a) Calculate Aut(G);
b) Test two groups G ,H for isomorphism, and find an isomorphism if it

exists.

The naive complexity estimate for automorphism group computation and
isomorphism testing is nO(log n), and this is likely to be best possible.

We find a generating set S of G with |S | ≤ log2 n. A homomorphism
G → G is determined by the images of the elements of S , so we just try
all n|S| such images, and test whether they define automorphisms of G .

For primes p, G. Higman showed how to construct about p2n
3/27

non-isomorphic groups of order pn. These are special p-groups with about
2n/3 generators. It is unlikely that two such groups can be tested for
isomorphism any faster than this.

Derek Holt (University of Warwick) Computing automorphism groups and testing groups for isomorphismMay, 2013 5 / 16

Automorphism groups and isomorphism testing

5 a) Calculate Aut(G);
b) Test two groups G ,H for isomorphism, and find an isomorphism if it

exists.

The naive complexity estimate for automorphism group computation and
isomorphism testing is nO(log n), and this is likely to be best possible.

We find a generating set S of G with |S | ≤ log2 n. A homomorphism
G → G is determined by the images of the elements of S , so we just try
all n|S| such images, and test whether they define automorphisms of G .

For primes p, G. Higman showed how to construct about p2n
3/27

non-isomorphic groups of order pn. These are special p-groups with about
2n/3 generators. It is unlikely that two such groups can be tested for
isomorphism any faster than this.

Derek Holt (University of Warwick) Computing automorphism groups and testing groups for isomorphismMay, 2013 5 / 16

Automorphism groups and isomorphism testing

5 a) Calculate Aut(G);
b) Test two groups G ,H for isomorphism, and find an isomorphism if it

exists.

The naive complexity estimate for automorphism group computation and
isomorphism testing is nO(log n), and this is likely to be best possible.

We find a generating set S of G with |S | ≤ log2 n. A homomorphism
G → G is determined by the images of the elements of S , so we just try
all n|S| such images, and test whether they define automorphisms of G .

For primes p, G. Higman showed how to construct about p2n
3/27

non-isomorphic groups of order pn. These are special p-groups with about
2n/3 generators. It is unlikely that two such groups can be tested for
isomorphism any faster than this.

Derek Holt (University of Warwick) Computing automorphism groups and testing groups for isomorphismMay, 2013 5 / 16

Automorphism groups and isomorphism testing

5 a) Calculate Aut(G);
b) Test two groups G ,H for isomorphism, and find an isomorphism if it

exists.

The naive complexity estimate for automorphism group computation and
isomorphism testing is nO(log n), and this is likely to be best possible.

We find a generating set S of G with |S | ≤ log2 n. A homomorphism
G → G is determined by the images of the elements of S , so we just try
all n|S| such images, and test whether they define automorphisms of G .

For primes p, G. Higman showed how to construct about p2n
3/27

non-isomorphic groups of order pn. These are special p-groups with about
2n/3 generators. It is unlikely that two such groups can be tested for
isomorphism any faster than this.

Derek Holt (University of Warwick) Computing automorphism groups and testing groups for isomorphismMay, 2013 5 / 16

Automorphism groups and isomorphism testing (ctd)

So all that we can do is to look for algorithms that perform well in practice
on small or interesting examples.

From our naive analysis above, we would expect this to be substantially
easier for groups with small numbers of generators, and this turns out to
be the case: the minimal generator number is the most significant factor
influencing performance of implemented methods.

For the remainder of the talk, everything said about computing AutG
applies also to the group isomorphism testing problem.

(In fact group isomorphism testing is one of the facilities that is used most
frequently by typical users of computer algebra packages, such as GAP
and Magma.)

Derek Holt (University of Warwick) Computing automorphism groups and testing groups for isomorphismMay, 2013 6 / 16

Automorphism groups and isomorphism testing (ctd)

So all that we can do is to look for algorithms that perform well in practice
on small or interesting examples.

From our naive analysis above, we would expect this to be substantially
easier for groups with small numbers of generators, and this turns out to
be the case: the minimal generator number is the most significant factor
influencing performance of implemented methods.

For the remainder of the talk, everything said about computing AutG
applies also to the group isomorphism testing problem.

(In fact group isomorphism testing is one of the facilities that is used most
frequently by typical users of computer algebra packages, such as GAP
and Magma.)

Derek Holt (University of Warwick) Computing automorphism groups and testing groups for isomorphismMay, 2013 6 / 16

Automorphism groups and isomorphism testing (ctd)

So all that we can do is to look for algorithms that perform well in practice
on small or interesting examples.

From our naive analysis above, we would expect this to be substantially
easier for groups with small numbers of generators, and this turns out to
be the case: the minimal generator number is the most significant factor
influencing performance of implemented methods.

For the remainder of the talk, everything said about computing AutG
applies also to the group isomorphism testing problem.

(In fact group isomorphism testing is one of the facilities that is used most
frequently by typical users of computer algebra packages, such as GAP
and Magma.)

Derek Holt (University of Warwick) Computing automorphism groups and testing groups for isomorphismMay, 2013 6 / 16

Automorphism groups of finite p-groups

The best implemented method is due to Eick, Leedham-Green and
O’Brien. As might be expected from the naive complexity analysis above,
it performs best for p-groups with a small number of generators.

The lower p-central series of G is defined by

P0(G) := G ; Pi (G) := [Pi−1(G),G]Pi−1(G)p (i > 0).

We work downwards through the quotients G/Pi (G), computing
Aut(G/Pi (G)) for i = 1, 2, 3,

The critical step in going from i to i + 1 is the calculation of the stabilizer
of a subspaces in the action of Aut(G/Pi (G)) on the p-multiplicator of
G/Pi (G), which can be regarded as a vector space over Fp.

Derek Holt (University of Warwick) Computing automorphism groups and testing groups for isomorphismMay, 2013 7 / 16

Automorphism groups of finite p-groups

The best implemented method is due to Eick, Leedham-Green and
O’Brien. As might be expected from the naive complexity analysis above,
it performs best for p-groups with a small number of generators.

The lower p-central series of G is defined by

P0(G) := G ; Pi (G) := [Pi−1(G),G]Pi−1(G)p (i > 0).

We work downwards through the quotients G/Pi (G), computing
Aut(G/Pi (G)) for i = 1, 2, 3,

The critical step in going from i to i + 1 is the calculation of the stabilizer
of a subspaces in the action of Aut(G/Pi (G)) on the p-multiplicator of
G/Pi (G), which can be regarded as a vector space over Fp.

Derek Holt (University of Warwick) Computing automorphism groups and testing groups for isomorphismMay, 2013 7 / 16

Automorphism groups of finite p-groups

The best implemented method is due to Eick, Leedham-Green and
O’Brien. As might be expected from the naive complexity analysis above,
it performs best for p-groups with a small number of generators.

The lower p-central series of G is defined by

P0(G) := G ; Pi (G) := [Pi−1(G),G]Pi−1(G)p (i > 0).

We work downwards through the quotients G/Pi (G), computing
Aut(G/Pi (G)) for i = 1, 2, 3,

The critical step in going from i to i + 1 is the calculation of the stabilizer
of a subspaces in the action of Aut(G/Pi (G)) on the p-multiplicator of
G/Pi (G), which can be regarded as a vector space over Fp.

Derek Holt (University of Warwick) Computing automorphism groups and testing groups for isomorphismMay, 2013 7 / 16

Automorphism groups of general finite groups

An algorithm of Cannon and Holt generalizes a method of Michael Smith
for finite solvable groups.

This method belongs to a family of algorithms for computing in finite
groups G , which have the following general structure.

1 Compute the solvable radical L := O∞(G) of G .

2 Solve the problem in G/L using known properties of the nonabelian
simple direct factors of Soc(G/L).

3 Solve the problem in G using linear algebra to lift the solution
through the elementary abelian layers of L.

Derek Holt (University of Warwick) Computing automorphism groups and testing groups for isomorphismMay, 2013 8 / 16

Automorphism groups of general finite groups

An algorithm of Cannon and Holt generalizes a method of Michael Smith
for finite solvable groups.

This method belongs to a family of algorithms for computing in finite
groups G , which have the following general structure.

1 Compute the solvable radical L := O∞(G) of G .

2 Solve the problem in G/L using known properties of the nonabelian
simple direct factors of Soc(G/L).

3 Solve the problem in G using linear algebra to lift the solution
through the elementary abelian layers of L.

Derek Holt (University of Warwick) Computing automorphism groups and testing groups for isomorphismMay, 2013 8 / 16

Automorphism groups of general finite groups

An algorithm of Cannon and Holt generalizes a method of Michael Smith
for finite solvable groups.

This method belongs to a family of algorithms for computing in finite
groups G , which have the following general structure.

1 Compute the solvable radical L := O∞(G) of G .

2 Solve the problem in G/L using known properties of the nonabelian
simple direct factors of Soc(G/L).

3 Solve the problem in G using linear algebra to lift the solution
through the elementary abelian layers of L.

Derek Holt (University of Warwick) Computing automorphism groups and testing groups for isomorphismMay, 2013 8 / 16

Automorphism groups of general finite groups

An algorithm of Cannon and Holt generalizes a method of Michael Smith
for finite solvable groups.

This method belongs to a family of algorithms for computing in finite
groups G , which have the following general structure.

1 Compute the solvable radical L := O∞(G) of G .

2 Solve the problem in G/L using known properties of the nonabelian
simple direct factors of Soc(G/L).

3 Solve the problem in G using linear algebra to lift the solution
through the elementary abelian layers of L.

Derek Holt (University of Warwick) Computing automorphism groups and testing groups for isomorphismMay, 2013 8 / 16

Automorphism groups of general finite groups

An algorithm of Cannon and Holt generalizes a method of Michael Smith
for finite solvable groups.

This method belongs to a family of algorithms for computing in finite
groups G , which have the following general structure.

1 Compute the solvable radical L := O∞(G) of G .

2 Solve the problem in G/L using known properties of the nonabelian
simple direct factors of Soc(G/L).

3 Solve the problem in G using linear algebra to lift the solution
through the elementary abelian layers of L.

Derek Holt (University of Warwick) Computing automorphism groups and testing groups for isomorphismMay, 2013 8 / 16

Automorphism groups of general finite groups (ctd)

For the automorphism group computation, we first find a series

G ≥ L = N1 > N2 > · · ·Nr = 1

of characteristic subgroups of G , where L = N1 = O∞(G), and each
Ni/Ni+1 is elementary abelian.

If G 6= L but G/L is moderately small, then Aut(G/N1) can be calculated
from a knowledge of the automorphism groups of the simple direct factors
of Soc(G/L).

This involves black box recognition algorithms for the finite simple
groups.

Derek Holt (University of Warwick) Computing automorphism groups and testing groups for isomorphismMay, 2013 9 / 16

Automorphism groups of general finite groups (ctd)

For the automorphism group computation, we first find a series

G ≥ L = N1 > N2 > · · ·Nr = 1

of characteristic subgroups of G , where L = N1 = O∞(G), and each
Ni/Ni+1 is elementary abelian.

If G 6= L but G/L is moderately small, then Aut(G/N1) can be calculated
from a knowledge of the automorphism groups of the simple direct factors
of Soc(G/L).

This involves black box recognition algorithms for the finite simple
groups.

Derek Holt (University of Warwick) Computing automorphism groups and testing groups for isomorphismMay, 2013 9 / 16

Automorphism groups of general finite groups (ctd)

For the automorphism group computation, we first find a series

G ≥ L = N1 > N2 > · · ·Nr = 1

of characteristic subgroups of G , where L = N1 = O∞(G), and each
Ni/Ni+1 is elementary abelian.

If G 6= L but G/L is moderately small, then Aut(G/N1) can be calculated
from a knowledge of the automorphism groups of the simple direct factors
of Soc(G/L).

This involves black box recognition algorithms for the finite simple
groups.

Derek Holt (University of Warwick) Computing automorphism groups and testing groups for isomorphismMay, 2013 9 / 16

Automorphism groups of general finite groups (ctd)

So we reduce to the lifting problem:

Given an elementary abelian p-subgroup N of G , for which
A := Aut(G/N) is known, compute A := AutG .

We have a series 1 ≤ C E B E A of normal subgroups of A defined by

B := {α ∈ A | αG/N = 1}; C := {β ∈ B | βN = 1}.

The subgroups C and B do not depend on A, and are typically
comparatively straightforward to compute:

C = H1(G/N,N) and B/C = AutN as FpG/N-module.

The most difficult problem is computing A/B, which is a search problem,
where we need to determine which elements of A lift to A.

The special methods for p-groups, where we reduce to a subspace
stabilizer computation, are not available here.

Derek Holt (University of Warwick) Computing automorphism groups and testing groups for isomorphismMay, 2013 10 / 16

Automorphism groups of general finite groups (ctd)

So we reduce to the lifting problem:

Given an elementary abelian p-subgroup N of G , for which
A := Aut(G/N) is known, compute A := AutG .

We have a series 1 ≤ C E B E A of normal subgroups of A defined by

B := {α ∈ A | αG/N = 1}; C := {β ∈ B | βN = 1}.

The subgroups C and B do not depend on A, and are typically
comparatively straightforward to compute:

C = H1(G/N,N) and B/C = AutN as FpG/N-module.

The most difficult problem is computing A/B, which is a search problem,
where we need to determine which elements of A lift to A.

The special methods for p-groups, where we reduce to a subspace
stabilizer computation, are not available here.

Derek Holt (University of Warwick) Computing automorphism groups and testing groups for isomorphismMay, 2013 10 / 16

Automorphism groups of general finite groups (ctd)

So we reduce to the lifting problem:

Given an elementary abelian p-subgroup N of G , for which
A := Aut(G/N) is known, compute A := AutG .

We have a series 1 ≤ C E B E A of normal subgroups of A defined by

B := {α ∈ A | αG/N = 1}; C := {β ∈ B | βN = 1}.

The subgroups C and B do not depend on A, and are typically
comparatively straightforward to compute:

C = H1(G/N,N) and B/C = AutN as FpG/N-module.

The most difficult problem is computing A/B, which is a search problem,
where we need to determine which elements of A lift to A.

The special methods for p-groups, where we reduce to a subspace
stabilizer computation, are not available here.

Derek Holt (University of Warwick) Computing automorphism groups and testing groups for isomorphismMay, 2013 10 / 16

Automorphism groups of general finite groups (ctd)

So we reduce to the lifting problem:

Given an elementary abelian p-subgroup N of G , for which
A := Aut(G/N) is known, compute A := AutG .

We have a series 1 ≤ C E B E A of normal subgroups of A defined by

B := {α ∈ A | αG/N = 1}; C := {β ∈ B | βN = 1}.

The subgroups C and B do not depend on A, and are typically
comparatively straightforward to compute:

C = H1(G/N,N) and B/C = AutN as FpG/N-module.

The most difficult problem is computing A/B, which is a search problem,
where we need to determine which elements of A lift to A.

The special methods for p-groups, where we reduce to a subspace
stabilizer computation, are not available here.

Derek Holt (University of Warwick) Computing automorphism groups and testing groups for isomorphismMay, 2013 10 / 16

An alternative approach using automorphisms of p-groups

A recent alternative approach due to David Howden attempts to calculate
AutG from AutP for one or more Sylow subgroups of G . This has been
implemented in Magma.

It works best for groups with a Sylow subgroup of relatively small index.

It seems to perform more reliably than existing methods on groups of order
up to 2000 (in the small groups database).

On some types of examples, such as iterated wreath products of S3 or S4,
it is no good at all, because computing AutP for the Sylow subgroups is
slower than computing AutG with existing methods,

Derek Holt (University of Warwick) Computing automorphism groups and testing groups for isomorphismMay, 2013 11 / 16

An alternative approach using automorphisms of p-groups

A recent alternative approach due to David Howden attempts to calculate
AutG from AutP for one or more Sylow subgroups of G . This has been
implemented in Magma.

It works best for groups with a Sylow subgroup of relatively small index.

It seems to perform more reliably than existing methods on groups of order
up to 2000 (in the small groups database).

On some types of examples, such as iterated wreath products of S3 or S4,
it is no good at all, because computing AutP for the Sylow subgroups is
slower than computing AutG with existing methods,

Derek Holt (University of Warwick) Computing automorphism groups and testing groups for isomorphismMay, 2013 11 / 16

An alternative approach using automorphisms of p-groups

A recent alternative approach due to David Howden attempts to calculate
AutG from AutP for one or more Sylow subgroups of G . This has been
implemented in Magma.

It works best for groups with a Sylow subgroup of relatively small index.

It seems to perform more reliably than existing methods on groups of order
up to 2000 (in the small groups database).

On some types of examples, such as iterated wreath products of S3 or S4,
it is no good at all, because computing AutP for the Sylow subgroups is
slower than computing AutG with existing methods,

Derek Holt (University of Warwick) Computing automorphism groups and testing groups for isomorphismMay, 2013 11 / 16

Groups with a large Sylow subgroup

Let A := AutG . For simplicity, assume that G is solvable.

Lemma

If Op(G) and Oq(G) are nontrivial for distinct primes p, q, then
G ≤ G/Oq(G)×G/Op(G) and AutG ≤ Aut(G/Oq(G))×Aut(G/Op(G)).

So we assume that there is a unique prime p with 1 6= K := Op(G).

Let G = PQ with P ∈ Sylp(G) and Q a complement of P in G . Then:

Lemma

We have A = AP,Q InnG , where AP,Q = {α ∈ A | Pα = P, Qα = Q}.

Derek Holt (University of Warwick) Computing automorphism groups and testing groups for isomorphismMay, 2013 12 / 16

Groups with a large Sylow subgroup

Let A := AutG . For simplicity, assume that G is solvable.

Lemma

If Op(G) and Oq(G) are nontrivial for distinct primes p, q, then
G ≤ G/Oq(G)×G/Op(G) and AutG ≤ Aut(G/Oq(G))×Aut(G/Op(G)).

So we assume that there is a unique prime p with 1 6= K := Op(G).

Let G = PQ with P ∈ Sylp(G) and Q a complement of P in G . Then:

Lemma

We have A = AP,Q InnG , where AP,Q = {α ∈ A | Pα = P, Qα = Q}.

Derek Holt (University of Warwick) Computing automorphism groups and testing groups for isomorphismMay, 2013 12 / 16

Groups with a large Sylow subgroup (ctd)

The assumption that Oq(G) = 1 for all primes q 6= p implies that
CQ(K) = 1, and hence Q can be identified with a subgroup Q of AutK .

The case when P E G (i.e. K = P) is easy.

Proposition

If K = P then AP,Q
∼= {α ∈ AutK | Qα

= Q}.

More generally, we have

Proposition

AP,Q is isomorphic to a subgroup of

B := {α ∈ AutP | Kα = K , NP(Q)α = NP(Q), α|K ∈ NAutK (Q)}.

Derek Holt (University of Warwick) Computing automorphism groups and testing groups for isomorphismMay, 2013 13 / 16

Groups with a large Sylow subgroup (ctd)

The assumption that Oq(G) = 1 for all primes q 6= p implies that
CQ(K) = 1, and hence Q can be identified with a subgroup Q of AutK .

The case when P E G (i.e. K = P) is easy.

Proposition

If K = P then AP,Q
∼= {α ∈ AutK | Qα

= Q}.

More generally, we have

Proposition

AP,Q is isomorphic to a subgroup of

B := {α ∈ AutP | Kα = K , NP(Q)α = NP(Q), α|K ∈ NAutK (Q)}.

Derek Holt (University of Warwick) Computing automorphism groups and testing groups for isomorphismMay, 2013 13 / 16

Groups with a large Sylow subgroup (ctd)

The assumption that Oq(G) = 1 for all primes q 6= p implies that
CQ(K) = 1, and hence Q can be identified with a subgroup Q of AutK .

The case when P E G (i.e. K = P) is easy.

Proposition

If K = P then AP,Q
∼= {α ∈ AutK | Qα

= Q}.

More generally, we have

Proposition

AP,Q is isomorphic to a subgroup of

B := {α ∈ AutP | Kα = K , NP(Q)α = NP(Q), α|K ∈ NAutK (Q)}.

Derek Holt (University of Warwick) Computing automorphism groups and testing groups for isomorphismMay, 2013 13 / 16

Groups with a large Sylow subgroup (ctd)

This subgroup is typically of small index in B, so can be found by a
straightforward search.

But finding B itself involves a normalizer computation within AutK and
the stabilizer in AutP of two subgroups of P.

To perform such computations efficiently, we need

a nice representation of AutP

We use a permutation representation if one can be found of reasonably
small degree.

Derek Holt (University of Warwick) Computing automorphism groups and testing groups for isomorphismMay, 2013 14 / 16

Groups with a large Sylow subgroup (ctd)

This subgroup is typically of small index in B, so can be found by a
straightforward search.

But finding B itself involves a normalizer computation within AutK and
the stabilizer in AutP of two subgroups of P.

To perform such computations efficiently, we need

a nice representation of AutP

We use a permutation representation if one can be found of reasonably
small degree.

Derek Holt (University of Warwick) Computing automorphism groups and testing groups for isomorphismMay, 2013 14 / 16

Groups with a large Sylow subgroup (ctd)

This subgroup is typically of small index in B, so can be found by a
straightforward search.

But finding B itself involves a normalizer computation within AutK and
the stabilizer in AutP of two subgroups of P.

To perform such computations efficiently, we need

a nice representation of AutP

We use a permutation representation if one can be found of reasonably
small degree.

Derek Holt (University of Warwick) Computing automorphism groups and testing groups for isomorphismMay, 2013 14 / 16

Groups with a large Sylow subgroup (ctd)

This subgroup is typically of small index in B, so can be found by a
straightforward search.

But finding B itself involves a normalizer computation within AutK and
the stabilizer in AutP of two subgroups of P.

To perform such computations efficiently, we need

a nice representation of AutP

We use a permutation representation if one can be found of reasonably
small degree.

Derek Holt (University of Warwick) Computing automorphism groups and testing groups for isomorphismMay, 2013 14 / 16

Representing automorphism groups

For larger p-groups, there may be no suitable permutation representation.

In general, the p-group automorphism algorithm calculates a normal
p-subgroup S of AutP and a representation of (AutP)/S as a subgroup of
GLd(p), where d is size of a minimal generating set of P.

If (AutP)/S is solvable, then we can compute a PC-presentation of
AutP.

Otherwise we can treat AutP as a hybrid group, which we define to be a
finite group G with a solvable normal subgroup S , defined by a
PC-presentation, together with a nice representation of G/S .

Implementations of algorithms for such groups are useful in other contexts,
such as computations in large matrix group with nontrivial solvable radical.

Derek Holt (University of Warwick) Computing automorphism groups and testing groups for isomorphismMay, 2013 15 / 16

Representing automorphism groups

For larger p-groups, there may be no suitable permutation representation.

In general, the p-group automorphism algorithm calculates a normal
p-subgroup S of AutP and a representation of (AutP)/S as a subgroup of
GLd(p), where d is size of a minimal generating set of P.

If (AutP)/S is solvable, then we can compute a PC-presentation of
AutP.

Otherwise we can treat AutP as a hybrid group, which we define to be a
finite group G with a solvable normal subgroup S , defined by a
PC-presentation, together with a nice representation of G/S .

Implementations of algorithms for such groups are useful in other contexts,
such as computations in large matrix group with nontrivial solvable radical.

Derek Holt (University of Warwick) Computing automorphism groups and testing groups for isomorphismMay, 2013 15 / 16

Representing automorphism groups

For larger p-groups, there may be no suitable permutation representation.

In general, the p-group automorphism algorithm calculates a normal
p-subgroup S of AutP and a representation of (AutP)/S as a subgroup of
GLd(p), where d is size of a minimal generating set of P.

If (AutP)/S is solvable, then we can compute a PC-presentation of
AutP.

Otherwise we can treat AutP as a hybrid group, which we define to be a
finite group G with a solvable normal subgroup S , defined by a
PC-presentation, together with a nice representation of G/S .

Implementations of algorithms for such groups are useful in other contexts,
such as computations in large matrix group with nontrivial solvable radical.

Derek Holt (University of Warwick) Computing automorphism groups and testing groups for isomorphismMay, 2013 15 / 16

Representing automorphism groups

For larger p-groups, there may be no suitable permutation representation.

In general, the p-group automorphism algorithm calculates a normal
p-subgroup S of AutP and a representation of (AutP)/S as a subgroup of
GLd(p), where d is size of a minimal generating set of P.

If (AutP)/S is solvable, then we can compute a PC-presentation of
AutP.

Otherwise we can treat AutP as a hybrid group, which we define to be a
finite group G with a solvable normal subgroup S , defined by a
PC-presentation, together with a nice representation of G/S .

Implementations of algorithms for such groups are useful in other contexts,
such as computations in large matrix group with nontrivial solvable radical.

Derek Holt (University of Warwick) Computing automorphism groups and testing groups for isomorphismMay, 2013 15 / 16

Bibliography

J.J. Cannon and D.F. Holt. Automorphism group computation and
isomorphism testing in finite groups. J. Symb. Comput., 35, 241–267,
2003.

B. Eick, C.R. Leedham-Green, E.A. O’Brien, Constructing automorphism
groups of p-groups. Comm. Algebra 30, 2271–2295, 2002.

D.J.A. Howden Computing Automorphism Groups and Isomorphism
Testing in Finite Groups PhD Thesis, University of Warwick, 2012.

M.J. Smith, Computing Automorphisms of Finite Soluble Groups. PhD
Thesis, Australian National University, 1994.

Derek Holt (University of Warwick) Computing automorphism groups and testing groups for isomorphismMay, 2013 16 / 16

	Search problems in computational group theory
	Automorphism groups of finite p-groups
	Automorphism groups of general finite groups
	An alternative approach using automorphisms of p-groups
	Representing automorphism groups
	Bibliography

