Computing with linear groups of finite rank

Alla Detinko

National University of Ireland, Galway

Braunschweig, 21-24 May 2013

1. Preliminaries: computing with finitely generated linear groups

1.1 Set up

Given a finite set S of invertible matrices of degree n over a field F, consider the group $G = \langle S \rangle \subseteq GL(n, F)$. Then $G \subseteq GL(n, R) \subseteq GL(n, F)$ for a finitely generated integral domain $R \subseteq F$ determined by entries of matrices in $S \cup S^{-1}$.

Given an ideal $\rho \subset R$, define the congruence homomorphism $\varphi_{\rho} : GL(n, R) \to GL(n, R/\rho)$. The kernel $ker\varphi_{\rho}(G) := G_{\rho}$ is a congruence subgroup of G.

1.2 Properties of a finitely generated linear group G

(i) G is residually finite, and is approximated by matrix groups of degree n over finite fields (Mal'cev).

(ii) There exist ideals $\rho \subset R$ such that each torsion element of G_{ρ} is unipotent, and G_{ρ} is unipotent-by-abelian if G is solvable-by-finite (Selberg-Wehrfritz).

Method developed (computational analogue of method of finite approximation).

Implementation of congruence homomorphism techniques

- providing reduction to subgroups of $GL(n, \mathbb{F}_q)$ (by (i))
- with the kernel G_{ρ} satisfying (ii).

1.3 Problems solved

Using the above method we solved the following problems (over a broad range of domains).

- IsFinite: testing finiteness of G, and investigation of structure of G if G is finite.
- IsSolvableByFinite: computational analogue of the Tits alternative.
- Further properties: IsAbelianByFinite, IsNilpotentByFinite, IsSolvable etc., along with structural investigation of the groups.

Feature of the method: test related properties of G_{ρ} without computing G_{ρ} .

1.4 Further development

The Tits Alternative: A finitely generated subgroup of GL(n, F) is either solvable-by-finite, or contains a free non-abelian subgroup (J. Tits, 1972).

Approach to further computing: consider two different classes separately.

Obstacles for computing with solvable-by-finite groups G (cf. related classes of groups, e.g., polycyclic-by-finite groups).

- G may not be finitely presentable.
- Subgroups of G may not be finitely generated.
- Lack of methods for computing with SF linear groups: e.g., standard algorithms based on computing normal closure may not terminate.

2. Linear groups of finite rank

A group G has *finite Prüfer rank* rk(G) if each finitely generated subgroup of G can be generated by rk(G) elements, and rk(G) is the least such integer.

- How strong is this restriction?
- Why groups of finite rank, i.e., what are computational advantages of such groups?

2.1 What are linear groups of finite rank?

Theorem. If $G \subseteq GL(n, F)$ has finite Prüfer rank then G is solvable-by-finite. **Proposition.** A finitely generated subgroup G of GL(n, F) has finite Prüfer rank if it is solvable-by-finite and \mathbb{Q} -linear.

Further properties.

A group G has *finite torsion-free rank* if it has a (subnormal) series of finite length whose factors are either infinite cyclic or periodic. The number h(G) of infinite cyclic factors is the *torsion-free rank* of G.

Proposition. Let G be a finitely generated subgroup of $GL(n, \mathbb{Q})$. Then the following are equivalent.

- G is solvable-by-finite.
- G is of finite Prüfer rank.
- G is of finite torsion-free rank.

2.2. Structure of finitely generated linear groups of finite rank

2.2.1 Polyrational groups

A group is *polyrational* if it has a series of finite length with each factor isomorphic to a subgroup of the additive group \mathbb{Q}^+ .

Proposition. A finitely generated subgroup G of GL(n, F) has finite Prüfer rank if and only if G is polyrational-by-finite.

In this case $h(G) \leq rk(G)$, and h(G) = rk(G) if G is polyrational.

2.2.2 Unipotent radicals

Given $G \subseteq GL(n, F)$, denote by G_u the *unipotent radical* of G, i.e., the maximal unipotent normal subgroup of G.

Lemma. If $G \subseteq GL(n, F)$ is finitely generated solvable-by-finite then G/G_u is a finitely generated abelian-by-finite completely reducible group.

Remark. G_u is not necessarily finitely generated.

Proposition. Let $G \subseteq GL(n, \mathbb{Q})$ be finitely generated solvable-by-finite. Then there exists a finitely generated subgroup H of G_u such that $G_u = \langle H \rangle^G$ and $h(H) = h(G_u) = rk(G_u)$.

- G_u is polyrational, and H is poly- \mathbb{Z} .
- G_u is the isolator of H in G_u , i.e., for each $g \in G_u$ there exists $m \in \mathbb{Z}$ such that $g^m \in H$.

3. Computing ranks

Set up: Given a finitely generated group $G \leq GL(n, \mathbb{P}), |\mathbb{P} : \mathbb{Q}| < \infty$.

Method. All algorithms are based on congruence homomorphism techniques, i.e., selection of a maximal ideal $\rho \subset R \subset \mathbb{P}$ such that G_{ρ} is torsion-free (and unipotent-by-abelian if G is solvable-by-finite), and construction of $\varphi_{\rho}(G) \subset GL(n, \mathbb{F}_q), \mathbb{F}_q \cong R/\rho$.

3.1. First steps

We can test whether G is of finite rank.

IsOfFiniteRank: returns true if rk(G) is finite (i.e., h(G) is finite); otherwise returns false.

3.2 Reduction to completely reducible case

(i) CompletelyReduciblePart: constructs a completely reducible part $\pi(G)$ of a finitely generated solvable-by-finite subgroup G of GL(n, F), i.e., a generating set of the completely reducible abelian-by-finite group $\pi(G) \cong G/G_u$. **Method:** computing in enveloping algebra of G_a .

(ii) RankCR: for a finitely generated completely reducible solvable-by-finite group G returns $h(G) = h(G_{\rho})$; here G_{ρ} is completely reducible finitely generated abelian.

3.3 Rank of unipotent radical

RankOfUnipotentRad

- Construct a finitely generated $H \leq G_u$ such that $h(H) = h(G_u)$, $G_u = \langle H \rangle^G$ (via a presentation of $\pi(G)$, and normal subgroup generators method).
- **2** Return h(H).

3.4 General case

Compute two main structural components:

- Completely reducible part $\pi(G)$ of G.
- $H \leq G_u$ as in (3.2). Then
- Solution Apply the formula $h(G) = h(G/G_u) + h(G_u)$ as $G_u \triangleleft G$.

4. Applications: subgroups of finite index

4.1 Ranks and subgroups of finite index

Theorem (D. Robinson, 2012). Let H be a subgroup of a finitely generated solvable FAR group G. Then |G : H| is finite if and only if h(H) = h(G).

Remark. Here solvable FAR group means that G has finite abelian ranks.

Corollary. Let $H \leq G \leq GL(n, F)$ where G is finitely generated and of finite Prüfer rank. Then |G:H| is finite if and only if h(H) = h(G).

IsOfFiniteIndex (S_1, S_2) : for finite subsets S_1, S_2 of $GL(n, \mathbb{P})$ such that $G = \langle S_1 \rangle$ is solvable-by-finite and $H = \langle S_2 \rangle \leq G$ returns true if and only if h(G) = h(H).

5. Integrality and arithmeticity of solvable linear groups

Notation. Given $K \leq GL(n, \mathbb{C})$ and a subring $R \leq \mathbb{C}$, denote $K \cap GL(n, R)$ by K_R .

5.1 Integrality of linear groups over ${\mathbb Q}$

A subgroup $H \leq GL(n, \mathbb{Q})$ is said to be *integral* if there exists $g \in GL(n, \mathbb{Q})$ such that $gHg^{-1} \leq GL(n, \mathbb{Z})$.

Example. Finite subgroups of $GL(n, \mathbb{Q})$ are integral.

Applications

- Testing finiteness of finitely generated subgroups of $GL(n, \mathbb{Q})$.
- Testing (virtual) polycyclicity of linear groups over \mathbb{Q} .

5.2 Testing integrality

Lemma. Given a finitely generated subgroup H of $GL(n, \mathbb{Q})$. Then the following are equivalent.

- H is integral.
- $2 |H:H_{\mathbb{Z}}|.$
- **③** There exists a positive integer D such that $DH \subset Mat(n, \mathbb{Z})$.

A positive integer D as in (3) is called a *common denominator* of H.

For a given integral subgroup H of $GL(n, \mathbb{Q})$ we have the following procedures.

- CommonDenominator (*H*): computes a common denominator *D*.
- IntegralIntercept(H, D): computes $H_{\mathbb{Z}}$.

5.3 Integrality of solvable-by-finite linear groups

Lemma. Let *H* be a finitely generated subgroup of $GL(n, \mathbb{Q})$. Then the following are equivalent.

- *H* is integral.
- $\pi(H)$ is integral.
- $\pi(H_{\rho})$ is integral.

Remark. $\pi(H)$ is a completely reducible part of H, H_{ρ} is a congruence subgroup of H.

IsIntegralSF

Input: a finite subset S of $GL(n, \mathbb{Q})$ such that $H = \langle S \rangle$ is solvable-by-finite. Output: true if H is integral; false otherwise.

- Y := NormalGenerators (S), i.e. a normal generating set of a congruence subgroup H_ρ.
- If every element of Y is integral then return true; else return false.

Remark. If *H* is finite then $H_{\rho} = 1$, so IsIntegralSF always reports true for such input.

5.4 Arithmeticity testing in solvable algebraic groups

Set up. Let G be an algebraic group defined over \mathbb{Q} . A subgroup H of $G_{\mathbb{Q}}$ is said to be *arithmetic* if H is commensurable with $G_{\mathbb{Z}}$, i.e. $H_{\mathbb{Z}}$ has finite index in both H and $G_{\mathbb{Z}}$.

Problem. Given a finitely generated subgroup H of $G_{\mathbb{Q}}$, is H arithmetic (in G)?

The following is the main procedure for arithmeticity testing in a solvable algebraic group G (de Graaf, 2013).

GeneratingArithmetic(G): returns a generating set of a finite index subgroup of $G_{\mathbb{Z}}$.

```
\texttt{IsArithmeticSolvable}(S,G)
```

Input: a finite subset S of $G_{\mathbb{Q}}$, G a solvable algebraic group. Output: true if $H = \langle S \rangle$ is arithmetic; false otherwise.

- If IsIntegralSF(S) = false then return false.
- **2** $T_1 :=$ IntegralIntercept $(S); T_2 :=$ GeneratingArithmetic(G).
- If $h(T_1) \neq h(T_2)$ then return false; else return true.

6. Conclusion

- This is joint work with Dane Flannery and Eamonn O'Brien.
- The algorithms have been implemented in MAGMA (package 'Infinite').