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Answer: Yes.

(Antolin – C., EJC 2013)



The goal of this work is to understand geodesic growth from a
qualitative perspective for

• right-angled Artin groups (RAAGs)

• right-angled Coxeter groups (RACGs), and for

• even Coxeter groups.
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◮ a labelling map m : E → {1, 2, 3, . . . }.
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Coxeter systems

A Coxeter system is

◮ a finite simplicial graph Γ = (V ,E ), together with

◮ a labelling map m : E → {1, 2, 3, . . . }.

Coxeter group G(Γ,m) associated to a Coxeter System (Γ,m),

G(Γ,m) = 〈V | v2 = 1 v ∈ V , (uv)m({u,v}) = 1 for {u, v} ∈ E 〉

a

b c

de

6

5

4
4

3
2

〈

a, b, c , d , e
a2 = b2 = c2 = d2 = e2 = 1
(bc)6 = (cd)4 = (de)5 = 1
(eb)3 = (ea)2 = (ac)4 = 1

〉



RACGs and RAAGs

◮ The system is even if m only takes even values.

◮ The system is right-angled if m only takes the value 2.
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• G - group generated by S

The spherical (standard) growth function σ : N → N is given by

σ(r) = number of elements in G of length r .

The geodesic growth function γ : N → N is given by

γ(r) = number of geodesics in G of length r .



Growth series

◮ Spherical growth series

S(G ,X )(z) =

∞
∑

n=0

σ(n)zn

◮ Geodesic growth series

G(G ,X )(z) =

∞
∑

n=0

γ(n)zn
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Spherical growth for right-angled Coxeter groups

Let an be the number of n-cliques of Γ. The f -polynomial of Γ is

fΓ(x) = a0 + a1x + a2x
2 + a3x

3 + . . . amx
m

Theorem (Steinberg (1968))

1

S(GΓ)(z)
= fΓ
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The spherical growth of RACGs and RAAGs

◮ Only depends on the f -polynomial of the simplicial graph.

Ex: Two trees with the same number of vertices have the
same spherical growth.

• • • • • • •

•

f (x) = 1 + 4x + 3x2



The geodesic growth of RACGs and RAAGs

◮ There exist graphs with same f -polynomial but different
geodesic growth.

• • • • • • •

•



Remarks

◮ All the groups in this talk have regular languages of geodesics
with respect to the standard generating sets =⇒

◮ All geodesic growth series are rational.

◮ All Coxeter groups have regular languages of geodesics
(Brink-Howlett 1993).

◮ All Garside groups and lots of Artin groups have regular
languages of geodesics (spherical, large etc.)

◮ Changing the generating sets will modify all statements above.
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Theorem (A – C)
Let Γ be a r-regular, triangle-free graph. Then for RACGs

G(Γ) =
1− (r − 3)t + 2t2

1 + (−|V | − r + 3)t + (−2|V |+ 2 + r |V |)t2
.

Theorem (A – C)
Let (Γ,m) be an even Coxeter system with Γ triangle-free and
star-regular. Then G(Γ) is a function of the star of a vertex and |V |.



Corollary. Let G and G ′ be two right-angled Artin or Coxeter
groups that are link-regular and have the same f -polynomial. Then
G and G ′ have the same geodesic growth.



The smallest example

• • • •

• • • •

• • • •

• • • •

Figure: Two RACGs or RAAGs with the same geodesic growth
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Proof:

For a RACG: describe and analyze an automaton that accepts the
language of geodesics.

For a RAAG: use a result of Droms and Sevatius that connects
Cayley graphs of RACSs and RAAGs.
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Even Coxeter groups

Theorem 2. [A – C]

Let (W ,S) be an even Coxeter system with graph Γ, where Γ is
triangle-free and star-regular. The geodesic growth of W depends
only on |S | and the isomorphism class of the star of the vertices.

In particular, if (W1,S1) and (W2,S2) are triangle-free,
star-regular, even Coxeter systems with |S1| = |S2| and
St(v) ∼= St(u), ∀v ∈ V Γ1, u ∈ V Γ2, then W1 and W2 have the
same geodesic growth.
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Figure: Two even Coxeter groups with the same geodesic growth
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