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Chapter 1

Introduction

A group G is called polycyclic if there exists a subnormal series of the form
GZGleQD-“GnDGn_H:l (*)

with cyclic factors G;/G;+1. By a well-known result of Hirsch every poly-
cyclic group is finitely presented (see also Theorem 2.2.2). Among the finite
presentations of a polycyclic group G, there are some that reflect the struc-
ture of the subnormal series (). Such presentations are called polycyclic
presentations (pc-presentations) and will be defined in Section 2.2.

If a polycyclic group G is given by a pc-presentation, then many problems
of group theory can be solved in practice. For example, one can determine if
G is torsion-free and calculate the torsion subgroup 7', if T" exists. Further,
one can compute the derived series and the Hirsch length of the group G.
Also various methods for computations with subgroups, factor groups and
extensions are available. All these methods are available in the package
"Polycyclic’ [8] of the computer algebra system GAP [24].

Groups often arise in a natural way as matrix groups over QQ (for instance
in the study of symmetries of crystals). But for such matrix groups certain
problems are difficult to solve. For example, it is not easy to decide, if the
torsion subgroup exists, and to calculate it if it does. On the other hand,
these problems are easy to solve once a pc-presentation for a polycyclic group
is known. Therefore a method is needed to determine a pc-presentation for
a given polycyclic matrix group.
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The aim of this thesis is the description and implementation of algorithms
for the following tasks: Let G be a finitely generated subgroup of GL(d, R)
where the ring R is either Q,Z or a finite field ;. Then

e we can test whether GG is solvable;
e if G is polycyclic, then we can determine a pc-presentation for G.

If R = 7Z or F, the group G is polycyclic if and only if G is solvable (see
Chapter 2, Section 2.3). Therefore, we can test if such a G is polycyclic.

The implemented algorithms are available in the GAP-package 'Polenta’ [1],
which can be downloaded from

http://cayley.math.nat.tu-bs.de/software/content.html

The implementation is based on the computer algebra systems GAP [24]
and KANT [10]. Our aim was the development and the implementation of
practical algorithms, that is, algorithms which can be applied to a collection
of significant examples.

The overall algorithm involves ideas from different areas of computational
mathematics. It utilizes classical methods like the orbit-stabilizer algorithm
optimized to the given structure. In addition it also uses techniques from
algebraic number theory, for example, the factorization of fractional ideals.
Finally also representation theory is used, for example, the calculation of
certain submodule series plays an important role.

1.1 History and related research

In 1985 John D. Dixon [5] investigated the orbit-stabilizer problem for linear
groups. He found a structure theorem for polycyclic subgroups of GL(d, Q)
(see Corollary 2.4.5), which is important in this context also.

Based on this, Gretchen Ostheimer [14] proved in 1996, that the calculation
of a pc-presentation for a polycyclic subgroup of GL(d,Q) can be reduced
to three simpler problems: the calculation of a pc-presentation for

e solvable groups in GL(d,F,), where F, is a finite field;
e multiplicative subgroups of an algebraic extension field of Q;

e unipotent subgroups of GL(d, Q).
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Ostheimer described algorithms for all three steps, but a full implementation
was not available.

In 2001 Bettina Eick [6] refined the approach of Ostheimer and described
practical approaches for the first two parts of Ostheimer’s method.

Part one is based on an algorithm of Charles C. Sims [22] for the computation
of the order of solvable permutation groups. This algorithm together with
an efficient implementation is given in this thesis.

Part two is based on computations in algebraic number fields and represen-
tation theory, and has been developed with the help of Jirgen Kliiners and
Florian Hess.

Part three has been known for some time, and can be solved following the
ideas of Chapter 9 in the book of Sims [21].

Finally, we note that there exists an alternative approach to compute a
polycyclic presentation of a rational polycyclic matrix group by Robert Beals
(see for example [2] and [3]). We are not aware of an implementation of this
method, which uses randomized methods.

1.2 Overview and structure of the thesis

In Chapter 2 we give a brief introduction to polycyclic groups. It covers
polycyclic presentations, polycyclic generating sequences and the connec-
tions between solvable and polycyclic groups.

As outlined in Section 1.1, it is possible to reduce the problem of the cal-
culation of a pc-presentation for a polycyclic matrix group G < GL(d, Q)
to three simpler groups, which are interesting in their own right. These are
finite matrix groups, multiplicative subgroups of an algebraic extension of
Q and unipotent matrix groups:

Chapter 3 describes algorithms to compute a pc-presentation for finite ma-
trix groups over a given ring.

Chapter 4 provides methods to calculate a pc-presentation for multiplicative
subgroups of an algebraic extension of Q.

In Chapter 5 we outline how to compute pc-presentations of unipotent ra-
tional matrix groups.
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For the splitting of G < GL(d,Q) into the three mentioned kind of groups,
some representation theory is needed. Regard Q¢ as the natural QG-module.
Chapter 6 contains an algorithm for the determination of the radical series
of Q. Further, we show that for the p-congruence subgroup K < G (see

Definition 2.4.2) it is possible to compute a composition series of the QK-
module Q7.

Finally, in Chapter 7 we present the overall algorithm to compute a pc-
presentation for a rational polycyclic matrix group and propose some refine-
ments. Further we show that a similar approach can be used to test if a
matrix group over Q,Z or a finite field F, is solvable or not. For a matrix
group over Z or F,, we can also test, if the given group is polycyclic.

In Chapter 8 we give runtimes of the implemented algorithms and describe
the bottle necks.

1.3 Acknowledgments

I am grateful for Bettina Eick for her supervision. She was always available
when help was needed and I always obtained reliable advice from her. Fur-
ther, I would like to thank Csaba Schneider for lots of helpful comments on
writing this text and Gretchen Ostheimer for giving me a very nice intro-
duction to the topic of this thesis. Finally I want to thank Jiirgen Kliiners
for his help in algebraic number theory and Christian Sievers for his hint for
Lemma 5.1.5.



Chapter 2
Polycyclic groups

This chapter provides some basic facts about polycyclic groups and a struc-
ture theorem for polycyclic matrix groups. For further background on poly-
cyclic groups we refer to [21] chapter 9, [19] page 147ff and [20].

2.1 Polycyclic sequences

2.1.1 Definition: Let G be a polycyclic group with a subnormal series
G=G1>GD> -G Gpi1 =1 (%)

with cyclic factors G;/Git1- A list G = (g1,...,9n) is called a polycyclic
sequence (or sometimes a polycyclic generating sequence) for G if

Gi/Git1 = (9iGit1)

for i = 1,...,n. For every factor G;/Gi+1 we denote by r; € NU {oco} the
index of Gj41 in G;. We call (rq1,...,r,) the relative orders of G.

2.1.2 Lemma: Let g be an element of a polycyclic group G with polycyclic

sequence G = (g1,...,9n)- Then we can write g uniquely as
g — gfl ..... gzn

where (e1,...,ep) EZ™ and 0 < e; < 1y if r; < 0.

5
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Proof: We proof the lemma by induction. Let g € G,,. Then g can be
uniquely written as g = g;» where e, € Z and 0 < e, < ry, if r, < 0.

Now we assume that g € G; with i < n. Since G;/Giy1 = (9iGi+1) there
exists an é; € Z such that gG;11 = ¢;*Giy1. The number é; is unique

if 7, = co. Then we set e; := ¢€;. If r; < oo, then the exponent can be
uniquely chosen by setting e; := & mod r;. It follows that g; “g € Giy1.
By induction we can suppose that we can write uniquely g; “g = gi*i' -+ - g&n
where (€j41,...,ep) €EZ" "and 0 < ej <rjifr;<ooforj=i+1,...,n.
We deduce that

g=gi'-gn
For i = 1 this gives the wanted result. .

2.1.3 Definition: The unique list (eq,...,e,) € Z™ from the last Lemma
2.1.2 is called the ezponent vector of g with respect to G. It will be denoted

by €xXPg (9)-

2.1.4 Example: Regard the group G generated by the matrices

(-1 0 (11

We verify that gJ* = g, ' € (go). Thus
G (g2) > 1

is a subnormal series of G with cyclic factors and so G is polycyclic. The
list G = (g1,92) is a polycyclic sequence for G with relative orders (2, c0).

Consider the element
-1 2
g:= ( 0 1 ) € G.

It is easy to see that g = g1g5 > and so expg(g) = (1, —2).

2.1.5 Definition: Let G be a polycyclic group. A polycyclic sequence G
for G is called a constructive polycyclic sequence (constructive pc-sequence),
if the relative orders of G are known and if there exists a practical algorithm,
which computes for any element g € G the exponent vector expg(g).

Note that in general, it is a non-trivial task to find a constructive polycyclic
sequence for a polycyclic matrix group.
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2.2 Polycyclic presentations

Let G be a polycyclic group with a polycyclic sequence G = (g1, ..., gn) and
relative orders (r1,...,7,). Denote by I the finite index set of G, that is

I={i|1<i<n,ri#o0}.
g’
By the properties of a polycyclic group it follows that g;” € Gj41 for
1<j<i<nandg® € G forl <i<mnandr; # oco. Thus we can
write these expressions as words in the generators g;y1,..., g, respectively
Ji+15---59n-

2.2.1 Definition: The equations

g = gl g 1< <i<,
-1 PR ..
g = g;?g’lwﬂ) g for 1< j<i<nand j &1
are called the conjugate relations and

are said to be the power relations of the polycyclic sequence G.

The next theorem shows that the power-conjugate relations of a polycyclic
sequence give rise to a finite presentation for the group G.

2.2.2 Theorem: Let G be a polycyclic sequence of a polycyclic group G
with power-conjugate relations as in Definition 2.2.1. Let F be a free group
on the abstract generators in F = { f1,..., fn}. Define R to be the set of
relations

= T for 1< <<,
-1 P ..

fifi = f]{lg_zij,ﬁl) .. fﬁ(l:f’”) fori<j<i<nandj &l
feo= Y ) fori e 1.

Then (F |R) is a presentation for G.
Proof: See [21] Section 9.4. or [6] Chapter 2, Lemma 2.2. o

2.2.3 Definition: The finite presentation (F | R) of a polycyclic group G
of Theorem 2.2.2 is called a polycyclic presentation (pc-presentation) of G.
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2.2.4 Example: Consider the group G defined in Example 2.1.4 with the
polycyclic sequence G = (g1, g2). We obtain the power-conjugate relations

9 =g, "

9t =dYgd

of G. By Theorem 2.2.2

<f1,f2|f21=f2_1,f12:1>

is a polycyclic presentation for G. Note that G is the infinite dihedral group.

2.2.5 Corollary: Let G be a constructive pc-sequence of a polycyclic group
G. Then by calculating the power-conjugate relations we can calculate a
polycyclic presentation for G.

2.3 Solvable versus polycyclic

The class of polycyclic groups is closed with respect to forming subgroups,
factor groups and extensions (see [21] Section 9.3). Further, every polycyclic
group is solvable but the converse is not true. In the following we recall some
connections between solvable and polycyclic groups.

2.3.1 Theorem: A group G is polycyclic if and only if it is solvable and
every subgroup of G 1is finitely generated. In particular a finite group is
polycyclic if and only if it is solvable.

Proof: See [20] Chapter 1, Proposition 4. o

2.3.2 Theorem: FEwvery solvable group of automorphisms of a polycyclic
group s polycyclic.

Proof: See [20] Chapter 2, Theorem 1. o

2.3.3 Corollary: Let G be subgroup of GL(d,Z). Then G is polycyclic if
and only if G is solvable.

Proof: Let G be a solvable subgroup of GL(d,Z). The additive group Z¢
is polycyclic. Therefore, by Theorem 2.3.2, G < GL(d,Z) = Aut(Z%) is
polycyclic. Conversely, we assume that G is a polycyclic group. Then G is
solvable by Theorem 2.3.1. °
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2.4 Matrix groups

Let G be a subgroup of GL(d,Q) which is generated by a finite number
of elements gi,...,gx. Define m to be the set of primes which divide a
denominator of a matrix entry of g1, ..., gk, gfl, ... ,g,;l. Denote by Q; the
set of rational numbers whose denominator is divisible by primes in 7 only.
Then it can be observed readily, that the group G is contained in GL(d, Q).

2.4.1 Definition: Let G < GL(d,Q;) and let p be an odd prime which
is not contained in 7. Then p is called an admissible prime for the matrix
group G.

If p & 7, then there is an homomorphism

Xp: Qv — Z/pZ

% — (a+pZ)- (b+pZ)~L.

2.4.2 Definition: Let be G be a subgroup of GL(d,Q;,) and let p be an
admissible prime for G. The map

Yy : G — GL(d,p)

which applies X, to every entry of a matrix g € G, is said to be the p-
congruence homomorphism from G to GL(d,p). The kernel of 9, is denoted
by K,(G) and is said to be the p-congruence subgroup of G. The image of
Yy is called the p-modular image and we denote it by I,(G).

2.4.3 Definition: Let U be a subgroup of GL(d,Q). An element u € U

is called unipotent if there exists a natural number m € N such that
(u—1)"=0.

The group U is called unipotent, if every element in U is unipotent.

We can now formulate the important structure theorem of Dixon on which
the algorithms in this book are based.

2.4.4 Theorem: Let G be a finitely generated subgroup of GL(d, Q) and
p an admissible prime for G. If the kernel K,(G) of the p-congruence ho-
momorphism has a solvable subgroup of finite index, then the commutator
subgroup K,(G)" is unipotent. Further, the group K,(G) is torsion-free.

Proof: See [5] Lemma 9 and Section 7. o
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2.4.5 Corollary: Let G be a polycyclic subgroup of GL(d,Q). Then the
kernel K,(G) of the p-congruence homomorphism is torsion-free and Kp(G)'
18 unipotent.

Proof: If G is polycyclic, then K,(G) is polycyclic as well. Thus K,(G) is
solvable and we can apply Theorem 2.4.4. .

polycyclic G
} ~ 1,(G) finite

torsion-free K,(G)
} abelian

»(G)

} unipotent
1

Figure 2.1: Corollary 2.4.5 to Dixon’s Theorem



Chapter 3

Finite solvable matrix groups

Let G < GL(d, R) be a finite matrix group where R is a ring. By Theorem
2.3.1 the group G is solvable if and only if G is polycyclic. In this chapter
we want to describe a method to compute a polycyclic presentation (see
Definition 2.2.3) for G, if G is solvable. Further, our algorithm can be used
to test if G is solvable.

Recall that a constructive polycyclic sequence of a group G is a polycyclic
sequence, for which the relative orders are known, and a practical algorithm
is given to compute the exponent vector for any element ¢ in G. By Corollary
2.2.5, it is sufficient to calculate a constructive polycyclic sequence for G, to
obtain a polycyclic presentation for G.

We use an inductive approach for this purpose. For the trivial subgroup
N := {1} <« G a constructive polycyclic sequence is given. For the induc-
tion step we assume, that a constructive polycyclic sequence for a normal
subgroup N of G is available. In the following Section 3.1 we show how to
extend such a constructive polycyclic sequence to a group H := (g, N) where
g is in G\N. Then in Section 3.2 we present methods to compute suitable
elements g for such an extension. Finally in Section 3.3 the algorithm for the
calculation of a constructive polycyclic sequence of a finite solvable matrix
group is presented.

11
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3.1 Cyclic extensions of constructive pc-sequences

Let N be a normal subgroup of a finite solvable matrix group G acting
faithfully on set W. Suppose that a constructive pc-sequence for N is given,
consisting of the elements

N = (n,...,m)

with relative orders (r1,...,r;). Further let g be an element of G\N and
define H := (g, N). The group H is called a cyclic extension of N. We want
to extend the constructive pc-sequence of N to a constructive pc-sequence

H=(g,n1,...,nk)

of H. The following lemma follows directly from the definition of the relative
orders and the exponent vector.

3.1.1 Lemma:

1. Let r be the smallest natural number such that ¢ € N and hence
r = [H : N]. Then the relative orders of H are given by (r,r1,...,7k).

2. Let h = ¢®n be an arbitrary element of H where e € Z and n € N.
This implies that

expy(h) = (e mod r, exppr(n)).

In our way to the extension of a constructive pc-sequence, stabilizers and
orbits will play an important role. They allow us to divide the calculation
of the relative order r in smaller pieces. For this reason we recall some basic
definitions:

3.1.2 Definition: Let G be a group acting on a set W := {1,...,n} and
let B := (w1,...,wy) be a sequence of different points in W. Define Gy := G
and G; := Stabg,_, (w;) for 1 < ¢ < k. Then the series

G=Gy>G1>--->0Gy

is called the stabilizer-chain corresponding to B. The sequence B is called
a base for G, if the group Gy, is trivial.

Since N is a normal subgroup of the matrix group G, we note that

(wN)g = (wg)N
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for all g in GG. Therefore G acts on the set of N-orbits in W. The following
lemma shows, that the stabilizers H; have the same relationship to the
stabilizers N; as H to IN. This is the reason, why the concept of a base
and its corresponding stabilizers is very useful for the determination of the
structure of a cyclic extension.

3.1.3 Lemma: Let N be a normal subgroup of G acting faithfully on a set

W. Define the group H to be a cyclic extension of N generated by N and
an element g € G\N. Then there ezxists a natural number | = [(H,N) € N
and an element n € N such that

Staby (w) = <gln71, StabN(w)>

for any w € W. Therefore Staby(w) is a cyclic extension of Staby(w).

Proof: Let w be an element of W. The group H acts on the set of N-orbits
in W and so there exists a [ = [(H,N) € N such that we can write wH as
the disjoint union

wH =wNUwNgU---UwNg-L.
We deduce that wNg! = wN and hence there exists an n € N such that

wg! = wn. So the group <gln_1, StabN(w)> is contained in the stabilizer of
win H.

Conversely suppose that h is an element of Staby(w) and write h = g for
a natural number e € N and 7 € N. Now it follows that

wN = (wh)N = (wg®n)N = wNg°®
and so e = k - [ by the choice of [. This implies that
g¢°n = gfn = (gln_ln)kﬁ = (gln_l)kﬁﬁ
for some n € N. We deduce that nn must be an element of Staby(w), be-

cause g°n and (gln_l)k stabilize w. Thus h is contained in <gln_1, StabN(w)>.
[}

The following picture resumes the result of Lemma 3.1.3.
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H :=(g,N)

Staby (w) = (g'n~!, Staby (w))

Staby (w)

The last lemma leads us to a method for the calculation of the index [H : N].

3.1.4 Proposition: Let N = Ny be a normal subgroup of G which acts
faithfully on a set W and let B := {w1,...,wg} be base for N. Denote by
H = Hy the cyclic extension (g, N), where g is an element of G\N. Let B =
{w1, -+, e, Wet1, - -, wi} be a base for H and define H; := Stabg,_, (w;)
and N; = Staby, ,(w;) for 1 < i < k. Then the iterated application of
Lemma 3.1.3 to the stabilizer-chain H; can be used to calculate the index

k
[H:N]= Hl(Hi_l,Ni_l).

Proof: By repeated application of Lemma 3.1.3 there exists an
I, = Z(Hi—l,Ni—l) €N, n; € N;_1 such that

H; := <gzl-in;1,Ni>

for 1 < i < k where g; := g and ¢; := gi’_‘fnz__ll for 2 < i < k+ 1.

Therefore H, = <ng’“ n,;1> and so this group is cyclic. If Hy is non-trivial we

extend the set B = {wi,...,w;} to a set B = {wi, - wp, wegrs - - wi )
such that Hj is trivial. Then B is a base for H. Recall that the number
l; == 1(H;_1,N;_1) is defined to be the smallest natural number such that
wigﬁi =w; for k+1<i< k where Ji =gf":11 for k+2<3i< k. Now we
claim that

i i
[H:N]= Hli = Hl(Hi_l,Ni_l).
=1 =1

Since glf“ € H; = {1} we deduce that
i k
I T li koo
1 = g];;k = gk+1k+1 — gl_L,:l lln
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for some 7 € N. This implies that [H : N| divides Hle l;.

Conversely, since l1 is the smallest number such that wlNogll1 = w1 Ny, we
deduce that /1 divides [H : N], which is the order gN in G/N. The element
N = (¢'nTY)N = ¢i' N is of order [H : N]/I; in G/N. Thus the number
lo must divide [H : N]/l;, because Iz is the smallest number such that

wolN1 = nglgéz and ggH:N]/ll € Ni. By induction we follow that Hleli
divides the index [H : N], which shows that the equality holds. .

Lemma 3.1.1 demanded first to calculate the index [H : N] for completing
the list of relative orders of the pc-sequence of the group H = (g, N). Second
for a given element h € H we should be able to determine a natural number
e such that h = ¢g®n for an n € N, for the calculation of the exponent vector
of h. This can be realized by shifting through the orbits, which arise in the
calculation of the index [H : NJ.

3.1.5 Lemma: Denote by N and H := (g, N) groups like in the Proposi-
tion 8.1.4. Suppose that the index [H : N| were calculated by the methods in
Proposition 3.1.4 and that the arising orbits of the points w; € B were stored
including the corresponding transversals. Let h be an element of H. Then
by shifting through the orbits w;IN;_1 a natural number e can be determined
such that h = ¢g°n.

Proof: By induction we want to proof that for h; € H; 1 = (g;, N;—1) we
can determine a natural number e; such that h; = g;*si; where f; € N;_;.
For i = 1 this gives the wanted result. First let i = k+1. Then e =0
because H is trivial. Now we assume that i € {1, ... ,k}. By construction
we know that

wiHi—1 = wiN;i—1 Uw;iN;_1g; U--- Uw;Nj_16% "
Using the membership test for the orbits, we can determine a natural number
S € {O, R 1} such that w;N;_1h; = wiNi_lgf and an n; € N;_1 such
that hjy1 = hig; °n; is an element of H; = Staby, ,(w;). By induction
we suppose that we can calculate a natural number e;; such that h;y; =
gi i fiy1. It follows that

el ol —1veiq1 = _ lieipr 4
hivr = g1 i1 = (g3'n; )" g =g i

for some 7,11 € N. We deduce that

- _ 1 _ lieiy1 __1 _ liejp1+s2
hi = hig1(n; "gf) = g i (ng gi) =g n
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for some 7 € N. The element 7 must be in N,_1 because h; and g; stabilize
w;—1. Therefore we can set e; := l;e;41 + s. .

Now all the necessary elements for the extension of a constructive polycyclic
pc-sequence of N are given. For the implementation we store the arising
orbits w; N;_; under H and the corresponding transversals. Together with
the relative orders this data structure includes all the necessary data for the
determination of exponents vectors and a membership test.

3.2 Abelian Upwards Extensions

Let NV be a normal subgroup of G and suppose that N is given by a con-
structive polycyclic sequence

N = (nl,...,nk).

Our aim is to compute an abelian upwards extension of N. This is a group
H such that N<H <G and H/N is abelian. Assume that H is generated by
{h1,...,h} and N. Since H/N is abelian, all groups Hwith N<H<H
are normal subgroups of H by the correspondence principle. Therefore

H:(hl,...,hl,nl,...,nk)

is a polycyclic sequence for H. So the elements hq,...,h; can be used to ex-
tend the constructive polycyclic sequence of N step by step to a constructive
pc-sequence of H.

Let g be an arbitrary element of G\N. We describe a method which tests
if (9, N)Y is an abelian upwards extension of N. If the result is positive,
then it returns a generator list for H. If (g, N )G /N is not abelian, then it
returns an element whose use we will discuss later.

The concept is the following: We regard £ := {gN} as an incomplete gen-
erator list for (g, N)¢ /N. Now, we add conjugates under the action of the
generators of G to £. We iterate this procedure. During the extension of
the generator list, we test if all elements in £ commute, i.e. [e;N,e;N] =N
holds for all &;N,e;N € &, which is equivalent to [g;,£;] € N (¢; and ¢;
commute modulo N).
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AbelianUpwardsExtension( G, N, ¢ )
(o1) set &£ := {g}
(02) # close £ under the conjugation action of G

(03) for every element ¢ in £ do

(04 & :={&9| g generator of G'}

(05) if all elements in £UE commute modulo N then
(06) set £:=EUE

o7) else

(08) return [g;,€;] such that [g;,6;] € N

(09) end if

(10) end for
(11) return &

The algorithm terminates because G is a finite group, and so we can add
only a finite number of elements to £.

If this method returns a list £, then H := (£, N) is an abelian upwards ex-
tension of N. Namely H/N is non empty (because g ¢ N), H/N is abelian
and H <4 G (because N < G and (H/N)® = H/N ).

If the algorithm returns an element g, then § = [¢%, ¢Y] € N where z,y are
words in the generators of G. Under the assumption that g is contained in
the i-th term G of the derived series, we deduce that § € GU*1) because
gCC , gy c G(Z)

The element § can be used for a recursive call with the input (G, N, §). Since
the length of the derived series of G < GL(d, R) is bounded by d + 2 (see
Theorem 3.3.1), a repetitive application of this algorithm can be made only
a finite number of times.

We note that AbelianUpwardsExtension blows up the generator list £ in
a wasteful manner. In the sixth line we extend the generators list £ by ele-
ments of £&. But we do not check, if an element é € £ is already contained
in the group (£, N). We can respond to this problem, by using extensions
of the constructive polycyclic sequence of N described in Section 3.1.

AbelianUpwardsExtensionFaster( G, N, g )
set & :={g}
set H:=(g,N)
for every element ¢ in £ do
& := {e9| g generator of G}

for every element ¢ € £ do
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if € commutes with all elements in &; € £ modulo N then
if not £é€ H
set H:=(¢,H)
(extension of a constructive pc-sequence, see 3.1)
add € to &
end if
else
return [€,¢;] such that [£,&;] € N
end if
end for
end for

return H

3.3 Constructive polycyclic sequences

Let G < GL(d, R) be a finite matrix group where R is a ring. We present

an algorithm which computes a constructive polycyclic sequence for G.

In the last section we remarked, that the function

AbelianUpwardsExtensionFaster can be used for a recursive call. We spec-
ify this now. Let N be a normal subgroup of G for which a constructive pc-
sequence is already known. Let g be an element of G\V and let ¢ € N U {0}

such that g is in the i-th term G of the derived series. Then the following
method can be used to extend the constructive pc-sequence of N to the

group (g, NV).

Extension( G, N, g, i)

if ¢ > bound for the derived length of G then
return fail (G is not polycyclic)

end if

h := AbelianUpwardsExtensionFaster( G, N, g )

if h is a group element then
Npew := Extension( G, N, h, i+1)
return Extension( G, Npew, g, @ )

else
return h

end if
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In the second line of the last algorithm we need to know the derived length of
G (or a least un upper bound for it). This is given by the following theorem.

3.3.1 Theorem: Let G be a polycyclic subgroup of GL(d,R). Then the
length of the derived series of G is bounded by d + 2.

Proof: See [16]. o

Now a constructive pc-sequence for the matrix group G can be computed
via the following method.

ConstructivePcSequenceFinite( G )

set N :=(1)

for every generator g of G do
N := Extension( G, N, g, 0)
if N = fail then

return "G is not polycyclic"

end if

end for

return N
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Chapter 4

Algebraic number fields

Denote by F an algebraic extension of the field Q and let A := {aq,...,an}
be a finite subset of F \ {0}, where a; # 0 for ¢ = 1,...,n. The aim of
this chapter is to describe an algorithm to calculate a presentation for the
abelian multiplicative group A := (a1,...,a,). Certainly A is polycyclic
(for example, A is a polycyclic sequence). Therefore by Corollary 2.2.5 it is
sufficient to determine a constructive polycyclic sequence for A. This is a
polycyclic sequence, for which the relative orders are known and a efficient
method is given to calculate exponent vectors (see Definition 2.1.5).

It will turn out, that the following set plays an important role.

4.0.2 Definition: Let & = {hq,...,h;} be a subset of an abelian group A.
The relation lattice for & is

ri(€) ::{(el,...,el)ezl|h§1...hlez:1}_

Since A is an abelian group, the sum of two in elements in r/(£) is still in
rl(€). Thus, the name lattice is justified.

An algorithm to determine r/(.A) is presented in Section 4.1. Afterwards, in
Section 4.2, we describe a method that uses the relation lattices to compute
a constructive polycyclic sequence for the group A. In Section 4.3 we give
an example application.

Before we start the description of the algorithms, we state three basic defi-
nitions of algebraic number theory. For further background see [23].

21
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4.0.3 Definition: Let F be a subfield of C such that [F : Q] is finite. Then
I is called a number field or an algebraic extension of Q.

4.0.4 Definition: A complex number 6 is said to be an algebraic integer,
if the minimal polynomial fy of 6 is in Z[X].

4.0.5 Definition: Let F be a number field. The set of algebraic integers
in F is called the mazimal order O of F. An element u € O is called a unit,
if u=! is also contained in @. The set of all units in O is called the unit

group of O and is denoted by U(O).

4.1 Computing relation lattices in number fields

Let A :={a1,...,a,} be a finite subset of a number field F with a; # 0 for
i=1,...,n. Our aim is to determine the relation lattice 7{(.A). Recall that
this is defined as

ri(ai,...,a,) = {(61,...,6n) € Z”|Haf" = 1}.

We proceed in three steps: First we calculate the unit relation lattice, defined
as

url(ay,. .., a,) == {(el,...,en) € Z"\Hafi € U((’))}

where U(O) is the group of units of the maximal order O of F. Every vector
r=(ry,...,m,) in a basis B of url(A) gives rise to a unit

u(r) =ai - ay?---a;r € U(O).
Second, we will calculate the relation lattice of the elements
{u(r)|reB}.

Third, using the achieved informations we will be able to calculate the rela-
tion lattice of the set A.

4.1.1 Calculating the unit relation lattice

Before we start to describe a method for the calculation of the unit relation
lattice url(as,...,a,), we want to show with the following example, how
unique factorization can be used for the calculation of a relation lattice of
elements in an abelian group.



CHAPTER 4. ALGEBRAIC NUMBER FIELDS 23

4.1.1 Example: Suppose that three numbers 49,21 and 9 are given and
our task is to find the relation lattice r1(49,21,9), i.e. the set of all relation
vectors (r1,72,73) in Z3 such that

49" . 21" . 9" = 1.

If we want to do this in a systematic way, we could do the following: Factorize
these numbers and get

49=72,21=7-3, 9=23%

Now we can solve the problem for each of the arising factors. For example,
a relation vector (r1,rs,73) of 49,21 and 9 must eliminate all the occurring
powers of 7 and thus

727‘1 L2 70-7’3 —1.

This gives rise to two conditions:

49 21 9
7 2-r14+1-r94+0-7r3 = 0
3 O-ri+1-194+2-713 = 0

Solving these equations we find that (49, 21,9) must be a subset of Z(1, —2,1).
Conversely every element of Z(1,—2,1) lies in 71(49,21,9) and so we have

rl(49,21,9) ={ 2(1,-2,1) | z € Z }.

Unfortunately we are not always able to determine a unique factorization
of the elements a; € F into irreducible factors. For example in the ring of
integers of Q(v/—5) we have

6=2-3=(1++v-5)(1—+-5)

where 2, 3, (1 + +/=5) are (1 — y/=5) are irreducible. So in the following
we use fractional ideals and describe a method to factorize expressions like
(a;) = a;O. First we remind the reader of some results of their arithmetic
structure. A more detailed description of fractional ideals can be found in
[23] Chapter 5.

4.1.2 Definition: Let F be a extension field of Q and O its maximal order.
An O-submodule a of F is called a fractional ideal of O, if there exists some
non-zero ¢ € O such that ca C O.
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4.1.3 Lemma: The fractional ideals of O are subsets of F of the form
¢~ 'b, where b is an ideal of O and c is a non-zero element of O.

Proof: Suppose that a is a fractional ideal of O and let ¢ € O, ¢ # 0 such
that ca € O. Then the set b := ca must be an ideal of @ and we deduce
that a = ¢ 1b. °

As it turns out, in an algebraic number field, such fractional ideals can be
uniquely factorized into the product of prime ideals.

4.1.4 Theorem: The non-zero fractional ideals of O form an abelian
group under multiplication, where the product of two fractional ideals a1, as
8

aiag = (01_1[11)(02_1[12) = (6102)_15152

and the inverse of a fractional ideal a is defined asa™' == {z € F|za C O }.
The identity of this group is O.

Proof: [23] Theorem 5.5. .
Further we need to know what are the prime elements in this arithmetical
structure.

4.1.5 Definition: Let R be a ring. An ideal p of R is called prime if for
any two ideals a, b

ab Cp implies a Cp or b Cp.

4.1.6 Remark: For the motivation of the last definition regard the ring
R = Z. Here an element p is called prime if from p|ab we can always deduce
that p|a or p|b for all a,b € Z. Then the element p is prime if and only if pZ
is a prime ideal. The condition ab C p corresponds to p | ab.)

4.1.7 Theorem: Ewvery non-zero fractional ideal a of O can be written
uniquely up to the order of the factors as a finite product of prime ideals of

O:

a=]]rf ecz
Proof: See [23] Theorem 5.6. and page 110. o
There are algorithms available for determining such a factorization (see [4]

Section 4.8. and [18] Chapter 7). So we are able to factorize a given frac-
tional ideal into a unique product of prime ideals.
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4.1.8 Lemma: Let F be a number field and denote by O its mazimal order.
If a is a non-zero element in F, then aO is a fractional ideal.

Proof: For a given number field F, there always exists a complex number
0 such that F = Q(#). Every element a in F can be written as a Q-linear
combinations of powers of #. So there exists an m € Z C O such that
m - a € Z[0) C O. Therefore the O-module aQ is a fractional ideal. .

In the example 4.1.1 we found relations among the numbers 49, 21 and 9
via the factorization in prime powers. Now we can solve the problem of
finding the relations among the fractional ideals a;O via the factorization
into prime ideals p1,...,p;-

4.1.9 Definition: Let I be a non-zero fractional ideal of O and write

l
I=11¥7
7=1

The quantity vy, () := e; is called the pj-adic valuation of I.
The p-adic valuation satisfies the property vy (IJ) = vy(I) + vp(J).

Recall that A := {a1,...,a,} is a finite subset of a number field F with
a; 0 fori=1,...,n. Let

I
(a:) = a;0 =[] p5".
7j=1

We construct the matrix (vp, (a;0));i

(al) (ag) (an)

b1 €11 €12 ... €ln
P2 €21 €22 ... €2p
P €11 el ... Cin
where p1,...,p; are the prime ideals appearing in the factorization of all the

fractional ideals a;O and vy, (a;0O) is the pj-adic valuation of ;0.
4.1.10 Proposition:
Let F be an extension field of Q and ay, ..., a, be elements in F\{0}.
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1. Denote by N < Z" the integral nullspace N of the matriz (vp,;(a;));i-
Then N = rl(a10,...,a,0).

2. The relation lattice rl(a1 0, ..., a,0) is equal to the unit relation lattice
url(ai,...,an) :=={(e1,...,en) € Z" [ ai* € U(O)}.
Proof:
1. Let r = (r1,...,r,) be a vector in Z™. Then

(r1,...,mn) € rl(a10,...,a,0)
“ (al)rl N (an)rn = (9

: vp: (a10) : vy (an O)
e (Lo e (I Ie =0
j=1 j=1
o plzln:l Tivp; (a;0) o IleLl 7ivp, (a; O) —0
n
& ZTinj(aiO) =0 forj=1,...,1 by Theorem 4.1.7
=1

<~ (I/pj(ai(g))ji'(Tl,...,T'n)t:O

2. Let r = (r1,...,r,) be a vector in Z™. Then

(riy...,m) € rl(a10,...,a,0)
< (a)™ - (ap) =0

& ﬁa;"(’):(’)

1=1

n
& e ev(o)
=1

& (r1y...,r) €rul(ay,. .. ay)
[

4.1.2 Calculating the relation lattice in U(O)
Let u1,...,un be units of the maximal order O. Our task is to find the

relations between these units. Again it is necessary to work in an unique

factorization domain whose existence is guaranteed by the following theorem
of Dirichlet.
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4.1.11 Theorem: Every unit u of an order over Z can be written uniquely
as

u:CfO-E{I.E'gQ...EfT

T

where ( is the generator of the torsion subgroup of O and €1,...,&, are the
fundamental units of the maximal order.

Proof: [23] Appendix B. .

There are algorithms available for computing the torsion unit and the fun-
damental units (see [18] Chapter 6). Now we proceed as in Section 4.1.1.

4.1.12 Lemma: Let uq,...,uy, € U(O). Fori=1,...,m write

T
u; = Cfo;‘ H gj'cji
j=1

and define o¢ to be the order of (. Denote by Ry < Z™ the integral nullspace
of the matriz

E'T frl f'r2 flm

and let Ry < Z™ such that Ry/(o¢Z)™ is the nullspace of the matriz

Uy U2 ... Um

¢ (fou foo - fom)

in Z™[(o¢Z)™. Then rl(ui,. .., up) = Ri N Rs.
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Proof: Let r = (r1,...,ry) be a vector in Z™. Then
(r1y.eyrm) € rl(ugy ..., Up)
S uteeeum =

T T
PN (Cfm H E;fjl)n (Cme H gfjm)rm -1
j=1 j=1

r
PN szil foirs H 5].2?;1 fiiri — 1
Jj=1

m
& Zfoﬂ“i =0 mod o and

=1

m
ijm- =0 forj=1,...,r by Theorem 4.1.11
i=1

= (Tl,...,T‘m)ERlﬂRQ

4.1.13 Lemma: Let uq,...,uy € U(O). If the multiplicative group
(Ugy -y Up)
18 torsion-free then Ry C Ry, where Ri, Ry are defined as in Lemma 4.1.12.

Proof: Suppose that R; ¢ Rs. Then there is an element (ri,...,r,) €
R; \ Ry. We deduce that

ﬁuzl = ﬁ((f‘” ﬁ E;ji)” = 422’21 foiri ﬁ EJZ?L fiiri £1.
=1 N——

=1 J=1 £1 since rgRy =1

=1 since r€R;

This implies that [[;*; u;" would have finite non-trivial order, which is im-
possible. .

4.1.3 Summary

Let aj, ..., a, be arbitrary elements of an extension field of Q. Now we are
in the position to describe a method to calculate the relation lattice

ri(al,...,an) = {(e1,-..,€en) € Z"| Hafi =1}.
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Suppose that url(ai,...,a,) < Z™ has dimension m in Z". Then compute
a basis 11, ...,y € Z" for url(ay,...,a,) < Z™ and consider the matrix
r1
R =
T'm

Recall that for 7 € uri(ay,...,a,) we defined the unit u(r) as [[}_, a;’. Let

i

81,--.,80 be a basis for rl (u(ry),...,u(ry)) < Z™ and define the matrix
51
S =
So
4.1.14 Lemma: A generating set for the relation lattice ri(a1,...,an) is

given by the rows of the matriz

T:=5-R

Proof: Let t be a row of the matrix 7. Then we can write ¢ = s - R where s
is a row of the matrix .S. This implies

altl . a2t2 - antn
E]—l $jTj1 E;’nzl 5jTj2 Z;n=1 $jTjn
= a .
1 2 n
n n n
_ T14\S1 T24\852 T S
= (Lay ALy (L am
i=1 i=1 i=1
= u(r)® -u(re)® - ulry)’™
=1
and so t is an element of rl(aq,...,ay).
Vice versa assume, that ¢ is an element of rl(aq,...,ay). Then ¢ must be
in url(ai,...,a,) and is therefore a Z-linear combination of the rows of R,

and so t = a- R with a € Z™. We deduce, that o must be in the subspace
generated by the rows of S, because u(ry)® -+ u(ry,)*™ = 1. This implies,
that ¢ is a Z-linear combination of the rows of 7. °
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4.2 Constructive polycyclic sequences

Let A be a finitely generated abelian group and suppose that a method is
given to calculate the relation lattice r/(€) for an arbitrary finite subset &£
of A. We want to determine a constructive polycyclic sequence for A.

4.2.1 Lemma: Let A :={ai,...,an} be an arbitrary generating set for the

abelian group A with relation lattice ri(A). Write the vectors of a generating
set of ri(A) row by row into a matrix RL. Applying the Smith normal form
algorithm to RL we can determine a minimal generating set G for A and
calculate the relative orders of G viewed as a polycyclic sequence.

Proof: Suppose that RL € Z™*™. We can determine row and column trans-
formations R and C such that R - RL - C is equal to a matrix S € Z™*"
in Smith normal form. That is, there is some k£ > 0 such that the entry
s; := Sj; is positive for i = 1,...,k, S has no other nonzero entries and s;
divides sj41 fort=1,...,k — 1.

Denote by j the smallest natural number such that s; # 1. The matrix C
can be interpreted as base change matrix of Z" and the multiplication from
the left with the matrix R just changes the generating set of the subspace
generated by the rows of RL - C. We deduce, that the rows of S are a
generating set of 7/(A) in coordinate vectors corresponding to the new basis.
Then the rows ¢;,...,¢, € Z™ between the j-th and the n-th row of c!
give rise to a minimal generating set ¢; +rl(A),..., ¢, +rl(A) for Z"/ri(A)
(as the preimage of the j-th until the n-th unit vector in the new basis).
The elements ¢; +7I(A), ..., ¢, +rl(A) have the orders (s;,...,s,0,...,0).
They give rise to a minimal generating set

n

g::{Haf’“"|k:j,...,n}

i=1
for A with relative orders (sj,...,s,0,...,0).
For further background on finitely generated abelian groups and the Smith
normal form see [21] Section 8.3. o
It rests to describe a method to compute exponent vectors corresponding to
a given polycyclic sequence.

4.2.2 Lemma: Let A := {ai,...,a,} be a minimal generating set for an
abelian group A and let a be a non-trivial element of A. Then the exponent
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vector of the element a corresponding to A can be calculated in determining
the relation lattice ri({a} U A).

Proof: Let B be a basis of rl({a}U.A) written row by row in a matrix. Bring
B in triangular form (via integer operation) and let r be the first row of
the transformed matrix. We deduce that r; is equal to 1 because A is a
generating set for A. Then the exponent vector can be read off as

exp.A(a) = _(T2a s arn+1)‘

4.3 Example

The methods described in this chapter were implemented in GAP [24] and
are part of the GAP-package ’Alnuth’ [7]. For the fundamental algorithms
as the determination of the maximal order, the unit group and the ideal val-
uation we used the computer algebra system KANT [10]. The GAP-package
’Alnuth’ provides an interface from GAP to KANT.

Let 6 € C be a root of the irreducible polynomial
f=az* — 42 — 2822 + 64z + 16.

Denote by F the number field Q(#) and consider the following elements in F

ay: = 4/3-2/30 —16% —1/363

ag: = —1/3—160+26% 4263

a3: = 5/3—10—1/20% —1/203

ag: = —1/4—36%-1/26°

as: = —1/263

ag: = 129140/3 + 1785380 — 146945/36° — 53893 /36>
ar: = T843/9 +10748/30 — 2243/26% — 3200°.

We want to calculate a presentation for the multiplicative group

A:=(ay,...,a7).
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The calculation of the relation lattice
7
rl(ay,...,a7) == {(e1,...,e7) € Z'| [[ a§' = 1}.
i=1

costed about 10 milliseconds with a Pentium III processor with 850 mhz
under the system Linux. The relation lattice is equal to

((1,0,0,1,1,~1,0),(0,1,1,0,0,0, —1)) < Z.

The minimal generating set for A calculated by the algorithm in Lemma
4.2.1 is

(a2, a4, as, ag, az)
with the relative orders (0, ...,0). This is a constructive polycyclic sequence
for A. By Theorem 2.2.2, the group A is isomorphic to the polycyclic pre-
sented group

—1

X::<x1,...,x5‘m%:xi, ) =z for1§z<]§5>

2
= <:v1,...,a:5‘[xi,xj]:1f0r1§i<j§5>.

In total the computation of this polycyclic presented group costed about 20
milliseconds.



Chapter 5

Unipotent groups

Let U be a subgroup of GL(d,Q). Recall that an element u € U is called
unipotent if there exists a natural number m € N such that

(U— 1)717, :Oa

and that the group U is called unipotent, if every element in U is unipotent.

We will see, that every finitely generated unipotent matrix group U <
GL(d,Q) is polycyclic. It is our goal to determine a polycyclic presentation
of U. According to Corollary 2.2.5, it is sufficient to calculate a constructive
polycyclic sequence for U to get a polycyclic presentation.

Denote by UT(d, Z) the group of all upper unitriangular matrices in GL(d, Z),
i.e. every element in UT(d,Z) has the form

1 x ... *
" *
*

1

In the next section we describe a method to determine a matrix g such that
U9 <UT(d,Z),if U is finitely generated. Then in section 5.2 we show how
to compute a constructive polycyclic sequence for any subgroup of UT(d, Z).

33
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5.1 Conjugation

Let U := (uq,...,u,) be an unipotent rational matrix group. In this section
we determine a matrix g € GL(d, Q) such that U9 is a subgroup of UT(d, Z).

5.1.1 Definition: Let V' be a vector space over a field F. Regard a chain
of subspaces in V/
Vi CViCVigg ..

Then the chain (V;) is called a flag, if for all i we have V; # Vi ;.
Denote by u an unipotent element of GL(d, Q). Let

<bd> C <bd_1,bd> C... <b1, ey bd>
be a flag of Q7. It is said to be a flag for u if it has the property that

d
biu = b; + Z Bi;bj (*)
j=i+1
fori =1,...,dand an unitriangular matrix § € UT'(d, Q). This is equivalent
with the property that b; + (bjy1,...,bgq) is a eigenvector to the eigenvalue

1 for u in Q?/ (biy1,- .- ,ba).
5.1.2 Lemma: Let u be a matriz in GL(d,Q). Then u is unipotent if and

only if all eigenvalues of u are equal to 1.

Proof: If all the eigenvalues of u are equal to 1, we deduce by conjugation
to the Jordan-Normal form that u is unipotent. Conversely denote by A an
arbitrary eigenvalue of u with eigenvector x. It follows that

zlu—1)"=A-1)"x

for every number n € N. Since u is unipotent, there is an m € N such that
(u—1)"™ =0. We deduce that (A — 1)z = 0 and thus A\ = 1. o

5.1.3 Lemma: Denote by u an unipotent element of GL(d, Q). Then there
exists a flag for w with the property (). If {b1,...,bs} is the corresponding
basis of this flag, then we define the matrix

by

b=
ba

Then ub™" is an element of UT(d,Q).
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Proof: Let m be the smallest natural number such that (v —1)™ = 0. Then
there exists a non-trivial vector z € Q% such that

z(u—1)""1 #£0.

Therefore, by := z(u — 1)™~! is an eigenvector of u with eigenvalue 1. Now
induce the action of u to Q?/ (bs). Since the induced action is still unipotent
we find by induction a flag for u with the property (x). Let {b1,...,bq} be
a basis for this flag. We deduce that there exists an 8 € UT'(d, Q) such that
bu = fb. Tt follows that u®~" € UT(d, Q). .

So we are able to bring every unipotent matrix in GL(d, Q) in unitriangulized
form. The next theorem shows, that this is also possible for an unipotent

group.

5.1.4 Theorem: Let U be an unipotent subgroup of GL(d, Q). Then there
exists an element g € GL(d, Q) such that U9 <UT(d,Q).

Proof: See [25] Corollary 1.21 or [19] 8.1.10. )

Let U := (uy,...,u,) be an unipotent subgroup of GL(d,Q). Now we
construct an element b € GL(d, Q) with the property that Ut < UT(d,Q).
This is, we calculate a flag with the property (*) for all generators of U.
Define the matrix

&::(ul—l ug —1 - un—l).

Since U is conjugated to a subgroup of UT'(d, Q), there exists a non-trivial
vector z € Q% such that it = 0. We calculate such a vector = and set
by := x. Now we induce the action of U to Q%/ (b;) and get a group U. The
group U is still unipotent and so we can proceed by induction. In this way
we find the vectors b; for i = 1,...,d with the property (x) for all generators
of U. As in Lemma 5.1.3, we deduce that the matrix

by
b:=
ba
has the property that U? ' < UT(d,Q).

Finally we have to find a matrix which conjugates a subgroup of UT(d, Q)
to a subgroup of UT'(d,Z).
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For a number z = ¢ € Q we denote by ?(x) = b the denominator of x and
for the numbers z1,...,z; € Z we define lcm(z1,...,x;) to be the least
common multiple of x1,...,Zk.

5.1.5 Lemma: Let u be an element of UT(d,Q). Define
C1
c:= € GL(d,Z)

cd
to be the diagonal matriz with the entries
c1:=1
¢i := lem(d(cy tuyy), - - - ,D(Ci__llu(i,l),-)).
Then u¢ € UT(d,Z).

Proof: Obviously we have that (u¢);; = ¢; 'u;jcj. We deduce that (u);; = 0
for ¢ > j and that (u®);; =1 fori=1,...,d. For j > i we see that

Ci_luz'jcj = (ci_luij)cj- = (Ci_luij)lcm(a(cl_lulj), - ,D(Cj__IIU(j,l)j)) €7
and thus u¢ € UT'(d,Z). .
5.1.6 Remark: There are easier ways to find a matrix ¢ such that u¢ €
UT(d,Z). For example we could choose c := diag(1°,1',...,1971), where I
is the least common multiple of the denominators of all entries in u. The

approach of Lemma 5.1.5 has the advantage, that it produces a matrix with
smaller integer entries.

5.1.7 Corollary: Let U := (uq,...,uy) be a subgroup of UT(d,Q). Define

1
c:= € GL(d,Z)

cd
to be the diagonal matriz with the entries
c1:=1

ci::lcm({b(cj_l(uk)ji)|1§j§i—1,1§k§n}).

Then U < UT(d,Z).
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5.1.8 Example: Let U be the unipotent group generated by the matrices

7/3 7/3 0 8/3 1/3 —2/3 1 —1/3
-11/9 —10/9 -2/9 —14/9 779  7/3  -1/9 5/3
112 -1/6 1/2 -5/6 -2/3 —5/3  1/4 -37/12
37/36 37/18 17/18 41/18 -2/9 —1/3 —1/36  13/12

First we conjugate U to a subgroup of UT'(d, Q). The matrix

000 1
p_| 001 =3
“lo11 s
121 1

contains row vectors which are a basis of a flag for w1, us with the property
(¥). By conjugation with b=! we get

1 —1/12 0 37/36 1 1/12  1/9 —2/9
N 1 —1/3 3| |0 1 —2/3 0
" 71o0 0 1 4 1’727 T 1o 0 1 -1
0 0 0 1 0 0 0 1

According to Corollary 5.1.7 we calculate

Cc1 = 1

¢ :=lem(0(=1/12),0(1/12) ) = 12

c3 := lem(0(0),0(1/9),0(c5 " (=1/3)),0(c; ' (—2/3)) ) = 36

cg 1= lem(0(37/36),0(=2/9),0(c5 " (=3)),0(c5 '0),0(c5 '4),0(c5 ' (—1)) ) = 36.

Therefore we define

1 0 0 O
o112 0 o
““lo 03 o]
0O 0 0 36
set g := b~ 'c and get

1 -1 0 37 1 1 4 -8
w0 1 -t s 01 2 0
I to o 1 41”2 oo 1 -1
0 0 0 1 0 0 0 1
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5.2 Constructive pc-sequences

Let U be a subgroup of UT(d,Z). In this section we determine a construc-
tive pc-sequence for U. First we show, that the group of all unitriangular
matrices over the integers UT(d,Z) is polycyclic and give a constructive pc-
sequence for UT(d,Z). Second we induce the constructive pc-sequence of
UT(d,Z) to a constructive pc-sequence of U.

The following example gives a good intuition for the structure of UT(d,Z).

5.2.1 Example: Denote by a,b two elements in UT'(4,Z). We verify that

1 a;p = * 1 big = *
_ 1 ax * 1 by %
CLb o 1 a34 ) 1 b34
1 1

(1 a2 + b1a * *

_ 1 azz + bas *

1 a4 + b34
1

So by matrix calculation, we see that the projection on the first subdiagonal
¢ : UT(d,2) — 7%
a = ( ai2, @23, ..., Ad—1,d )
is a homomorphism.

5.2.2 Lemma: The group of all unitriangular matrices over the integers
UT(d,Z) is polycyclic. Therefore all subgroups of UT(d,Z) are polycyclic.

Proof: For k € {1,...,k} we define
Up:={ueUT(d,Z)|ujy =0ift #jand j —i <k }.

It is easy to see that Uy is a subgroup of UT(d,Z) for k =1,...,d.
We proof by induction that Uy < UT(d,Z) is polycyclic. For k = 1 this

gives the wanted result. Certainly U; = {1} is polycyclic. Now we assume
that k¥ < d and that Uiy is polycyclic. Define
or Uy — 74—k

u ( UL, 1+ks U2,2+4ks - -+ Ud—k,k )
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to be the projection on the k-th subdiagonal. The kernel of ¢, is equal to
Ug+1 and thus polycyclic by hypothesis. Further I'm ¢ = Z%* is polycyclic.
Therefore Uy, is polycyclic.

We deduce that UT(d,Z) is polycyclic. Subgroups of polycyclic groups are
polycyclic (see [21] Section 9.3). o
5.2.3 Corollary: Let U := (u1,...,u,) be an unipotent subgroup of GL(d, Q).
Then the group U s polycyclic.

Proof: In Section 5.1 we showed, that there exists a ¢ € GL(d, Q) such that
U9 <UT(d,Z). Thus U is polycyclic. °

In the following example we outline a constructive polycyclic sequence for
UT(4,7).

5.2.4 Example: It is easy to verify that the matrices

1100 1000 1000
. Loo | tro| 10 0
10 | 10 |’ 11|

\ 1 1 1
1010 1000 1001

0 — Loo| Lo 1| 100
10| 10 | 10

1 1 1

are a generating set for UT(4,7Z). Further they form a polycyclic sequence
for UT(4,Z). We determine the exponent vector of an element = € UT'(4,Z)

corresponding to the pc-sequence A := (a1,...,aq). For example, we regard
the matrix
13 -1 1
o 1 5 4
T = 1 9
1
The entries on the first subdiagonal are a3 = 3,a2 = 5 and a3 = —2.

Therefore (a3a3az?) ™'z has only zeros on the first subdiagonal and is equal
to
1 0 -16 -11
01 0 14
00 1 0
00 0 1
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Now on the second subdiagonal we find the entries a4 = —16 and a5 = 14.
So by multiplication from the left with (aj '®a*)~" we get

100 -11

010 0

0 01 0

0 00 1

A further multiplication from the left with (ag =1 yields the identity ma-
trix. We deduce that

T = a‘i’aga?afﬁa%‘lagn.

Therefore the exponent vector of x corresponding to A is

expa(z) = (3,5,—-2,—-16,14, —11).

We see that in this way we can determine exp4(x) for every = € UT(4,Z)

in a practical way. Thus A is a constructive polycyclic pc-sequence for
UT(4,Z).

5.2.5 Corollary: The method presented in Example 5.2.4 can be used to
determine a constructive polycyclic sequence for the group UT(d,Z).

5.2.6 Lemma: Let U be a subgroup of UT(d,Z). A constructive pc-
sequence for UT(d,Z) can be used to determine a constructive pc-sequence
for U.

Proof: This is a well-known fact. See for example [6, Chapter 3]. The meth-
ods POLY_SUBGROUP and POLY_MEMBER described in [21, Chapter 9]
can also be applied for this purposes. .

Algorithms in the domain of the last Lemma have been implemented already
and are part of the 'Polycyclic’-package [8] which is a part of the GAP-
system.



Chapter 6

Rational Module Series

Let G be a finitely generated solvable subgroup of GL(d, Q). Recall that we
defined K,(G) as the kernel of the p-congruence homomorphism

Yp : G = GL(n,p)

where p is an admissible prime for G (see Definition 2.4.2). The aim of this
chapter is to compute a so-called module composition series of the natural
QK, (G)-module V = @Q*. This is a sequence of QK, (G)-submodules

V=Vi>V>--->V, =0

such that V;/Vi;1 is irreducible as a QK (G)-module. For the case that G
is abelian, we describe a method to determine a composition series for Q¢
seen as a QG-module.

This chapter is organized as follows: Section 6.1 cites basic definitions and
results from module theory. Section 6.2 determines the image and the kernel
of the induced action of G to the factors of a modules series. In Section 6.3
and 6.4 we compute a certain submodule series called radical series. Finally
we outline in Section 6.5 and Section 6.6 methods to refine a radicals series
to a composition series.

In our description we follow the presentation in [6, chapter 5].

6.1 Module Theory and p-congruence subgroups

In this section we want to cite some basic results from module theory which
will be used throughout this chapter.

41
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6.1.1 Definition: Let G be a group.

1. An abelian group (M, +) is called a G-module, if G operates via auto-
morphisms on M. Thus there is a homomorphism ¢ : G — Aut(M).

2. Let F be a field and M a F-vectorspace. Then M is called a FG-
module, if G operates via F-linear automorphisms on M. In this case
there exists a homomorphism ¢ : G — GL(M).

Naturally a subset N C M (subspace N < M) is called a G-submodule
(FG-submodule) of M, if N is a G-module (FG-module).

6.1.2 Definition: Let G be a group and V be a QG-module.

1. V is said to be irreducible if it does not contain any QG-submodule
other than 0 and V, and if V' # 0.

2. V is said to be semisimple if it is the direct product of irreducible
QG-modules.

3. We say that V' is Artinian if V satisfies the descending chain condition
on submodules, that is a sequence

Vi oVe D Vs...

of submodules must stabilize.

6.1.3 Definition: Let G be a subgroup GL(d, Q). We define as its algebra

K
Q[G]:{Zai9i|aie(@agi€G}-

=1

The dimension of Q[G] is the dimension of this set as a Q-vectorspace. Q[G]
is a subspace of the matrix algebra M?*4(Q) and thus an upper bound of
the dimension of Q[G] is d?. We can consider Q[G] as a QG-module where
G operates from the right. A basis of a finite dimensional module which is
given by module generators can be computed by the well-known and very
efficient spinning algorithm (see [12]).

The following lemma is essential for our investigations and will be used at
various places throughout this chapter.

6.1.4 Lemma: (Schur, modified version) Let G be a group and V an
irreducible QG-module with ¢ : G — GL(V'). Then every non-zero element
of Q[G¥] is invertible.
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Proof: See [9] Lemma 1.5. o
6.1.5 Corollary: Let A be an abelian group and V an irreducible QA-
module with ¢ : A — GL(V'). Then Q[A?] is a field.

6.1.6 Lemma: Let G < GL(d,Q;) (see Section 2.4) and V. = Q% the
natural G-module. Then

1. K,(G) = GNKp(GL(d,Qy)).
2. Kp(G9) = (Kp(G))9 for g € GL(d,Qr) and thus K,(G) is invariant

under base changes.

3. Let W be a QG-submodule of V. For the induced action onV and V/W
we obtain that Kp(G)w < Kp(Gw) and Kp(G)yyw < Kp(Gyyw)-

Proof: Elementary. .

6.2 Induced Action

The aim of this section is to investigate the induced action of rational matrix
groups to the factors of a submodule series.

6.2.1 Integral Basis of rational spaces

In this section we want to examine when a rational space W < Q% has an
integral basis, which can be extended to a basis of Z¢.

6.2.1 Definition: Let X be any subset of Q¢. The dual lattice X* and
the orthogonal space X+ are defined as

X*:={ye€Zy-2=0 forallz € X }

Xt ={yeQ|y-z=0 forallz € X }.

6.2.2 Definition: Let L be a sublattice of Z% Then L is called pure if
and only if the group Z¢/L is torsion-free. Further we define the pure hull
L of L as the unique sublattice of Z? such that L/L = T(Z%/L), where
T(Z%/L) is the torsion group of Z?¢/L. Note that T(Z%/L) exists because
Z%/L is abelian.
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6.2.3 Lemma: There exists an integral basis of Z¢ through a sublattice L
if and only if L is pure. Further the pure hull of L, denoted by L, is pure.

Proof: Assume that L is a pure sublattice of dimension k. Then Z?/L is
isomorphic to Z4~*. Denote by {ei,...,eq 1} representatives of a basis of
74/ L. Merging this set with a basis of L we get a integral basis of Z¢ through
L.

Conversely assume that there exists an integral basis of Z% through L. Then
74/ L is isomorphic to Z¢ % and thus L is pure.

Let L be the pure hull of L. We have to show that Z¢/L is torsion-free. Let
z € Z% such that there exists a natural number n € N such that nz € L. It
follows that there is an m € N such that mnz € L. We deduce that z € L
and z + L is the trivial element of Z¢/L. o

The following lemma gives us a method to compute the pure hull L.

6.2.4 Lemma:

1. Let X be an arbitrary subset of Q%. Then it follows that
x* — x1tqzd
and thus dimg(X™**) = dim@(XJ‘J').
2. Let L <Z% Then L** is equal to the pure hull L of L.
Proof:
1. X*=X"1nzi=(Xtnzd)" nzi=x1"nzd

2. Let [ be an element of L. Then there exists a natural number n such
that nl =1 € L. For allx € L* we have 0 =z -l =z - (nl) = n(z - 1)
and thus = -/ = 0. This implies that [ € L** and so L C L**.

Conversely we know by 1. that the Q-dimension of L and L** are the
same and that N
Kk 1 d d
L™ =L""NZ"=(L)gN Z°
Therefore we can write every I € L** as [ = Zle a—zlz where 'Z—z €Q

and l; € L. Now we get that (J][b;)! € L and so [+ L is in the torsion
group of Z¢/L. Therefore L** C L.
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6.2.5 Corollary: Let W be a subspace of Q. Then there exists an integral
basis B of Z¢ through W .

Proof: We know that (W**)** = (W NZ%)* = (W N Zd)J' NZ4* =

(WENZ%* = W** and so W** is a pure sublattice of Z?. Further we know
that the Q-dimensions of W** and W are the same, which implies that an
integral basis B through W** is also an integral basis through W. °

6.2.2 Factor modules

Let m be a set of primes. Recall that the ring Q; was defined as the set of
rational numbers whose denominator is divisible by primes in 7 only. Let
K be a subgroup of GL(d,Q;) and denote by V' the natural K-module Q.
Let

V=Vy>V>--->V,=0

be a series of QK -modules. We induce the action of K to the factors of this
series via the action homomorphism

U:K—)KVO/VI X K‘/I/VZ XX Kvnfl/vn'

The following Lemma examines the structure of the image and the kernel
under this homomorphism.

6.2.6 Lemma: Suppose that K < GL(d,Qy) for a set of primes w. Then
ker(v) is a unipotent subgroup of GL(d,Qr) and Ky, v, , < GL(d;, Q) for
1 <i<mn, where Y, ,d; =d.

Proof: By Corollary 6.2.5 there exists an integral basis B = {b1,...,bs} of
7% through the module series. Denote by g := (b, ... ,bd)t_1 € GL(d,Z) the
corresponding base change matrix from the canonical basis of Q% to B. It
follows that K9 is a subgroup of GL(d, Q) in block-upper-triangular form.
That is every element k of K9 is of the form

ko * % *
kl * *

*

kn—l

where k; is a matrix in GL(d;, Q) with Z?:_Ol d; = d. The induced action
of K on the factor V;/V;y1 of the module series is conjugated in GL(d;,Z)



CHAPTER 6. RATIONAL MODULE SERIES 46

to the matrix group generated by the blocks k; of the matrices k € KY.
We deduce that Ky, y;,, is a subgroup of GL(d;, Q). Further ker(v) is a
unipotent subgroup of GL(d, Qy ), since ker(v)9 is in upper-triangular form.
[

6.3 Computing radicals

Let G < GL(d,Q) be a finitely generated solvable group and denote by
V := Q% the natural QG-module. We want to determine a basis for the
so-called radical Radg (V).

6.3.1 Definition: Let G be a group and V be a QG-module. The radical
Rad(V) is defined as the intersection of all maximal QG-submodules of V.

6.3.2 Definition: Let G be a group and V be a QG-module. Then G is
called semisimple if Radg(V) = 0.

For our purposes we will need the following lemma which is a part of basic
module theory.

6.3.3 Lemma: Let G be a subgroup GL(d,Q) and V = Q? the natural
QG-module.

1. Q[G] is an Artinian algebra and V' is an Artinian module.

2. Radg(V) <V, and Radg(V) = 0 if and only if V is semisimple. So
V/Radg (V) is always semisimple.

3. Radg(V) =V Radg(Q[G))
4. If W is a QG-submodule of Radg(V'), then Radg(V/W) = Radg(V)/W.
Proof: See [13] Chapter 7, Lemma 7.11., Satz 7.14 and Satz 7.18. o

First we describe a method for computing the radical for an abelian group.
Then we extend the method to non-abelian groups.

6.3.1 Abelian rational matrix groups

Let A < GL(d,Q) be a finitely generated abelian group. We want to deter-
mine the radical Rad4(V'). First we have to cite some results from module
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theory. For more details we refer to [13, Section 7.3.]. Note that the QA-
module Q[A], with A acting from the right, can be seen as a ring. Under
this point of view the QA-submodules of Q[A] correspond to the right ideals

of Q[A4].

6.3.4 Definition: Let R be ring. An element v € R is called nilpotent if
there is a natural number n such that £ = 0.

6.3.5 Proposition: Let R be an abelian artinian ring. The radical Rad(R),
which is defined as the intersection of the maximal ideals of R, is composed
of the nilpotent elements of R, i.e.

Rad(R) = {t € R |t nilpotent }

Proof: See [13] Folgerung 7.22. .

We denote a matrix or a matrix group diagonalizable if it is conjugated in
GL(d,C) to a diagonal matrix or a diagonal matrix group.

6.3.6 Lemma: Let A < GL(d,Q) be a finitely generated abelian group and
B be a basis for Q[A]. Then Rada(Q[A]) = 0 if and only if each element in
B is diagonalizable.

Proof: Assume that Rada(Q[A]) = 0. Then
Rad (V) = VRads(Q[A]) = V0 =0.

Therefore V is semisimple. So we can write V = Q% as the direct product
of irreducible Q[A]-modules

By Schur’s Lemma Q[Ay;] is a field and thus it is generated by a primitive
element a;, which possesses an irreducible minimal polynomial p;. Since Q
is separable, the polynom p; has no multiple zeros. This implies that a; is
diagonalizable. So Q[A] is diagonalizable on each V; and therefore Q[A] on
V too.

Conversely we assume that every element in B is diagonalizable. First we
show that all elements in B are simultaneously diagonalizable. It suffices to
show by induction that two elements b, ¢ € B are simultaneously diagonaliz-
able. Denote by b1, ...,bs the eigenvalues of b and by Eig(b,b;) the space of
all eigenvectors of the matrix b of the eigenvalue b;. If e € Eig(b,b;), then
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it follows that (ec)b = (eb)c = (bje)c = b;i(ec) and so ec € Eig(b,b;). Thus,
the vector space Eig(b,b;) is a c-invariant submodule of V for i = 1,...,s.
Certainly the matrix ¢ is diagonalizable on Eig(b,b;) and so b and c¢ are
simultaneously diagonalizable. This implies that all elements in B are si-
multaneously diagonalizable.

We deduce, that the algebra Q[A] is diagonalizable. So there exists an ele-
ment ¢ € GL(d,C) such that Q[A]¢ is in diagonal form. Let r € Rad4(Q[A]).
By Proposition 6.3.5, there exists an n € N such that v = 0. This implies,
that (r¢)™ = 0 and hence r¢ = 0. We deduce that Rad4(Q[A4]) = 0. o

6.3.7 Corollary: Let A be an abelian finitely generated rational matriz
group. Then A is diagonalizable if and only if Rada(V') = 0.

Proof: This follows directly by Lemma 6.3.6 and Lemma 6.3.3. .

6.3.8 Lemma: Let A < GL(d,Q) be a finitely generated abelian group
and B be a basis for Q[A]. Let a € Q[A] with minimal polynomial f,(x) €
Qlz] and let fo(x) = fi(x) --- fr(x)¢ be its factorization into irreducible
factors. Then a is diagonalizable if and only if e = --- =¢, = 1. If a is
not diagonalizable, then fi(a)--- fr(a) is a non-trivial nilpotent element of

Rada(Q[A]).

Proof: The matrix a is is diagonalizable in GL(d,C) if and only if f, has no
multiples zeros in C. This is equivalent with e =--- =¢, = 1.

Certainly the element o := fi(a)--- f.(a) is nilpotent since a™e*{ei} = 0.
By Proposition 6.3.5 we know that o € Rad4(Q[A]). So if a is not diagonal-
izable, then there is at least one e; # 1, which implies that « is a non-trivial
nilpotent element of Rad(Q[A]). .

Let A < GL(d,Q) be a finitely generated abelian group and V = Q¢
the natural QA-module. We outline an algorithm to determine the rad-
ical Rada (V). Using the spinning algorithm we calculate a basis for the
QA-module Q[A]. For every new element which we add to the basis, we
can check with the help of lemma 6.3.8 if it is diagonalizable. If not we
can determine, again with the aid of Lemma 6.3.8, a nilpotent element
a € Rada(Q[A]). The QA-module W generated by Va is a submodule of
Rad4 (V) by Lemma 6.3.3. Now proceed by inducing the action of A to
the module V/W. The algorithm terminates because the number of diago-
nalizable elements which we can add to to the basis of Q[A] is bounded by d.
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RadicalOfAbelianGroup(A)
set V:=0Q% and W:=0<V
set B:={}
repeat
find a new basis element b in Q[A]\(B) (via the spinnig algorithm)
compute the minimal polynomial f, of b
determine a factorization of f, = fi'--- f&r
if there exists an e; #1 then
calculate the nilpotent element a:=fi(b)--- f(b)
spin up the QA-module U/W generated by (V/W)a

set W:=U
induce the action of A to V/W
set B:={}
else
set B:=BU{b}
end if

until B is a basis of Q[A]

return W

6.3.2 Rational matrix groups

Let G be a finitely generated solvable subgroup of GL(d, Q). This section
gives a method to calculate the radical Radg(V'), where V is the natural
QG-module Q. The kernel of the p-congruence homomorphism K,(G) is
unipotent-by-abelian by Theorem 2.4.4 because K,(G) < G is solvable. This
is of vital importance for this algorithm. The following theorem shows, that
it is sufficient to compute Radg, (V).

6.3.9 Theorem: Let G < GL(d,Q) and N a normal subgroup of G such
that [G : N] < co. Denote by V' the natural QG-module Q*. Then it follows
that Radg(V) = Radn (V).

Proof: See [25] 1.5. and 1.8. o

So we need to outline a method to compute the radical of a rational matrix
group which is unipotent-by-abelian.

6.3.10 Proposition: Let K < GL(d,Q) be an unipotent-by-abelian group.
Then K is triangularizable.
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Proof: See [15] Corollary 2.8. o

6.3.11 Lemma: Let K be an unipotent-by-abelian subgroup of GL(d, Q).
Let V be the natural QK -module QF. Then for all k € K' the set V(k — 1)
is a subset of Radg (V).

Proof: By Proposition 6.3.10, there exists an ¢ € GL(d,C) such that K¢
is in triangular form. The commutator subgroup K’ is unipotent and so
(z(k —1))¢ = z¢(k¢ — 1) is nilpotent for all x € K and k € K'. Tt follows
that z(k — 1) is nilpotent. Therefore the ideal in (K] generated by (k —1)
is nilpotent as well. By [13, Lemma 7.20] this implies that (k — 1) is an
element of Rady (Q[K]). Now by Lemma 6.3.3 we conclude that V(k—1) C
RadK(V). [

Now we are ready to describe a method to compute Radg,(c) (V) = Radg(V).
Regard the submodule W < V which is spanned up by the set

{[k,1] — 1|k, generators of K,(G) }.

By Lemma 6.3.11 we conclude that W C Radg,)(V), because K,(G) is
unipotent-by-abelian. Further K,(G) acts as an abelian group on V/W and
so we can compute Radg,(q)(V/W) with the algorithm of the section 6.3.1.
By Lemma 6.3.3 it follows that Radg (c)(V/W) = Radg,c)(V)/W and we

are done.

In case we have just normal subgroup generators of K, (G), we have to mod-
ify this approach.

First we have to close the basis of QK (G)] under the conjugation action
of G.

Second it is possible, that we calculate a module W which is ”too small”, i.e.
a module W such that K,(G) does not act in an abelian way on V/W. In
computing Radg q)(V/W), where W is spanned up by normal subgroup
generators only, we have to make sure that Q[K,(G)] acting on V/W is
abelian. In spinning up a basis of Q[K), (G)] we check if each element g which
we add to the partial basis {g1,...,¢;} commutes with all g; fori = 1,..., .
If there is an i such that gg; # g;g we reset W := (W ([g,9:] — 1)).

Let G be a finitely generated solvable subgroup of GL(d, Q) and let K,(G) be
the kernel of the p-congruence homomorphism given by a list of normal sub-
group generators. The following method determines the radical Radg (V).
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Radical(G, K,(G))
let K be a list containing normal subgroup generators of K,(G)
set V := Q¢
compute the G-submodule W of V generated by {V([k,!]—1)|k,l € K}
induce the matrix action of G and K,(G) to V/W
set B:={}

repeat

find a new basis element b in Q[(IC)G]\ (B) (via the spinnig algorithm)

if b commutes with all elements in the partial basis B then
compute the minimal polynomial f, of b
determine a factorization of f, = fi*--- fr
if there exists an e; # 1 then
calculate the nilpotent element a:=fi(b)--- f.(b)
spin up the G-module U/W generated by (V/W)a

reset W:=U

set B:={}
else

set B:=BU{b}
end if

else
determine b € B such that [b, I;] #1
spin up the G-module W' generated by W ([b, I;] -1
reset W :=W'
set B:={}

end if

induce the action of G and K,(G) to V/W

until B is a basis for Q(K)¢] = QK, (G)]

return W

6.3.12 Remark: In the last algorithm Radical(G,K,(G)), we can re-
place K,(G) by any unipotent-by-abelian group K < G which is of finite
index in G.

6.4 Radical series

Let G be a finitely generated solvable subgroup of GL(d,Q) and V = Q its
natural QG-module. Now it is straightforward to formulate an algorithm to
calculate the so-called radical series.
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6.4.1 Definition: Let G be a finitely generated solvable subgroup of
GL(d,Q) and V = Q? its natural QG-module. The radical series

Q=Ry>R; > >R,=0

is defined by R;y1 := Radg(R;).

The algorithm presented in section 6.3.2 can be used in an iterated way as
follows

RadicalSeries(G)
set Rad:=(f
set Series:=[Rad]
determine K,(G) and set K := K,(G)
while Rad# 0 do
let Gg and Kg be the induced action of G and K to Rad
Rad:=Radical(Ggr,Kg) (Section 6.3.2)
add Rad to Series
set G:=(Gpg and K := Kp
end while

return Series

6.4.2 Lemma: The algorithm RadicalSeries st correct.

Proof: By Remark 6.3.12 it remains to show that in every loop Kp is
unipotent-by-abelian and of finite index in Gr. By Lemma 6.1.6 we have
Kr = K)(G)p < Kp(Gr) < Gr and so Kg is unipotent-by-abelian. From
[G : Kp(G)] < oo we deduce that [Gg : Kg] < oo by the homomorphism
theorem. .

In a similar way we construct the faster algorithm

RadicalSeriesOfAbelianGroup. It works as RadicalSeries with the only
difference that it uses the algorithm RadicalOfAbelianGroup instead of
Radical. Note, that for this approach it is not necessary to calculate K,(G).

6.4.3 Remark: By Lemma 6.3.3 Radg(R;/Ri+1) = 0 and thus R;/R;1
is a semisimple QG-module.
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6.5 Semisimple groups

Let S be a finitely generated semisimple solvable subgroup of GL(d, Q).
Recall that the group S is called semisimple if Rads(V) = 0, where V = Q.

6.5.1 Remark: If Rads(V) = 0 then Radg,(5)(V) = 0 by Theorem 6.3.9.
This implies that V' is the direct product of irreducible K, (S)-modules.

We want to determine a splitting of the natural QK,(S)-module Q¢ into
irreducible modules.

6.5.2 Corollary: Let S < GL(d,Q) be a finitely generated semisimple
solvable group and denote p as an admissible prime for S. Then Kp(S) is
abelian and torsion-free.

Proof: By Lemma 6.3.11 every element of the commutator of K,(S) must
be trivial. Further K,(S) is torsion-free by Theorem 2.4.4. o

Thus it is sufficient to describe a splitting method for abelian semisimple
groups.

6.5.1 Abelian semisimple groups

Let A be a finitely generated abelian semisimple matrix subgroup of GL(d, Q).
Our aim is to calculate a splitting of the natural Q4-module V = Q¢ into
irreducible modules.

The first step will be to determine a primitive element ¢ of the matrix alge-
bra Q[A], i.e. an element ¢ such that Q[c] = Q[A]. Recall that by Lemma
6.3.3 Q[A] is semisimple as a QA-module if and only if V' is semisimple as
QA-module.

6.5.3 Lemma: Let A := (a1,...,ar) be an abelian semisimple matriz
subgroup of GL(d,Q). Let B = {b1,...,b;} be a basis for the semisimple
algebra Q[A]. Then almost all linear combinations of bi,..., by yield an
primitive element for QA].

Proof: By induction it suffices to show that the statement is true for the
case | = 2. So let xz,y be the elements of the basis B. We want to show
that for almost all a € Q we have Q[z + ay] = Q[x, y]. Thus we have to find
two polynomials f,g € Q[X] such that f(x + ay) = = and g(z + ay) =y
for almost all a € Q. By Corollary 6.3.7 we can assume that there exists an
element ¢ € GL(d,C) such that Q[A€] is in diagonal form. Define & := z¢



CHAPTER 6. RATIONAL MODULE SERIES 54

and g := y°. If Z; and §; are the entries on the diagonals of £ and § we have
to find polynomials f,g € QX] with f(&; + ay;) = &; and g(&; + ay;) = v;
fori =1,...,d. Complex polynomials f, g € C[X] verifying these conditions
can be found by interpolation. We only have to make sure that &; + ay; =
Zj + af; implies &; = &; and §; = §;. This is easy to achieve in choosing an
a such that a # % foralli,j € {1,...,d}. We deduce that f(z+ay) ==
and g(z + ay) = y. Since z,y and z + ay are rational f,g can be chosen in

QIX]- .

It is well-known, that an element ¢ such that Q[A] = Q[c] has a minimal
polynomial whose degree is equal to dim(Q[A]). Now we can outline the
following algorithm to determine a primitive element of Q[A].

PrimitiveElement (A4)
determine via the spinning algorithm a basis B of Q[A].
repeat
set ¢ :=RandomLinearCombination([3)
set m :=MinimalPolynomial (c)
until (degree of m) = Length(B)
return c

Note that the length of the basis B is bounded by d because Q[A] is di-
agonalizable.

6.5.4 Definition: A module W is called homogeneous if it it is the direct
product of irreducible and isomorphic modules.

Once we are able to calculate a primitive element of [A] where A is an
abelian semisimple group, we can use the following Lemma to split the
natural QA-module V into the direct product of homogeneous submodules
W <V.

6.5.5 Lemma: Let ¢ be a diagonalizable element of GL(d, Q). Write the
minimal polynomial f of ¢ as the product of irreducible polynomials

f=h-foIr
(Note that f; # f; for i # j because c is diagonalizable.) Further we define

the submodule W; of V.= Q% as the kernel of the linear mapping defined by
filc) fori=1,...,r. Then it follows that
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1. V can be written as the direct product of the W;, i.e.
V=WwioW,d - oW,

Further W; is Q[c]-invariant fori=1,... r.

2. W; is a homogeneous Q[c]-module fori=1,... r.

Proof:

1. The matrix algebra Q[c| is abelian and so W; is a Q[c]-invariant sub-
module of V. Via induction over ¢ we want to prove that

ker(fi(c)--- fi(c) =Wr1eWa@--- & W,.

For ¢ = r this gives the wanted result.

If i = 1 then we have ker(fi(c)) = Wi and so the statement is true.
Now assume that ker(fi(c)--- fi_1(c)) = W1 Wad---dW,;_1 and let
w € ker(fi(c)--- fi(c)). Because f; and fi--- f;—1 are coprime, there
exist o, 8 € Q such that 1 = «f; + Bf1--- fi—1. Thus we can write

w=  afilgu + Bfi(c) - fisi(cw.
—— ~ - _
€ker(fi(c)fi-1(c)) EW;

If we Wi and w € ker(fi(c)--- fi—1(c)), then we can deduce that w =
0. It follows that (W@ - -@W;_1)NW; = 0 and that ker(fi(c)--- fi(c)) =
Wi @---@W; 1) + W,

2. First we induce the action of Q[c] to W;. Now we have f;(c) = 0 and
so f; is the minimal polynomial of c. Assume that I # Q[c] is an ideal
of Q[¢]. Certainly ¢+ I is a primitive element of Q[¢]/I. The minimal
polynomial f.y; of ¢+ I must be a divisor of f;. Therefore f.,; = fi,
because I # Q[c], and hence I = 0. We deduce that the algebra Q[c]
is simple. This implies that W; is homogeneous for i = 1,...,r (see
[11] Chapter 17 Corollary 4.5. and Proposition 4.7.).

The following Lemma gives a method to split a homogeneous QA-module
W, where A is an abelian subgroup of GL(d, Q).
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6.5.6 Lemma: Let A < GL(d,Q) be an abelian group and W be a ho-
mogeneous QA-submodule of Q. Then every non-trivial vector w € W is
contained in an irreducible QA-submodule of W .

Proof: Let w be a non-trivial vector in W. Denote by U the QA-module
which is generated by w. It is possible to write W = @;_;W;, where the
W; are irreducible QA-modules and hence w = Zle w; where w; € W;.
Because w is non-trivial there is at least one i € {1,...,n} with w; #
0. We want to show that the projection ¢ : U — W; is a bijective QA-
homomorphism. The map ¢ is clearly a surjective QA-homomorphism and
so it suffices to show that ¢ is injective. Let u be an element of U such that
¢(u) = 0. It is possible to write u = w® with a € Q[A]. It follows that
0= ¢(u) = ¢p(w*) = ¢p(w)® = w. By Schur’s lemma (6.1.4) we deduce that
a = 0 and so u = 0. We conclude that ¢ is bijective and thus U = W;.
Therefore the module U is irreducible. .

Finally we carried all the necessary elements together to achieve the aim of
this section: Under the assumption that A is a finitely generated abelian
semisimple subgroup of GL(d,Q) we want to calculate a direct splitting of
the natural Q4-module V = Q into irreducible modules.

IrreducibleSplitting(A)
set ¢:=PrimitiveElement (Q[A]) (see 6.5.3)
let f be the minimal polynomial of ¢
factorize f = f,--- f, where f; irreducible
set W, := ker(f;(c)) for i=1,...,r
# splitting into homogeneous submodules (see 6.5.5)
split V=W &---& W,
# splitting into irreducible submodules (see 6.5.6)
for ¢ =1 to r do
split W, by spinning up vectors
end for
return the irreducible splitting of V

6.6 Composition series

Now we are ready to outline the main result of this section: Let G be a
finitely generated solvable subgroup of GL(d,Q). Denote by K,(G) the
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kernel of the p-congruence homomorphism defined in Section 2.4 and by V
the natural QK (G)-module Q?. We present an algorithm which calculates
a composition series of V, i.e. a sequence of QK (G)-submodules

V=Vi>V>--->V, =0

such that V;/Viy; is irreducible. Further we desribe an algorithm which
calculates a composition series of V' seen as a QG-module, under the as-
sumption that G is abelian.

Let Qf = Ry > Ry > --- > R, = 0 be the radical series defined in the
section 6.4. By Theorem 6.3.9 Radk,c)(V) = Radg(V) because K,(G)
is of finite index in G. Therefore K,(G)g,/r,,, is a semisimple group by
Lemma 6.3.3. Further by Lemma 6.1.6 we get that Kj(G)g,/r;,, is a sub-
group of K,(GR,/R;,,), which is by Corollary 6.5.2 abelian and torsion-free.
Thus K,(G)g,/r;,, is a free abelian semisimple group and we can apply the
methods of section 6.5.1 to split R;/R;4+1 into irreducible QK), (G)-modules.

CompositionSeries (Kp(G))
# compute the radical series (section 6.4)
compute V=Ry>R; >--->R, =0
for all factors of this series do
induce the action of K,(G) to R;/Riy1
# irreducible splitting (section 6.5.1)
split R;/R;41 into irreducible QK ,(G)-modules
end for
return the refined radical series

For abelian groups we can formulate a similar and faster approach.

CompositionSeriesAbelianGroup(G)
# compute the radical series of an abelian group (section 6.4)
compute V=Ry>R; >--->R,=0
for all factors of this series do
induce the action of G to R;/Rit1
# irreducible splitting (section 6.5.1)
split R;/R;41 into irreducible QG-modules
end for

return the refined radical series
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Chapter 7

Main algorithms

Let G be a finitely generated subgroup of GL(d,Q). As the main result
of this thesis, we outline in this chapter an algorithm which computes a
polycyclic presentation of the group G, if G is polycyclic. Further we show
that a similar approach can be used to test if a finitely generated subgroup
H < GL(d, R) is solvable, where R = Q, Z or a finite field F,. If R = Z or
[F, the group H is solvable if and only if it is polycyclic (see Section 2.3).
Therefore, in this case we can also test if H is polycyclic.

We begin this chapter with some remarks about the calculation of normal
subgroup generators.

7.1 Normal subgroup generators

We suppose that G := (g1,...,gx) is a finitely generated group and that
p:G = (@)

is a group homomorphism. Further we assume, that we know how to calcu-
late a finite presentation of the group

(@) =(X|R)
where X = {¢(¢1),.-.,¢(g9x)} and R are relations in X.

59
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Go—F=00(G) = (X|R)

keﬂpO—w>01

le
7.1.1 Lemma: Define the set
R(G) ::{T(gla"'agk) | TER}'

Then R(G)Y = kerp.

Proof: Let F be a free group on k generators fi,..., fr. Define 7 to be the
map 7: FF— G, fi = g;. Then by the definition of a finite presentation we
know that R(F)¥ = ker(ry), where R(F) are the relations in R expressed
in the elements fi,..., fx. The elements in R(F') are normal subgroup gen-
erators of ker(ry). Thus 7(R(F')) = R(G) are normal subgroup generators
for kery.

G
Fo——T—>e—"—>ep(G)
ker(ty) ® i o 4 o1
kery
ker(r) e —————e
1

The calculation of normal subgroup generators of ¢ gets a little more com-
plicated if we are only able to calculate a finite presentation ¢(G) = (Y|S)
with Y # X = {¢(g1),...,9(gk)}- In this case we have to convert the
presentation ¢(G) = (Y'|S) to a presentation p(G) = (X|R).

7.1.2 Proposition: Let H = (Y|S) be a finitely presented group and let X
be an arbitrary generating set for H. Then there exists a finite presentation
of the form H = (X|R).

Proof: Every element x € X can be written as a word w,(Y") over the set
Y UY ™. Vice versa we can write y = wy(X) for every y € Y. Then we
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have the following relations in H:
s(wy(X)|lyeY)=1for s =s(Y) €S,

z = wy(wy(X)|y €Y) for z € X.

We call these relations R. Define X := {#1,...,Z%} to be a set of abstract
symbols and define the group H := <X |R(X )> Then there is an epimor-

phism 7 : H—>H , T; — x;, because the elements x; € X fulfill the relations
in R. On the other hand the map o : Y — H, y; — Wy, (X) can also be
extended to an homomorphism H — H, since every relation in § is fulfilled
by the the elements w,, ()2' ) in H. Further every element z can be expressed
as a word in Y and so o is surjective. Since m and o are inverse to each
other we get that H = H. .

Assume that a finite presentation of ¢(G) = (Y|S) is given, where Y is
not equal to X = {¢(g1),...,¢(gx)}.- Then we can compute normal sub-
group generators of kery in the following way: Convert the presentation
¢(G) = (Y|S) to a presentation ¢(G) = (X|R) using Proposition 7.1.2.
Then calculate normal subgroup generators of kery using Lemma 7.1.1.

7.2 Solvability

7.2.1 Finite matrix groups

Let G be a finite matrix group. Then G is solvable if and only if G is
polycyclic by Theorem 2.3.1. Therefore we can use the algorithm
ConstructivePcSequenceFinite, explained in Section 3.3, to test if G is
solvable.

7.2.2 Rational matrix groups

Let G be a finitely generated subgroup of GL(d,Q). In Section 6.4 we
described the algorithm RadicalSeries to compute the radical series of the
natural QG-module Q?, if G is solvable. The next Lemma and Proposition
show that this algorithm can be used to test if G is solvable.
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7.2.1 Lemma: Let K be a finitely generated subgroup of GL(d,Q) and let
L =V>WN>>V,=0

be a series of QK -modules such that K acts in an abelian way on the factors
of this series. Then the group K is solvable.

Proof: By Lemma 6.2.6, we can find a matrix ¢ € GL(d, Q) such that K9
is in block-upper-triangular form. That is, every element k € K9 is of the
form

ko * % *
le * *
*

kn—l

where the k; are matrices in GL(d;, Q) with Z?;OI d; = d. The matrices
{ki|k € K} correspond to the induced action of K to the factor V;/Vj;1
(see again Lemma 6.2.6). By hypothesis Ky;y;,, is an abelian group for
i =0,...,n — 1. Therefore the matrices { k; |k € K9} generate an abelian
group for ¢ = 0,...,n — 1. Thus, the commutator of two matrices in K9
is in upper-triangular form. It follows that the commutator subgroup K’
is unipotent and thus K is unipotent-by-abelian. Therefore the group K is
solvable. .

7.2.2 Proposition: Let G be a finitely generated subgroup of GL(d,Q).
Then the group G is solvable if and only if the image under the p-congruence
homomorphism I,(G) is solvable and if the algorithm RadicalSeries (see
Section 6.4) returns a submodule series Qf =Vy >V > .- >V, =0.

Proof: Assume that G is solvable. Then I,(G) = G/Kp,(G) is solvable.
Further the algorithm RadicalSeries terminates by Section 6.4.

Now we assume that I(G) is solvable and that the algorithm

RadicalSeries(G, Kp(G)) terminates (Note that the finite group I,(G)
is polycyclic. Therefore normal subgroup generators for K,(G) can be ob-
tained by calculating a polycyclic presentation of I,(G).) Let QL =V >
Vi > -+ >V, =0 be the submodule series which is returned by the al-
gorithm. By the construction of the algorithm Ky (G)y, ., is abelian for
i =0,...,n—1. Therefore, K,(G) is solvable by Lemma 7.2.1. This implies
that the group G is solvable. .

Therefore we can specify the following algorithm for a finitely generated
group G < GL(d,Q):
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IsSolvable(G)
let ¢, : G — GL(d,p) be the p-congruence homomorphism
# (see Definition 2.4.2 )
try to determine a constructive pc-sequence for I,(G) = 9,(G)
# (see Chapter 3 on finite groups)
if this fails then
return ’fail’
# (I,(G) is not solvable, see Section 7.2.1)
fi
calculate normal subgroups generators for K,(G) = ker(yp)
# (see Section 7.1)
try to compute the radical series V=V >V3>--->V,, =0
# (see Section 6.4)
if this fails then
return ’false’
else
return ’true’
fi

7.3 Calculating presentations

7.3.1 Finite matrix groups

Let G be a finite matrix group. By Corollary 2.2.5 it is sufficient to calculate
a constructive polycyclic sequence to get a polycyclic presentation of G. This
can be done by the algorithm ConstructivePcSequenceFinite, explained
in Section 3.3.

7.3.2 Rational matrix groups

Let the group G := (g1,...,gx) be a polycyclic subgroup of GL(d,Q). By
Corollary 2.2.5 it is sufficient to calculate a constructive polycyclic sequence
to get a polycyclic presentation of G. This can be done by the following
algorithm:
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ConstructivePcSequence (G)
let ¢, : G — GL(d,p) be the p-congruence homomorphism
# (see Definition 2.4.2)
determine a constructive pc-sequence for I,(G) = ¢, (G)
# (see Chapter 3 on finite groups)
calculate normal subgroups generators for K,(G) = ker(i,)
# (see Section 7.1)
let V:= Q' be the natural QK,(G)—module
compute a composition series V=V >W>.--->V, =0
# (see Section 6.6)
Let v: Ky (G) = Kp(@vosa X Kp(@vi s X - X Kp(@)vy_ v,
# (see Section 6.2.2)
for i in [0...(n-1)] do
determine a constructive pc-sequence (C; of K,,(G)yi/vi+1
# Kp(G)v, /vy, £ Kp(Gy,yv;y,) is abelian by Corollary 6.5.2
# (QK,(G)v,/v,;,] is a field by Schur’s Lemma, apply Chapter 4)
od
merge Ci,...,Cph_1 to a constructive pc-sequence of Kp(G)Y.
let Up(G) be the kermel of v
combine I,(G) and K,(G)” to a constructive pc-sequence of G/U,(G)
calculate normal subgroup generators of Up,(G)
determine a constructive pc-sequence for the unipotent group UP(G)
# (see Chapter 5)
combine G/U,(G) and U,(G) to a constructive pc-sequence of G
return the constructive pc-sequence of G

7.3.1 Remark: We have to pay attention to the fact that we can only
compute normal subgroup generators for K,(G) and U,(G). Therefore we
have to close the constructive pc-sequences for K,(G)” and U,(G) under the
conjugation action of G.

For a finitely generated abelian group A < GL(d,Q) we can proceed by a
similar but faster approach. The only modification to the last algorithm is,
that we can skip the calculations in the finite part I,(G):
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ConstructivePcSequenceAbelianGroup(A)
let V :=Q? be the natural QA—module
compute a composition series V=V >W>.--->V,=0
# (see Section 6.6)
let v: A— AVO/V1 X AV1/V2 X oo X AVn—1/Vn
# (see Section 6.2.2)
for i in [0...(n-1)] do
determine a constructive pc-sequence C; of Awq/w+1
# (QAvy, v,,,] is a field by Schur’s Lemma, apply Chapter 4)
od;
merge Cq,...,C,_1 to a constructive pc-sequence of AY.
let Up(A) be the kermel of v
calculate normal subgroup generators of U;@4)
determine a constructive pc-sequence for the unipotent group U,(A)
# (see Chapter 5)
combine AY and Up(A) to a constructive pc-sequence of A

return the constructive pc-sequence of A

The big advantage of this approach for abelian groups is not that we econ-
omize a lot of time in skipping the calculations in the finite part I,(G).
In practice this is the fewest time consuming step. Rather, the benefit of
this method is, that we use the generators ai, ..., ax of the abelian group A
instead of the normal subgroup generators of K,(A) for the further compu-
tations. In general the matrices a1, ..., a; have much smaller entries. Also
it is not necessary to close the set A” under the conjugation action of A.

7.3.2 Remark: The algorithm ConstructivePcSequence works correctly
if the input G is a polycyclic group. But what does happen if the finitely
generated group G is not polycyclic 7

e Case 1: (G is not solvable. Then either the computation of a construc-
tive pc-sequence for the finite image I,,(G) or the computation of the
radical series with the help of K,(G) must fail (See Section 7.2). The
described algorithms detect this.

e Case 2: (G is solvable but not polycyclic. In this case the algorithm
does not terminate.

The algorithm is able to calculate a constructive pc-sequence for I,(G)
and for K,(G)”. Since Kp(G) is of finite index in G, Kp(G)" is a
finitely generated abelian group and thus polycyclic. When we close
the constructive pc-sequence of K,(G)”, which is maybe uncomplete
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because we used only normal subgroup generators of K,(G), under the
conjugation action of GG, we must finish after a finite number of steps.
This is because every strictly ascending chain of subgroups of K,(G)”
is finite (see [20] Chapter 1 Section A.).

The calculation of a constructive pc-sequence for Uy,(G) does not ter-
minate. This is because we receive an infinite number of generators
for Uy(G) when we try to close the set of normal subgroup generators
for Up(G) under the conjugation action of G.

7.4 A further possible refinement

Let G be a polycyclic subgroup of GL(d, R). Our aim is to describe a further
method for the determination of a constructive polycyclic sequence of G. It
has not been implemented so far.

Let
R=Vy>Vi--->V,, =0

be a submodule series of the natural G-module R?. We induce the action of
G to this series
| Z G — GVO/VI X e X va—l/vm'

The image under this action G¥ is the direct product of polycyclic matrix
groups of smaller dimension than d. The kernel under this action ker(v) is an
unipotent matrix group. With the algorithms described in Section 7.3 we can
calculate a constructive pc-sequence for Gy, v, , fori =0,...,m—1 and thus
for G¥. Then we calculate normal subgroup generators for ker(v). Using
these we calculate a constructive pc-sequence for the unipotent group ker(v)
(and close this pc-sequence under the conjugation action of G). Finally we
combine the constructive pc-sequences of G¥ and ker(v) to a constructive
pc-sequence of G.

If R = Q we can use for example the radical series as the required submodule
series Q% = Vy > -+ > V,,, = 0. It can be computed by the the algorithm of
Section 6.4.

If R = F, we can use the Meataxe (see for example [17]) to calculate a
submodule series with irreducible factors.
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Performance

In this chapter we present the runtimes of the main algorithms of this thesis
for some example groups. Further we give a short desription of the bottle
necks of the algorithm for the determination of a constructive polycyclic
sequence.

8.1 Runtimes

We outline the runtimes for the following algorithms.

e ConPcsFinite: Determination of a constructive polycyclic sequence
for 1,(G), where G < GL(d, Q) is the given group (see Section 3.3).

e IsSolvable: Test if the given group is solvable (see Section 7.2).

e ConPcs: Determination of a constructive polycyclic sequence for the
given group (see Section 7.3.2).

e PcPresent: Calculation of a polycyclic presented group isomorphic
to the given one (see Section 7.3.2 and Corollary 2.2.5).

Note that every algorithm in this list includes the preceding algorithms.

The following matrix groups are used as examples:
e (71 is the group generated by the matrices
27/20 —11/4 9/5 27/4 —23/10 227/20 13/10 231/20

—3/5 1 —4/5 -9 14/5 —63/5 —4/5 —79/5

73/10 —35/2  42/5 63/2 —42/5 423/10  27/5 479/10
(—11/20 7/4  —2/5 1/4) ( —1/10 9/20  1/10 37/20)

67



CHAPTER 8. PERFORMANCE 68
e (55 is the group generated by the matrices
5 2 -8 17 -1 19/2 0 -3 —19/2
—69/4 —15/4 449/20 —163/5 53/20 —74/5 129/20 7/4 159/4
( —2 4 9/5 63/5 3/5 ) ,( 53/10 4/5 —4 9/2
13/4 3/4  —121/20 57/5  —17/20 37/10  —41/20 -—7/4  —29/4
241/4 7/4  —1477/20 319/5 —189/20 137/5 —457/20 37/4 —559/4

e (33 is the group generated by the matrices

—492568055
853152732
796991748
543797628

|
|

—348686135
—603941868
—215499732
—793008492

—715902540
1239979321
1158354480

790360020

—530151780
—918249479
—327651600
—1205711460

—559233360
968620464
904858501
617396520

—271469520
—470198736
—167777219
—617396520

913773168
—1582701120
—1478515764
—1008810083

),
).

913773168
1582701120
564742596
2078172517

G4 is a subgroup of GL(4, Q) with 5 generators. In GAP this group can

—1/2
9/10
—9/10
—-3/5
3/10

) |

be found under AlmostCrystallographicGroup(4,2,[0,-3,-2,1,-1,-2,4])
as a part of the 'AcLib’-Package.

as a part of the ’AcLib’-package.

G is a subgroup of GL(4, Q) with 5 generators. In GAP this group can
be found under AlmostCrystallographicGroup(4,86,[0,-2,-1,-2,-1])

G is a subgroup of GL(16,7Z) with 9 generators. In GAP this group

can be found under PolExamples (5) as a part of the 'Polenta’-package.

G7 is a subgroup of GL(16,Q) with 5 generators. In GAP this group

can be found under PolExamples(24) as a part of the "Polenta’-

package.

The calculations were made on a Pentium 4 with 2 gigahertz under the
system Linux. The runtimes are outlined in milliseconds.

‘ Group G ‘ ConPcsFinite ‘ IsSolvable ‘ ConPcs ‘ PcPresent ‘

G1 10 50 300 490
Go 10 150 26300 35890
G3 10 20 190 240
Gy 10 170 2770 2950
Gs 20 170 1720 2060
Ge 830 9440 41530 57270
Gr 50 600 | 458330 479040
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Note that the runtimes of two computations of a polycyclic presentation for
the same group can differ. This is because during the algorithm some ran-
dom choices are made, which can have a great influence on further compu-
tations. For example the orbits points, which are used in ConPcsFinite (see
Section 3.1), are randomly choosen. Also the algorithm PrimitiveElement
(see Section 6.5) uses randomized methods.

8.2 Bottle necks

The calculation of normal subgroup generators (see Section 7.1) of K,(G)
and Up(G) produces matrices with much more complex entries in compari-
son with these of the input group. This slows down further computations.
Further, we have to conjugate the group U,(G) < GL(d,Q) to a subgroup
of UT(d,Z) (see Section 5.1). This operation increases the bit length of the
matrix entries to a large extend. That is the reason why the computation of
a constructive polycyclic sequence of U,(G) is in the general the most time
consuming step. For example the determination of a constructive polycyclic
seqeuence of the group G7 costed in total 458 seconds. Just for the unipotent
part Up(G7) the algoritm needed 450 seconds.

A further problem is, that the storage of the orbits used in the computations
in the finite group ¢, (G) (see Section 3.1) can cost too much memory. This
happens for example for the wreath product Gg wr P < GL(128,7Z), where
P is a polycyclic permutation group of order 8.
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