
On Sliding Window Schemes For DiscreteLeast-Squares Approximation By TrigonometricPolynomialsHeike FassbenderUniversit�at Bremen, Fachbereich 3 Mathematik und Informatik, Zentrum f�urTechnomathematik, 28334 Bremen, GermanyAbstractFast, e�cient, and reliable algorithms for up- and downdating discreteleast-squares approximations of a real-valued function given at arbitrarydistinct nodes in [0; 2�) by trigonometric polynomials are presented. Acombination of the up- and downdating algorithms yields a sliding windowscheme. The algorithms are based on schemes for the solution of (inverse)unitary eigenproblems and require only O(mn) arithmetic operations ascompared to O(mn2) operations needed for algorithms that ignore thestructure of the problem. Numerical examples show that the proposedalgorithms produce consistently accurate results that are often better thanthose obtained by general QR decomposition methods for the least-squaresproblem.Key words. trigonometric approximation, unitary Hessenberg matrix, Schurparameter, Szeg�o polynomial, updating, downdating, sliding window scheme1 IntroductionA problem in signal processing is the approximation of a function known onlyat some measured points by a trigonometric polynomial. A number of di�erentmodels for representing the measured points as a �nite superposition of sine- andcosine-oscillations are possible. One choice could be to compute the trigonomet-ric interpolating function. Then several numerical algorithms are available [1].But in general a large number of measured points are given, such that this ap-proach leads to a trigonometric polynomial with a lot of superposed oscillations(and a large linear system to be solved). In practical applications it is oftensu�cient to compute a trigonometric polynomial with only a small number ofsuperposed oscillations. A di�erent, often chosen approach is the (fast) Fouriertransform [1]. In this case the frequencies of the sine- and cosine-oscillationshave to be chosen equidistant. The following approach gives more freedom inthe choice of the frequencies and the number of superposed oscillations. Given a1



2 Sliding Window Schemesset of m arbitrary distinct nodes f�kgmk=1 in the interval [0; 2�), a set of m posi-tive weights f!2kgmk=1, and a real-valued function f whose values at the nodes �kare explicitly known. Then the trigonometric functiont(�) = a0 +X̀j=1(aj cos j� + bj sin j�); aj; bj 2 IR; (1.1)of order at most ` < m=2 is sought that minimizes the discrete least-squareserror jjf � tjjIR :=vuut mXk=1 jf(�k)� t(�k)j2!2k: (1.2)In general, m (the number of measured functional values) is much larger thann = 2`+ 1 (the number of coe�cients to be determined).Let the trigonometric polynomial t(�) = a0 +Pj̀=1(aj cos j� + bj sin j�) bethe optimal solution of the approximation problem (1.2) corresponding to thedata Ym = f�k; !2kgmk=1. Suppose Ym+1 is obtained from Ym by augmentinga new node-weight pair (�m+1 ; !2m+1). Solving the approximation problem forYm+1 assuming the knowledge of its solution for Ym is called updating the least-squares �t. Solving the approximation problem for Ym assuming the knowledgeof its solution for Ym+1 is called downdating the least-squares �t.Standard algorithms for solving the approximation problem (1.2) requireO(mn2) arithmetic operations. It can be observed however, that Szeg�o polyno-mials, that is polynomials that are orthogonal with respect to an inner producton the unit circle, arise naturally as a convenient basis for solving the least-squares problem (1.2). Updating and downdating of polynomial approximationswhen all nodes zk are real has received a lot of attention in the literature, see [2]and the references therein. A collection of algorithms for updating and down-dating based on orthogonal polynomials is presented in [3]. Downdating Szeg�opolynomials is considered in [4], while the updating process is the topic of [5, 6, 7].Section 2 reviews fast algorithms for solving (1.2) via updating procedureswhich make use of the special structure of the problem (1.2). Fast downdatingmethods are presented in Section 3. The updating and downdating procedurescan be combined to yield a sliding window scheme, in which one node is replacedby another.2 UpdatingThe problem (1.2) can easily be reformulated as the standard least-squares prob-lem of minimizing jjD eAet�D ef jj2 = min (2.1)over all coe�cient vectors et in the Euclidean norm, where ef = (f(�1); : : : ; f(�m))Tis a vector of the measured values of the function f , D = diag(!1; :::; !m) 2



Heike Fassbender 3IRm�m is a diagonal matrix with the given weights on the diagonal, andeA = 0B@ 1 sin �1 cos �1 � � � sin `�1 cos `�1... ... ... ... ...1 sin �m cos �m � � � sin `�m cos `�m 1CA 2 IRm�n:A di�erent approach is used by Reichel, Ammar, and Gragg in [5]. Theynoted that the problem (1.2) can be reformulated as the following standardleast-squares problem: MinimizejjDAc�Dgjj2 = min; (2.2)where A is a transposed Vandermonde matrixA = 0BBB@ 1 z1 � � � zn�111 z2 � � � zn�12... ... ...1 zm � � � zn�1m 1CCCA 2 Cm�nwith zk = exp({�k); { = p�1. g = (g(z1); :::; g(zm))T 2 Cm is a vector of thevalues of a complex function g(z) and c = (c0; :::; cn�1)T 2 Cn is the solutionvector. With the proper choice of g (g = �` ef , ef as above, � = diag(z1; : : : ; zm))it is easy to see that the coe�cients of the trigonometric polynomial (1.1) thatminimizes the error (1.2) can be read o� of the least-squares solution bc of (2.2)(see [5])a0 = bc`; aj = 2Re(bcj+`); bj = �2Im(bcj+`); 1 � j � `:The usual way to solve these least-squares problems is to compute the QRdecomposition of DA or D eA. Ignoring the special structure of DA or D eA thisrequires O(mn2) arithmetic operations. It can be observed however, that Szeg�opolynomials, that is polynomials that are orthogonal with respect to an innerproduct on the unit circle, arise naturally as a convenient basis for solving theabove standard least-squares problems. This observation can be used to developfast, e�cient and reliable algorithms for solving the approximation problem (2.2).Observe thatDA = 0B@ !1 !1z1 !1z21 � � � !1zn�11... ... ... ...!m !mzm !mz2m � � � !mzn�1m 1CA= (q;�q;�2q; :::;�n�1q)= �0(q0;�q0;�2q0; :::;�n�1q0)with q = (!1; :::; !m)T ; �0 = jjqjj2; q0 := ��10 q and � = diag(z1; :::; zm). Thus,the matrixDA is given by the �rst n columns of the Krylov matrixK(�; q0;m) =



4 Sliding Window Schemes(q0;�q0; :::;�m�1q0). We may therefore use the following consequence of the Im-plicit Q Theorem [8] to compute the desired QR decomposition. If there exists aunitary matrix U with Ue1 = q0 such that UH�U = H is a unitary upper Hes-senberg matrix with positive subdiagonal elements, then the QR decompositionof K(�; q0;m) is given by UR with R = K(H; e1;m). The construction of sucha unitary Hessenberg matrix from spectral data, here contained in � and q0, isan inverse eigenproblem. Hence the best trigonometric approximation to f canbe computed via solving this inverse eigenproblem. It can be seen that the ele-ments of U are the values of the Szeg�o polynomials at the nodes zk. Thus solvingthe inverse unitary Hessenberg eigenvalue problem UH�U = H is equivalent tocomputing Szeg�o polynomials.From the above observation, an updating formulation for the approximationproblem (2.2) in terms of the inverse unitary eigenproblem can easily be given :Given �0 > 0Hm unitary upper Hessenberg matrix of size m�mdm a vector of length m(�; �2) a node-weight pair(�0;Hm; dm representing the solution of (2.2) for some data set Ym) �nd �0 > 0,a vector dm+1 and a unitary upper Hessenberg matrix Hm+1 such that1. the eigenvalues of Hm+1 are e{� and those of Hm2. the vector dm+1 contains the �rst components of the eigenvectors of Hm+1,that is if the entries of dm are �1=�0; : : : ; �m=�0 and �0 = (Pmk=1 �2k) 12 , thenthe new �0 will be �0 = (�20 + �2) 12 and the entries of dm+1 are �k=�0 fork = 1; : : : ;m and �=�0.Hence the approximation problem (1.2) can entirely be solved by updating, start-ing from the trivial solution for m = 1.Unitary Hessenberg matrices have special properties which allow the devel-opment of e�cient algorithms for this class of matrices. Any n � n unitaryHessenberg matrix with positive subdiagonal elements can be uniquely parame-terized by n complex parameters, that isH = G1(1)G2(2) � � �Gn(n)for certain complex-valued parameters jkj < 1; 1 � k < n, and jnj = 1. HereGk(k) denotes the n� n elementary reector in the (k; k + 1) planeGk = Gk(k) = diag(Ik�1;� �k �k�k k � ; In�k�1)with k 2 C, �k 2 IR+, jkj2 + �2k = 1, andGn(n) = diag(In�1;�n)



Heike Fassbender 5with n 2 C, jnj = 1. The nontrivial entries k are called Schur parametersand the �k are called complementary Schur parameters. This parameterizationcan be used to develop an e�cient and reliable algorithm for solving the inverseunitary Hessenberg eigenvalue problem/the updating problem.Such an algorithm was �rst described by Ammar, Gragg and Reichel in [6].The idea is to build up the Hessenberg matrix successively by adding node-weightpairs (�k; !2k) one at a time, in an updating fashion. The algorithm manipulatesthe n complex parameters instead of the n2 matrix elements. An adaption of thisscheme to the computation of the least-squares solution bc can be given, whichrequires O(mn + n2) arithmetic operations. For details see [5].The coe�cients of the optimal trigonometric polynomial t of (1.2) can berecovered from bc. This representation of t is convenient if we desire to integrateor di�erentiate the polynomial or if we wish to evaluate it at many equidistantpoints on a circle with a center at the origin. If we, on the other hand, onlydesire to evaluate t at a few points, then we can use the representation of t interms of Szeg�o polynomials.As D eA in (2.1) is a real m � n matrix with full column rank, there existsa unique "skinny" real QR decomposition eQ1 eR1 of D eA where eQ1 2 IRm�n hasorthonormal columns and eR1 2 IRn�n is upper triangular with positive diagonalentries. This ansatz leads to orthogonal Laurent polynomials and the (gener-alized) inverse unitary eigenproblem eUH(� � �I)eUGe = Go � �Ge, where Goand Ge are unitary block diagonal matrices with 1 � 1 or 2 � 2-blocks on thediagonal. The nonzero entries of Go and Ge are just the Schur parameters andthe complementary Schur parameters:Go = G1(1)G3(3) � � �G2[(n+1)=2]�1(2[(n+1)=2]�1)= 0BBBBB@ �1 �1�1 1 �3 �3�3 3 . . . 1CCCCCAis the product of the odd numbered elementary reectors andGHe = G2(2)G4(4) � � �G2[n=2](2[n=2])= 0BBB@ 1 �2 �2�2 2 . . . 1CCCAis the product of the even numbered elementary reectors. The (generalized)inverse eigenproblem eUH(� � �I)eUGe = Go � �Ge, where a Schur parameterpencil is constructed from spectral data, is equivalent to the inverse unitaryHessenberg eigenproblem UH�U = H = G1(1) : : :Gn(n) [9].



6 Sliding Window SchemesObserve that withF = diag(2;� �{ 1{ 1 � ; : : : ;� �{ 1{ 1 �)we haveD eA = 12(q;�q;�Hq;�2q; (�H)2q; : : : ;�`q; (�H)`q)F= 12�0(q0;�q0;�Hq0;�2q0; (�H)2q0; : : : ;�`q0; (�H)`q0)F= 12�0�(�; q0; `)Fwith q; �0; q0 and � as before. A QR-like decomposition of D eA can be obtainedusing the following result [10, 11] : If there exists a unitary matrix V suchthat V (� � �I)V HGe = Go � �Ge; V He1 = q0, then the QR decomposition of�(�; q0; `) is given by V R with R = �(GoGHe ; e1; `). Hence D eA = �02 V RF andthe optimal solution of (2.1) is given by et = 2��10 F�1R�1V HD ef . The con-struction of such a Schur parameter pencil from spectral data is a (generalized)inverse eigenproblem. Thus the best trigonometric approximation to f can becomputed via solving this inverse eigenproblem. As explained in [7], the elementsof V are the values of orthogonal Laurent polynomials at the nodes �k. Thussolving the inverse unitary eigenproblem V (�� �I)W = Go� �Ge is equivalentto computing orthogonal Laurent polynomials.An updating formulation for the approximation problem (2.1) in terms ofthe generalized inverse unitary eigenproblem can be given analogous to the onefor problem (2.2). The special structure of the inverse eigenproblem V (� ��I)V HGe = Go��Ge can be used to develop an e�cient and reliable algorithmfor computing V; j and �j ; j = 1; : : : ; n. The advantage of this approach over(2.2) is that here an algorithm can be given which solves the real-valued problem(1.2) using only real arithmetic. For details see [11].The two algorithms sketched above are updating procedures in the sensethat the least-squares �t is obtained by incorporating the nodes of the innerproduct one at a time. In certain applications it may be desirable to replacecertain node-weight pairs (�k; !2k). This can be carried out by successively re-moving a node-weight pair from the current approximation, and then adding anew node-weight pair. Downdating Szeg�o polynomials/orthogonal Laurent poly-nomials and a given least-squares �t when one node is deleted from the innerproduct can easily be implemented solving unitary eigenproblems. The updatingand downdating procedures, based on solving inverse unitary eigenproblems andunitary eigenproblems, can be combined to yield a sliding window scheme, inwhich one node is replaced by another.



Heike Fassbender 73 DowndatingAssume the solution t of (1.2) corresponding to the data set Ym+1 is obtainedby the updating method based on the inverse unitary Hessenberg eigenproblemdiscussed in the Section 2. The problem of downdating the optimal trigonometricapproximation t of (1.2) can then be expressed as follows:Given�0 > 0Hm+1 unitary upper Hessenberg matrix of size (m + 1)� (m + 1)dm+1 a vector of length m + 1(�; �2) a node-weight pair from Ym+1(�0;Hm+1; dm+1 representing the solution of (1.2) for some data set Ym+1 =f�k; !2kgm+1k=1 ) �nd �0 > 0, a vector dm and a unitary upper Hessenberg matrixHm such that1. the eigenvalues of Hm are fe{�kgm+1k=1 n e{�2. the vector dm contains the �rst components of the eigenvectors ofHm, thatis if the entries of dm+1 are �1=�0; : : : ; �m+1=�0 and �0 = (Pm+1k=1 �2k) 12 , thenthe new �0 will be �0 = (�20 � �2) 12 and the entries of dm are f�kgm+1k=1 n �normalized by �0.Such a downdating procedure was �rst described by Ammar, Gragg andReichel in [4]. They present an O(m) algorithm which is based on the unitaryQR algorithm introduced by Gragg in [12]. Here we will develop a downdatingprocedure for the generalized unitary eigenproblem approach using these ideas.Assume the optimal least-squares solution t of (1.2) corresponding to thedata Ym+1 = f�k; !2kgm+1k=1 has been computed via the updating algorithm basedon the generalized inverse unitary eigenproblem discussed in Section 2. Then aunitary matrix Q and a Schur parameter pencil Gm+1o � �Gm+1e is known suchthatQ(�� �I)QHGm+1e = Gm+1o � �Gm+1e ; QHe1 = ��10 (!1; : : : ; !m+1)T (3.1)where �0 = (m+1Xk=1 !2k) 12 ; � = diag(�1; : : : ; �m+1); �k = e{�k :Instead of (3.1) we can just as well consider the equivalent equationQ�QH = Gm+1o (Gm+1e )H :Let (�j ; !2j ) be the node-weight pair to be deleted from the solution. Usingthe knowledge of the above solution, we wish to construct a Schur parameterpencil Gmo � �Gme or equivalently a matrix Gmo (Gme )H such thatcW b�cWH = Gmo (Gme )H ;



8 Sliding Window Schemeswhere b� = diag(�1; : : : ; �j�1; �j+1; : : : ; �m+1);cWHe1 = b��10 (!1; : : : ; !j�1; !j+1; : : : ; !m+1)T ;b�0 = (�20 � !2j ) 12or some suitable permutation of b� and cWHe1. In other words, we wish todetermine a unitary matrix V such that� 1 00 V �� � �0eT1�0e1 Gm+1o (Gm+1e )H �� 1 00 V H �= 0@ � b�0beT1 !jb�0be1 Gmo (Gme )H 0!j 0 �j 1A :Then, as � b� �j � = PHj �Pj where Pj = (e1; : : : ; ej�1; ej+1; : : : ; em+1; ej)� cW 1 � = PHj QHV H :Analogous to the ideas of Ammar, Gragg and Reichel in [4] we want tocompute cW via a QR-type step. In [13] a QR-like algorithm for Schur param-eter pencils is introduced. The method is based on the standard QR algorithmapplied to a matrix of the form GoGHe . No initial reduction to Hessenbergform is performed. It is shown that each iterate is then of the same form asGoGHe again. Hence, applying one QR-step with the exact shift �j to the matrixGm+1o (Gm+1e )H determines a unitary matrix eV such thateV Gm+1o (Gm+1e )H eV H = � X �j �because �j is an eigenvalue of Gm+1o (Gm+1e )H . X is a unitary matrix of the sameform as Gmo (Gme )H . eV is a matrix of the formG1(G3G2G3)(G5G4G5) � � �. Hence,the vector �0e1 will not be transformed as required as eV e1 is a full vector.Applying one step of an RQ algorithmwith the exact shift �j toGm+1o (Gm+1e )Hdetermines an upper triangular matrix R and a unitary U of the formG1(G3G2G3)(G5G4G5) � � � = G1G3G5 � � �G2G3G4G5 � � �that is, U = GoH for some upper Hessenberg matrixH and a matrix of the formGo. R and U are determined such that Gm+1o (Gm+1e )H � �jI = RU andUGm+1o (Gm+1e )HUH = UR+ �jI = � bX �j � :



Heike Fassbender 9The vector �0e1 is transformed such that only the �rst two entries are nonzero�0Ue1 = (x; x; 0; : : : ; 0)T :Observe that with the reversal matrix J = (em+1; em; : : : ; e1)Gm+1o (Gm+1e )H = RU , JGm+1o (Gm+1e )HJ = (JRJ)(JUJ), J(Gm+1o (Gm+1e )H )TJ = (JUTJ)(JRT J):Let GP := J(Gm+1o (Gm+1e )H)T J and let us assume for simplicity that m + 1 isodd (a similar argumentation can be given in the case that m+1 is even). ThenGm+1o (Gm+1e )H = G1(1)G3(3) � � �Gm+1(m+1)GH2 (2)GH4 (4) � � �GHm(m)andGP = G1(m)G3(m�2) � � �Gm�1(2)G0(m+1)GH2 (m�1)GH4 (m�3) � � �GHm(1)where G0() = diag(�; I):That is, Gm+1o (Gm+1e )H and GP are of the same form. Further, as U is a matrixof the form GoH for some upper Hessenberg matrix H and a matrix of the formGo, JUTJ is a matrix of the same form. Hence, as JRTJ is upper triangularagain, applying the RQ algorithm to Gm+1o (Gm+1e )H is equivalent to applyingthe QR algorithm to GP . One iteration of the QR algorithm with the exact shift�j applied to GP generates a unitary matrix VG1(�1)G3(�3) � � �Gm�1(�m�1)G2(�2)G3(�3) � � �Gm+1(�m+1)such that V HGPV = � X 0 00 �j � : (3.2)Moreover, �m+1 can be taken to be an arbitrary unimodular number, becausedeation has taken place.Only the last two components of �0V Hem+1 are nonzero; they are given by� 1 00 ��m+1 �� ��m (1 � j�mj2) 12(1� j�mj2) 12 �m �� 0�0 �= � (1� j�mj2) 12 �0��m+1 �m �0 � :We can choose �m+1 = ��m=j�mj to obtain� (1� j�mj2) 12�0j�mj�0 � :



10 Sliding Window SchemesTransforming (3.2) by similarity using bJ = (em; em�1; : : : ; e1; em+1) and trans-posing the result, we obtainWGm+1o (Gm+1e )HWH = � X 00 00 �j � ; where W = JV bJ:Moreover, �0WHe1 = � (1� j�mj2) 12�0be1j�mj�0 � ;and by the uniqueness of the reduction, X 00 = Gmo (Gme )H , �0(1� j�mj2) 12 = b�0,and j�mj�0 = !j .Note that the downdating process requires knowledge of the node �j to bedeleted, but not of the corresponding weight !2j . In an implementation of theprocess the computed weight can therefore be used to assess the accuracy of thecomputation.If the optimal least-squares solution t of (1.2) corresponding to the data Ym+1has been computed via the algorithm based on the generalized inverse unitaryeigenproblem discussed in Section 2, the least-squares solution et = eR�11 eQH1 D ef 2Cm+1 of (2.1) is known. The optimal least-squares solution t of (1.2) corre-sponding to the data Ym is then obtained by applying cWH to t0 = eQH1 D efincrementally cWHt0 = � t00!jf(zj ) � :In a second step a new et 2 Cm has to be computed from t00 using the Schurparameters of Gmo (Gme )H via a simpli�ed Levinson algorithm. This is analogousto the second step of the updating procedure. There �rst eQH1 D ef is computedvia solving the generalized inverse unitary eigenproblem. Then eR�11 is computedusing the Schur parameters of Go and Ge via a simpli�ed Levinson algorithm.Details are given in [11].A QR step has to be applied to a matrix X of the form GoGHe . We get aunitary matrix X 0 = V HXV , where X 0 can be written as G0o(G0e)H again. If Xcorresponds to an unreduced Schur parameter pencil Go��Ge, then X 0 will cor-respond to an unreduced Schur parameter pencil G0o��G0e. The transformationto an unreduced Schur parameter pencil is uniquely determined, up to unitaryscaling, if the �rst column of the transformation matrix is given. Therefore onecan derive G0o � �G0e, up to scaling from Go � �Ge by any unitary transforma-tion QH(Go � �Ge)P to Schur parameter pencils, for which the �rst column ofQ coincides with a scalar multiple of the �rst column of V . This was used byBunse-Gerstner and Elsner in [13] to derive an implicit single shifted QR step.In a preparatory step, a matrix V1 = G1(�1) is determined such thatV H1 (Go � �jGe)e1 = �e1:
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12 Sliding Window Schemes8. G. H. Golub and C. F. Van Loan. Matrix Computation. The John HopkinsUniversity Press, second edition, 1989.9. G. S. Ammar, W. B. Gragg, and L. Reichel. On the Eigenproblem for Or-thogonal Matrices. In Proc. 25th IEEE Conference on Decision and Control,pages 1963 { 1966, 1986.10. H. Fa�bender. Numerische Verfahren zur diskreten trigonometrischen Poly-nomapproximation. Dissertation Universit�at Bremen, 1993.11. H. Fa�bender. On Numerical Methods for Discrete Least-Squares Approxi-mation by Trigonometric Polynomials. Math. Comp., to appear.12. W. B. Gragg. The QR algorithm for unitary Hessenberg matrices. J. Comp.Appl. Math., 16:1 { 8, 1986.13. A. Bunse-Gerstner and L. Elsner. Schur Parameter Pencils for the Solutionof the Unitary Eigenproblem. Lin. Alg. and its Appl., 154 - 156:741 { 778,1991.


