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Abstract

Fast, efficient, and reliable algorithms for up- and downdating discrete
least-squares approximations of a real-valued function given at arbitrary
distinct nodes in [0,27) by trigonometric polynomials are presented. A
combination of the up- and downdating algorithms yields a sliding window
scheme. The algorithms are based on schemes for the solution of (inverse)
unitary eigenproblems and require only O(mn) arithmetic operations as
compared to O(mn®) operations needed for algorithms that ignore the
structure of the problem. Numerical examples show that the proposed
algorithms produce consistently accurate results that are often better than
those obtained by general QR decomposition methods for the least-squares
problem.
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1 Introduction

A problem in signal processing is the approximation of a function known only
at some measured points by a trigonometric polynomial. A number of different
models for representing the measured points as a finite superposition of sine- and
cosine-oscillations are possible. One choice could be to compute the trigonomet-
ric interpolating function. Then several numerical algorithms are available [1].
But in general a large number of measured points are given, such that this ap-
proach leads to a trigonometric polynomial with a lot of superposed oscillations
(and a large linear system to be solved). In practical applications it is often
sufficient to compute a trigonometric polynomial with only a small number of
superposed oscillations. A different, often chosen approach is the (fast) Fourier
transform [1]. In this case the frequencies of the sine- and cosine-oscillations
have to be chosen equidistant. The following approach gives more freedom in
the choice of the frequencies and the number of superposed oscillations. Given a
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set of m arbitrary distinct nodes {f;}}*_, in the interval [0, 27), a set of m posi-
tive weights {w2} ,, and a real-valued function f whose values at the nodes 6y
are explicitly known. Then the trigonometric function

’
t(8) = ao + Z(a,j cos j6 + b, sin j6), a;, b € R, (1.1)
=1

of order at most £ < m/2 is sought that minimizes the discrete least-squares
error

17— tlig = | S 17(8) — (0 Pl (12)

k=1

In general, m (the number of measured functional values) is much larger than
n = 2/ + 1 (the number of coeflicients to be determined).

Let the trigonometric polynomial £(8) = aq + Z;izl(a,j cos j0 + b, sin j6) be
the optimal solution of the approximation problem (1.2) corresponding to the
data Y, = {0k, w?}?™ ,. Suppose Y, 1 is obtained from Y,, by augmenting
a new node-weight pair (9m+1,w12n+1). Solving the approximation problem for
Y41 assuming the knowledge of its solution for Yy, is called updating the least-
squares fit. Solving the approximation problem for Y, assuming the knowledge
of its solution for Y,, 11 is called downdating the least-squares fit.

Standard algorithms for solving the approximation problem (1.2) require
O(mn?) arithmetic operations. Tt can be observed however, that Szegd polyno-
mials, that is polynomials that are orthogonal with respect to an inner product
on the unit circle, arise naturally as a convenient basis for solving the least-
squares problem (1.2). Updating and downdating of polynomial approximations
when all nodes z;, are real has received a lot of attention in the literature, see [2]
and the references therein. A collection of algorithms for updating and down-
dating based on orthogonal polynomials is presented in [3]. Downdating Szegd
polynomials is considered in [4], while the updating process is the topic of [5, 6, 7].

Section 2 reviews fast algorithms for solving (1.2) via updating procedures
which make use of the special structure of the problem (1.2). Fast downdating
methods are presented in Section 3. The updating and downdating procedures
can be combined to yield a sliding window scheme, in which one node is replaced
by another.

2 Updating

The problem (1.2) can easily be reformulated as the standard least-squares prob-
lem of minimizing

||[DAE — Df|| = min (2.1)

over all coefficient vectors % in the Euclidean norm, where f: (£f(61), -, F(B )T
is a vector of the measured values of the function f, D = diag(wi,...,wm) €
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R™*™ is a diagonal matrix with the given weights on the diagonal, and

1 sinf; cosf; --- sinff; cosff;
A’ — : : . . c Rm,)(n.

1 sinf,, cosb,, --- sinff, costl,,

A different approach is used by Reichel, Ammar, and Gragg in [5]. They
noted that the problem (1.2) can be reformulated as the following standard
least-squares problem: Minimize

||[DAc — Dgl||2 = min, (2.2)

where A is a transposed Vandermonde matrix

n—1
1 2z - 27 .
1 zy - 207
2 m X n
A=1| . . ) eC
n—1
1 zpy zZp

with z;, = ezp(8;),2 = vV—1. g = (g9(21),---,9(zm))T € C™ is a vector of the
values of a complex function g(z) and ¢ = (cq, .., en_1)7 € C™ is the solution
vector. With the proper choice of g (g = A"f, fas above, A = diag(z1,...,2m))
it is easy to see that the coeflicients of the trigonometric polynomial (1.1) that
minimizes the error (1.2) can be read off of the least-squares solution ¢ of (2.2)

(see [5])
ao=¢,  aj =2Re(Cjs),  bj = -2Im(cjy), 1<j<L

The usual way to solve these least-squares problems is to compute the QR
decomposition of DA or DA. Ignoring the special structure of DA or DA this
requires O(mn?) arithmetic operations. It can be observed however, that Szegd
polynomials, that is polynomials that are orthogonal with respect to an inner
product on the unit circle, arise naturally as a convenient basis for solving the
above standard least-squares problems. This observation can be used to develop
fast, efficient and reliable algorithms for solving the approximation problem (2.2).

Observe that

2 n—1
wiq w121 w129 .. Wiz
DA =
W  WmZm, W, an et Wiy Z,,Zi !

(g,Aq, A%q,..., A" 'q)
- UO(qu Aqu Aqua seey Anilqo)

with ¢ = (w1, -, wm)T,00 = ||q]l2,90 := 07 'q and A = diag(z1, ..., 2m). Thus,
the matrix DA is given by the first n columns of the Krylov matrix K (A, go, m) =



4 Sliding Window Schemes

(90, Ago, ---, A™go). We may therefore use the following consequence of the Im-
plicit Q Theorem [8] to compute the desired QR decomposition. If there exists a
unitary matrix U with Ue; = go such that U¥ AU = H is a unitary upper Hes-
senberg matrix with positive subdiagonal elements, then the QR decomposition
of K(A,qo,m) is given by UR with R = K(H, e, m). The construction of such
a unitary Hessenberg matrix from spectral data, here contained in A and qq, is
an inverse eigenproblem. Hence the best trigonometric approximation to f can
be computed via solving this inverse eigenproblem. It can be seen that the ele-
ments of U are the values of the Szeg6 polynomials at the nodes z;. Thus solving
the inverse unitary Hessenberg eigenvalue problem U¥ AU = H is equivalent to
computing Szegd polynomials.

From the above observation, an updating formulation for the approximation
problem (2.2) in terms of the inverse unitary eigenproblem can easily be given :

Given
og >0
Hp unitary upper Hessenberg matrix of size m x m
dm a vector of length m

(X\,v?)  a node-weight pair
(00, Hm, dm, representing the solution of (2.2) for some data set ¥,;,) find oy > 0,
a vector dy,41 and a unitary upper Hessenberg matrix H,,; such that

1. the eigenvalues of H,, ., are e** and those of H,,

2. the vector d,, 1 contains the first components of the eigenvectors of Hy, 11,
that is if the entries of d,,, are §1 /00, ...,8m /00 and o0 = (3 4y 5,3)%, then
. 1 .
the new o will be 09 = (02 + v?)> and the entries of dy, 1 are 83 /o for
k=1,...,mand v/oy.

Hence the approximation problem (1.2) can entirely be solved by updating, start-
ing from the trivial solution for m = 1.

Unitary Hessenberg matrices have special properties which allow the devel-
opment of efficient algorithms for this class of matrices. Any n x n unitary
Hessenberg matrix with positive subdiagonal elements can be uniquely parame-
terized by n complex parameters, that is

H = Gl(’yl)Gz(’Yz) st Gn(’Yﬂ,)

for certain complex-valued parameters |y.| < 1,1 < k < n, and |y,| = 1. Here
Gr(vk) denotes the n x n elementary reflector in the (k, k + 1) plane

G = Gi(v) = diag(Ii_1, ( ;Zk % ) v In—k_1)

with 4 € C, o € RY, |y&|> + 02 = 1, and

Gn(’)’n) = dia'g(Infla 7’7’")
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with v, € C, |yn| = 1. The nontrivial entries v; are called Schur parameters
and the o are called complementary Schur parameters. This parameterization
can be used to develop an efficient and reliable algorithm for solving the inverse
unitary Hessenberg eigenvalue problem/the updating problem.

Such an algorithm was first described by Ammar, Gragg and Reichel in [6].
The idea is to build up the Hessenberg matrix successively by adding node-weight
pairs (fx,w}) one at a time, in an updating fashion. The algorithm manipulates
the n complex parameters instead of the n? matrix elements. An adaption of this
scheme to the computation of the least-squares solution ¢ can be given, which
requires O(mn + n?) arithmetic operations. For details see [5].

The coefficients of the optimal trigonometric polynomial ¢ of (1.2) can be
recovered from ¢. This representation of £ is convenient if we desire to integrate
or differentiate the polynomial or if we wish to evaluate it at many equidistant
points on a circle with a center at the origin. If we, on the other hand, only
desire to evaluate ¢ at a few points, then we can use the representation of ¢ in
terms of Szego polynomials.

As DA in (2.1) is a real m x n matrix with full column rank, there exists
a unique "skinny” real QR decomposition élﬁl of DA where él € R™*™ has
orthonormal columns and RB; € R™*™ is upper triangular with positive diagonal
entries. This ansatz leads to orthogonal Laurent polynomials and the (gener-
alized) inverse unitary eigenproblem [7H(A — AI)[}GB = G, — A\G,., where G,
and G, are unitary block diagonal matrices with 1 x 1 or 2 X 2-blocks on the
diagonal. The nonzero entries of G, and G, are just the Schur parameters and
the complementary Schur parameters:

G, = G1(’Y1)G3(’Ys) ot 'GZ[('n,-I—l)/Z]f1(72[('n,+1)/2]71)
-7 01
g1 "y_l
= —7Y¥s O3
g3 "y_g

is the product of the odd numbered elementary reflectors and

Gl = Gi(72)Ga(74) - Gapny2)(Va[ns2)
1
—Y2 02
— o2 T

is the product of the even numbered elementary reflectors. The (generalized)
inverse eigenproblem UH (A — AI)UG. = G, — AG.., where a Schur parameter
pencil is constructed from spectral data, is equivalent to the inverse unitary

Hessenberg eigenproblem U AU = H = G1(71) - - - Gn(¥n) [9]-
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Observe that with

. -1 1
F—dw,g(Q,( s 1),...

we have

1
DA = §(ququanA2qa(AH)2qaaAlqa(AH)lq)F
1
= 590(g0, Ago, A" g0, Ao, (A)?qo, . .., A'qo, (AT )'q0) F

1
= 50’0[{.(1\, g0, L) F

with ¢, 09, g0 and A as before. A QR-like decomposition of DA can be obtained
using the following result [10, 11] : If there exists a unitary matrix V such
that V(A — ANVHEG, = G, — AG.,VHe; = qq, then the QR decomposition of
k(A, go,£) is given by VR with R = k(G,GE ,e1,£). Hence DA = DVRF and
the optimal solution of (2.1) is given by t = 20’51F*1R*1VHD]?. The con-
struction of such a Schur parameter pencil from spectral data is a (generalized)
inverse eigenproblem. Thus the best trigonometric approximation to f can be
computed via solving this inverse eigenproblem. As explained in [7], the elements
of V are the values of orthogonal Laurent polynomials at the nodes 8. Thus
solving the inverse unitary eigenproblem V(A — AINW = G, — AG,, is equivalent
to computing orthogonal Laurent polynomials.

An updating formulation for the approximation problem (2.1) in terms of
the generalized inverse unitary eigenproblem can be given analogous to the one
for problem (2.2). The special structure of the inverse eigenproblem V(A —
)\I)VHGB = G, — MG, can be used to develop an efficient and reliable algorithm
for computing V,v; and 64,5 = 1,...,n. The advantage of this approach over
(2.2) is that here an algorithm can be given which solves the real-valued problem
(1.2) using only real arithmetic. For details see [11].

The two algorithms sketched above are updating procedures in the sense
that the least-squares fit is obtained by incorporating the nodes of the inner
product one at a time. In certain applications it may be desirable to replace
certain node-weight pairs (6, w?). This can be carried out by successively re-
moving a node-weight pair from the current approximation, and then adding a
new node-weight pair. Downdating Szego polynomials/orthogonal Laurent poly-
nomials and a given least-squares fit when one node is deleted from the inner
product can easily be implemented solving unitary eigenproblems. The updating
and downdating procedures, based on solving inverse unitary eigenproblems and
unitary eigenproblems, can be combined to yield a sliding window scheme, in
which one node is replaced by another.
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3 Downdating

Assume the solution ¢ of (1.2) corresponding to the data set Y,, 41 is obtained
by the updating method based on the inverse unitary Hessenberg eigenproblem
discussed in the Section 2. The problem of downdating the optimal trigonometric
approximation ¢ of (1.2) can then be expressed as follows:
Given

og >0

H,,+1 unitary upper Hessenberg matrix of size (m + 1) x (m + 1)

dm+t1 a vector of length m + 1

(X\,v?)  anode-weight pair from Yy, 41
(60, Hm+1,dm+1 representing the solution of (1.2) for some data set Y,,11 =
{Hk,wz};":ll) find o9 > 0, a vector d,,, and a unitary upper Hessenberg matrix
H,, such that

1. the eigenvalues of H,, are {e*** }2";11 \ e

2. the vector d,;, contains the first components of the eigenvectors of H,,, that
is if the entries of d 11 are 61 /00, . = dm+1/00and o9 = ( ;":11 5,3)%, then
the new oo will be o9 = (62 — v2)> and the entries of d, are {Jk}Z:ll \v
normalized by o.

Such a downdating procedure was first described by Ammar, Gragg and
Reichel in [4]. They present an O(m) algorithm which is based on the unitary
QR algorithm introduced by Gragg in [12]. Here we will develop a downdating
procedure for the generalized unitary eigenproblem approach using these ideas.

Assume the optimal least-squares solution ¢ of (1.2) corresponding to the
data Yy,11 = {6k, wi}?i’ll has been computed via the updating algorithm based
on the generalized inverse unitary eigenproblem discussed in Section 2. Then a
unitary matrix @ and a Schur parameter pencil G™*1 — AG™*1 is known such
that

QA - XNQRFG™ = @™ G, QFer =0, (wi, -, wme1)T (3.1)

where

m+1
oo=(Y w})*,  A=diag(h1,..., Ams1), A =e’r

k=1
Instead of (3.1) we can just as well consider the equivalent equation
QAQH — G:;"'+1(G:3"'+1)H.

Let (H_i,w?-) be the node-weight pair to be deleted from the solution. Using
the knowledge of the above solution, we wish to construct a Schur parameter
pencil G™ — AG™ or equivalently a matrix G™(G™)H such that

WAWH = g (Gam”,
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where
A = dia,g()\l,...,)\_7-,1,)\_7-4_1,...,)\m+1),
i H ~—1 T
Woe1 = 65 (Wi, Wj_1,W0j41,-- - Wmi1)
~ 2 2y 1
g0 = (05— w; E

or some suitable permutation of A and WHel. In other words, we wish to
determine a unitary matrix V such that

10 § ooeT 1 0
0V ooer GETHGTH)H 0o vH

) Goe;y w;
= 80@1 G:)" (G:,")H 0
wj 0 A

-~

A
Th
en, as ( Y

H
) = P;"AP; where P; = (€1, -y € 1,€j 415+, Emt1,€f)
]

/W HAHyrH
(7 )t

Analogous to the ideas of Ammar, Gragg and Reichel in [4] we want to

compute W via a QR-type step. In [13] a QR-like algorithm for Schur param-
eter pencils is introduced. The method is based on the standard QR algorithm
applied to a matrix of the form G,GH. No initial reduction to Hessenberg
form is performed. Tt is shown that each iterate is then of the same form as
G,GH again. Hence, applying one QR-step with the exact shift A to the matrix

G™+1(G™+1)H determines a unitary matrix V such that
Vot (gmt T E = X
’ ‘ A

because }; is an eigenvalue of G+ (G™+1)¥ | X is a unitary matrix of the same
form as G™(G™)® . V is a matrix of the form Gl(Gngqg)(G5G4G5) ---. Hence,
the vector gpe; will not be transformed as required as Ve, is a full vector.
Applying one step of an RQ algorithm with the exact shift X; to G+ (Gm+1)H
determines an upper triangular matrix R and a unitary U of the form

G1(G3G2G3)(G5GaGs) - - = G1G3Gs - - - G2G3GaGs - - -

that is, U = G,H for some upper Hessenberg matrix H and a matrix of the form

G,. R and U are determined such that G™*+'(G™*+1)¥ — )\, = RU and

UG (GTIIYHUH = UR+ M1 = ( X . ) .
i
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The vector oge; is transformed such that only the first two entries are nonzero
ooller = (z,,0,...,0)T.
Observe that with the reversal matrix J = (em+1, €m,---,€1)
GPHY G NYWH = RU o JGTTHG™HYH ] = (JRI)(JUJ)
o JEH e YT g = (JUT J)(JRT ).

Let GP := J(G™+Y(G™+1)H)T J and let us assume for simplicity that m + 1 is
odd (a similar argumentation can be given in the case that m+ 1 is even). Then
GrrH G = Gi(m)Ga(13) - Gt 1 (Ym41)GE (12)GE (7a) - - - G (9m)

and
G” = G1(Vm)G3(Tm—2) - Cm-1(72)Go(Ym+1)G3 (Ym—1)GE (Ym—3) - - - G (m)
where

Go(v) = diag(—,I).

That is, G™*t1(G™+1)H and GT are of the same form. Further, as U is a matrix
of the form G, H for some upper Hessenberg matrix H and a matrix of the form
G,, JUTJ is a matrix of the same form. Hence, as JR”J is upper triangular
again, applying the RQ algorithm to G™*T1(G™+1)H is equivalent to applying
the QR algorithm to G¥. One iteration of the QR algorithm with the exact shift
A; applied to GP generates a unitary matrix V

G1(B1)G3(Ba) - - - Gm_1(Bm—1)G2(82)G3(83) - - - Gy 1(8mt1)
such that
X0
VEGPV = ( 0 A ) : (3.2)

Moreover, d,,41 can be taken to be an arbitrary unimodular number, because
deflation has taken place.
Only the last two components of ooV Fe,, 1 are nonzero; they are given by

D I O i [
0 —bmi1 (1—16ml?)? Sm a0
-3 6 %) o ).
—OUm+41 J'm ago
We can choose 8y, 11 = —8m /|0m| to obtain

( (1 [6m*) 300 ) .
|5m,|0-0
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Transforming (3.2) by similarity using J = (ems€m—1,y---3€1,Em+1) and trans-
posing the result, we obtain

" .
waertt (GO EwHE = ( X 0' ) , where W =JVJ.
Moreover,

O'OWHel = ( (1 - |5m,|2)%0-0€1 ) ’
|5m:|0'0
and by the uniqueness of the reduction, X" = G™(G™)H, a¢(1 — |5m|2)% = 09,
and |6m |00 = w;.

Note that the downdating process requires knowledge of the node 8; to be
deleted, but not of the corresponding weight w?. In an implementation of the
process the computed weight can therefore be used to assess the accuracy of the
computation.

If the optimal least-squares solution ¢ of (1.2) corresponding to the data ¥, 41
has been computed via the algorithm based on the generalized inverse unitary
eigenproblem discussed in Section 2, the least-squares solution ¢ = Rflé{[Df €
€™ of (2.1) is known. The optimal least-squares solution ¢ of (1.2) corre-

sponding to the data Y, is then obtained by applying WH to t' — Q{ID]?

incrementally
AH , t”
W=t = .
( w; f(z) )

In a second step a new ¢ € €™ has to be computed from ¢” using the Schur
parameters of G™(G™)H via a simplified Levinson algorithm. This is analogous
to the second step of the updating procedure. There first é{{Df is computed
via solving the generalized inverse unitary eigenproblem. Then Rfl is computed
using the Schur parameters of G, and G, via a simplified Levinson algorithm.
Details are given in [11].

A QR step has to be applied to a matrix X of the form G,GH. We get a
unitary matrix X' = VHZ XV, where X’ can be written as G/(G.)¥ again. If X
corresponds to an unreduced Schur parameter pencil G, — AG,, then X’ will cor-
respond to an unreduced Schur parameter pencil G!, — AG,. The transformation
to an unreduced Schur parameter pencil is uniquely determined, up to unitary
scaling, if the first column of the transformation matrix is given. Therefore one
can derive G/, — AG., up to scaling from G, — AG, by any unitary transforma-
tion Q¥ (G, — AG.)P to Schur parameter pencils, for which the first column of
@ coincides with a scalar multiple of the first column of V. This was used by
Bunse-Gerstner and Elsner in [13] to derive an implicit single shifted QR step.

In a preparatory step, a matrix V3 = G1(a1) is determined such that

VlH(G,, —X;G.er = pe;.
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The pencil V;#(G, — AG..) differs from a Schur parameter pencil only by three
additional entries

r + +
z + z
z T — A T o
T oz -
T oz

This "bulge” is then chased down along the diagonal to restore the Schur pa-
rameter pencil form again. This is an O(m) process.

4 Concluding remarks

Due to space limitation, we will refrain from giving numerical examples for the
updating and downdating procedures. For numerical examples and a detailed
discussion on the updating process see [5, 10, 11]. For numerical examples and
a detailed discussion on downdating Szegd polynomials/the downdating process
in terms of the unitary eigenproblem see [4].
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