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Abstract

Fast, efficient and reliable algorithms for discrete least-squares approx-
imation of a real-valued function given at arbitrary distinct nodes in [0, 27)
by trigonometric polynomials are presented. The algorithms are based on
schemes for the solution of inverse unitary eigenproblems and require only
O(mn) arithmetic operations as compared to O(mn?) operations needed
for algorithms that ignore the structure of the problem. An algorithm
which solves this problem with real-valued data and real-valued solution
using only real arithmetic is given. Numerical examples are given that
show that the proposed algorithms produces consistently accurate results
that are often better than those obtained by general QR decomposition
methods for the least-squares problem.

1 Introduction

A number of signal processing problems can be seen to require numerical meth-
ods for different unitary eigenvalue problems. One of these problems is the dis-
crete least-squares approximation of a real-valued function f given at arbitrary
distinct nodes {6 }}-, in [0,2m) by trigonometric polynomials ¢ in the discrete
norm ||f —t|| = (Xie |f(60k) — 75(9;‘C)|2w,%)%7 where the {w?}T | are positive
weights. The problem can easily be reformulated as the standard least-squares
problem of minimizing D Ac — Dg over all coefficient vectors ¢ in the Euclidian
norm, where D = diag(ws, ...,wp) and A is the transposed m x n Vandermonde
matrix
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with zp = exp(ify).
The usual way to solve this least-squares problem is to compute the QR
decomposition of DA. But DA is just the Krylov matrix

I((Aa qo0, TL) = [QUa Aq07 X Anil(]o]
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(where A = diag(z1, ..., zm) and qo = (w1, ...,wm)T). We may therefore use the
following consequence of the Implicit Q Theorem to compute the desired QR
decomposition. If there exists a unitary matrix U such that UFAU = H is a
unitary upper Hessenberg matrix with positive subdiagonal elements, then the
unique QR decomposition of K (A, o, m) is given by UR with R = K(H, ey, m).
The construction of such a unitary Hessenberg matrix from spectral data, here
contained in A and q,, is an inverse eigenproblem. Thus the best trigonometric
approximation to f can be computed via solving this inverse eigenproblem.
Reichel, Ammar and Gragg observe in [1] that solving an inverse eigenproblem
for unitary Hessenberg matrices is equivalent to computing Szego polynomials,
that is to computing polynomials that are orthogonal with respect to an inner
product on the unit circle. In order to compute the least-squares solution
R™'Q" Dg observe that R = K(H, ey, m) is the Cholesky factor of a Toeplitz-
matrix. Its inverse can therefore be computed by the Levinson algorithm. The
algorithms require only O(mn) arithmetic operations as compared with O(mn?)
operations needed for algorithms that ignore the special structure of D A.

2 A real-valued approach

New, fast algorithms to solve the discrete least-squares approximation are de-
veloped, particularly algorithms, which solve this problem with real-valued data
und real-valued solution in O(mn) arithmetic operations using only real arith-
metic. Our approach is to reformulate the approximation problem as the stan-
dard least-squares problem of minimizing DA# — Df over all coefficient vectors
t in the Euclidian norm, where

1 sinfy cosfy --- sinlfy coslb;
A= : : :
1 siné,, cos6, --- sinlf,, coslb,,

and [ is the degree of the desired trigonometric polynomial. DA is the product
of the modified Krylov matrix
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H(Aaq071> = [QUvAQUaAHq07A2q0aAH qo0, "'7Alq0aAH QO]

and a block diagonal matrix F = diag(1, B, B, ..., B) with B = ( _Z'Z } ) If

there exists a unitary matrix Q such that Q¥ (A — AIQG. = G, — A\G, is a
unitary matrix pencil in parametrized form, where G,, G, are unitary block di-
agonal matrices with block size at most two, then the unique QR decomposition
of k(A, qo,1) is given by QR with R = k(G,G¥  e1,1). From this a unique (real-
valued) QR factorization of DA is easily obtained. The construction of such a
unitary matrix pencil in parametrized form from spectral data is a generalized
inverse eigenproblem. The scheme for solving an inverse eigenproblem for uni-
tary matrix pencils in parametrized form is developed from a backward stable
algorithm given by Bunse-Gerstner and Elsner in [2] which reduces a unitary
matrix pencil to parametrized form. It can be shown that this is equivalent



to computing Laurent polynomials (rational functions) that are orthonormal
with respect to an inner product on the unit circle. A relationship of these
orthogonal Laurent polynomials to the Szego polynomials is noted and a two-
term recurrence is developed. In order to compute the least-squares solution
R QY Df observe that R = k(GoGH  eq,1). Using the fact that G,G¥ is sim-
ilar to a unitary upper Hessenberg matrix, it is shown that the inverse of R can
be computed by a modification of the Levinson algorithm.

As DA is a real m x n matrix, there exists a unique, real-valued QR decom-
position QR of DA. In order to develop an algorithm to compute Q using only
real arithmetic the effect of the transformation @ on the real- and imaginary-
part of A = diag(z1, ..., zm) = diag(cos 01, ..., cos 0,,) + diag(sin 0y, ..., sin 0, ) is
considered. It is shown that essentially only the real-part of A is needed for
computing Q (and R) As R is the Cholesky factor of a bordered block-Toeplitz-
plus-block-Hankel-matrix, a new fast algorithm to compute R is developed.

The algorithms discussed require only O(mn) arithmetic operations as com-
pared with O(mn?) operations needed for algorithms that ignore the special
structure of DA or DA.

3 Numerical results

We present some numerical examples that compare accuracy and speed of the
following methods :

- AGR : algorithm proposed in [1] as sketched in the introduction, the
desired QR decomposition of DA is computed via an invers unitary eigenvalue
problem and the Levinson algorithm (with complex arithmetic)

- ver2.1 : the desired QR decomposition of DA is computed via a generalized
inverse unitary eigenvalue problem and a modification of the Levinson algorithm
(with complex arithmetic)

- ver4.l : the desired QR decomposition of DA is computed via a simulta-
neous reduction of the real- and imaginary part of A to a compact form and an
algorithm to compute the Cholesky factor of a special bordered block-Toeplitz-
plus-block-Hankel-matrix (with real arithmetic)

- linpack : the matrix DA is explicitly formed, the solution is computed by
the LINPACK routines sqrdc and sqrsl with real arithmetic

For comparison of accuracy we compute the solution Z4 of the system
min||DAt — Df||

in double precision using the NAG routine FO4AMF. The figures display the
relative error ||t — #4]|2/||tql|2 where £ is the coefficient vector computed by the
method under consideration. Each graph displays the errors for m = 50 and
increasing values of n. The arguments of the nodes are either equispaced in
the interval [0, 7), [0,3/27) or [0,27) or the arguments are randomly generated
uniformly distributed numbers in [0,27). The weights are all equal to one,
the elements of the real vector f are randomly generated uniformly distributed
numbers in [—5, 5].
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The graphs at the top of Figure 1 and Figure 2 display the relative errors
in the coefficient vectors for equispaced nodes in intervalls smaller than 2.
As n increases, and the problem becomes more ill conditioned, the LINPACK
routines are the first to produce inaccurate results. ver2.1 produces errors that
are somewhat smaller than AGR, while ver4.1 produces errors that are about
the same as AGR. The graphs at the bottom of Figure 1 and Figure 2 display
the relative error when the arguments are equispaced in [0,27) and when the
arguments are randomly generated uniformly distributed numbers in [0, 27).
In the first case the LINPACK routines and ver2.1 produce smaller errors than
AGR, while verd.1 produces slightly larger errors. When the arguments are
randomly generated uniformly distributed points in [0,27) the least-squares
problem is relatively well conditioned and the AGR algorithm, ver2.1 and ver4.1
yield roughly the same accuracy as n gets close to m. We obtained similar
results to those in Figure 1 and Figure 2 with other choices for the nodes and
the weights.

4 Final Remarks

This brief note is a partial summary of [3].
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