
On Numeri
al Methods For Dis
rete Least-SquaresApproximation By Trigonometri
 PolynomialsHeike Fa�bender�Abstra
tFast, eÆ
ient and reliable algorithms for dis
rete least-squares approx-imation of a real-valued fun
tion given at arbitrary distin
t nodes in [0; 2�)by trigonometri
 polynomials are presented. The algorithms are based ons
hemes for the solution of inverse unitary eigenproblems and require onlyO(mn) arithmeti
 operations as 
ompared to O(mn2) operations neededfor algorithms that ignore the stru
ture of the problem. An algorithmwhi
h solves this problem with real-valued data and real-valued solutionusing only real arithmeti
 is given. Numeri
al examples are given thatshow that the proposed algorithms produ
es 
onsistently a

urate resultsthat are often better than those obtained by general QR de
ompositionmethods for the least-squares problem.1 Introdu
tionA number of signal pro
essing problems 
an be seen to require numeri
al meth-ods for di�erent unitary eigenvalue problems. One of these problems is the dis-
rete least-squares approximation of a real-valued fun
tion f given at arbitrarydistin
t nodes f�kgmk=1 in [0; 2�) by trigonometri
 polynomials t in the dis
retenorm jjf � tjj = (Pmk=1 jf(�k) � t(�k)j2!2k) 12 , where the f!2kgmk=1 are positiveweights. The problem 
an easily be reformulated as the standard least-squaresproblem of minimizing DA
�Dg over all 
oeÆ
ient ve
tors 
 in the Eu
lidiannorm, where D = diag(!1; :::; !m) and A is the transposed m�n Vandermondematrix A = 0BB� 1 z1 z21 � � � zn�11... ... ... ...1 zm z2m � � � zn�1m 1CCAwith zk = exp(i�k).The usual way to solve this least-squares problem is to 
ompute the QRde
omposition of DA. But DA is just the Krylov matrixK(�; q0; n) = [q0;�q0; :::;�n�1q0℄�Universit�at Bremen, Fa
hberei
h 3 Mathematik und Informatik, 28334 Bremen, Germany1



2(where � = diag(z1; :::; zm) and q0 = (!1; :::; !m)T ). We may therefore use thefollowing 
onsequen
e of the Impli
it Q Theorem to 
ompute the desired QRde
omposition. If there exists a unitary matrix U su
h that UH�U = H is aunitary upper Hessenberg matrix with positive subdiagonal elements, then theunique QR de
omposition of K(�; q0;m) is given by UR with R = K(H; e1;m).The 
onstru
tion of su
h a unitary Hessenberg matrix from spe
tral data, here
ontained in � and qo, is an inverse eigenproblem. Thus the best trigonometri
approximation to f 
an be 
omputed via solving this inverse eigenproblem.Rei
hel, Ammar and Gragg observe in [1℄ that solving an inverse eigenproblemfor unitary Hessenberg matri
es is equivalent to 
omputing Szeg�o polynomials,that is to 
omputing polynomials that are orthogonal with respe
t to an innerprodu
t on the unit 
ir
le. In order to 
ompute the least-squares solutionR�1QHDg observe that R = K(H; e1;m) is the Cholesky fa
tor of a Toeplitz-matrix. Its inverse 
an therefore be 
omputed by the Levinson algorithm. Thealgorithms require only O(mn) arithmeti
 operations as 
ompared with O(mn2)operations needed for algorithms that ignore the spe
ial stru
ture of DA.2 A real-valued approa
hNew, fast algorithms to solve the dis
rete least-squares approximation are de-veloped, parti
ularly algorithms, whi
h solve this problem with real-valued dataund real-valued solution in O(mn) arithmeti
 operations using only real arith-meti
. Our approa
h is to reformulate the approximation problem as the stan-dard least-squares problem of minimizing D ~A~t�D ~f over all 
oeÆ
ient ve
tors~t in the Eu
lidian norm, where~A = 0B� 1 sin �1 
os �1 � � � sin l�1 
os l�1... ... ... ... ...1 sin �m 
os �m � � � sin l�m 
os l�m 1CAand l is the degree of the desired trigonometri
 polynomial. D ~A is the produ
tof the modi�ed Krylov matrix�(�; q0; l) = [q0;�q0;�Hq0;�2q0;�H2q0; :::;�lq0;�Hlq0℄and a blo
k diagonal matrix F = diag(1; B;B; :::; B) with B =  �i 1i 1 !. Ifthere exists a unitary matrix ~Q su
h that ~QH(� � �I) ~QGe = Go � �Ge is aunitary matrix pen
il in parametrized form, where Go; Ge are unitary blo
k di-agonal matri
es with blo
k size at most two, then the unique QR de
ompositionof �(�; qo; l) is given by ~Q ~R with ~R = �(GoGHe ; e1; l). From this a unique (real-valued) QR fa
torization of D ~A is easily obtained. The 
onstru
tion of su
h aunitary matrix pen
il in parametrized form from spe
tral data is a generalizedinverse eigenproblem. The s
heme for solving an inverse eigenproblem for uni-tary matrix pen
ils in parametrized form is developed from a ba
kward stablealgorithm given by Bunse-Gerstner and Elsner in [2℄ whi
h redu
es a unitarymatrix pen
il to parametrized form. It 
an be shown that this is equivalent



3to 
omputing Laurent polynomials (rational fun
tions) that are orthonormalwith respe
t to an inner produ
t on the unit 
ir
le. A relationship of theseorthogonal Laurent polynomials to the Szeg�o polynomials is noted and a two-term re
urren
e is developed. In order to 
ompute the least-squares solution~R�1 ~QHD ~f observe that ~R = �(GoGHe ; e1; l). Using the fa
t that GoGHe is sim-ilar to a unitary upper Hessenberg matrix, it is shown that the inverse of ~R 
anbe 
omputed by a modi�
ation of the Levinson algorithm.As D ~A is a real m�n matrix, there exists a unique, real-valued QR de
om-position Q̂R̂ of D ~A. In order to develop an algorithm to 
ompute Q̂ using onlyreal arithmeti
 the e�e
t of the transformation ~Q on the real- and imaginary-part of � = diag(z1; :::; zm) = diag(
os �1; :::; 
os �m) + diag(sin �1; :::; sin �m) is
onsidered. It is shown that essentially only the real-part of � is needed for
omputing Q̂ (and R̂). As R̂ is the Cholesky fa
tor of a bordered blo
k-Toeplitz-plus-blo
k-Hankel-matrix, a new fast algorithm to 
ompute R̂�1 is developed.The algorithms dis
ussed require only O(mn) arithmeti
 operations as 
om-pared with O(mn2) operations needed for algorithms that ignore the spe
ialstru
ture of DA or D ~A.3 Numeri
al resultsWe present some numeri
al examples that 
ompare a

ura
y and speed of thefollowing methods :- AGR : algorithm proposed in [1℄ as sket
hed in the introdu
tion, thedesired QR de
omposition of DA is 
omputed via an invers unitary eigenvalueproblem and the Levinson algorithm (with 
omplex arithmeti
)- ver2.1 : the desired QR de
omposition of D ~A is 
omputed via a generalizedinverse unitary eigenvalue problem and a modi�
ation of the Levinson algorithm(with 
omplex arithmeti
)- ver4.1 : the desired QR de
omposition of D ~A is 
omputed via a simulta-neous redu
tion of the real- and imaginary part of � to a 
ompa
t form and analgorithm to 
ompute the Cholesky fa
tor of a spe
ial bordered blo
k-Toeplitz-plus-blo
k-Hankel-matrix (with real arithmeti
)- linpa
k : the matrix D ~A is expli
itly formed, the solution is 
omputed bythe LINPACK routines sqrd
 and sqrsl with real arithmeti
For 
omparison of a

ura
y we 
ompute the solution ~td of the systemminjjD ~A~t�D ~f jj2in double pre
ision using the NAG routine F04AMF. The �gures display therelative error jj~t� ~tdjj2=jj~tdjj2 where ~t is the 
oeÆ
ient ve
tor 
omputed by themethod under 
onsideration. Ea
h graph displays the errors for m = 50 andin
reasing values of n. The arguments of the nodes are either equispa
ed inthe interval [0; �), [0; 3=2�) or [0; 2�) or the arguments are randomly generateduniformly distributed numbers in [0; 2�). The weights are all equal to one,the elements of the real ve
tor ~f are randomly generated uniformly distributednumbers in [�5; 5℄.



4|| AGR� � � ver2.1� � � � � � linpa
k
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m = 50, random arguments in [0, 2pi)
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m = 50, equispaced arguments in [0, 2pi)
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m = 50, equispaced arguments in [0, 3/2pi)

0 10 20 30 40 50
10

-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

n

re
l. 

er
ro

r

m = 50, equispaced arguments in [0, pi)

Figure 1:



5|| AGR� � � ver4.1� � � � � � linpa
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m = 50, equispaced arguments in [0, pi)

0 10 20 30 40 50
10

-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

n

re
l. 

er
ro

r

m = 50, equispaced arguments in [0, 3/2pi)
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m = 50, equispaced arguments in [0, 2pi)
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m = 50, random arguments in [0, 2pi)

Figure 2:



6The graphs at the top of Figure 1 and Figure 2 display the relative errorsin the 
oeÆ
ient ve
tors for equispa
ed nodes in intervalls smaller than 2�.As n in
reases, and the problem be
omes more ill 
onditioned, the LINPACKroutines are the �rst to produ
e ina

urate results. ver2.1 produ
es errors thatare somewhat smaller than AGR, while ver4.1 produ
es errors that are aboutthe same as AGR. The graphs at the bottom of Figure 1 and Figure 2 displaythe relative error when the arguments are equispa
ed in [0; 2�) and when thearguments are randomly generated uniformly distributed numbers in [0; 2�).In the �rst 
ase the LINPACK routines and ver2.1 produ
e smaller errors thanAGR, while ver4.1 produ
es slightly larger errors. When the arguments arerandomly generated uniformly distributed points in [0; 2�) the least-squaresproblem is relatively well 
onditioned and the AGR algorithm, ver2.1 and ver4.1yield roughly the same a

ura
y as n gets 
lose to m. We obtained similarresults to those in Figure 1 and Figure 2 with other 
hoi
es for the nodes andthe weights.4 Final RemarksThis brief note is a partial summary of [3℄.Referen
es[1℄ L. Rei
hel, G. S. Ammar and W. B. Gragg, Dis
rete Least Squares Ap-proximation by Trigonometri
 Polynomials, Math. Comp., 57, pp 273 -289, 1991.[2℄ A. Bunse-Gerstner and L. Elsner, S
hur Parameter Pen
ils for the Solutionof the Unitary Eigenproblem, Lin. Alg. and its Appl., 154 - 156, pp 741 -778, 1991.[3℄ H. Fa�bender, Numeris
he Verfahren zur diskreten trigonometris
henPolynomaproximation, Dissertation Universit�at Bremen, Germany, Okto-ber 1993.


