
On Numerial Methods For Disrete Least-SquaresApproximation By Trigonometri PolynomialsHeike Fa�bender�AbstratFast, eÆient and reliable algorithms for disrete least-squares approx-imation of a real-valued funtion given at arbitrary distint nodes in [0; 2�)by trigonometri polynomials are presented. The algorithms are based onshemes for the solution of inverse unitary eigenproblems and require onlyO(mn) arithmeti operations as ompared to O(mn2) operations neededfor algorithms that ignore the struture of the problem. An algorithmwhih solves this problem with real-valued data and real-valued solutionusing only real arithmeti is given. Numerial examples are given thatshow that the proposed algorithms produes onsistently aurate resultsthat are often better than those obtained by general QR deompositionmethods for the least-squares problem.1 IntrodutionA number of signal proessing problems an be seen to require numerial meth-ods for di�erent unitary eigenvalue problems. One of these problems is the dis-rete least-squares approximation of a real-valued funtion f given at arbitrarydistint nodes f�kgmk=1 in [0; 2�) by trigonometri polynomials t in the disretenorm jjf � tjj = (Pmk=1 jf(�k) � t(�k)j2!2k) 12 , where the f!2kgmk=1 are positiveweights. The problem an easily be reformulated as the standard least-squaresproblem of minimizing DA�Dg over all oeÆient vetors  in the Eulidiannorm, where D = diag(!1; :::; !m) and A is the transposed m�n Vandermondematrix A = 0BB� 1 z1 z21 � � � zn�11... ... ... ...1 zm z2m � � � zn�1m 1CCAwith zk = exp(i�k).The usual way to solve this least-squares problem is to ompute the QRdeomposition of DA. But DA is just the Krylov matrixK(�; q0; n) = [q0;�q0; :::;�n�1q0℄�Universit�at Bremen, Fahbereih 3 Mathematik und Informatik, 28334 Bremen, Germany1



2(where � = diag(z1; :::; zm) and q0 = (!1; :::; !m)T ). We may therefore use thefollowing onsequene of the Impliit Q Theorem to ompute the desired QRdeomposition. If there exists a unitary matrix U suh that UH�U = H is aunitary upper Hessenberg matrix with positive subdiagonal elements, then theunique QR deomposition of K(�; q0;m) is given by UR with R = K(H; e1;m).The onstrution of suh a unitary Hessenberg matrix from spetral data, hereontained in � and qo, is an inverse eigenproblem. Thus the best trigonometriapproximation to f an be omputed via solving this inverse eigenproblem.Reihel, Ammar and Gragg observe in [1℄ that solving an inverse eigenproblemfor unitary Hessenberg matries is equivalent to omputing Szeg�o polynomials,that is to omputing polynomials that are orthogonal with respet to an innerprodut on the unit irle. In order to ompute the least-squares solutionR�1QHDg observe that R = K(H; e1;m) is the Cholesky fator of a Toeplitz-matrix. Its inverse an therefore be omputed by the Levinson algorithm. Thealgorithms require only O(mn) arithmeti operations as ompared with O(mn2)operations needed for algorithms that ignore the speial struture of DA.2 A real-valued approahNew, fast algorithms to solve the disrete least-squares approximation are de-veloped, partiularly algorithms, whih solve this problem with real-valued dataund real-valued solution in O(mn) arithmeti operations using only real arith-meti. Our approah is to reformulate the approximation problem as the stan-dard least-squares problem of minimizing D ~A~t�D ~f over all oeÆient vetors~t in the Eulidian norm, where~A = 0B� 1 sin �1 os �1 � � � sin l�1 os l�1... ... ... ... ...1 sin �m os �m � � � sin l�m os l�m 1CAand l is the degree of the desired trigonometri polynomial. D ~A is the produtof the modi�ed Krylov matrix�(�; q0; l) = [q0;�q0;�Hq0;�2q0;�H2q0; :::;�lq0;�Hlq0℄and a blok diagonal matrix F = diag(1; B;B; :::; B) with B =  �i 1i 1 !. Ifthere exists a unitary matrix ~Q suh that ~QH(� � �I) ~QGe = Go � �Ge is aunitary matrix penil in parametrized form, where Go; Ge are unitary blok di-agonal matries with blok size at most two, then the unique QR deompositionof �(�; qo; l) is given by ~Q ~R with ~R = �(GoGHe ; e1; l). From this a unique (real-valued) QR fatorization of D ~A is easily obtained. The onstrution of suh aunitary matrix penil in parametrized form from spetral data is a generalizedinverse eigenproblem. The sheme for solving an inverse eigenproblem for uni-tary matrix penils in parametrized form is developed from a bakward stablealgorithm given by Bunse-Gerstner and Elsner in [2℄ whih redues a unitarymatrix penil to parametrized form. It an be shown that this is equivalent



3to omputing Laurent polynomials (rational funtions) that are orthonormalwith respet to an inner produt on the unit irle. A relationship of theseorthogonal Laurent polynomials to the Szeg�o polynomials is noted and a two-term reurrene is developed. In order to ompute the least-squares solution~R�1 ~QHD ~f observe that ~R = �(GoGHe ; e1; l). Using the fat that GoGHe is sim-ilar to a unitary upper Hessenberg matrix, it is shown that the inverse of ~R anbe omputed by a modi�ation of the Levinson algorithm.As D ~A is a real m�n matrix, there exists a unique, real-valued QR deom-position Q̂R̂ of D ~A. In order to develop an algorithm to ompute Q̂ using onlyreal arithmeti the e�et of the transformation ~Q on the real- and imaginary-part of � = diag(z1; :::; zm) = diag(os �1; :::; os �m) + diag(sin �1; :::; sin �m) isonsidered. It is shown that essentially only the real-part of � is needed foromputing Q̂ (and R̂). As R̂ is the Cholesky fator of a bordered blok-Toeplitz-plus-blok-Hankel-matrix, a new fast algorithm to ompute R̂�1 is developed.The algorithms disussed require only O(mn) arithmeti operations as om-pared with O(mn2) operations needed for algorithms that ignore the speialstruture of DA or D ~A.3 Numerial resultsWe present some numerial examples that ompare auray and speed of thefollowing methods :- AGR : algorithm proposed in [1℄ as skethed in the introdution, thedesired QR deomposition of DA is omputed via an invers unitary eigenvalueproblem and the Levinson algorithm (with omplex arithmeti)- ver2.1 : the desired QR deomposition of D ~A is omputed via a generalizedinverse unitary eigenvalue problem and a modi�ation of the Levinson algorithm(with omplex arithmeti)- ver4.1 : the desired QR deomposition of D ~A is omputed via a simulta-neous redution of the real- and imaginary part of � to a ompat form and analgorithm to ompute the Cholesky fator of a speial bordered blok-Toeplitz-plus-blok-Hankel-matrix (with real arithmeti)- linpak : the matrix D ~A is expliitly formed, the solution is omputed bythe LINPACK routines sqrd and sqrsl with real arithmetiFor omparison of auray we ompute the solution ~td of the systemminjjD ~A~t�D ~f jj2in double preision using the NAG routine F04AMF. The �gures display therelative error jj~t� ~tdjj2=jj~tdjj2 where ~t is the oeÆient vetor omputed by themethod under onsideration. Eah graph displays the errors for m = 50 andinreasing values of n. The arguments of the nodes are either equispaed inthe interval [0; �), [0; 3=2�) or [0; 2�) or the arguments are randomly generateduniformly distributed numbers in [0; 2�). The weights are all equal to one,the elements of the real vetor ~f are randomly generated uniformly distributednumbers in [�5; 5℄.



4|| AGR� � � ver2.1� � � � � � linpak
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m = 50, random arguments in [0, 2pi)
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m = 50, equispaced arguments in [0, 2pi)
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m = 50, equispaced arguments in [0, 3/2pi)
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m = 50, equispaced arguments in [0, pi)

Figure 1:



5|| AGR� � � ver4.1� � � � � � linpak
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m = 50, equispaced arguments in [0, pi)
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m = 50, equispaced arguments in [0, 3/2pi)
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m = 50, equispaced arguments in [0, 2pi)
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m = 50, random arguments in [0, 2pi)

Figure 2:



6The graphs at the top of Figure 1 and Figure 2 display the relative errorsin the oeÆient vetors for equispaed nodes in intervalls smaller than 2�.As n inreases, and the problem beomes more ill onditioned, the LINPACKroutines are the �rst to produe inaurate results. ver2.1 produes errors thatare somewhat smaller than AGR, while ver4.1 produes errors that are aboutthe same as AGR. The graphs at the bottom of Figure 1 and Figure 2 displaythe relative error when the arguments are equispaed in [0; 2�) and when thearguments are randomly generated uniformly distributed numbers in [0; 2�).In the �rst ase the LINPACK routines and ver2.1 produe smaller errors thanAGR, while ver4.1 produes slightly larger errors. When the arguments arerandomly generated uniformly distributed points in [0; 2�) the least-squaresproblem is relatively well onditioned and the AGR algorithm, ver2.1 and ver4.1yield roughly the same auray as n gets lose to m. We obtained similarresults to those in Figure 1 and Figure 2 with other hoies for the nodes andthe weights.4 Final RemarksThis brief note is a partial summary of [3℄.Referenes[1℄ L. Reihel, G. S. Ammar and W. B. Gragg, Disrete Least Squares Ap-proximation by Trigonometri Polynomials, Math. Comp., 57, pp 273 -289, 1991.[2℄ A. Bunse-Gerstner and L. Elsner, Shur Parameter Penils for the Solutionof the Unitary Eigenproblem, Lin. Alg. and its Appl., 154 - 156, pp 741 -778, 1991.[3℄ H. Fa�bender, Numerishe Verfahren zur diskreten trigonometrishenPolynomaproximation, Dissertation Universit�at Bremen, Germany, Okto-ber 1993.


