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Abstract. A new class of structured polynomial eigenproblems arising in the stability analysis
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1. Introduction. In this paper we discuss a new class of structured matrix
polynomial eigenproblems Q(λ)v = 0, where

Q(λ) =
k∑

i=0

λiBi , Bi ∈ C
n×n , Bk 6= 0 ,

and Bi = PBk−iP , i = 0, . . . , k

(1.1)

for a real involutory matrix P (i.e. P 2 = I). Here B denotes the entrywise conjugation
of the matrix B. With

Q(λ) :=

k∑

i=0

λiBi and revQ(λ) := λkQ

(
1

λ

)
=

k∑

i=0

λiBk−i , (1.2)

we see that Q(λ) in (1.1) satisfies

P · revQ(λ) · P = Q(λ). (1.3)

As shown in Section 2, the stability analysis of time-delay systems is one important
source of eigenproblems as in (1.1). Throughout this paper we assume that all matrix
polynomials Q(λ) are regular, i.e. that det Q(λ)≡/ 0.

Matrix polynomials satisfying (1.3) are reminiscent of the various types of palin-
dromic polynomials defined in [17]:

• palindromic: revQ(λ) = Q(λ),
• anti-palindromic: revQ(λ) = −Q(λ),
• ⋆ -palindromic: revQ⋆(λ) = Q(λ),
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• ⋆ -anti-palindromic: revQ⋆(λ) = −Q(λ),
where ⋆ denotes transpose T in the real case and either T or conjugate transpose
∗ in the complex case. These palindromic matrix polynomials have the property
that reversing the order of the coefficient matrices, followed perhaps by taking their
transpose or conjugate transpose, leads back to the original matrix polynomial (up to
sign). Several other types of structured matrix polynomial are also defined in [17],

• even, odd: Q(−λ) = ±Q(λ),
• ⋆-even, ⋆-odd: Q⋆(−λ) = ±Q(λ),

and shown there to be closely related to palindromic polynomials via the Cayley
transformation.

We will show that matrix polynomials satisfying (1.3) have properties parallel to
those of the palindromic polynomials discussed in [17]. Hence we refer to polynomials
with property (1.3) as P -conjugate-P -palindromic polynomials, or PCP polynomials
for short. Analogous to the situation in [17], we examine four related types of PCP-like
structures,

• PCP: P · revQ(λ) · P = Q(λ),
• anti-PCP: P · revQ(λ) · P = −Q(λ),
• PCP-even: P ·Q(−λ) · P = Q(λ),
• PCP-odd: P ·Q(−λ) · P = −Q(λ),

revealing their spectral symmetry properties, their relationships to each other via the
Cayley transformation, as well as their structured linearizations. Here we continue
the practice stemming from Lancaster [13] of developing theory for polynomials of
degree k wherever possible in order to gain the most insight and understanding.

There are a number of ways in which palindromic matrix polynomials can be
thought of as generalizations of symplectic matrices. For example, palindromic poly-
nomials and symplectic matrices both have reciprocal pairing symmetry in their
spectra. In addition, the Cayley transformation relates palindromic polynomials to
even/odd matrix polynomials in the same way as it relates symplectic matrices to
Hamiltonian matrices, and even/odd matrix polynomials represent generalizations of
Hamiltonian matrices. Further information on the relationship between symplectic
matrices and palindromic polynomials can be found in [22] and, in the context of
optimal control problems, in [2].

The classical approach to investigate or numerically solve polynomial eigenvalue
problems is linearization. A kn × kn pencil L(λ) is said to be a linearization for
an n × n polynomial Q(λ) of degree k if E(λ)L(λ)F (λ) = diag[Q(λ), I(k−1)n] for
some E(λ) and F (λ) with nonzero constant determinants. The companion forms [4]
provide the standard examples of linearization for a matrix polynomial Q(λ). Let
X1 = X2 = diag(Bk, In, . . . , In),

Y1 =




Bk−1 Bk−2 · · · B0

−In 0 · · · 0
. . .

. . .
...

0 −In 0


 , and Y2 =




Bk−1 −In 0

Bk−2 0
. . .

...
...

. . . −In

B0 0 · · · 0


 . (1.4)

Then C1(λ) = λX1 + Y1 and C2(λ) = λX2 + Y2 are the first and second companion
forms for Q(λ). These linearizations do not reflect any structure that might be present
in the matrix polynomial Q, so only standard numerical methods can be applied to
solve the eigenproblem Ci(λ)v = 0. In a finite precision environment this may produce
physically meaningless results [23], e.g., loss of symmetries in the spectrum. Hence it
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is useful to construct linearizations that reflect the structure of the given polynomial,
and then to develop numerical methods for the resulting linear eigenvalue problem
that properly address these structures.

It is well known that for regular matrix polynomials, linearizations preserve al-
gebraic and partial multiplicities of all finite eigenvalues [4]. In order to preserve the
multiplicities of the eigenvalue ∞, one has to consider linearizations L(λ) which have
the additional property that revL(λ) is also a linearization for revQ(λ), see [3]. Such
linearizations have been named strong linearizations in [14]. Both the first and the
second companion form are strong linearizations for any regular matrix polynomial
[3, Proposition 1.1].

Several recent papers have systematically addressed the tasks of broadening the
menu of available linearizations, providing criteria to guide the choice of linearization,
and identifying structure-preserving linearizations for various types of structured poly-
nomial. In [18], two vector spaces of pencils generalizing the companion forms were
constructed and many interesting properties were proved, including that almost all
of these pencils are linearizations. The conditioning and backward error properties of
some of these linearizations were analyzed in [6], [8], and [10], developing criteria for
choosing a linearization best suited for numerical computation. Linearizations within
these vector spaces were identified in [17], [7], and [9] that respect palindromic and
odd-even structure, symmetric and Hermitian structure, and definiteness structure,
respectively.

In this paper we investigate the four types of PCP-structured matrix polynomial,
analyzing their spectral symmetries in Section 3, the relationships between the various
PCP-structures via the Cayley transformation in Section 4, and then showing how
to build structured linearizations for each type of PCP-structure in Section 5. The
existence and computation of a structured Schur-type decomposition for PCP-pencils
is discussed in Section 6, and Section 7 concludes with numerical results for some
examples arising from physical applications. We first, though, discuss in more detail
a key source of PCP-structured eigenproblems.

2. Time-delay systems. To motivate our consideration of matrix polynomials
with PCP-structure, we describe how the stability analysis of time-delay systems
(also known as delay-differential equations, see e.g. [5, 20]) leads to eigenproblems
with this structure. A neutral linear time-delay system (TDS) with m constant delays
h1, . . . , hm ≥ 0 and h0 = 0 is given by

S =

{ ∑m
k=0 Dkẋ(t− hk) =

∑m
k=0 Akx(t− hk) , t ≥ 0

x(t) = ϕ(t) , t ∈ [−ĥ, 0)
(2.1)

with ĥ = maxi{hi}, x : [−ĥ,∞) → Rn, ϕ ∈ C1[−ĥ, 0] , and Ak, Dk ∈ Rn×n for
k = 0, . . . , m. An important special case of (2.1) is the class of retarded time-delay
systems, in which D0 = I and Dk = 0 for k = 1, . . . , m.

The stability of a TDS can be determined from its characteristic equation, i.e.,
from the nontrivial solutions of the nonlinear eigenvalue problem

M(s)v = 0 , where M(s) = −sD(s) + A(s)

with D(s) =

m∑

k=0

Dke−hks and A(s) =

m∑

k=0

Ake−hks.
(2.2)

As usual, s ∈ C is called an eigenvalue associated with the eigenvector v ∈ Cn, and the
set of all eigenvalues σ(S) is called the spectrum of S. Having an eigenvalue in the right
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half-plane implies that S is unstable; conversely, having σ(S) completely contained in
the left half-plane usually implies that S is stable, although some additional technical
assumptions are required. For further details see [12], [20].

A time-delay system S is called critical if σ(S) ∩ iR 6= ∅, i =
√
−1. The set

of all points (h1, h2, . . . , hm) in delay-parameter space for which S is critical form
the critical curves (m = 2) or critical surfaces (m > 2) of the TDS. Since a TDS
can change stability when an eigenvalue pair crosses the imaginary axis, the critical
curves/surfaces are important in the study of the delay-parameter space stability
domain. In most cases of practical interest, the boundary of the stability domain is
just a subset of the critical curves/surfaces [20, Section 1.2].

Thus the computation of critical sets, for which a number of approaches exist
(see [12] for a list of references), is a key step in the stability analysis of time-delay
systems. Here we outline the new method for this computation developed in [12],
leading ultimately to a quadratic eigenproblem with PCP-palindromic structure that
will have to be solved repeatedly for many different parameter values.

To determine critical points in delay-parameter space, we need to compute purely
imaginary eigenvalues of M(s) in (2.2), i.e., to find s = iω with ω ∈ R such that

M(iω)v = 0 . (2.3)

As shown in [12], for any ω ∈ R and v ∈ C
n such that v∗v = 1 and v̂ := D(iω)v 6= 0,

equation (2.3) is equivalent to the pair of conditions

L(vv∗, iω) = 0 and v̂ ∗
M(iω)v = 0 , (2.4)

where L is a Lyapunov-type operator

L(X, s) := M(s)XD(s)∗ + D(s)XM(s)∗

= A(s)XD(s)∗ + D(s)XA(s)∗ − 2D(s)XD(s)∗Re(s)
(2.5)

for X ∈ C
n×n, s ∈ C. That (2.3) ⇒ (2.4) follows immediately from

L(vv∗, iω) = M(iω)vv∗D(iω)∗ + D(iω)vv∗M(iω)∗

= M(iω)v v̂ ∗ + v̂
(
M(iω)v

)∗
,

(2.6)

while the implication (2.4)⇒ (2.3) follows by pre-multiplying (2.6) with v̂ ∗ and using
the assumption v̂ 6= 0.

Note that the assumption v̂ = D(iω)v 6= 0 is not very restrictive, and can be
regarded as a kind of genericity condition, since D(iω)v = 0 in (2.3) implies that
A(iω)v = 0 would have to simultaneously hold. In addition D(iω)v = 0 if and only if
the difference equation

D0x(t) + D1x(t− h1) + . . . + Dmx(t− hm) = 0 (2.7)

has a purely imaginary eigenvalue, which happens only in very special situations.
We now see how (2.4) can be used to systematically explore delay-parameter space

to find the critical set. From (2.5) we have

L(vv∗, iω) = A(iω)vv∗D(iω)∗ + D(iω)vv∗A(iω)∗

with D(iω) =

m∑

k=0

Dke−iωhk and A(iω) =

m∑

k=0

Ake−iωhk .
(2.8)
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Because of the periodicity in the exponential terms of D(iω) and A(iω), there is
an ω-dependent periodicity in the critical set; if (h1, h2, . . . , hm) is a critical delay
corresponding to the solution iω, v of the equation L(vv∗, iω) = 0, then

(h1, h2, . . . , hm) + (2π/ω)(p1, p2, . . . , pm)

is also a critical delay for any (p1, p2, . . . , pm) ∈ Zm. Thus it suffices to consider only
the angles ϕk := ωhk for k = 1, . . . , m where ϕk ∈ [−π, π]. These can be explored
by a line-search strategy: with ϕ0 := ωh0 = 0, for each fixed choice of ϕ1, . . . , ϕm−1

view z := e−iϕm as a variable and rewrite L(vv∗, iω) = 0 as an eigenproblem in terms
of z and vv∗. Defining

AS :=

m−1∑

k=0

Ake−iϕk and DS :=

m−1∑

k=0

Dke−iϕk (2.9)

and using (2.8), we have

(
Amz + AS

)
vv∗
(
Dmz + DS

)∗
+
(
Dmz + DS

)
vv∗
(
Amz + AS

)∗
= 0 . (2.10)

Expanding and vectorizing (2.10) yields

(zE + F + zG) vec(vv∗) = 0 , (2.11)

where

E = DS ⊗Am + AS ⊗Dm ,

F = Dm ⊗Am + DS ⊗AS + AS ⊗DS + Am ⊗Dm ,

G = Dm ⊗AS + Am ⊗DS ,

(2.12)

and ⊗ denotes the usual Kronecker product [11, Chapter 4.3]. Then multiplying
(2.11) by z with |z| = 1 results in the quadratic eigenvalue problem

(z2E + zF + G)u = 0 . (2.13)

A solution (z, u) of (2.13) with |z| = 1 and u of the form vec(vv∗) completes the
determination of (ϕ1, ϕ2, . . . , ϕm) = ω(h1, h2, . . . , hm), and hence of a critical delay
up to a real scalar multiple ω. The scaling factor ω, and hence a pure imaginary
eigenvalue s = iω of (2.2), is determined by invoking the second condition in (2.4):

0 = iv̂ ∗
M(iω)v

= iv̂ ∗
(
−iωD(iω) + A(iω)

)
v

= ωv̂ ∗
D(iω)v + ıv̂ ∗

A(iω)v

= ωv̂ ∗v̂ + iv̂ ∗
(
Amz + AS

)
v ,

and hence

ω = −iv̂ ∗
(
Amz + AS

)
v/
(
v̂ ∗v̂

)
.

From (2.10) we can see that ω ∈ R. Define x̂ :=
(
Amz + AS

)
v, so that (2.10) says

x̂v̂ ∗+v̂x̂ ∗ = 0. Then v̂ ∗(x̂v̂ ∗+v̂x̂ ∗)v̂ = 0 ⇒ (v̂ ∗v̂)(v̂ ∗x̂+x̂ ∗v̂) = 0 ⇒ v̂ ∗x̂+x̂ ∗v̂ = 0,
so v̂ ∗x̂ ∈ iR and hence ω ∈ R.

The preceding discussion can be summarized in the following theorem.
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Theorem 2.1 ([12]). Assume that the difference equation (2.7) has no purely
imaginary eigenvalues. With ϕ0 = 0 and any given combination of angles ϕk ∈ [−π, π]
for k = 1, . . . , m− 1, consider the quadratic eigenvalue problem

(z2E + zF + G)u = 0 (2.14)

where E, F, G ∈ Cn2
×n2

are given by (2.12). Then for any solution of (2.14) with
|z| = 1 and u of the form u = vec(vv∗) = v ⊗ v for some v ∈ Cn with v∗v = 1,
critical delays for the TDS (2.1) can be constructed as follows. Let

v̂ =
(
Dmz + DS

)
v and ω = −iv̂ ∗

(
Amz + AS

)
v/
(
v̂ ∗v̂

)
. (2.15)

Then for any (p1, p2, . . . , pm) ∈ Zm,

(h1, h2, . . . , hm) =

(
1

ω

)[
(ϕ1, . . . , ϕm−1,−Arg z) + 2π(p1, p2, . . . , pm)

]

is a critical delay for (2.1).

It is now straightforward to see why the quadratic matrix polynomial

Q(z) = z2E + zF + G (2.16)

in (2.14) has PCP-structure. By [11, Cor 4.3.10] there exists an involutory, symmetric

permutation matrix P ∈ Rn2
×n2

(i.e. P = P−1 = PT ) such that

B ⊗ C = P (C ⊗B)P (2.17)

for all B, C ∈ Cn×n. Thus we have in (2.16) that E = PGP and F = PFP , since

E = DS ⊗ Am + AS ⊗Dm

= P
[
Am ⊗DS

]
P + P

[
Dm ⊗AS

]
P

= P
[
Am ⊗DS + Dm ⊗AS

]
P = PGP .

The fact that F = PFP follows in a similar fashion. This implies

Q(z) = z2E + zF + G = P (z2G + zF + E)P = P · revQ(z) · P ,

that is, (2.16) is a matrix polynomial as in (1.1) and (1.3).
Time-delay systems arise in a variety of applications [21], including electric cir-

cuits, population dynamics, and the control of chemical processes. Several realistic
problems are discussed in Section 7, and some numerical results are given.

3. Spectral symmetry. Suppose Q(λ) has property (1.3), and let λ 6= 0 be an
eigenvalue of Q(λ) associated to the eigenvector v, that is Q(λ)v = 0. Then we have

0 = Q(λ)v = P · revQ(λ) · Pv ⇒ revQ(λ) · (Pv) = 0 ,

which from definition (1.2) of rev implies that

Q(1/λ) · (P v) = 0 .
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Hence if λ is an eigenvalue with eigenvector v, then 1/λ is an eigenvalue with eigen-
vector P v. Note that for any matrix polynomial Q, (1.2) implies that the nonzero
finite eigenvalues of revQ(λ) are the reciprocals of those of Q.

The following theorem extends this observation of reciprocal pairing for eigenval-
ues of PCP-palindromic polynomials to include eigenvalues at∞, pairing of eigenvalue
multiplicities, as well as to an analogous eigenvalue pairing for PCP-even/odd poly-
nomials. As in [17], we will employ the convention that Q(λ) has an eigenvalue at ∞
with eigenvector x if revQ(λ) has the eigenvalue 0 with eigenvector x. The algebraic,
geometric, and partial multiplicities of an eigenvalue at ∞ are defined to be the same
as the corresponding multiplicities of the zero eigenvalue of revQ(λ).

Theorem 3.1 (Spectral Symmetry). Let Q(λ) =
∑k

i=0 λiBi, Bk 6= 0 be a regular
matrix polynomial and P a real involution.

(a) If Q(λ) = ±P revQ(λ) P , then the spectrum of Q(λ) has the pairing (λ, 1/λ).
(b) If Q(λ) = ±P Q(−λ) P , then the spectrum of Q(λ) has the pairing (λ,−λ).

Moreover, the algebraic, geometric, and partial multiplicities of the eigenvalues in each
such pair are equal. (Here we allow λ = 0 and interpret 1/λ as the eigenvalue ∞.)

Proof. We first recall some well-known facts [4] about strict equivalence of pencils
and about the companion form C1(λ) of a matrix polynomial Q(λ):

1. Q(λ) and C1(λ) have the same eigenvalues (including ∞) with the same
algebraic, geometric, and partial multiplicities.

2. Any two strictly equivalent pencils have the same eigenvalues (including ∞)
with the same algebraic, geometric, and partial multiplicities.

Because of these two facts it suffices to show that C1(λ) is strictly equivalent to
revC1(λ) = λY 1 + X1 for part (a), and to C1(−λ) = −λX1 + Y 1 for part (b). The
desired eigenvalue pairings and equality of multiplicities then follow.

For part (a), suppose that Q(λ) = εP · revQ(λ) ·P where ε = ±1, or equivalently,

that Bi = εPBk−iP for Q(λ) =
∑k

i=0 λiBi. Consider the nonsingular matrix

Rk ⊗ In =

[
0 In

. .
.

In 0

]
, where Rk :=

[
1

. .
.

1

]

k×k

.

Then

C1(λ) · (Rk ⊗ In) = λ




0 Bk

In

. .
.

In 0


+




B0 B1 . . . Bk−1

0 0 −In
... . .

.

0 −In 0


 .

Multiplying on the left with the nonsingular matrix

T :=




In Bk−1 . . . B1

0 0 −In
... . .

.

0 −In 0


 ,

we then have

T · C1(λ) · (Rk ⊗ In) = λ




B1 . . . Bk−1 Bk

−In 0 0
. . .

...
0 −In 0


+




B0

In
. . .

In


 .
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Replacing each block Bi by εPBk−iP we obtain

T ·C1(λ)·(Rk⊗In) = λ




εPBk−1P . . . εPB1P εPB0P

−In 0 0
. . .

...
0 −In 0


+




εPBkP

In
. . .

In


 ,

which can then be factored as

T · C1(λ) · (Rk ⊗ In) = P̂1


λ




Bk−1 . . . B1 B0

−In 0 0
. . .

...
0 −In 0


+




Bk

In
. . .

In





 P̂2

= P̂1 · revC1(λ) · P̂2 ,

where

P̂1 =
[

ε
Ik−1

]
⊗ P and P̂2 = Ik ⊗ P . (3.1)

Thus C1(λ) is strictly equivalent to revC1(λ), which completes the proof of part (a)
of the theorem.

We proceed in a similar manner for part (b). Suppose Q(λ) = εP · Q(−λ) · P
holds for ε = ±1, that is (−1)iBi = εPBiP for Q(λ) =

∑k
i=0 λiBi. In this situation

we aim to show that C1(λ) is strictly equivalent to C1(−λ). Consider the nonsingular
“alternating signs” matrix

Σk :=




(−1)k−1

(−1)k−2

. . .
(−1)0




k×k

.

Then

C1(λ) · (Σk ⊗ In) = λ




(−1)k−1Bk

(−1)k−2In
. . .

(−1)1In

(−1)0In




+




(−1)k−1Bk−1 (−1)k−2Bk−2 . . . (−1)1B1 (−1)0B0

(−1)k−2In 0 . . . 0 0

(−1)k−3In
. . . 0
. . .

...
(−1)0In 0




.

Multiplying on the left by the nonsingular matrix T̃ :=
[

1
−Σk−1

]
⊗ In, we then
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have

T̃ · C1(λ) · (Σk ⊗ In) = (−λ)




(−1)kBk

In

In
. . .

In




+




(−1)k−1Bk−1 (−1)k−2Bk−2 . . . (−1)1B1 (−1)0B0

−In 0 . . . 0 0

−In
. . . 0
. . .

...
−In 0




.

Using the property of Q(λ) that (−1)iBi = εPBiP , we obtain

T̃ ·C1(λ)·(Σk⊗In) = (−λ)




εPBkP

In
. . .

In


+




εPBk−1P . . . εPB1P εPB0P

−In 0 0
. . .

...
0 −In 0


 ,

which can then be factored as

T̃ · C1(λ) · (Σk ⊗ In) = P̂1


(−λ)




Bk

In
. . .

In


+




Bk−1 . . . B1 B0

−In 0 0
. . .

...
0 −In 0





 P̂2

= P̂1 · C1(−λ) · P̂2 ,

where P̂1 and P̂2 are as in (3.1). Thus C1(λ) is shown to be strictly equivalent to
C1(−λ), completing the proof of part (b).

The same eigenvalue pairings have also been previously observed in [17] for ∗-
(anti)-palindromic and ∗-even/odd matrix polynomials; these results are summarized
in Table 3.1. Observe further that when the coefficient matrices of Q are all real, then

Table 3.1
Spectral symmetries

Structure of Q(λ) eigenvalue pairing

(anti)-palindromic, T-(anti)-palindromic (λ, 1/λ)

∗-palindromic, ∗-anti-palindromic (λ, 1/λ)

(anti)-PCP (λ, 1/λ)

even, odd, T-even, T-odd (λ,−λ)

∗-even, ∗-odd (λ,−λ)

PCP-even, PCP-odd (λ,−λ)

for all the palindromic structures listed in Table 3.1 the eigenvalues occur not just
in pairs but in quadruples (λ, λ, 1/λ, 1/λ). This property is sometimes referred to as
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“symplectic spectral symmetry”, since real symplectic matrices exhibit this behavior.
In the context of the time-delay problem, though, the coefficient matrices E, F, G of
Q(z) in (2.16) are typically not all real unless there is only a single delay h1 in the
problem.

4. Relationships between structured polynomials. It is well known that
the Cayley transformation and its generalizations to matrix pencils relates Hamilto-
nian structure to symplectic structure for both matrices and pencils [15, 19]. By using
the extensions of the classical definition of this transformation to matrix polynomials
as given in [17], we develop analogous relationships between the structured matrix
polynomials considered here.

The Cayley transforms of a degree k matrix polynomial Q(λ) with pole at +1 or
−1, respectively, are the matrix polynomials C+1(Q) and C−1(Q) defined by

C+1(Q)(µ) := (1− µ)kQ

(
1 + µ

1− µ

)

and C−1(Q)(µ) := (µ + 1)kQ

(
µ− 1

µ + 1

)
.

(4.1)

This choice of definition was motivated in [17] by the observation that the Möbius
transformations µ−1

µ+1 and 1+µ
1−µ map reciprocal pairs (µ, 1

µ) to plus/minus pairs (λ,−λ),

as well as conjugate reciprocal pairs (µ, 1/µ) to conjugate plus/minus pairs (λ,−λ).
When viewed as maps on the space of n × n matrix polynomials of degree k, the
Cayley transformations in (4.1) can be shown by direct calculation to be inverses of
each other up to a scaling factor [17], that is,

C+1(C−1(Q)) = C−1(C+1(Q)) = 2k ·Q , where 1 ≤ k = deg Q .

The next lemma gives some straightforward observations that are helpful in re-
lating structure of a matrix polynomial to that of its Cayley transform.

Lemma 4.1. Let Q be a matrix polynomial of degree k. Then

revC+1(Q)(µ) = (µ− 1)kQ

(
µ + 1

µ− 1

)
= (−1)kC−1(Q)(−µ) (4.2)

and

revC−1(Q)(µ) = (µ + 1)kQ

(
1− µ

1 + µ

)
= C+1(Q)(−µ) . (4.3)

Proof. Relations (4.2) and (4.3) follow directly from the definitions and some
simple algebraic manipulations. For (4.2) with µ 6= 1 we have

revC+1(Q)(µ) = µkC+1(Q)

(
1

µ

)
= µk(1− 1

µ )kQ

(
1 + 1

µ

1− 1
µ

)
= (µ− 1)kQ

(
µ + 1

µ− 1

)
.

That this is equal to (−1)kC−1(Q)(−µ) then follows immediately from Definition 4.1;
equality extends to µ = 1 by continuity, since each expression represents a polynomial.

In a similar manner we have for (4.3) with µ 6= −1 that

revC−1(Q)(µ) = µkC−1(Q)

(
1

µ

)
= µk( 1

µ + 1)kQ

( 1
µ − 1
1
µ + 1

)
= (µ + 1)kQ

(
1− µ

1 + µ

)
,

which in turn is seen to be equal to C+1(Q)(−µ) directly from Definition 4.1. Equality
again extends to µ = −1 by continuity.
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We are now in a position to prove the following theorem relating structure in
Q(λ) to that of its Cayley transforms.

Theorem 4.2 (Structure of Cayley transforms). Let Q(λ) be a matrix polynomial
of degree k and let P be a real involution.

1. If Q(λ) is (anti-)PCP, then the Cayley transforms of Q are PCP-even or
PCP-odd. More precisely, if Q(λ) = ±P · revQ(λ) · P then

C+1(Q)(µ) = ±P · C+1(Q)(−µ) · P ,

C−1(Q)(µ) = ±(−1)kP · C−1(Q)(−µ) · P .

2. If Q(λ) has PCP-even/odd structure, then the Cayley transforms of Q are
(anti-)PCP. Specifically, if Q(λ) = ±P ·Q(−λ) · P then

C+1(Q)(µ) = ±(−1)kP · rev(C+1(Q)(µ)) · P ,

C−1(Q)(µ) = ±P · rev(C−1(Q)(µ)) · P .

Proof. To prove part (1), suppose that

Q(λ) = ±P · revQ(λ) · P = ±P · λkQ
(

1
λ

)
· P . (4.4)

Setting λ = 1+µ
1−µ in (4.4) and multiplying by (1− µ)k yields

(1− µ)kQ

(
1 + µ

1− µ

)
= ±(1− µ)kP ·

(
1 + µ

1− µ

)k

Q

(
1− µ

1 + µ

)
· P

= ±P · (1 + µ)kQ

(
1− µ

1 + µ

)
· P ,

which by (4.3) says that C+1(Q)(µ) = ±P · C+1(Q)(−µ) · P . On the other hand,
setting λ = µ−1

µ+1 in (4.4) and multiplying with (µ + 1)k yields

(µ + 1)kQ

(
µ− 1

µ + 1

)
= ±(µ + 1)kP ·

(
µ− 1

µ + 1

)k

Q

(
µ + 1

µ− 1

)
· P

= ±P · (µ− 1)kQ

(
µ + 1

µ− 1

)
· P ,

which by (4.2) says that C−1(Q)(µ) = ±(−1)kP · C−1(Q)(−µ) · P . This completes
the proof of part (1) of this theorem.

For part (2), we now begin by supposing that

Q(λ) = ±P ·Q(−λ) · P . (4.5)

Setting λ = 1+µ
1−µ in (4.5), multiplying with (1− µ)k and using (4.2) yields

C+1(Q)(µ) = (1− µ)kQ

(
1 + µ

1− µ

)
= ±(1− µ)kP ·Q

(
−1 + µ

1− µ

)
· P

= ±(−1)kP · revC+1(Q)(µ) · P .

On the other hand, setting λ = µ−1
µ+1 in (4.5), multiplying with (µ + 1)k and using

(4.3) yields

C−1(Q)(µ) = (µ + 1)kQ

(
µ− 1

µ + 1

)
= ±(µ + 1)kP ·Q

(
−µ− 1

µ + 1

)
· P

= ±P · revC−1(Q)(µ) · P .
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This completes the proof of the theorem.

Analogous relationships between palindromic and even/odd matrix polynomials
have been observed in [17]. Table 4.1 summarizes all these results.

Table 4.1
Cayley transformations

C−1(Q)(µ) C+1(Q)(µ)
Q(λ)

k even k odd k even k odd

palindromic even odd even
⋆-palindromic ⋆-even ⋆-odd ⋆-even

anti-palindromic odd even odd
⋆-anti-palindromic ⋆-odd ⋆-even ⋆-odd

PCP PCP-even PCP-odd PCP-even
anti-PCP PCP-odd PCP-even PCP-odd

even palindromic palindromic anti-palindromic
⋆-even ⋆-palindromic ⋆-palindromic ⋆-anti-palindromic

odd anti-palindromic anti-palindromic palindromic
⋆-odd ⋆-anti-palindromic ⋆-anti-palindromic ⋆-palindromic

PCP-even PCP PCP anti-PCP
PCP-odd anti-PCP anti-PCP PCP

5. Structured linearizations. Following the strategy in [17], we will consider
the vector spaces L1(Q) and L2(Q) introduced in [16, 18],

L1(Q) :=
{
L(λ) = λX + Y : L(λ) · (Λ⊗ In) = v ⊗Q(λ), v ∈ C

k
}

, (5.1)

L2(Q) :=
{
L(λ) = λX + Y : (ΛT ⊗ In) · L(λ) = wT ⊗Q(λ), w ∈ C

k
}

, (5.2)

where Λ = [ λk−1 λk−2 · · · λ 1 ]T ,

as sources of structured linearizations for our structured polynomials. The vector v
in (5.1) is called the right ansatz vector of L(λ) ∈ L1(Q), while w in (5.2) is called the
left ansatz vector of L(λ) ∈ L2(Q). We recall some of the key results known about
these spaces for the convenience of the reader.

The pencil spaces Li(Q) are generalizations of the first and second companion
forms (1.4); direct calculations show that Ci(λ) ∈ Li(Q), with ansatz vector e1 in
both cases. These spaces can be represented using the column-shifted sum and row-
shifted sum defined as follows. Viewing X and Y as block k×k matrices, partitioned
into n × n blocks Xij , Yij , the column shifted sum X ⊞→ Y and the row shifted sum
X ⊞↓ Y are defined to be

X ⊞→ Y :=




X11 · · · X1k 0
...

...
...

Xk1 · · · Xkk 0


+




0 Y11 · · · Y1k
...

...
...

0 Yk1 · · · Ykk


 ,

X ⊞↓ Y :=




X11 · · · X1k
...

...
Xk1 · · · Xkk

0 · · · 0


+




0 · · · 0
Y11 · · · Y1k
...

...
Yk1 · · · Ykk


 ,
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where the zero blocks are also n× n. An alternate characterization [18],

L1(Q) =
{
λX + Y : X ⊞→ Y = v ⊗ [ Bk Bk−1 · · · B0 ], v ∈ C

k
}

, (5.3)

L2(Q) =



λX + Y : X ⊞↓ Y = wT ⊗




Bk
...

B0


 , w ∈ C

k



 , (5.4)

now shows that like the companion forms, pencils L(λ) ∈ Li(Q) are easily con-
structible from the data in Q(λ).

The spaces Li(Q) are fertile sources of linearizations: having nearly half the
dimension of the full pencil space (they are both of dimension k(k− 1)n2 +k [18, Cor
3.6]), almost all pencils in these spaces are strong linearizations when Q is regular [18,
Thm 4.7]. Furthermore, eigenvectors of Q(λ) are easily recoverable from those of L(λ).
For an eigenvalue λ of Q, the correspondence x ↔ Λ⊗ x is an isomorphism between
right eigenvectors x of Q(λ) and those of any linearization L(λ) ∈ L1(Q). Similar
observations hold for linearizations in L2(Q) and left eigenvectors [18, Thms 3.8 and
3.14].

It is natural to consider pencils in

DL(Q) := L1(Q) ∩ L2(Q) ,

since for such pencils both right and left eigenvectors of Q are easily recovered. It is
shown in [18, Thm 5.3] that the right and left ansatz vectors v and w must coincide
for pencils L(λ) ∈ DL(Q), and that every v ∈ C

k uniquely determines X and Y such
that λX +Y is in DL(Q). Thus DL(Q) is a k-dimensional space of pencils, almost all
of which are strong linearizations for Q [18, Thm 6.8].

Furthermore, all pencils in DL(Q) are block-symmetric [7]; in particular, the set
of all block-symmetric pencils in L1(Q) is precisely DL(Q). Here a block k×k matrix
A with n× n blocks Aij is said to be block-symmetric if AB = A, where AB denotes
the block transpose of A, that is, AB is the block k×k matrix with n×n blocks defined
by (AB)ij := Aji. See [7] for more on symmetric linearizations of matrix polynomials
and their connection to DL(Q).

The existence of other types of structured linearization in L1(Q), in particular
for ⋆-(anti)-palindromic and ⋆-even/odd polynomials Q, has been established in [16]
and [17] by showing how they may be constructed from DL(Q)-pencils. A second
method for building these structured pencils using the shifted sum was presented
in [16]. In the following subsections we develop analogous methods to construct
PCP-structured linearizations in L1(Q), L2(Q) and DL(Q) for all the types of PCP-
structured polynomials considered in this paper.

It is important to point out that linearizations other than the ones in L1(Q) and
L2(Q) discussed here are also possible. Indeed, several other methods for constructing
block-symmetric linearizations of matrix polynomials have appeared previously in the
literature, see [7, Section 4] for more details.

5.1. Structured linearizations of (anti-)PCP polynomials. We now turn
to the problem of finding structured linearizations for general (anti-)PCP polynomials,

that is, for Q(λ) =
∑k

i=1 λiBi satisfying Bi = ±PBk−iP for some n×n real involution
P . Our search for these structured linearizations will take place in the spaces L1(Q),
L2(Q), and DL(Q).
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In this context a linearization L(λ) = λX + Y for Q will be considered structure-
preserving if it satisfies

P̂ · revL(λ) · P̂ = ±L(λ) , equivalently Y = ±P̂ ·X · P̂ , (5.5)

for some kn × kn real involution P̂ . It is not immediately obvious, though, what
we should use for P̂ . One might reasonably expect that an appropriate P̂ would
incorporate the original involution P in some way. An apparently natural choice,

Ik ⊗ P =

[
P . . .

P

]
,

works only when the coefficient matrices Bi of Q are very specifically tied to one
another; e.g., for k = 2, Q would be constrained by B1 = PB2P + B2 = B0 + B2,
and a structured L(λ) ∈ L1(Q) would have to have right ansatz vector v = [ 1 1 ]T .
Things work out better if we use instead the involution

P̂ := R⊗ P =

[
P

. .
.

P

]
where R =

[
1

. .
.

1

]

k×k

. (5.6)

Note that P̂ = R⊗ P is symmetric whenever P is, a property that will be important
in Section 6.

Fixing the involution P̂ = R⊗ P for the rest of this section, we begin by observ-
ing that if a pencil λX(1) + Y (1) is (anti-)PCP with respect to P̂ , then from (5.5)

Y (1) = ±P̂ X
(1)

P̂ is uniquely determined by X(1), so it suffices to specify all the

admissible X(1). Partitioning X(1) and Y (1) into n × n blocks X
(1)
ij and Y

(1)
ij with

i, j = 1, . . . , k, we obtain from (5.5) and (5.6) that these blocks satisfy

Y
(1)
ij = ±PX

(1)

k−i+1,k−j+1P . (5.7)

For λX(1) + Y (1) to be a pencil in L1(Q), we know from (5.3) that

X(1)
⊞→ Y (1) = v ⊗ [ Bk Bk−1 · · · B0 ] =: Z for some v ∈ C

k. (5.8)

It follows immediately from the definition of the column shifted sum ⊞→ that if Z is
partitioned conformably into n× n blocks Ziℓ with ℓ = 1, . . . , k + 1, then

Ziℓ = viBk−ℓ+1 =





X
(1)
i1 ℓ = 1 ,

X
(1)
iℓ + Y

(1)
i,ℓ−1 1 < ℓ < k + 1 ,

Y
(1)
ik ℓ = k + 1 .

(5.9)

Invoking (5.7) with j = k, (5.9) with ℓ = 1 and ℓ = k + 1, together with the PCP-
structure of Q yields

viB0 = Y
(1)
ik = ±PX

(1)

k−i+1,1P

= ±P
(
vk−i+1Bk

)
P

= vk−i+1(±PBkP ) = vk−i+1B0 (5.10)

for all i. Hence vi = vk−i+1, equivalently Rv = v, is a necessary condition for the
right ansatz vector v of any PCP-pencil in L1(Q).
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The first block column of X(1) is completely determined by (5.9) with ℓ = 1,

X
(1)
i1 = viBk , (5.11)

while (5.9) for 2 ≤ ℓ = j ≤ k together with (5.7) provides a pairwise relation

X
(1)
ij = viBk−j+1 − Y

(1)
i,j−1 = viBk−j+1 ∓ PX

(1)

k−i+1,k−j+2P (5.12)

among the remaining k(k − 1) blocks of X(1) in block columns 2 through k. Because
the “centrosymmetric” pairing of indices in (5.12)

(i, j) ←→ (k − i + 1, k − j + 2) with j ≥ 2

has no fixed points, (5.12) is always a relation between distinct blocks of X(1). One
block in each of these centrosymmetric pairs can be chosen arbitrarily; then (5.12)

uniquely determines the rest of the blocks X
(1)
ij with j ≥ 2. Gathering (5.11) and

(5.12) together with the conditions on the blocks of Y (1) that follow from (5.7) gives
us the following blockwise specification

X
(1)
ij =

{
viBk j = 1

viBk−j+1 ∓ PX
(1)

k−i+1,k−j+2P j > 1 ,
(5.13)

Y
(1)
ij =

{
viBk−j −X

(1)
i,j+1 j < k

viB0 j = k .
(5.14)

of an (anti-)PCP-pencil λX(1) + Y (1). These pencils can now all be shown to be in
L1(Q) by a straightforward verification of property (5.8).

Thus we see that for any v ∈ Ck satisfying Rv = v, there always exist pencils
L(λ) ∈ L1(Q) with right ansatz vector v and (anti-)PCP structure. These pencils
are far from unique — the above analysis shows that for each admissible v there
are k(k− 1)n2/2 (complex) degrees of freedom available for constructing (anti-)PCP-
pencils in L1(Q) with v as right ansatz vector. Indeed, the set of all PCP-pencils in
L1(Q) can be shown to be a real subspace of L1(Q) of real dimension k + k(k− 1)n2.
This is quite different from the palindromic structures considered in [18, Thm 3.5],
where for each suitably restricted right ansatz vector there was shown to be a unique
structured pencil in L1(Q).

A similar analysis can be used to develop formulas for the set of all (anti-)PCP-
structured pencils λX(2) + Y (2) in L2(Q), using the row shifted sum characterization
(5.4) as a starting point in place of (5.8). We find that the left ansatz vector w of
any (anti-)PCP-pencil in L2(Q) is restricted, just as it was for (anti-)PCP-pencils in

L1(Q), to ones satisfying Rw = w. Partitioning X(2) and Y (2) into n×n blocks X
(2)
ij

and Y
(2)
ij as before now forces the first block row of X(2) to be

X
(2)
1j = wjBk ,

while the remaining blocks of X(2) in block rows 2 through k must pairwise satisfy
the relations

X
(2)
ij = wjBk−i+1 ∓ PX

(2)

k−i+2,k−j+1P for 2 ≤ i ≤ k , (5.15)
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analogous to (5.13) for (anti-)PCP-pencils in L1(Q). Here the pairing of indices for
blocks of X(2) is

(i, j) ←→ (k − i + 2, k − j + 1) for i ≥ 2 .

Once again we have a pairing with no fixed points, allowing one block in each block
pair to be chosen arbitrarily, while the other is then uniquely specified by (5.15).
Thus we obtain the following blockwise specification for a general (anti-)PCP pencil
in L2(Q),

X
(2)
ij =

{
wjBk i = 1

wjBk−i+1 ∓ PX
(2)

k−i+2,k−j+1P i > 1 ,
(5.16)

Y
(2)
ij =

{
wjBk−i −X

(2)
i+1,j i < k

wjB0 i = k ,
(5.17)

analogous to (5.13) and (5.14) for (anti-)PCP pencils in L1(Q).
An alternative way to generate (anti-)PCP pencils in L2(Q) is to use the block

transpose linear isomorphism [7, Thm 2.2]

L1(Q) −→ L2(Q)

L(λ) 7−→ L(λ)B ,

between L1(Q) and L2(Q). For any (anti-)PCP pencil λX±P̂ XP̂ with the particular

involution P̂ = R⊗ P we can show that

(
λX ± P̂ XP̂

)B
= λXB ±

(
P̂ XP̂

)B
= λXB ± P̂ X

B
P̂ .

Thus block transpose preserves (anti-)PCP structure, and hence restricts to an iso-
morphism between the (real) subspaces of all (anti-)PCP pencils in L1(Q) and all
(anti-)PCP pencils in L2(Q).

We now know how to generate lots of (anti-)PCP pencils in L1(Q) and in L2(Q) for
each admissible right or left ansatz vector. But what about DL(Q) = L1(Q)∩L2(Q)?
Are there any (anti-)PCP pencils in this very desirable subspace of pencils? The
following theorem answers this question in the affirmative, and also gives a uniqueness
result analogous to the ones for the palindromic structures considered in [18].

Theorem 5.1 (Existence/Uniqueness of PCP-Structured Pencils in DL(Q)).
Suppose Q(λ) is an (anti-)PCP-polynomial with respect to the involution P . Let
v ∈ C

k be any vector such that Rv = v, and let L(λ) be the unique pencil in DL(Q)
with ansatz vector v. Then L(λ) is an (anti-)PCP-pencil with respect to the involution

P̂ = R⊗ P .
Proof. Our strategy is to show that the pencil L̂(λ) := ± P̂ revL(λ)P̂ (using +

when Q is PCP and − when Q is anti-PCP) is also in DL(Q), with the same ansatz
vector v as L(λ). Then from the unique determination of DL(Q)-pencils by their

ansatz vectors, see [7, Thm 3.4] or [18, Thm 5.3], we can conclude that L̂(λ) ≡ L(λ),

and hence that L(λ) is (anti-)PCP with respect to P̂ .
We begin by showing that L(λ) ∈ L1(Q) with right ansatz vector v implies that

L̂(λ) ∈ L1(Q) with right ansatz vector v. From the defining identity (in the variable
λ) for a pencil in L1(Q) we have

L(λ) · (Λ⊗ I) = v ⊗Q(λ) = v ⊗
[
±P revQ(λ)P

]
.
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Taking rev of both sides of this identity, and using the fact that revΛ = RΛ, we get

revL(λ) · (RΛ⊗ I) = ±v ⊗
[
PQ(λ)P

]
.

Multiplying on the right by the involution 1⊗ P = P and simplifying yields

±revL(λ) · (RΛ⊗ P ) =
(
v ⊗

[
PQ(λ)P

])
(1⊗ P )

=⇒ ±revL(λ) · (R⊗ P )(Λ⊗ I) = v ⊗ PQ(λ) .

Now multiply on the left by R⊗ P , and use the hypothesis Rv = v to obtain

±(R⊗ P ) · revL(λ) · (R⊗ P )(Λ⊗ I) = Rv ⊗Q(λ)

=⇒
[
±P̂ revL(λ) P̂

]
· (Λ⊗ I) = v ⊗Q(λ) .

Finally conjugate both sides, and replace λ by λ in the resulting identity:

[
±P̂ revL(λ) P̂

]
(Λ⊗ I) = v ⊗Q(λ) =⇒

[
±P̂ revL(λ) P̂

]
(Λ⊗ I) = v ⊗Q(λ) .

Thus L̂(λ) · (Λ⊗ I) = v ⊗Q(λ), and so L̂(λ) ∈ L1(Q) with right ansatz vector v.
A similar computation starts from the defining identity

(ΛT ⊗ I) · L(λ) = vT ⊗Q(λ)

for a pencil L(λ) to be in L2(Q), and shows that whenever L(λ) ∈ L2(Q) has left ansatz

vector v, then L̂(λ) is also in L2(Q) with left ansatz vector v. Thus L̂(λ) ∈ DL(Q)

with ansatz vector v, hence L̂(λ) ≡ L(λ), and so L(λ) is a PCP-pencil with respect

to the involution P̂ = R ⊗ P .

Now that we know there exists a unique structured pencil in DL(Q) for each
admissible ansatz vector, how can we go about constructing it in a simple and effective
manner? Perhaps the simplest answer is just to use either of the explicit formulas
for DL(Q) pencils given in [7] and [18, Thm 5.3]. An alternative is to adapt the
procedures used in [16] for constructing ⋆ -palindromic and ⋆ -even/odd pencils in
DL(Q), as follows.

Given a vector v ∈ C
k such that Rv = v, our goal is to construct the pencil λX+Y

in DL(Q) with ansatz vector v that is (anti-)PCP with respect to the involution

P̂ = R ⊗ P . Recall that it suffices to determine X, since the (anti-)PCP structure

forces Y to be ±P̂ XP̂ . We now construct X one group of blocks at a time, alternating
between using the fact that X comes from a pencil in DL(Q) and hence is block-
symmetric, and the fact that it comes from a pencil that is (anti-)PCP in L1(Q) and
so satisfies the conditions in (5.13).

1. the first block column of X is determined by (5.13) to be Xi1 = viBk.
2. the first block row of X is now forced to be X1j = vjBk by block-symmetry.
3. (5.13) now determines the last block row of X from the first block row.
4. the last block column of X is now determined by block-symmetry.
5. (5.13) determines the second block column of X from the last block column.
6. the second block row of X follows by block-symmetry.
7. (5.13) determines the next-to-last block row of X from the second block row.
8. the next-to-last block column of X is now determined by block-symmetry.
9. and so on ...
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The order of construction for the various groups of blocks in X follows the pattern

X =




1

3

2

45

7

6

8. . .




(5.18)

similar to that in [16, Section 7.3.2] for ⋆-even and ⋆-odd linearizations.
The matrix X resulting from this construction is necessarily block-symmetric,

since all the blocks in the even-numbered panels 2, 4, 6, 8, . . . are determined by im-

posing the condition of block-symmetry. Since
(
P̂ XP̂

)B
= P̂ X

B
P̂ = P̂ XP̂ , we see

that the pencil λX ± P̂ XP̂ as a whole is block-symmetric, and hence is in DL(Q).

Example 5.2 (Quadratic case). To illustrate this procedure we find all the struc-
tured pencils in DL(Q) for the quadratic PCP-polynomial Q(λ) = λ2B2 + λB1 + B0,
where B1 = PB1P and B0 = PB2P . An admissible ansatz vector v ∈ C2 must sat-
isfy Rv = v, i.e., must be of the form v = [ α, α ]T . The matrix X in the structured
DL(Q)-pencil λX + Y with ansatz vector v is then constructed in three steps:

first

[
αB2 ∗
αB2 ∗

]
, then

[
αB2 αB2

αB2 ∗

]
, and finally

[
αB2 αB2

αB2 αB1 − αPB2P

]
,

resulting in the structured pencil λX + P̂XP̂ given by

λ

[
αB2 αB2

αB2 αB1 − αPB2P

]
+

[
αB1 − αB2 αPB2P

αPB2P αPB2P

]
.

So far in this section we have shown how to construct many structured pencils in
L1(Q), L2(Q), and DL(Q). But which, if any, of these pencils are actually lineariza-
tions for the structured polynomial Q that we began with? It is known that when
Q(λ) is regular, then any regular pencil in L1(Q) or L2(Q) is a (strong) linearization
for Q [18, Thm 4.3]. Although there is a systematic approach [18] for determining
the regularity of a pencil L(λ) in L1(Q) or L2(Q), there is in general no connection
between its regularity and the right (or left) ansatz vector of L(λ). By contrast,
for pencils in DL(Q) the Eigenvalue Exclusion Theorem [18, Thm 6.7] characterizes
regularity directly in terms of the ansatz vector : L(λ) ∈ DL(Q) with ansatz vector
v = [vi] ∈ Ck is regular, and hence a (strong) linearization for Q(λ), if and only if no
root of the scalar v-polynomial p(x; v) := v1x

k−1 + v2x
k−2 + . . . + vk−1x + vk is an

eigenvalue of Q(λ). Among the ansatz vectors v satisfying Rv = v, there will always
be many choices such that the roots of the v-polynomial

p(x; v) = v1x
k−1 + v2x

k−2 + . . . + v2x + v1

are disjoint from the eigenvalues of Q(λ), thus providing many structured pencils in
DL(Q) that are indeed linearizations for Q(λ).

One might also wish to choose the ansatz vector v so that the desired eigenvalues
are optimally conditioned. Although the problem of determining the best conditioned
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linearization in DL(Q) for an unstructured polynomial Q has been investigated in [8],
up to now it is not clear how to do this for structured linearizations of structured
polynomials Q.

Remark 1: Consider again the general quadratic PCP-polynomial Q as discussed
in Example 5.2. In this case admissible ansatz vectors have the form v = [ α, α ]T with
corresponding v-polynomial p(x; v) = αx + α. So to obtain a linearization we need
only choose α ∈ C so that the number −α/α on the unit circle is not an eigenvalue
of Q(λ). Clearly this can always be done. ⋄

Remark 2: In this section our structured linearizations have been of the same
type as the structured polynomial — we linearize a PCP-polynomial with a PCP-
pencil, and an anti-PCP-polynomial with an anti-PCP-pencil. It should be noted,
however, that “crossover” linearizations are also possible. Small modifications of the
constructions given in this section show that any PCP-polynomial can be linearized
by an anti-PCP-pencil, and any anti-PCP-polynomial by a PCP-pencil. The admissi-
bility condition for the ansatz vectors of these crossover linearizations is now Rv = −v
rather than Rv = v. From the point of view of numerical computation such crossover
linearizations are just as useful, since spectral symmetries are still preserved. ⋄

Remark 3: It is not yet clear whether the choice of P̂ = R⊗P as the involution
for our structured linearizations is the only one possible, or if there might be other
choices for P̂ that work just as well. ⋄

5.2. Structured linearizations of PCP-even/odd polynomials. Next we
consider the linearization of PCP-even/odd polynomials by PCP-even/odd pencils

in L1(Q), L2(Q), and DL(Q). Recall that Q(λ) =
∑k

i=1 λiBi is PCP-even/odd if
Q(λ) = ±PQ(−λ)P , equivalently if Bi = ±(−1)iPBiP , for some real involution P .

Thus a pencil L(λ) = λX + Y is PCP-even/odd if there is some involution P̂ such
that

X = ∓P̂ X P̂ and Y = ±P̂ Y P̂ . (5.19)

Now just as in Section 5.1, the first issue is to decide which P̂ to use; certainly we
want P̂ such that structured pencils which linearize Q(λ) can always be found. The
first two possibilities that spring to mind, Ik ⊗ P and Rk ⊗ P , turn out to work only
for structured Q having additional restrictions on its coefficient matrices. We will see,
however, that choosing

P̂ := Σk ⊗ P =




. . .
−P

P
−P

P


 where Σk :=




(−1)k−1

(−1)k−2

. . .
(−1)0




k×k

(5.20)

works for any PCP-even/odd Q(λ). Fixing P̂ = Σk ⊗ P for the rest of this section,

and partitioning X and Y like P̂ into n×n blocks Xij and Yij , we obtain from (5.19)
that

Xij = ∓(−1)i+jPXijP and Yij = ±(−1)i+jPY ijP . (5.21)

Now we know from (5.3) that a pencil λX(1) + Y (1) is in L1(Q) exactly when

X(1)
⊞→ Y (1) = v ⊗ [ Bk Bk−1 · · · B0 ] for some v ∈ C

k. (5.22)
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Thus the blocks of such a pencil have to satisfy the conditions

X
(1)
ij =

{
viBk j = 1

viBk−j+1 − Y
(1)
i,j−1 j > 1 ,

(5.23)

Y
(1)
ij =

{
Y

(1)
ij j < k

viB0 j = k ,
(5.24)

for an arbitrary choice of the blocks Y
(1)
ij for 1 ≤ j ≤ k − 1 and v ∈ C

k. For

λX(1) + Y (1) to be a structured pencil in L1(Q), it remains to determine how these
arbitrary choices can be made so that all the relations in (5.21) hold.

To satisfy (5.21) for Y
(1)
ij with j = k, i.e. for Y

(1)
ik = viB0, we must have

viB0 = ±(−1)i+kP
(
viB0

)
P = (−1)i+kviB0 for all i . (5.25)

Hence the right ansatz vector v must satisfy vi = (−1)i+kvi, or equivalently Σkv = v.

Choosing the rest of the Y
(1)
ij for 1 ≤ j ≤ k − 1 in any way such that (5.21) holds

clearly yields Y (1) such that Y (1) = ±P̂ Y
(1)

P̂ . The matrix X(1) is now completely
determined by (5.23), and a straightforward, albeit tedious, verification shows that
all the relations in (5.21) hold for this X(1). Thus we have obtained a complete
description of all the PCP-even/odd pencils in L1(Q).

Remark 4: It is interesting to note an unexpected consequence of this character-
ization: when Q is PCP-even, a small variation of the first companion form lineariza-
tion C1(λ) is structure-preserving! Letting Z denote the k × k cyclic permutation

Z =




0 1
. . .

. . .
0 1

1 0


 ,

we see that the block-row-permuted companion form (Z ⊗ I)C1(λ) is a PCP-even
pencil in L1(Q) with right ansatz vector v = ek. ⋄

A similar analysis, starting from the row shifted sum characterization (5.4) in
place of (5.22), yields the following description of all the PCP-even/odd pencils
λX(2) + Y (2) in L2(Q) with left ansatz vector w. The blocks of such a structured
pencil satisfy

X
(2)
ij =

{
wjBk i = 1

wjBk−i+1 − Y
(2)
i−1,j i > 1 ,

(5.26)

Y
(2)
ij =

{
Y

(2)
ij i < k

wjB0 i = k ,
(5.27)

where once again the left ansatz vector w is restricted to ones such that Σkw = w, and

the blocks Y
(2)
ij for 1 ≤ i ≤ k− 1 are chosen in any way satisfying (5.21). The matrix

X(2) is then determined by (5.26), and the resulting pencil λX(2) + Y (2) ∈ L2(Q) is
guaranteed to be PCP-even/odd.

When we look in DL(Q) for pencils that are PCP-even/odd, we find a situation
very much like the one described in Theorem 5.1 for PCP-polynomials. The following
theorem shows that PCP-even/odd pencils in DL(Q) are uniquely defined by any
admissible ansatz vector v, i.e. by any v that satisfies Σkv = v.
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Theorem 5.3 (Existence/Uniqueness of PCP-Even/Odd Pencils in DL(Q)).
Suppose Q(λ) is a PCP-even/odd polynomial with respect to the involution P . Let
v ∈ C

k be any vector such that Σkv = v, and let L(λ) be the unique pencil in DL(Q)
with ansatz vector v. Then L(λ) is PCP-even/odd with respect to the involution

P̂ = Σk ⊗ P .
Proof. The strategy for this proof parallels that used in the proof of Theorem 5.1.

We define the auxiliary pencil L̂(λ) := ± P̂ L(−λ)P̂ (using + when Q is PCP-even

and − when Q is PCP-odd), and then show that L̂(λ) is in DL(Q) with the same
ansatz vector as L(λ). The unique determination of DL(Q)-pencils by their ansatz

vectors, see [7, Thm 3.4] or [18, Thm 5.3], then implies that L̂(λ) ≡ L(λ), and hence

that L(λ) is PCP-even/odd with respect to P̂ .
We begin by showing that L(λ) ∈ L1(Q) with right ansatz vector v implies that

L̂(λ) ∈ L1(Q) with right ansatz vector v. From the defining identity (in the variable
λ) for a pencil in L1(Q) we have

L(λ) · (Λ⊗ I) = v ⊗Q(λ) = v ⊗
[
±P Q(−λ)P

]
.

Replacing λ by −λ in this identity, and using the fact that Λ(−λ) = ΣkΛ, we get

L(−λ) · (ΣkΛ⊗ I) = ±v ⊗
[
P Q(λ)P

]
.

Multiplying on the right by the involution 1⊗ P = P and simplifying yields

±L(−λ) · (ΣkΛ⊗ P ) =
(
v ⊗

[
P Q(λ)P

])
(1⊗ P )

±L(−λ) · (Σk ⊗ P )(Λ⊗ I) = v ⊗ P Q(λ) .

Now multiply on the left by Σk ⊗ P , and use the hypothesis Σkv = v to obtain

±(Σk ⊗ P ) · L(−λ) · (Σk ⊗ P )(Λ⊗ I) = Σkv ⊗Q(λ) ,
[
±P̂ L(−λ) P̂

]
· (Λ⊗ I) = v ⊗Q(λ) .

Finally conjugate both sides, and replace λ by λ in the resulting identity:

[
±P̂ L(−λ) P̂

]
(Λ⊗ I) = v ⊗Q(λ) =⇒

[
±P̂ L(−λ) P̂

]
(Λ⊗ I) = v ⊗Q(λ) .

Thus L̂(λ) · (Λ⊗ I) = v ⊗Q(λ), and so L̂(λ) ∈ L1(Q) with right ansatz vector v.
A similar computation starts from the defining identity

(ΛT ⊗ I) · L(λ) = vT ⊗Q(λ)

for a pencil L(λ) to be in L2(Q), and shows that whenever L(λ) ∈ L2(Q) has left ansatz

vector v, then L̂(λ) is also in L2(Q) with left ansatz vector v. Thus L̂(λ) ∈ DL(Q)

with ansatz vector v, hence L̂(λ) ≡ L(λ), and so L(λ) is PCP-even/odd with respect

to the involution P̂ = Σk ⊗ P .
To construct these structured pencils L(λ) ∈ DL(Q) we once again have two main

options — use the explicit formulas for general DL(Q)-pencils given in [7] and [18], or
alternatively build them up blockwise using a shifted sum construction analogous to
the procedures used in [16, Section 7.3.2] for building ⋆-even and ⋆-odd linearizations.
In this construction we alternate between using the fact that L(λ) = λX + Y is
to be in L1(Q) and so must satisfy the shifted sum condition (5.22), and invoking
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block-symmetry to ensure that L(λ) is in DL(Q). (Recall that the set of all block-
symmetric pencils in L1(Q) is precisely DL(Q).) The determination of the blocks in
λX + Y proceeds in the order indicated in the following diagram.

λX + Y = λ




1

3

2

45

7

6

8. . .




+




1

2

3

4 5

6

7

8 . . .




(5.28)

We start with a choice of ansatz vector v such that Σkv = v. Then

1. L(λ) being in L1(Q) immediately determines the blocks in the panels labelled
by (1); from (5.23) and (5.24) we know that Xi1 = viBk and Yik = viB0.

2. block-symmetry now forces the blocks in the panels labelled (2).
3. the shifted sum condition (5.22) next determines the blocks in the panels

labelled (3).
4. block-symmetry now forces the blocks in the panels labelled (4).
5. (5.22) next determines the blocks in the panels labelled (5).
6. block-symmetry now forces the blocks in the panels labelled (6).
7. and so on ...

In summary, each panel labelled with an odd number is constructed using information
from the shifted sum condition (5.22), while the panels labelled with an even number
are constructed so as to maintain block-symmetry. Since the even-numbered panels
comprise all the blocks above the diagonal in X and all the blocks below the diagonal in
Y , we are guaranteed that the construction as a whole will produce a block-symmetric
pencil, and hence a pencil in DL(Q).

The question of determining which of these structured pencils in DL(Q) is actually
a linearization for Q is handled in the same way as it was in Section 5.1 — by using
the Eigenvalue Exclusion Theorem [18, Thm 6.7] for pencils in DL(Q). For any
admissible ansatz vector v such that the roots of the v-polynomial p(x; v) are disjoint
from the eigenvalues of Q, the structured pencil in DL(Q) corresponding to v will be
a linearization for Q. Clearly there will be many such v for which this is the case.

Finally it should be noted that remarks similar to the ones at the end of Sec-
tion 5.1, e.g. on the existence of “crossover” structured linearizations and the possi-
bility of there being other good choices of involution P̂ , also apply here in the context
of PCP-even/odd structure.

6. Structured Schur form for PCP-pencils. Once a PCP-polynomial has
been linearized in a structure-preserving manner, then the eigenvalues of the resulting
PCP-pencil should be computed in such a way that the reciprocal pairing of the
spectrum (see Theorem 3.1) is guaranteed.

The generalized Schur decomposition (S, T ) = (QAZ, QBZ) of a matrix pair
(A, B), where S and T are upper triangular and Q and Z are unitary, is the basis
for most numerical approaches to computing eigenvalues and generalized invariant
subspaces for the general linear eigenproblem (λA + B)x = 0. In this section we
discuss the computation of a structured Schur-type decomposition for the linear PCP-
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eigenproblem

(λX + P XP )v = 0 , (6.1)

where X ∈ Cm×m and P ∈ Rm×m is an involution. We begin by assuming that P
is also symmetric; this is true for the involution in the quadratic PCP-eigenproblem
arising from the stability analysis of time-delay systems discussed in Section 2, as well
as in the structured linearizations for such problems described in Section 5.1.

Since P is an involution its eigenvalues are in {±1}, so when P is symmetric it
admits a Schur decomposition of the form

P = WDWT , D =

[
Ip

−Im−p

]
,

where W ∈ R
m×m is orthogonal. With

X̂ = WT XW and v̂ = WT v

we can then simplify (6.1) to the linear PCP-eigenproblem

(λX̂ + DX̂D) v̂ = 0 (6.2)

with involution D.
Using a Cayley transform and scaling yields

1
2

(
C+1

(
λX̂ + DX̂D

))
(µ) v̂ =: (µN + M) v̂ = 0 (6.3)

where µ = λ−1
λ+1 . By Theorem 4.2, the pencil µN + M is PCP-even with involution

D, hence N = −DND and M = DMD. These relations can also be directly verified

from the defining equations N := 1
2 (X̂−DX̂D), and M := 1

2 (X̂ +DX̂D). Note also
that Theorem 3.1 guarantees symmetry of the spectrum of µN + M with respect to
the imaginary axis. Partitioning N and M conformably with D we have

N =

[
N11 N12

N21 N22

]
=

[
−N11 N12

N21 −N22

]
= −DND ,

M =

[
M11 M12

M21 M22

]
=

[
M11 −M12

−M21 M22

]
= DMD .

Hence the blocks N12, N21, M11, and M22 are real while N11, N22, M12, and M21 are
purely imaginary.

Multiplying on both sides by D̃ := diag(Ip , −iIm−p) yields the equivalent real
pencil

D̃(µN + M)D̃

=

(
µ

[
iIm(X̂11) −iRe(X̂12)

−iRe(X̂21) −iIm(X̂22)

]
+

[
Re(X̂11) Im(X̂12)

Im(X̂21) −Re(X̂22)

])

=

(
(−iµ)

[
−Im(X̂11) Re(X̂12)

Re(X̂21) Im(X̂22)

]
+

[
Re(X̂11) Im(X̂12)

Im(X̂21) −Re(X̂22)

])
=: (νX1 + X2)

with X1, X2 real and ν = −iµ. Here Re(X) and Im(X) denote the real and imaginary
parts of X, respectively.
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Now let (S̃, T̃ ) = (Q̃X1Z̃, Q̃X2Z̃) be a real generalized Schur form for the real pair

(X1, X2); i.e., Q̃ and Z̃ are real orthogonal, T̃ is real and upper triangular, and S̃ is
real and quasi-upper triangular with 1×1 and 2×2 blocks. Any 1×1 block in this real
Schur form corresponds to a real eigenvalue of νX1 +X2, hence to a purely imaginary
eigenvalue of µN + M , and thus to an eigenvalue of λX + PXP on the unit circle.
Similarly, any 2 × 2 block corresponds to a complex conjugate pair of eigenvalues
for νX1 + X2, which in turn corresponds to an eigenvalue pair (µ,−µ̄) for µN + M ,
and thence to a reciprocal pair of eigenvalues (λ, 1/λ̄) for λX + P XP . Thus we see
that the block structure in the real Schur form of the real pencil νX1 + X2 precisely
mirrors the reciprocal pairing structure in the spectrum of the original PCP-pencil
λX + P XP .

We recover a structured Schur form for λX + P XP by re-assembling all the
transformations together to obtain

(Q̃D̃WT

︸ ︷︷ ︸
Q

)(λX + PXP )(WD̃Z̃︸ ︷︷ ︸
Z

) = λ (T̃ − iS̃)︸ ︷︷ ︸
S

+ (T̃ + iS̃)︸ ︷︷ ︸
T

.

Since λS + T = λS + S this Schur form is again a PCP-pencil, but with respect to
the involution P = I. This derivation can be summarized in the following algorithm.

Algorithm 1 (Structured Schur form for PCP-pencils).

Input: X ∈ Cm×m and P ∈ Rm×m with P 2 = I and PT = P .
Output: Unitary Q, Z ∈ Cm×m and block upper triangular S ∈ Cm×m such that

QXZ = S and QPXPZ = S; the diagonal blocks of S are only of size 1 × 1
(corresponding to eigenvalues of magnitude 1) and 2 × 2 (corresponding to pairs
of eigenvalues of the form (λ, 1/λ̄)).

1: P →WDWT with D = diag(Ip ,−Im−p) [ find real symmetric Schur form ]

2: X̂ ←WT XW

3: X1 ←
[
−Im(X̂11) Re(X̂12)

Re(X̂21) Im(X̂22)

]
where X̂11 ∈ Cp×p

4: X2 ←
[

Re(X̂11) Im(X̂12)

Im(X̂21) −Re(X̂22)

]
where X̂11 ∈ Cp×p

5: (X1, X2) → (Q̃T S̃Z̃T , Q̃T T̃ Z̃T ) [ compute real generalized Schur form ]

6: Q← Q̃diag(Ip,−iIm−p)W
T , Z ←Wdiag(Ip,−iIm−p)Z̃

7: S ← T̃ − iS̃

This algorithm has several advantages over the standard QZ algorithm applied
directly to λX+PXP . First, it is faster, since the main computational work is the real
QZ rather than the complex QZ algorithm. Second, structure preservation guarantees
reciprocally paired eigenvalues; in particular, the presence of eigenvalues on the unit
circle can be robustly detected. It is interesting to note that an algorithm with these
properties (computation of a structured Schur form with the resulting guaranteed
spectral symmetry, and greater efficiency than the standard QZ algorithm) is not yet
available for the T- or ∗-palindromic eigenvalue problem.

In many applications it is also necessary to compute eigenvectors for a PCP-
polynomial, e.g., in the stability analysis of time-delay systems described in Section 2.
These can be found by starting with the eigenvalue problem (νS̃ + T̃ )x = 0 in real
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generalized Schur form, and computing eigenvectors x using standard methods. It
then follows that

(
1+iν
1−iν S + T

)
x =

(
1+iν
1−iν S + S

)
x = 0, which in turn implies that(

1+iν
1−iν X + PXP

)
(Zx) = 0. In other words, v = Zx is an eigenvector of (6.1) corre-

sponding to the eigenvalue λ = 1+iν
1−iν . If (6.1) was originally obtained as a structured

linearization in L1(Q) for a PCP-polynomial Q(λ), then (as described in Section 5)
v must be of the form Λ ⊗ u for some eigenvector u of Q(λ) corresponding to the
eigenvalue λ = 1+iν

1−iν . Thus eigenvectors u of Q(λ) are immediately recoverable from
the eigenvectors v of (6.1).

Remark 5: Any real involution P that is not symmetric admits a Schur decom-
position of the form

R = WT PW =

[
Ip R12

−Im−p

]
.

Defining

K :=

[
Ip

1
2R12

−Im−p

]

we have K−1RK = D = diag(Ip ,−Im−p), and so P = W̃DW̃−1 with W̃ = WK.
Thus if P is only mildly non-normal (i.e., ‖R12‖ is small), then there is a well-
conditioned similarity transformation that brings P to the diagonal form D, and
replacing W by W̃ and WT by W̃−1 in Algorithm 1 would still be a reasonable way
to compute the eigenvalues and eigenvectors of a PCP-pencil. Note, however, that
the output matrices Q and Z will no longer be unitary. ⋄

Remark 6: Note that with some minor modifications, Algorithm 1 can also be
used on an anti-PCP-pencil to compute a structured Schur form that is anti-PCP, of
the form λS − S. ⋄

7. Applications and Numerical Results. As we saw earlier in Section 2,
eigenvalue problems with PCP-structure arise in the stability analysis of neutral lin-
ear time-delay systems. Such systems provide useful mathematical models in many
physical application areas (see [12, 21] and the references therein); one example is
circuits with delay elements, such as transmission lines and partial element equivalent
circuits (PEEC’s). A realistic problem motivated by the small PEEC model in Fig.
7.1 is given by

S =

{
D1ẋ(t− h) + ẋ(t) = A0x(t) + A1x(t− h) , t ≥ 0

x(t) = ϕ(t) , t ∈ [−h, 0)
(7.1)

where

A0 = 100 ·



−7 1 2

3 −9 0
1 2 −6


 , A1 = 100 ·




1 0 −3
−0.5 −0.5 −1
−0.5 −1.5 0


 ,

D1 = − 1

72
·



−1 5 2

4 0 3
−2 4 1


 , D0 = I, and

ϕ(t) =
[
sin(t), sin(2t), sin(3t)

]T
.

More details on this example can be found in [1].
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Fig. 7.1. (a) Metal strip with two Lp cells (three capacitive cells dashed) and (b) small PEEC
model for metal strip. Figures are redrawn from [1].

The quadratic eigenproblem (2.14) for this example is (z2E + zF + G)u = 0
with

E = (D0 ⊗A1) + (A0 ⊗D1), G = (D1 ⊗A0) + (A1 ⊗D0),

F = (D0 ⊗A0) + (A0 ⊗D0) + (D1 ⊗A1) + (A1 ⊗D1).

It is easy to verify that E = PGP and F = PFP hold for

P =




M11 M21 M31

M12 M22 M32

M13 M23 M33


 ,

where Mij denotes the 3 × 3 matrix with the entry 1 in position (i, j) and zeroes
everywhere else.

The standard companion forms for this quadratic eigenproblem are

C1(λ) = λ

[
E

I

]
+

[
F G
−I 0

]
and C2(λ) = λ

[
E

I

]
+

[
F −I
G 0

]
.

A structured pencil in L1(Q) (as discussed in Section 5.1) is given by

λ

[
v1E −X12

v1E v1F + PX12P

]
+

[
X12 + v1F v1PEP
−PX12P v1PEP

]
, v1 ∈ C, (7.2)

where X12 is arbitrary, while a structured pencil in L2(Q) is given by

λ

[
w1E w1E
X21 w1F − PX21P

]
+

[
w1F −X21 PX21P
w1PEP w1PEP

]
, w1 ∈ C, (7.3)

where X21 is arbitrary. With w1 = v1 and X21 = v1E = −X12 the pencils (7.2) and
(7.3) are the same, and give the unique structured pencil (up to choice of scalar v1)

λ

[
v1E v1E
v1E v1F − v1PEP

]
+

[
v1F − v1E v1PEP

v1PEP v1PEP

]
(7.4)

that lies in the intersection DL(Q) = L1(Q) ∩ L2(Q). By the Eigenvalue Exclusion
Theorem [18, Thm 6.7] the pencil (7.4) is a structured linearization if and only if
−v1/v1 is not an eigenvalue of Q(λ).

Choosing v1 = 1 and applying Algorithm 1 we found that (7.4) has no eigenvalues
on the unit circle, so the time-delay system S in (7.1) has no critical delays. The
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system S is stable for h = 0, since all eigenvalues of the pencil L(α) = α(D0 + D1)−
(A0 + A1) have negative real part. Continuity of the eigenvalues of S as a function
of the delay h then implies that S is stable for every choice of the delay h ≥ 0, a
property known as delay-independent stability.

Our next example arises from the discretization of a partial delay-differential
equation (PDDE), taken from Example 3.22 in [12, Sections 2.4.1, 3.3, 3.5.2]. It
consists of the retarded time-delay system

ẋ(t) = A0x(t) + A1x(t− h1) + A2x(t− h2) (7.5)

where A0 ∈ Rn×n is tridiagonal and A1, A2 ∈ Rn×n are diagonal with

(A0)kj =

{
−2(n + 1)2/π2 + a0 + b0 sin

(
jπ/(n + 1)

)
if k = j

(n + 1)2/π2 if |k − j | = 1 ,

(A1)jj = a1 + b1
jπ

n + 1

(
1− e−π

(
1−j/(n+1)

))
,

(A2)jj = a2 + b2
jπ2

n + 1

(
1− j/(n + 1)

)
.

Here aℓ, bℓ are real scalar parameters and n ∈ N is the number of uniformly spaced
interior grid points in the discretization of the PDDE. We used the values

a0 = 2, b0 = 0.3, a1 = −2, b1 = 0.2, a2 = −2, b2 = −0.3

(as in [12]) and considered various values for n. With ϕ1 = −π/2 (i.e. eiϕ1 = i) the
quadratic PCP eigenvalue problem to solve is

(λ2E + λF + PEP ) v = 0 (7.6)

where

E = I ⊗A2 , F =
(
I ⊗ (A0 − iA1)

)
+
(
(A0 + iA1)⊗ I

)
,

and P is the n2 × n2 permutation that interchanges the order of Kronecker products
as in (2.17). Table 7.1 displays the results of our numerical experiments. Here n
denotes the dimension of the time-delay system (7.5), 2n2 the dimension of the PCP-
pencil (7.4), and tpolyeig, tQZ, tPCP denote the execution times in seconds of the three
tested methods:

1. solving the quadratic eigenvalue problem (7.6) using MATLAB’s polyeig

command, which applies the QZ algorithm to a (permuted) companion form,

Table 7.1

n 2n2 tpolyeig tQZ tPCP errpolyeig errQZ #polyeig #QZ #PCP

5 50 0.02 0.02 0.01 5.5e-15 3.7e-15 4 4 4
10 200 0.50 0.55 0.28 6.5e-14 1.2e-13 4 4 4
15 450 5.5 6.3 3.0 4.4e-13 2.6e-13 4 3 4
20 800 33 36 20 1.3e-12 4.8e-13 3 0 4
25 1250 131 137 72 3.1e-12 6.6e-13 3 0 4
30 1800 413 435 227 1.1e-11 7.5e-13 0 0 4
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2. solving the generalized eigenproblem for the PCP-pencil (7.4) using MAT-
LAB’s QZ algorithm, and

3. solving the eigenproblem for the PCP-pencil (7.4) using Algorithm 1.
All computations were done in MATLAB 7.5 (R2007b) under OpenSUSE Linux 10.2
(kernel 2.6.18, 64 bit) on a Core 2 Duo Processor E6850 3.0GHz with 4GB memory.
The quantities errpolyeig and errQZ, defined by

err = max
λj

min
λk

|λj − (1/λk) |
|λj |

where λj , λk are (not necessarily distinct) eigenvalues of (7.6), measure the distance of
the computed eigenvalues from being paired for the two unstructured methods. Note
that this measure is zero for Algorithm 1 by construction. The numbers #polyeig, #QZ,
and #PCP denote the number of eigenvalues on the unit circle found by each method;
for the unstructured methods this is the number of eigenvalues λ with

∣∣ |λ|−1
∣∣ < 10−14,

while for Algorithm 1 this is the number of 1× 1 blocks in the structured Schur form.
As can be seen from the table, our structured method is about twice as fast as

both unstructured methods. Note that the QZ algorithm applied to the PCP lineariza-
tion (column tQZ) is slightly slower than the QZ algorithm applied to a companion
form linearization (column tpolyeig). On the other hand, the eigenvalues computed by
polyeig are not as well paired as those computed by the QZ algorithm applied to
the PCP linearization. In the time-delay setting the only eigenvalues of interest are
those on the unit circle and in this respect the three methods perform very differently.
All methods correctly find the number of eigenvalues of unit magnitude for n = 5, 10.
For larger n the unstructured methods do not find all, and sometimes not any, of the
desired eigenvalues. In particular, for n = 30 only the structured method finds all 4
eigenvalues on the unit circle whereas the unstructured methods find none.

As a third example, we tested PCP-pencils of the form λX + PXP where X is
randomly generated by the Matlab command randn(n)+i*randn(n) and P is the
matrix R as defined in (5.6). We found that for values of 50 < n < 2000 on this type
of problem our Algorithm 1 performs 2.5 to 3 times faster than the QZ algorithm.

8. Concluding Summary. Motivated by a quadratic eigenproblem arising in
the stability analysis of time-delay systems [12], we have identified a new type of
matrix polynomial structure, termed PCP-structure, that is analogous to the palin-
dromic structures investigated in [17]. The properties of these PCP-polynomials were
investigated, along with those of three closely related structures — anti-PCP, PCP-
even and PCP-odd polynomials. Spectral symmetries were revealed, and relationships
between these structures were established via the Cayley transformation.

Building on the work in [18], we have shown how to construct structure-preserving
linearizations for all these structured polynomials in the pencil spaces L1(Q), L2(Q),
and DL(Q). In addition to preservation of eigenvalue symmetry, such linearizations
also permit easy eigenvector recovery, which can be an important consideration in
applications. Structured Schur forms for PCP and anti-PCP pencils were derived,
along with a new algorithm for their computation that compares favorably with the
QZ algorithm. Using a structure-preserving linearization followed by the computation
of a structured Schur form thus allows us to solve the new structured eigenproblem
efficiently, reliably, and with guaranteed preservation of spectral symmetries.
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